Maximally Paraconsistent Logics

What Do We Mean By "Logic"?

- A formal language L, in which L-formulas are constructed. We assume that L includes a unary connective ¬.
 We denote by F_L the set of well-formed formulas of L.
- 2. A consequence relation \vdash for \mathcal{L} .

A consequence relation (cr) for \mathcal{L} is a binary relation $\vdash: 2^{F_{\mathcal{L}}} \times F_{\mathcal{L}}$, having the following properties:

strong reflexivity:if $\psi \in \Gamma$ then $\Gamma \vdash \psi$.monotonicity:if $\Gamma \vdash \psi$ and $\Gamma \subseteq \Gamma'$, then $\Gamma' \vdash \psi$.transitivity (cut):if $\Gamma \vdash \psi$ and $\Gamma, \psi \vdash \varphi$ then $\Gamma \vdash \varphi$.

Properties of Consequence Relations

- A cr ⊢ for L is structural if for every uniform L-substitution σ and every Γ and ψ: if Γ ⊢ ψ then σ[Γ] ⊢ σ[ψ].
 Example: p ∧ q ⊢ p implies ψ ∧ φ ⊢ ψ for every φ, ψ ∈ F_L.
- A cr ⊢ for L is consistent if there exist a non-empty Γ and ψ, such that Γ⊬ψ.
- A cr ⊢ for L is finitary if whenever Γ ⊢ ψ, there exists some finite Γ' ⊆ Γ, such that Γ'⊢ψ.
- A propositional logic is a pair (L, ⊢), where ⊢ is a structural, consistent and finitary cr for L.

Paraconsistent Logics

- In classical logic (and most other logics), the explosive non-contradiction principle φ, ¬φ ⊢ ψ allows us to derive any formula out of a contradiction. This makes any inconsistent theory trivial, and so no sensible reasoning can take place in the presence of contradictions.
- Paraconsistent logics do allow non-trivial inconsistent theories.
- A logic ⟨L,⊢⟩ is called ¬-*paraconsistent* if there are formulas ψ, φ in F_L, such that ψ, ¬ψ ⊢ φ.
 As ⊢ is structural, it is enough to require that there are atoms p, q such that p, ¬p ⊢ q.

But What Is Negation?

- Paraconsistency is characterized by a 'negation connective'. But there is no general agreement about the properties that such a connective should satisfy.
- We make some very minimal assumptions about the interpretation of negation.
- We say that ¬ is a *pre-negation* for L = ⟨L, ⊢⟩, if there is some atom p in L such that p ⊬ ¬p.

Defining Paraconsistent Logics: Many-valued Matrices

A many-valued matrix for a language \mathcal{L} is a triple $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$, where

- \mathcal{V} is a non-empty set of truth values,
- D is a non-empty proper subset of V, called the *designated* elements of V, and
- \mathcal{O} includes an *n*-ary function $\widetilde{\diamond}_{\mathcal{M}} : \mathcal{V}^n \to \mathcal{V}$ for every *n*-ary connective \diamond of \mathcal{L} .

We denote $\overline{\mathcal{D}} = \mathcal{V} \setminus \mathcal{D}$.

Logics Induced by Matrices

A valuation v in a matrix M = (V, D, O) is any function from L-formulas to V, which satisfies:

$$v(\diamond(\psi_1,...,\psi_n)) = \tilde{\diamond}(v(\psi_1),...,v(\psi_n))$$

- v is a model of an *L*-formula ψ in *M*, denoted by v ⊨_M ψ, if v(ψ) ∈ D.
 The set of models of ψ is denoted by mod_M(ψ). v is a model of theory Γ in *M*, denoted by v ⊨_M Γ, if v is a model of every ψ ∈ Γ.
- $\Gamma \vdash_{\mathcal{M}} \psi$ if for every valuation v in \mathcal{M} : $v \models_{\mathcal{M}} \Gamma$ implies $v \models_{\mathcal{M}} \psi$.
- For any (finite) \mathcal{M} for \mathcal{L} , $\langle \mathcal{L}, \vdash_{\mathcal{M}} \rangle$ is a propositional logic.
- We say that \mathcal{M} is paraconsistent if so is the logic it induces.

