" Exploiting Synonym Choice to Identify
Discrete Components of a Document

Navot Akiva, Idan Dershowitz and Moshe Koppel

N




N

Separating Document Components

4 Often documents consist of multiple authorial
components.

# Our object is to tease apart the components
of a composite document.




N

Basic Idea

4 Divide the document into natural chunks
(e.qg., chapters, paragraphs)

@ Vectorize chunks using some feature set

# Cluster the vectors




N

Classic Example: The Bible

#@Great historic and cultural interest

#Much prior research on components

#Has been manually tagged in every
conceivable way




N

Obligatory Disclaimer

# We’re not wading into religious territory here.

# That there is some optimal clustering is tautologous.

# That there is some very convincing clustering is of
interest to traditionalists and critics alike.

# Why there is such a convincing clustering is not our
concern here.




Test Case

N

Let’s munge Ezekiel and Jeremiah and see if we
can separate them out.

# Each is presumably the work of a single author.
# There’s no reason to think it’s the same author.

# Some of the differences between them parallel
differences across different sections of the Pentateuch.




N

Clustering Jeremiah+Ezekiel

4 Chunks = chapters (no sequence info)

# Features = bag of words

# Cluster method = Ncut

®K=2




Results using all words

N

Jeremiah Ezekiel

Cluster 1 |29 28

Cluster 2 |23 20

eNot too exciting. We must be picking up thematic or
genre-related differences that cross books.

el et’s try using only function words.




N

Results using function words

Jeremiah Ezekiel

Cluster 1 |34 28

Cluster 2 |18 20

eNot any better.

e[ et’s try a new approach.




A Better Idea

N

# Exploit the fact that different authors use different
synonyms for the same idea (e.g., makel/mateh).

# [t would be really convenient if it turned out that
Jeremiah and Ezekiel made consistently different
choices for various synsets.

# Note that words aren’t synonyms, rather word

Senses are synonyms. (For example mateh=staffis a
synonym of makel, but mateh=tribeis not.)




N

Automatically Finding Synonyms

# There are various clever methods for identifying synsets,
but most are not exact enough for our purpose.

# Conveniently, for the Bible, we have many useful tools,

including careful translations and manual sense tagging.

# We identify as synonyms word senses that are translated
into the same English word (e.g., makel/=staffand mateh=staf?).

# Due to polysemy (in English), this method overshoots. We
manually delete mistakes. (This is the only manual
intervention we will ever do.)




Synonym Method

N

# The usual similarity measures (e.g., cosine, inverse
Euclidean distance) don’t make sense here.
= If two docs use the same synonym, they are similar.
= If two docs use opposite synonyms, they are different.

= If one of the docs uses one of the synonyms, but the other
doesn’t, cosine would regard them as different. But are

they?

# For measuring similarity, we only consider
synsets represented in both docs.




N

Results using synonyms

Jeremiah | Ezekiel
Cluster 1 |46 G
Cluster2 |7 41

eNow we're getting somewhere.

eBut we're not done vyet...




N

Core of a Cluster

# Some chapters are in a cluster because they really belong there;
some just have to be somewhere.

# Let’s consider only chapters near one centroid and far from the
other. These are the “cores” of the respective clusters.

@ Let’s also consider only synsets that are used differently in the
two cores. These are “differentiating” synsets.

# Now cluster again using only cores and differentiating synsets.
Iterate as desired.

# This converges quickly to stable cores and differentiating
subsets, i.e., a reliable (but partial) clustering.




N

Cluster cores

Jeremiah | Ezekiel
Cluster 1 |36 2
Cluster 2 |0 36




N

Cluster cores

Jeremiah | Ezekiel
Cluster 1 |36 2\
Cluster2 |

"\

\

Ezekiel 1, 10




N

Expanding the Core

# Now that we have a core, we can use supervised
methods (e.g., SVM) to learn a boundary.

# In fact, we can use function words as our features.

= Using synonyms will just get us back where we started.

= And besides, FW are generally very reliable for supervised
authorship attribution.




SVM expansion of core

N

Jeremiah | Ezekiel

Cluster1 |52 1

Cluster2 |0 47

eTwo training examples are “misclassed” by SVM.

eIncredibly, these are Ezekiel 1 and 10, which were part of
Jeremiah core, but are on Ezekiel side of optimal SVM boundary.

eThe only exception is Ezekiel 42, a non-core chapter which lies in
the SVM margin.




So what about the Pentateuch?

N

# Let’s just apply the exact same process that worked
on Jeremiah+Ezekiel to the Pentateuch.

# One crucial caveat:

= In Jeremiah+Ezekiel our units (chapters) were all pure
Jeremiah or pure Ezekiel; we have no such guarantee for
the Pentateuch

= We have some beautiful methods for using synonym
distribution to automatically identify component boundaries




So what about the Pentateuch?

N

# Let’s just apply the exact same process that worked
on Jeremiah+Ezekiel to the Pentateuch.

# One crucial caveat:

= In Jeremiah+Ezekiel our units (chapters) were all pure
Jeremiah or pure Ezekiel; we have no such guarantee for
the Pentateuch

= We have some beautiful methods for using synonym
distribution to automatically identify component boundaries

But I'm out of time....




N

Clustering the Pentateuch

# For two clusters, our method gives something very
close to scholars’ split between P and non-P.

# But chapters of Genesis commonly assigned to P are

in the non-P cluster.

# Clustering of the non-P cluster does not give
anything like the scholars’ split between J and E.




