
Alexander	 Matveev	
Prof.	 Nir	 Shavit	

Prof.	 Yehuda	 Afek	
Tel	 Aviv	 University	 and	 MIT	

	

Transac(onal	 Memory	
Making	 Prac(cal	

Tradi'onal	 So,ware	 Scaling	

User code

Traditional
Uniprocessor

Speedup	
1.8x	

7x	

3.6x	

Time: Moore’s law

Mul'core	 So,ware	 Scaling	

User	 code	

Mul'core	

Speedup	 1.8x	

7x	

3.6x	

Unfortunately,	 not	 so	 simple…	

Real-‐World	 Mul'core	 Scaling	

1.8x	 2x	 2.9x	

User	 code	

Mul'core	

Speedup	

Paralleliza'on	 and	 Synchroniza'on	 	
require	 great	 care…	 	

Why?	

Amdahl’s	 Law:	 	
	
Speedup	 =	 1/(ParallelPart/N	 +	 Sequen4alPart)	
	
Pay	 for	 N	 =	 8	 cores	 	
Sequen'alPart	 =	 25%	 	
	
Speedup	 =	 only	 2.9	 =mes!	 Effect	 of	 25%	 becomes	 more	 accute	 as	 num	 of	

cores	 grows	 	
2.3/4,	 2.9/8,	 3.4/16,	 3.7/32………4/	 ∞

Shared	 Data	 Structures	

75%	
Unshared	

25%	
Shared	

c c

c c

c c

c c

Coarse	
Grained	

c

c
c

c

c

c

c c

c c

c c

c c

c c

Fine	
Grained	 c c

c
c

c
c

c c

The	 reason	 	
we	 get	 	

only	 2.9	 speedup	

75%	
Unshared	

25%	
Shared	

object

object

Shared Memory

Concurrent Programming

How do we lower the
granularity of
synchronization
without making the
concurrent
programmer’s life
unbearable?!

A FIFO Queue

b c d

Tail Head

a

Enqueue(d)!Dequeue() => a!

A Concurrent FIFO Queue

Object lock

b c d

Tail Head

a

P: Dequeue() => a! Q: Enqueue(d)!

Simple Code, easy to prove correct

Contention and sequential bottleneck

Fine Grain Locks

b c d

Tail Head

a

P: Dequeue() => a! Q: Enqueue(d)!

Finer Granularity, More Complex Code

Verification nightmare: worry about deadlock, livelock…

Fine Grain Locks

b c d

Tail Head

a

P: Dequeue() => a! Q: Enqueue(b)!

b

Tail Head

a

Worry how to acquire multiple locks

Complex boundary cases: empty queue, last item

Real Applications
Complex: Move data atomically between structures

More than twice the worry…

b c d

Tail Head

a

P: Dequeue(Q1,a)!

c d a

Tail Head

b

Enqueue(Q2,a)!

Transactional Memory
[HerlihyMoss93]

“The BlueGene/Q processors that will power the 20 petaflops
Sequoia supercomputer being built by IBM for Lawrence
Livermore National Labs will be the first commercial
processors to include hardware support for transactional
memory.

The End of Locks

Promise of Transactional Memory

b c d

Tail Head

a

P: Dequeue() => a! Q: Enqueue(d)!

Don’t worry about deadlock, livelock, subtle bugs, etc…

Great Performance, Simple Code

Promise of Transactional Memory

b c d

Tail Head

a

P: Dequeue() => a! Q: Enqueue(d)!

b

Tail Head

a

TM deals with boundary cases under the hood

Don’t worry which locks need to cover
which variables when…

For Real Applications
Will be easy to modify multiple structures atomically

b c d

Tail Head

a

P: Dequeue(Q1,a)!

c d a

Tail Head

b

Enqueue(Q2,a)!

Using Transactional Memory

enqueue (Q, newnode) {
 Q.tail-> next = newnode
 Q.tail = newnode
}

Using Transactional Memory

enqueue (Q, newnode) {
atomic{
 Q.tail-> next = newnode
 Q.tail = newnode
 }
}

Transactions Will Solve Many of
Locks’ Problems

No need to think what needs to be locked,
what not, and at what granularity

No worry about deadlocks and livelocks

No need to think about read-sharing

Can compose concurrent objects in a way that
is safe and scalable

The Problems
Aborts

– On concurrent conflict the transaction must
abort, and restart its execution

– State must be saved on start, and restored
on restart

– Hard to debug
Privatization

– Shared Object à Private Object

Our Proposal
New Transactional Memory without Aborts

– Every transaction executed only once
– Limits concurrency significantly
– Surprisingly, works good on many standard

benchmarks
New Privatization Technique

– New transaction type: private transaction
– Efficient and Scalable quiescence

mechanism for privatization

