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• Global algorithm for learning entailment 
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Textual Entailment (TE)

• A directional relation between two text 
fragments:

• Useful for applications:

– Machine Translation

– Information Retrieval

– Information Extraction

A text ‘t’ entails a hypothesis ‘h’ (denoted by t h) if humans reading ‘t’
infer that ‘h’ is most likely true.
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Knowledge Resources for TE

• TE systems employ knowledge resources that 
contain entailment rules.

• Entailment rules for predicates: contain 
predicates and arguments.

• We focus on learning such entailment rules.
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X is a symptom of Y  Y cause X
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Local Learning

• Manually-prepared resources (Szpektor and Dagan, 
2009):

– WordNet relations: hyponym, derivation

• Pattern-based methods (Chklovsky and Pantel, 
2004):

– “he scared and even startled me”

• Distributional similarity: distribution of arguments 
predicts similarity between predicates.
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X startle Y  X scare Y



• Yates and Etzioni (2009) estimate the probability that two 
predicates are synonymous using a generative model.

Distributional Similarity

X affect Y
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(Lin and Pantel, 2001)(Szpektor and Dagan, 2008)
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Global Learning

• Snow et al. (2006) presented an algorithm for 
taxonomy induction.

mammal

carnivore

feline

horse

cat

• At each step they add the 
concept that maximizes 
the likelihood of the 
taxonomy given the 
transitivity constraint.
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Propositional Templates

• Dependency path containing a predicate and two 
arguments (possibly one is instantiated)
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Entailment Graph

• Nodes: propositional templates

• Edges: entailment between templates

• Assumption: Predicates are monosomous

– Small graphs

– One topic
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Entailment Graph Properties

• Edges are transitive (monosemous predicates).

• Strong connectivity components represent synonyms.

• Merging strong connectivity components to a single 
node results in a Directed Acyclic Graph.

X-related-to-nausea X-associated-with-nausea

X-prevent-nausea X-help-with-nausea

X-reduce-nausea X-treat-nausea
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• Scenario: user queries about a concept (nausea) and 
would like a structural output.

• Summarize the propositions of the corpus using a 
predicate entailment hierarchy interleaved with a 
taxonomy.

Hierarchical Summarization

related to
nausea

headache

Oxicontine

help with
nausea

prevent
nausea

acupuncture

ginger

reduce
nausea

relaxation

treat
nausea

drugs

Nabilone

Lorazepam
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X-related-to-nausea X-associated-with-nausea

X-prevent-nausea X-help-with-nausea

X-reduce-nausea X-treat-nausea
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Learning Entailment Graph Edges

• Two step algorithm:

1. Train a local entailment classifier once: given a 
pair of propositional templates (t1,t2), estimate 
whether t1 t2

2. Given the nodes of an entailment graph, learn the 
edges of the graph using the entailment classifier
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13 Global Learning of Focused Entailment Graphs



Entailment Classifier - Outline

• Input: large corpus and lexical database

• Steps:

1. Extract propositional templates from corpus

2. Generate automatically positive and negative 
examples using lexical database

3. Represent train set using distributional similarity

• Output: local entailment classifier
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Template Extraction

1. Parse a large corpus

2. Extract and normalize tuples (á la 
Etzioni)

3. Replace arguments with variables

diabetes is controlled by a careful diet

1. X control Y

2. …

3. …

Alzheimer's disease (AD) is now the 

fourth leading cause of death in adults. It 

is estimated that 4.5 million Americans 

and eight million more people worldwide 

have it. Age is the biggest risk factor for 

Alzheimer's disease.

Vitamin is a controller of cell growthD

Textual Entailment  Background Entailment graph structure  Application Global learning algorithm Evaluation
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Train Set Generation

affect

reduce raise

WordNet

X reduce Y

(X reduce Y, X affect Y)

(X reduce Y, X raise Y)

• Use propositional templates from the corpus and 
lexical database:

• Generation method similar to “distant supervision” (Snow 
et al., 2005).

Textual Entailment  Background Entailment graph structure  Application Global learning algorithm Evaluation
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Representing Template Pairs

• A pair (t1,t2) is represented by various distributional 
similarity algorithms.

Measure score

DIRT 0.549

BINC 0.919

TEASE 0.711

… 0.0

• Reminiscent of the verb disambiguation algorithm 
proposed by Connor and Roth (2007)
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Global Learning of Edges

• Learn the edges E of over a set of nodes 
V using Integer Linear Programming:
–Binary variables Iuv for every pair of nodes

–Global transitivity constraint

– Target function maximizes scores of edges 
in the graph

• Problem is NP-hard by a reduction from 
“Transitive Graph” (Yannakakis, 1978).
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Global Learning of Edges - constraints

• Initial information: a set Pos of node pairs that 
are edges and a set Neg of node pairs that are 
not edges.

• Constraints:



u,v,w V .Iuv  Ivw  Iuw 1

(u,v) Neg.Iuv  0

(u,v) Pos.Iuv 1
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Target Function

• Let Fuv be the features for the node pair (u,v) 
and F be the union over all node pairs.

• Given a probabilistic classifier that estimates 
Puv = P(Iuv=1|Fuv) we can show that:



ˆ G  argmax P(G |F)

 argmax log
Puv  P(Iuv 1)

(1 Puv)  P(Iuv  0)
uv

  Iuv

 argmax( log
Puv

(1 Puv)
uv

  Iuv)   | E |

Textual Entailment  Background Entailment graph structure  Application Global learning algorithm Evaluation
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Experimental Evaluation

• 50 million word tokens healthcare corpus

• Ten medical students prepared gold standard 
graphs for 23 medical concepts:

– Smoking, seizure, headache, lungs, diarrhea, 
chemotherapy, HPV, Salmonella, Asthma, etc.

• Evaluation:

– F1 on set of edges

– F1 on set of propositions
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Evaluated algorithms

• Local algorithms

– Single distributional similarity

– WordNet

– ILP with No transitivity constraints

• Global algorithms

– Linear programming/greedy optimization (Snow)

Textual Entailment  Background Entailment graph structure  Application Global learning algorithmEvaluation
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Results

PropositionsEdges

F1PrecisionrecallF1Precisionrecall

66.2*69.667.343.8*50.146.0ILP-global

56.357.264.236.637.145.7Greedy

58.661.065.238.145.344.5ILP-local

56.150.673.537.534.953.5Local1

57.150.069.837.731.652.5Local2

59.154.673.539.838.053.5Local*1

57.450.669.838.132.152.5Local*2

47.372.439.913.244.110.8WordNet
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• The algorithm significantly outperforms all other 
baselines.
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Recall-Precision Curve
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Results

Global=false/Local=trueGlobal=true/Local=false

4248Gold standard = true

49478Gold standard = false
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• Comparing disagreement between best local 
and global algorithms reveals that the global 
algorithms avoids many false positives.
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Illustration – Graph Fragment
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Conclusions

• Algorithm for learning entailment graphs using 
transitivity and ILP.

• Algorithm significantly outperforms local 
methods and greedy global methods (Snow et 
al.).

• Future work: Scale algorithm to handle larger 
graphs.
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