Matrices and Negation

Reminder: \neg *is a* pre-negation for $\mathbf{L} = \langle \mathcal{L}, \vdash \rangle$, *if there is some atom p in* \mathcal{L} *such that p* $\not\vdash \neg p$.

Proposition 1: Let $\mathbf{L}_{\mathcal{M}} = \langle \mathcal{L}, \vdash_{\mathcal{M}} \rangle$ be a logic induced by a matrix $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ for \mathcal{L} with pre-negation. \neg is a pre-negation for $\mathbf{L}_{\mathcal{M}}$ iff there is an element $x \in \mathcal{D}$ such that $\neg x \in \overline{\mathcal{D}}$.

3-valued Paraconsistent Matrices

Proposition 2: A 3-valued matrix \mathcal{M} with a pre-negation is paraconsistent iff it is isomorphic to a matrix $\langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ in which $\mathcal{V} = \{t, \top, f\}, \mathcal{D} = \{t, \top\}, \ \tilde{\neg}t = f, \text{ and } \tilde{\neg} \top \neq f.$

Proof: Suppose that $L_{\mathcal{M}}$ is \neg -paraconsistent. Since \neg is a pre-negation for $L_{\mathcal{M}}$, there is an element in \mathcal{D} , denote it t, such that $\neg t \notin \mathcal{D}$. So let $f \in \overline{\mathcal{D}}$ such that $\neg t = f$. Also, since $L_{\mathcal{M}}$ is \neg -paraconsistent, we have that $p, \neg p \not\vdash_{\mathcal{M}} q$ for some $p, q \in \mathcal{A}_{\mathcal{L}}$, and so $mod_{\mathcal{M}}(\{p, \neg p\}) \neq \emptyset$. In this case t cannot be the only designated element. Let \top be another one. It follows that $\mathcal{V} = \{t, \top, f\}$, where $\top \in \mathcal{D}$, and f is the only non-designated element. Also for $\nu \in mod_{\mathcal{M}}(\{p, \neg p\})$ necessarily $\nu(p) = \top$. This implies that $\nu(\neg p) = \neg \top \in \mathcal{D}$, and so $\neg \top \neq f$.

The proof of the converse is easy.

The Maximality Problem

- N. da Costa formulated the *maximality problem*: finding paraconsistent logics which are maximal with respect to classical logic.
- A logic L = ⟨L, ⊢⟩ is *weakly maximally paraconsistent* if every logic ⟨L, ⊨⟩ that extends L (*i.e.*, *a logic in the same language of* L *such that* ⊢ ⊆ ⊨), and whose set of theorems *properly includes* that of L, is not paraconsistent.
- A logic L is *strongly maximally paraconsistent* if every logic ⟨L, ⊨⟩ that *properly extends* L is not paraconsistent.
- Strong maximal paraconsistency implies weak maximal paraconsistency. Does the converse hold?

Consider Sobociński's three-valued matrix $S = \langle \{t, f, \top\}, \{t, \top\}, \{\tilde{\rightarrow}, \tilde{\neg}\} \rangle$, where the \neg is an involutive negation (i.e., $\tilde{\neg}t = f, \tilde{\neg}f = t$, and $\tilde{\neg}\top = \top$), and the implication is interpreted as follows:

$$a \xrightarrow{\sim} b = \begin{cases} \top & \text{if } a = b = \top, \\ f & \text{if } a >_{t} b \text{ (where } t >_{t} \top >_{t} f), \\ t & \text{otherwise.} \end{cases}$$

Weak Max. Par. \Rightarrow Strong Max. Par.

