
Exploiting Synonym Choice to Identify
Discrete Components of a Document

Navot Akiva, Idan Dershowitz and Moshe Koppel



Separating Document Components

Often documents consist of multiple authorial 
components.

Our object is to tease apart the components 
of a composite document.



Basic Idea

Divide the document into natural chunks 
(e.g., chapters, paragraphs)

Vectorize chunks using some feature set

Cluster the vectors



Classic Example: The Bible

Great historic and cultural interest

Much prior research on components

Has been manually tagged in every 
conceivable way



Obligatory Disclaimer

We’re not wading into religious territory here.

That there is some optimal clustering is tautologous.

That there is some very convincing clustering is of 
interest to traditionalists and critics alike.

Why there is such a convincing clustering is not our 
concern here.



Test Case

Let’s munge Ezekiel and Jeremiah and see if we 
can separate them out.

Each is presumably the work of a single author.

There’s no reason to think it’s the same author.

Some of the differences between them parallel 
differences across different sections of the Pentateuch.



Clustering Jeremiah+Ezekiel

Chunks = chapters (no sequence info)

Features = bag of words

Cluster method = Ncut

K=2



Results using all words

2023Cluster 2

2829Cluster 1

EzekielJeremiah

•Not too exciting. We must be picking up thematic or 
genre-related differences that cross books.

•Let’s try using only function words.



Results using function words

2018Cluster 2

2834Cluster 1

EzekielJeremiah

•Not any better.

•Let’s try a new approach.



A Better Idea

Exploit the fact that different authors use different 
synonyms for the same idea (e.g., makel/mateh).

It would be really convenient if it turned out that 
Jeremiah and Ezekiel made consistently different 
choices for various synsets.

Note that words aren’t synonyms, rather word 
senses are synonyms. (For example mateh=staff is a 
synonym of makel, but mateh=tribe is not.)



Automatically Finding Synonyms

There are various clever methods for identifying synsets, 
but most are not exact enough for our purpose.

Conveniently, for the Bible, we have many useful tools, 
including careful translations and manual sense tagging.

We identify as synonyms word senses that are translated 
into the same English word (e.g., makel=staff and mateh=staff).

Due to polysemy (in English), this method overshoots. We 
manually delete mistakes. (This is the only manual 
intervention we will ever do.)



Synonym Method

The usual similarity measures (e.g., cosine, inverse 
Euclidean distance) don’t make sense here.

� If two docs use the same synonym, they are similar. 

� If two docs use opposite synonyms, they are different.

� If one of the docs uses one of the synonyms, but the other 
doesn’t, cosine would regard them as different. But are 
they?

For measuring similarity, we only consider 
synsets represented in both docs.



Results using synonyms

417Cluster 2

646Cluster 1

EzekielJeremiah

•Now we’re getting somewhere.

•But we’re not done yet…



Core of a Cluster

Some chapters are in a cluster because they really belong there;
some just have to be somewhere.

Let’s consider only chapters near one centroid and far from the 
other. These are the “cores” of the respective clusters.

Let’s also consider only synsets that are used differently in the 
two cores. These are “differentiating” synsets.

Now cluster again using only cores and differentiating synsets. 
Iterate as desired.

This converges quickly to stable cores and differentiating 
subsets, i.e., a reliable (but partial) clustering.



Cluster cores

360Cluster 2

236Cluster 1

EzekielJeremiah



Cluster cores

360Cluster 2

236Cluster 1

EzekielJeremiah

Ezekiel 1, 10



Expanding the Core

Now that we have a core, we can use supervised 
methods (e.g., SVM) to learn a boundary.

In fact, we can use function words as our features. 

� Using synonyms will just get us back where we started. 

� And besides, FW are generally very reliable for supervised 
authorship attribution.



SVM expansion of core

470Cluster 2

152Cluster 1

EzekielJeremiah

•Two training examples are “misclassed” by SVM.

•Incredibly, these are Ezekiel 1 and 10, which were part of 
Jeremiah core, but are on Ezekiel side of optimal SVM boundary.

•The only exception is Ezekiel 42, a non-core chapter which lies in 
the SVM margin.



So what about the Pentateuch?

Let’s just apply the exact same process that worked 
on Jeremiah+Ezekiel to the Pentateuch.

One crucial caveat: 

� In Jeremiah+Ezekiel our units (chapters) were all pure 
Jeremiah or pure Ezekiel; we have no such guarantee for 
the Pentateuch

� We have some beautiful methods for using synonym 
distribution to automatically identify component boundaries 



So what about the Pentateuch?

Let’s just apply the exact same process that worked 
on Jeremiah+Ezekiel to the Pentateuch.

One crucial caveat: 

� In Jeremiah+Ezekiel our units (chapters) were all pure 
Jeremiah or pure Ezekiel; we have no such guarantee for 
the Pentateuch

� We have some beautiful methods for using synonym 
distribution to automatically identify component boundaries 

But I’m out of time….



Clustering the Pentateuch

For two clusters, our method gives something very 
close to scholars’ split between P and non-P.

But chapters of Genesis commonly assigned to P are 
in the non-P cluster.

Clustering of the non-P cluster does not give 
anything like the scholars’ split between J and E.


