A Multi-Domain Web-Based Algorithm for POS Tagging of Unknown Words

Shulamit Umansky-Pesin, Roi Reichart, Ari Rappoport

Outline

- Introduction
- Algorithm
- Experimental results
- Conclusions

Part-Of-Speech tagging

- The POS tagging problem
 - Determine the POS tag for a particular instance of a word
- Supervised taggers perform well:
 - Toutanova et al., 2003: 97.24% overall accuracy on WSJ corpus
 - But only 89.04% accuracy on unknown words

Domain adaptation

- The training and test corpora are from different domains
- Number of unknown words increases
- The total and unknown words accuracy suffers:
 - Tagging GENIA: 80.12% accuracy on unknown words
 - Tagging BNC: 68.71% accuracy on unknown words

Previous approaches

- Unknown words treatment:
 - Orthographical data (capital letters, digits, hyphens)
 - Prefixes and suffixes
 - Language-specific hand-crafted morphological and syntactic features
 - External data (lexicons etc.)

Previous approaches

- Domain adaptation:
 - Daume III, 2007 manually labeled corpus from target domain
 - Blitzer et al., 2006 unlabeled corpus from target domain
- Target domain is not always well-defined (for example, web)
-):

 Preparing a corpus is time-consuming, labeling it is much more so.

Outline

- Introduction
- Algorithm
- Experimental results
- Conclusions

Web search and context

- "You shall know a word by the company it keeps" (John Rupert Firth, 1957)
- Retrieve the "company" from the web
 - Who else "keeps the same company" (replacement)
 - The "company" on one side given the word and "company" on the other side (left-side and right-side contexts)

Web search and context

Unknown word

"UV irradiation and H2O2 treatment of T lymphocytes ..."

"irradiation and * treatment of"

Replacement in context

Web search and context

Unknown word

"UV irradiation and H2O2 treatment of T lymphocytes ..."

POS tagger

- Maximum Entropy tagger reimplementation of MxPOST (Ratnaparkhi, 1996)
- Training phase left unchanged
- Original (Ratnaparkhi, 1996) features used
- POS tag is determined by 2-words context

MaxEnt features

Condition	Features	
w_i is not rare	$w_i = X$	$\& t_i = T$
w_i is rare	X is prefix of w_i , $ X \leq 4$	$\& t_i = T$
	X is suffix of w_i , $ X \leq 4$	$\& t_i = T$
	w_i contains number	$\& t_i = T$
	w_i contains uppercase character	$\& t_i = T$
	w_i contains hyphen	$\& t_i = T$
$\forall w_i$	$t_{i-1} = X$	$\& t_i = T$
	$t_{i-2}t_{i-1} = XY$	$\& t_i = T$
	$w_{i-1} = X$	$\& t_i = T$
	$w_{i-2} = X$	$\& t_i = T$
	$w_{i+1} = X$	$\& t_i = T$
	$w_{i+2} = X$	$\& t_i = T$

Table 1: Features on the current history h_i

MaxEnt tagger - reminder

MaxEnt tagger - reminder

MaxEnt - reminder

 UV
 irradiation

 NNP
 NN

 IN
 NN

In the second of the

- At each step maintain a list N of tag sequences:
 - UV_NNP irradiation_NN
 - UV_NNP irradiation_NNP
- For each candidate sequence of tags
 - Extract features for the new word ("and")
 - For each possible* tag
 - Calculate tag conditional probability P(t_i|h_i) using the features parameters learned in training
 - Calculate sequence conditional probability P(t₁.. t_i|h₁..h_i)
- Select N top-scoring sequences
- Repeat

*possible tags:

•All tags for *unknown* words

Only tags seen in training

for known words

Unknown words & web search

Unknown words & web search

 UV
 irradiation
 and

 NNP
 NN

 NNP
 JJ

 H2O2
 treatment

 treatment
 of

 ...

Additional steps:

- Collect left- and right-side contexts and replacements from the web and create new words sequences
- For each new words sequence h'_i
 - For each tag
 - Calculate tag conditional probability P(t_i|h'_i) using the features from the new context
- Calculate final tag probability as the average between all P(t_i|h'_i) and the original P(t_i|h_i)

Outline

- Introduction
- Algorithm
- Experimental results
- Conclusions

Experimental setup

- Unknown words threshold: 5
- Baseline: MxPOST tagger

Experimental setup - English

Name	Training	Testing
WSJ	WSJ 2-21	WSJ 23
GENIA (domain adaptation)	WSJ 2-21	2000 sentences sample from GENIA
BNC (domain adaptation)	WSJ 2-21	2000 sentences sample from BNC

Results - English

Unknown words accuracy

	WSJ	GENIA	BNC
Baseline	88.79%	80.12%	68.71%
Web-assisted	89.86%	83.00%	72.12%
Improvement	1.07%	2.88%	3.41%
Error reduction	9.54%	14.48%	10.89%

Experimental setup - German

Name	Training	Testing
Negra	15689 NEGRA sentences	2096 NEGRA sentences
Tiger (domain adaptation)	15689 NEGRA sentences	2000 TIGER sentences
Negra (domain adaptation)	15689 TIGER sentences	2096 NEGRA sentences

Results - German

Unknown words accuracy

	Negra	Tiger domain adaptation	Negra domain adaptation
Baseline	91.06%	87.88%	87.86%
Web-assisted	91.95%	89.01%	89.84%
Improvement	0.89%	1.13%	1.98%
Error reduction	9.95%	9.32%	16.3%

Experimental setup - Chinese

Name	Training	Testing
СТВ	14903 CTB sentences	1945 CTB sentences

Results - Chinese

Unknown words accuracy

	СТВ
Baseline	78.03%
Web-assisted	80.75%
Improvement	2.72%
Error reduction	12.28%

Outline

- Introduction
- Algorithm
- Experimental results
- Conclusions

Conclusions

- No preprocessing steps!
- Train once, tag anything no knowledge about domain is required
- Language-independent
- Can be adapted to suit other taggers

What about Hebrew?

What about Hebrew?

- Some additional segmentation of web matches is required
- Other than that... should work!

Thank you