- Sobociński's has axiomatized the set of valid sentences of S by an Hilbert-type system H_S such that for every T, φ, ψ in the language of {¬,→}:
 - ψ is provable in $\mathsf{H}_{\mathcal{S}}$ iff ψ is valid in \mathcal{S}
 - $-\mathcal{T}, \varphi \vdash_{\mathsf{H}_{\mathcal{S}}} \psi \text{ iff either } \mathcal{T} \vdash_{\mathsf{H}_{\mathcal{S}}} \psi \text{ or } \mathcal{T} \vdash_{\mathsf{H}_{\mathcal{S}}} \varphi \rightarrow \psi$
- ⟨L,⊢_{H_S}⟩ is weakly maximally paraconsistent: any extension of the set of theorems of H_S by a non-provable axiom yields either classical logic or a trivial logic.
- $\vdash_{\mathcal{S}}$ is a proper paraconsistent extension of $\vdash_{\mathsf{H}_{\mathcal{S}}}$, since $\neg(p \rightarrow q) \vdash_{\mathcal{S}} p$, while $\neg(p \rightarrow q) \not\vdash_{\mathsf{H}_{\mathcal{S}}} p$.
- It follows that Sobociński's logic ⟨L, ⊢_{HS}⟩ is maximally paraconsistent in the weak sense but *not* in the strong sense!

Natural 3-valued Logics Are Maximally Paraconsistent

Theorem 1: Let \mathcal{M} be a three-valued paraconsistent matrix for \mathcal{L} with a pre-negation \neg . Suppose that there is a formula $\Psi(p,q)$ in \mathcal{L} such that for for every \mathcal{M} -valuation ν , $\nu(\Psi) = t$ in case $\nu(p) \neq \top$ or $\nu(q) \neq \top$. Then $\langle \mathcal{L}, \vdash_{\mathcal{M}} \rangle$ is maximally paraconsistent.

Two Important Particular Cases when $\neg f = t$:

1. A three-valued paraconsistent matrix with a binary connective + such that for every $x \in \mathcal{V}$, x + t = t + x = t:

 $\Psi(p,q) = (p+\neg p) + (q+\neg q)$

2. A three-valued paraconsistent matrix with a propositional constant f (for which $\nu(f) = f$ for every $\nu \in \Lambda_M$):

$$\Psi(p,q) = \neg \mathsf{f}$$

Proof of Theorem 1

By Proposition 2, \mathcal{M} has designated elements t and \top , $\neg t = f$, and $\neg \top \in \mathcal{D}$.

Let $\langle \mathcal{L}, \vdash \rangle$ be a (finitary) propositional logic that is strictly stronger than $\langle \mathcal{L}, \vdash_{\mathcal{M}} \rangle$. Then there is a finite theory Γ and a formula ψ such that $\Gamma \vdash \psi$ but $\Gamma \not\vdash_{\mathcal{M}} \psi$. In particular, there is a valuation ν such that $\nu \models \Gamma$, and $\nu(\psi) = f$.

Consider the substitution θ , defined for $p \in Atoms(\Gamma \cup \{\psi\})$ as follows:

$$\theta(p) = \begin{cases} q_0 & \text{if } \nu(p) = t, \\ \neg q_0 & \text{if } \nu(p) = f, \\ p_0 & \text{if } \nu(p) = \top, \end{cases}$$

Note that $\theta(\Gamma)$ and $\theta(\psi)$ contain (at most) the variables p_0, q_0 , and that for every valuation μ , if $\mu(p_0) = \top$ and $\mu(q_0) = t$ then $\mu(\theta(\phi)) = \nu(\phi)$ for every formula ϕ such that $Atoms(\{\phi\}) \subseteq Atoms(\Gamma \cup \{\psi\})$. Thus,

(*) any valuation μ such that $\mu(p_0) = \top, \mu(q_0) = t$ is an \mathcal{M} -model of $\theta(\Gamma)$ that does not \mathcal{M} -satisfy $\theta(\psi)$. **Case I.** There is a formula $\phi(p, q)$ such that for every $\mu, \mu(\phi) \neq \top$ if $\mu(p) = \mu(q) = \top$. In this case, let $tt = \Psi(q_0, \phi(p_0, q_0))$. Note that $\mu(tt) = t$ for every μ such that $\mu(p_0) = \top$. Now, as \vdash is structural, $\Gamma \vdash \psi$ implies that

$$\theta(\Gamma) \left[\mathsf{tt}/\mathsf{q}_0 \right] \vdash \theta(\psi) \left[\mathsf{tt}/\mathsf{q}_0 \right] \tag{1}$$

