

Global Learning of Focused Entailment Graphs

Jonathan Berant, Ido Dagan and Jacob Goldberger ISCOL 2010* 16/6/10

*Accepted as full paper to ACL 2010

Outline

- Textual entailment (TE)
- Background: learning entailment rules for predicates
- Entailment graph structure
- Application of entailment graph
- Global algorithm for learning entailment graphs
- Results

Textual Entailment (TE)

• A directional relation between two text fragments:

A text 't' entails a hypothesis 'h' (denoted by $t \rightarrow h$) if humans reading 't' infer that 'h' is most likely true.

- Useful for applications:
 - Machine Translation
 - Information Retrieval
 - Information Extraction

Knowledge Resources for TE

- TE systems employ knowledge resources that contain entailment rules.
- <u>Entailment rules for predicates</u>: contain predicates and arguments.

X is a symptom of $Y \rightarrow Y$ cause X

• We focus on learning such entailment rules.

Local Learning

- Manually-prepared resources (Szpektor and Dagan, 2009):
 - WordNet relations: hyponym, derivation
- Pattern-based methods (Chklovsky and Pantel, 2004):
 - "he scared and even startled me"

• Distributional similarity: distribution of arguments predicts similarity between predicates.

Distributional Similarity

	X affect Y	
Х	Y	#
insulin	metabolism	7
Zantac	BP	4

• Yates and Etzioni (2009) estimate with the probability that two predicates are synchronic to $F_{F_x}^{f \in F_x^u \cap F^v}$ probability that two $f \in F_x^u \cap F^v$ probability that two $f \in F_x^u \cap F^v$ probability that two $f \in F_x^v \cap F^v$ probability that two $f \in F_x^v \cap F^v$

$DIRETAU(u), v \neq \sqrt{Lin(u, v)} = Lin(u, v)$

(SizpektobPaintoeDagen1,)2008)

Global Learning of Focused Entailment Graphs

Global Learning

- Snow et al. (2006) presented an algorithm for taxonomy induction.
- At each step they add the concept that maximizes the likelihood of the taxonomy given the transitivity constraint.

Propositional Templates

 Dependency path containing a predicate and two arguments (possibly one is instantiated)

Entailment Graph

- <u>Nodes</u>: propositional templates
- <u>Edges</u>: entailment between templates
- <u>Assumption</u>: Predicates are monosomous
 - Small graphs
 - One topic

Entailment Graph Properties

- Edges are transitive (monosemous predicates).
- Strong connectivity components represent synonyms.
- Merging strong connectivity components to a single node results in a Directed Acyclic Graph.

Hierarchical Summarization

- <u>Scenario</u>: user queries about a concept (nausea) and would like a structural output.
- Summarize the propositions of the corpus using a predicate entailment hierarchy interleaved with a taxonomy.

Learning Entailment Graph Edges

- Two step algorithm:
 - 1. Train a **local** entailment classifier **once**: given a pair of propositional templates (t_1, t_2) , estimate whether $t_1 \rightarrow t_2$
 - 2. Given the nodes of an entailment graph, learn the edges of the graph using the entailment classifier

Entailment Classifier - Outline

- <u>Input</u>: large corpus and lexical database
- <u>Steps</u>:
 - 1. Extract propositional templates from corpus
 - 2. Generate automatically positive and negative examples using lexical database
 - 3. Represent train set using distributional similarity
- Output: local entailment classifier

Template Extraction

- 1. Parse a large corpus
- 2. Extract and normalize tuples (á la Etzioni)

3. Replace arguments with variables

d) I		Blerwin	
1.	X control	Y	
2.			
3.			

Train Set Generation

• Use propositional templates from the corpus and lexical database:

• Generation method similar to "distant supervision" (Snow et al., 2005).

Representing Template Pairs

• A pair (t_1, t_2) is represented by various distributional similarity algorithms.

Measure	score
DIRT	0.549
BINC	0.919
TEASE	0.711
	0.0

 Reminiscent of the verb disambiguation algorithm proposed by Connor and Roth (2007)

Global Learning of Edges

- Learn the edges *E* of over a set of nodes
 V using Integer Linear Programming:
 - -Binary variables $I_{\mu\nu}$ for every pair of nodes
 - -Global transitivity constraint
 - Target function maximizes scores of edges in the graph
- Problem is NP-hard by a reduction from "Transitive Graph" (Yannakakis, 1978).

Global Learning of Edges - constraints

- Initial information: a set *Pos* of node pairs that are edges and a set *Neg* of node pairs that are not edges.
- Constraints:

$$\forall u, v, w \in V J_{uv} + I_{vw} - I_{uw} \le 1$$

$$\forall (u, v) \in Neg J_{uv} = 0$$

$$\forall (u, v) \in Pos J_{uv} = 1$$

Target Function

- Let F_{uv} be the features for the node pair (u,v) and F be the union over all node pairs.
- Given a probabilistic classifier that estimates $P_{uv} = P(I_{uv}=1|F_{uv})$ we can show that:

$$\hat{G} = \arg \max P(G | F)$$

$$= \arg \max \sum_{u \neq v} \log \frac{P_{uv} \cdot P(I_{uv} = 1)}{(1 - P_{uv}) \cdot P(I_{uv} = 0)} \cdot I_{uv}$$

$$= \arg \max (\sum_{u \neq v} \log \frac{P_{uv}}{(1 - P_{uv})} \cdot I_{uv}) + \lambda \cdot | E |$$

Experimental Evaluation

- 50 million word tokens healthcare corpus
- Ten medical students prepared gold standard graphs for 23 medical concepts:
 - Smoking, seizure, headache, lungs, diarrhea, chemotherapy, HPV, Salmonella, Asthma, etc.
- Evaluation:
 - $-F_1$ on set of edges
 - $-F_1$ on set of propositions

Evaluated algorithms

- Local algorithms
 - Single distributional similarity
 - WordNet
 - ILP with No transitivity constraints
- Global algorithms
 - Linear programming/greedy optimization (Snow)

Results

	Edges			Propositions		
	recall	Precision	F ₁	recall	Precision	F ₁
ILP-global	46.0	50.1	43.8*	67.3	69.6	66.2*
Greedy	45.7	37.1	36.6	64.2	57.2	56.3
ILP-local	44.5	45.3	38.1	65.2	61.0	58.6
Local ₁	53.5	34.9	37.5	73.5	50.6	56.1
Local ₂	52.5	31.6	37.7	69.8	50.0	57.1
Local* ₁	53.5	38.0	39.8	73.5	54.6	59.1
Local* ₂	52.5	32.1	38.1	69.8	50.6	57.4
WordNet	10.8	44.1	13.2	39.9	72.4	47.3

• The algorithm significantly outperforms all other baselines.

Recall-Precision Curve

Results

	Global=true/Local=false	Global=false/Local=true
Gold standard = true	48	42
Gold standard = false	78	494

 Comparing disagreement between best local and global algorithms reveals that the global algorithms avoids many false positives.

Conclusions

- Algorithm for learning entailment graphs using transitivity and ILP.
- Algorithm significantly outperforms local methods and greedy global methods (Snow et al.).
- Future work: Scale algorithm to handle larger graphs.

