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Problem

• Unsupervised non-rigid 3D shape matching

• Meaningful correspondences between:

• 2 poses of same object

• 2 objects



Usage

• Relate shapes and their parts

• Fuse different partial scans of single object

• Transfer semantics from one shape to 
another

• Quantify similarity of shapes

• Interpolate two shapes



Solution

• Match small surface patches, not points

• Geometric consistency

• Global Optimization

• Integer Linear Program

• Elastic, non-linear thin-shell energy model

• Elasticity and bending



Linear Programming

• Widely used

• Polynomial time



Integer LP

• Unknown variables are integers

• NP-hard (in general)

• Binary LP and mixed LP are also NP-hard



Problem statement
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Figure 2: Discrete graph surfaces induce continuous

matchings (cf. Theorem 1 (b)). The figure shows two adja-
cent triangles fa (red) and fb (blue) on X (on the left) which
are set in correspondence with triangles ga (red) and gb
(blue) on Y (on the right). The triangles ge,1 and ge,2 (green)
on Y are contracted to the edge e between fa and fb as indi-
cated by the black arrows on the right. Thus, edge e has to
be stretched to the contractible patch marked in green.

and define
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EDel( fa, fb)+EDel( fb, fa) if fa, fb non-deg.
2EDel( fa, fb) if fb deg.
2EDel( fb, fa) if fa deg.

(11)

For the bending term, we use the vertex-wise squared dif-
ference of mean curvatures, weighted with the mixed surface
areas. Mean curvatures are discretized using the scheme pro-
posed by Meyer et al. [MDSB02]. The resulting bending en-
ergy is
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Here, Ai

X resp. Ai
Y refer to the area of the Voronoi cell of

vertex i in triangle fa resp. in triangle fb.

Let now E be the vector of length |F| whose f -th entry
is the cost E( f ). We formulate the geometrically consistent
shape matching problem as the Integer Linear Program (ILP)

min
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3. Geometric Consistency

In this section we we show that discrete graph surfaces in-
duce matchings with built-in geometric consistency. Loosely
speaking, Theorem 1 below says that discrete graph surfaces
as defined in Definition 4 induce orientation preserving, con-
tinuous and bijective matchings. To formulate this result in a
mathematically precise way we need some further notation.

A discrete product surface G induces correspondences be-
tween surface patches on X and on Y . To define these maps,

we introduce the projection

pX : F ! FX ,
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Define pY : F ! FY in a similar way. For a set A, denote by
P(A) its power set consisting of all subsets of A.

Definition 5 We define the correspondence map induced
by G as

GX : P(FX )! P(FY )
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for all A ⇢ FX . The correspondence map GY : P(FY ) !
P(FX ) is defined analogously.

For an edge e= (a1
a2 )2 EX on X we define the image patch

of e as

G(e) := GX
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Theorem 1 (Geometric Consistency) Let G ⇢ F be a dis-
crete graph surface. Then

(a) G induces orientation preserving correspondences of tri-
angles.

(b) G is continuous in the following sense: for adjacent tri-
angles f1, f2 sharing an edge e, the image patch G(e) is a
contractible path on the dual mesh of Y which connects
G( f1) and G( f2). This statement is visualized in Figure 2.

(c) Statement (b) is true with the roles of X and Y being in-
terchanged. Thus, G induces a bijective matching.

The proof of this theorem is elementary but somewhat
technical. It can be found in Appendix A. The continuity
statement in part (b) can be understood in the following
sense: The triangle maps from fi to G( fi) can be “contin-
uously” extended over an edge e by thickening e along the
contractible path G(e).

Note that the theorem does not say that G induces a bi-
jection between FX and FY . In fact, this is not even desir-
able, since degenerate triangles should only appear at places
where stretchings occur. However, the theorem assures that
by means of a discrete graph surface G, mesh X induces a
complete, geometrically consistent covering of mesh Y and
vice versa. Thereby, discrete graph surfaces are the correct
search space in order to find a discretized representation of
the optimal shape diffeomorphism, i.e., the optimal shape
matching.

4. Evaluation of LP Solution Strategies

In this section we explain how to get approximate solutions
to (13) using Linear Programming (LP) relaxation and we
evaluate the performance of several LP algorithms on our
problem.
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LP relaxation

• Binary LP is NP-hard

• Relaxed LP is polynomial 

• Relax Γ ∈ {0,1}|F| to Γ ∈ [0,1]|F|

• But this is not enough



Iterative scheme

• Solve relaxed problem

• Fix the variables with values above 0.5 to 1
(if none is above 0.5, then fix highest one)

• Usually converges to binary solution in <10 
iterations (never >20 iterations)



GPU acceleration

• Our GPU-based implementation of 
parallelizable primal-dual alg. by Eckstein-
Bertsekas

• compared to Interior Point (from CPLEX) 

• up to x100 faster

• linear memory 
consumption



Feature descriptors

• Add Wave Kernel Signatures to the energy 
function

• Half of the times relaxed solution is binary

• x4 faster on average (less iterations)



Handling missing parts

• Due to elasticity of the energy function

• Missing parts are shrinked



Preserve orientation

• Method guarantees to preserve the 
orientation



Multiresolution

• The number of variables is 
quadratic in the number of 
triangles

• Minimization of LP for more 
than 250 triangles is infeasible

• Multiresolution allows to 
handle more than 2000 tris



Summary

• Novel high-resolution 3D shape matching 
framework

• Globally optimal

• Preserves orientation

• Handles missing parts

• High performance



The end