Also, by the property of tt and by (\star) , any $\mu \in \Lambda_{\mathcal{M}}$ for which $\mu(p_0) = \top$ is a model of $\theta(\Gamma)$ [tt/q₀] but does not \mathcal{M} -satisfy $\theta(\psi)$ [tt/q₀]. Thus,

p₀, ¬p₀ ⊢_M θ(γ) [tt/q₀] for every γ ∈ Γ.
 As ⟨L, ⊢⟩ is stronger than ⟨L, ⊢_M⟩, this implies that

$$p_0, \neg p_0 \vdash \theta(\gamma) [\mathsf{tt}/\mathsf{q}_0] \text{ for every } \gamma \in \mathsf{\Gamma}.$$
 (2)

• The set $\{p_0, \neg p_0, \theta(\psi)[tt/q_0]\}$ is not \mathcal{M} -satisfiable, thus

$$p_0, \neg p_0, \theta(\psi) \; [\mathsf{tt}/\mathsf{q}_0] \vdash_{\mathcal{M}} \mathsf{q}_0$$

Again, as $\langle \mathcal{L}, \vdash \rangle$ is stronger than $\langle \mathcal{L}, \vdash_{\mathcal{M}} \rangle$, we have that

$$p_0, \neg p_0, \theta(\psi) [\mathsf{tt}/\mathsf{q}_0] \vdash \mathsf{q}_0.$$
 (3)

By (1)–(3) and the transitivity property, p_0 , $\neg p_0 \vdash q_0$, thus $\langle \mathcal{L}, \vdash \rangle$ is not \neg -paraconsistent.

Case II. For every formula ϕ in p, q and for every μ , if $\mu(p) = \mu(q) = \top$ then $\mu(\phi) = \top$.

As \vdash is structural, the assumption that $\Gamma \vdash \psi$ implies that

$$\theta(\Gamma) \left[\Psi(q_0, q_0) / q_0 \right] \vdash \theta(\psi) \left[\Psi(q_0, q_0) / q_0 \right] \tag{4}$$

In addition, (*) above entails that any valuation μ such that $\mu(p_0) = \top$ and $\mu(q_0) \in \{t, f\}$ is a model of $\theta(\Gamma) [\Psi(q_0, q_0)/q_0]$ which is not a model of $\theta(\psi) [\Psi(q_0, q_0)/q_0]$. Thus, the only \mathcal{M} -model of $\{p_0, \neg p_0, \theta(\psi) [\Psi(q_0, q_0)/q_0]\}$ is the one in which both of p_0 and q_0 are assigned the value \top . It follows that $p_0, \neg p_0, \theta(\psi) [\Psi(q_0, q_0)/q_0] \vdash_{\mathcal{M}} q_0$. Hence:

$$p_0, \neg p_0, \theta(\psi) \left[\Psi(q_0, q_0) / q_0 \right] \vdash q_0.$$
 (5)

By using (\star) again (for $\mu(q_0) \in \{t, f\}$) and the condition of case II (for $\mu(q_0) = \top$), we have:

$$p_0, \neg p_0 \vdash \theta(\gamma) \left[\Psi(q_0, q_0) / q_0 \right] \text{ for every } \gamma \in \Gamma.$$
(6)

Again, (4)–(6) and the transitivity property of \vdash entail that $p_0, \neg p_0 \vdash q_0$, and so $\langle \mathcal{L}, \vdash \rangle$ is not \neg -paraconsistent in this case either.

Sette's Logic P1 is Strongly Maximally Paraconsistent

 $\mathsf{P1} = \langle \{t, f, \top\}, \{t, \top\}, \mathcal{O} \rangle \text{ for the language of } \{\neg, \lor, \land, \rightarrow\} \text{ where: }$

Priest's Logic LP is Strongly Maximally Paraconsistent

 $LP = \langle \{t, f, \top\}, \{t, \top\}, \mathcal{O} \rangle \text{ for the language of } \{\neg, \lor, \land\} \text{ with the following standard Kleene interpretations of its connectives:}$

$\tilde{\vee}$	t	f	Т	_	Ñ	t	f	Т	ĩ	
t	t	t	t		t	t	f	Т	t	f
f	t	f	Т		f	f	f	f	f	t
Т	t	Т	Т		Т	Т	f	\top	Т	T

