Large-Scale Integer Linear Programming for Orientation Preserving 3D Shape Matching

Thomas Windheuser ${ }^{1}$, Ulrich Schlickwei', Frank R. Schimdt ${ }^{2}$, Daniel Cremers ${ }^{1}$
${ }^{1}$ Technische Universität München, Germany; ${ }^{2}$ University of Western Ontario, Canada

Problem

- Unsupervised non-rigid 3D shape matching
- Meaningful correspondences between:
- 2 poses of same object
- 2 objects

Usage

- Relate shapes and their parts
- Fuse different partial scans of single object
- Transfer semantics from one shape to another
- Quantify similarity of shapes
- Interpolate two shapes

Solution

- Match small surface patches, not points
- Geometric consistency
- Global Optimization
- Integer Linear Program
- Elastic, non-linear thin-shell energy model
- Elasticity and bending

Linear Programming

- A linear function to be maximized

$$
\text { e.g. } \max _{x 1, x 2} f\left(x_{1}, x_{2}\right)=c_{1} x_{1}+c_{2} x_{2}
$$

- Problem constraints of the following form e.g.
- Widely used
- Polynomial time

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2} & \leq b_{1} \\
a_{21} x_{1}+a_{22} x_{2} & \leq b_{2} \\
a_{31} x_{1}+a_{32} x_{2} & \leq b_{3}
\end{aligned}
$$

- Non-negative variables
e.g.

$$
\begin{aligned}
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

- Non-negative right hand side constants

$$
b_{i} \geq 0, i=1,2,3
$$

The problem is usually expressed in matrix form, and then becomes:

$$
\max \left\{c^{\mathrm{T}} x \mid 0 \leq A x \leq b \wedge x \geq 0\right\}
$$

Integer LP

- Unknown variables are integers
- NP-hard (in general)
- Binary LP and mixed LP are also NP-hard

Problem statement

$$
\begin{array}{ll}
\min _{\Gamma \in\{0,1\}^{|F|}} & E^{t} \cdot \Gamma \\
\text { subject to } & \left(\begin{array}{c}
\partial \\
\pi_{X} \\
\pi_{Y}
\end{array}\right) \cdot \Gamma=\left(\begin{array}{c}
\mathbf{0}_{|E|} \\
\mathbf{1}_{\left|F_{X}\right|} \\
\mathbf{1}_{\left|F_{Y}\right|}
\end{array}\right) .
\end{array}
$$

LP relaxation

- Binary LP is NP-hard
- Relaxed LP is polynomial
- Relax $\Gamma \in\{0, \mathrm{I}\}^{\mid \mathrm{FI}}$ to $\Gamma \in[0, \mathrm{I}]^{\mid \mathrm{FI}}$
- But this is not enough

Iterative scheme

\longrightarrow - Solve relaxed problem
Fix the variables with values above 0.5 to I (if none is above 0.5 , then fix highest one)

- Usually converges to binary solution in <10 iterations (never >20 iterations)

GPU acceleration

- Our GPU-based implementation of parallelizable primal-dual alg. by EcksteinBertsekas
- compared to Interior Point (from CPLEX)
- up to x 100 faster
- linear memory consumption

Feature descriptors

- Add Wave Kernel Signatures to the energy function
- Half of the times relaxed solution is binary
- x4 faster on average (less iterations)

with feature descriptor

without feature descriptor

Handling missing parts

- Due to elasticity of the energy function
- Missing parts are shrinked

Preserve orientation

- Method guarantees to preserve the orientation

Multiresolution

- The number of variables is quadratic in the number of triangles
- Minimization of LP for more than 250 triangles is infeasible
- Multiresolution allows to handle more than 2000 tris

Summary

- Novel high-resolution 3D shape matching framework
- Globally optimal
- Preserves orientation
- Handles missing parts
- High performance

The end