Sobociński's Logic is Strongly Maximally Paraconsistent

 $S = \langle \{t, f, \top\}, \{t, \top\}, \{\tilde{\rightarrow}, \tilde{\neg}\} \rangle$, for the language of $\{\neg, \rightarrow\}$ where $\tilde{\neg}t = f, \tilde{\neg}f = t$, and $\tilde{\neg}\top = \top$, and the implication is interpreted as follows:

$$a \xrightarrow{\sim} b = \begin{cases} \top & \text{if } a = b = \top, \\ f & \text{if } a >_{t} b \text{ (where } t >_{t} \top >_{t} f), \\ t & \text{otherwise.} \end{cases}$$

And Many More...

Every extension of P1, LP, or Sobociński's logic is also a strongly maximally paraconsistent logic. This includes:

- 1. PAC, extending LP by an implication connective \supset , defined by $x \supset y = y$ if $x \in \{t, \top\}$, otherwise $x \supset y = t$.
- 2. J_3 , obtained from PAC by adding the constant f.
- 3. The logic of the *maximally monotonic* language that consists of the connectives of LP and the constants f and T.
- 4. The logic of the *functionally complete* language \mathcal{L}_{3}^{\star} , consisting of the connectives of PAC and the constants f and T.

(Non-deterministic Matrices)

A non-deterministic matrix (Nmatrix) for \mathcal{L} is a tuple $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$:

- \mathcal{V} the set of truth-values,
- \mathcal{D} the set of designated truth-values,
- O contains an interpretation function õ : Vⁿ → P⁺(V) for every *n*-ary connective ◊ of L.

Ordinary matrices correspond to the case when each $\tilde{\diamond}$ is a function taking singleton values only (then it can be treated as a function $\tilde{\diamond} : \mathcal{V}^n \to \mathcal{V}$).

Logics Induced by Nmatrices

• A valuation v in an Nmatrix $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ is a function from \mathcal{L} -formulas to \mathcal{V} , satisfying the following condition:

 $v(\diamond(\psi_1,...,\psi_n)) \in \tilde{\diamond}(v(\psi_1),...,v(\psi_n)).$

- A satisfaction relation (⊨_M) and the consequence relation induced by M (⊢_M) are defined as in the deterministic case.
- For any finite Nmatrix \mathcal{M} for propositional language \mathcal{L} , $\mathbf{L}_{\mathcal{M}} = \langle \mathcal{L}, \vdash_{\mathcal{M}} \rangle$ is a propositional logic.

Nmatrices and Negation

Reminder: \neg is a pre-negation for $\mathbf{L} = \langle \mathcal{L}, \vdash \rangle$, if there is some atom p in \mathcal{L} such that $p \not\vdash \neg p$.

Proposition. Let $\mathbf{L}_{\mathcal{M}} = \langle \mathcal{L}, \vdash_{\mathcal{M}} \rangle$ be a logic induced by an Nmatrix $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ for a language \mathcal{L} with a pre-negation \neg . Then \neg is a pre-negation for $\mathbf{L}_{\mathcal{M}}$ iff there is an element $x \in \mathcal{D}$ s.t. $\neg x \cap \overline{\mathcal{D}} \neq \emptyset$.

(Paraconsistent Nmatrices)

An Nmartix is ¬-paraconsistent if so is $L_{\mathcal{M}} = \langle \mathcal{L}, \vdash_{\mathcal{M}} \rangle$.

Proposition. Let $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ be an Nmatrix for a language \mathcal{L} with a pre-negation \neg . Then \mathcal{M} is \neg -paraconsistent iff there is some $x \in \mathcal{D}$ such that $\tilde{\neg} x \cap \mathcal{D} \neq \emptyset$.

Can Paraconsistent Nmatrices Be Maximal?

Let $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ be a paraconsistent Nmatrix for \mathcal{L} with pre-negation. If one of the following conditions holds, then \mathcal{M} is not maximally paraconsistent:

- 1. \mathcal{D} is a singleton (and so no two-valued Nmatrix is paraconsistent!)
- 2. There is some $x \in \mathcal{D}$ such that $x \in \neg x$ and $\neg x \cap \overline{\mathcal{D}} \neq \emptyset$.
- 3. \mathcal{M} is 3-valued Nmatrix which is not isomorphic to an Nmatrix $\langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ in which $\mathcal{V} = \{t, \top, f\}, \mathcal{D} = \{t, \top\},$ $\tilde{\neg}t = \{f\}, \tilde{\neg}\top = \{t, f\}$ and $\tilde{\neg}f = \{f\}$ or $\tilde{\neg}f = \{t\}.$

Guidelines for a Proof – Simple Refinements

An Nmatrix $\mathcal{M}_1 = \langle \mathcal{V}, \mathcal{D}, \mathcal{O}_1 \rangle$ for \mathcal{L} is a simple \diamond -refinement of an Nmatrix $\mathcal{M}_2 = \langle \mathcal{V}, \mathcal{D}, \mathcal{O}_2 \rangle$ for \mathcal{L} , if $\tilde{\diamond}_{\mathcal{M}_1}(\overline{x}) \subseteq \tilde{\diamond}_{\mathcal{M}_2}(\overline{x})$ for all $\overline{x} \in \mathcal{V}^n$.

 \mathcal{M}_1 is a simple refinement of \mathcal{M}_2 , if it is a simple \diamond -refinement of \mathcal{M}_2 for every \diamond in \mathcal{L} .

Proposition. If \mathcal{M}_1 is a simple refinement of \mathcal{M}_2 then $\vdash_{\mathcal{M}_2} \subseteq \vdash_{\mathcal{M}_1}$.

Corollary. A paraconsistent Nmatrix \mathcal{M} is *non-maximal* if it is refined by a paraconsistent Nmatrix \mathcal{M}^* (in which \neg is still a pre-negation) and $\vdash_{\mathcal{M}^*} \setminus \vdash_{\mathcal{M}} \neq \emptyset$.

Guidelines for a Proof – An Example

Consider an Nmatrix $\mathcal{M} = \langle \{t, \top, f\}, \{t, \top\}, \mathcal{O} \rangle$, where $\neg t = \{\top, f\}$ and $\neg \top = \{t, f\}$.

Proposition. \mathcal{M} is not maximally paraconsistent.

Proof. Consider a simple refinement $\mathcal{M}^* = \langle \{t, \top, f\}, \{t, \top\}, \mathcal{O} \rangle$ of \mathcal{M} , in which $\neg t = \{f\}$ and $\neg \top = \{t\}$. Then

- \neg is still a pre-negation in \mathcal{M}^* ,
- \mathcal{M}^* is still paraconsistent,
- $p, \neg p, \neg \neg p \vdash_{\mathcal{M}^*} q$ while $p, \neg p, \neg \neg p \not\vdash_{\mathcal{M}} q$ (thus $\vdash_{\mathcal{M}} \subset \vdash_{\mathcal{M}^*}$).

Can Paraconsistent Nmatrices Be Maximal? (Cont'd)

It remains to consider two cases for the interpretation of \neg :

a)
$$\neg t = \{f\}, \ \neg \top = \{t, f\}, \ \text{and} \ \neg f = \{t\}$$

- b) $\neg t = \{f\}, \neg \top = \{t, f\}, \text{ and } \neg f = \{f\}.$
 - If ¬ is the only connective in L, then in both cases the corresponding Nmatrix is maximally paraconsistent.
 - If there is another connective with a proper non-deterministic interpretation, maximal paraconsistency cannot be achieved.
 - If apart of
 ¬ all the other connectives have deterministic interpretations, there is no unique answer:
 - If all complex formulas can get only values in $\{t, f\}$, the logic induced by \mathcal{M} may be maximal.
 - If there is a \top -free connective, \mathcal{M} is not maximal.

A Final Note

For characterizing three-valued maximally paraconsistent logics it is enough to consider only deterministic matrices.

Theorem. Let \mathcal{M} be an *n*-valued maximally paraconsistent Nmatrix. Then there is a deterministic matrix \mathcal{M}^* which induces the same logic.

- 1. Are *all* the 3-valued paraconsistent logics induced by deterministic matrices maximal?
- 2. Is every maximally paraconsistent *n*-valued Nmatrix reducible to a 3-valued matrix?