The 2-Center Problem with Obstacles®

Dan Halperin' Micha Sharir? Ken Goldberg?

August 21, 2000

Abstract

Given a set S of n points in the plane and a set O of pairwise disjoint simple polygons
with a total of m edges, we wish to find two congruent disks of smallest radius whose union
covers S and whose centers lie outside the polygons in O (referred to as locational con-
straints in facility location theory). We present an algorithm to solve this problem in ran-
domized expected time O(m log?(mn) + mnlog? nlog(mn)). We also present an efficient
approximation scheme that constructs, for a given € > 0, two disks as above of radius at
most (1+¢)r*, where r* is the optimal radius, in time O(1/elog(1/¢)(mlog® m + nlog® n))
or in randomized expected time O(1/elog(1/e)((m + nlogn)log(mn))).

1 Introduction

For a set S of n points in the plane, the (standard) 2-center problem is to find two congruent
disks of minimum radius that cover the points of S. This is a special case of the p-center
problem, where the goal is to cover S with p congruent disks of minimum radius. When p is
part of the input the problem is known to be NP-complete [14]. For p = 1 this is the “smallest
enclosing disk” problem which can be solved in linear time [13]. The case p = 2 has been
intensively studied, and after a series of papers presenting near-quadratic algorithms, Sharir
presented an algorithm that solves the problem in O(nlog” n) time [16]. The latter solution has
been improved by Eppstein who solves the problem in randomized expected time O(nlog2 n)
[8]. Another efficient variant has recently been proposed by Chan [2].

*Work on this paper by Ken Goldberg and Dan Halperin has been supported by a grant from the U.S.-Israeli
Binational Science Foundation. Work by Dan halperin and Micha Sharir has been supported by The Israel Science
Foundation founded by the Israel Academy of Sciences and Humanities (Center for Geometric Computing and
its Applications), by a Franco-Israeli research grant “factory of the future” (monitored by AFIRST /France and
The Israeli Ministry of Science), and by the Hermann Minkowski — Minerva Center for Geometry at Tel Aviv
University.

tDepartment of Computer Science, Tel Aviv University, Tel-Aviv 69978, Israel. halperin@math.tau.ac.il.

¥School of Mathematical Sciences, Tel Aviv University, Tel-Aviv 69978, Israel, and Courant Institute of
Mathematical Sciences, New York University, New York, NY 10012, USA. sharir@math.tau.ac.il.

$Department of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720.
goldberg@ieor.berkeley.edu.

We study a variant of the 2-center problem, where in addition to the set S we are given a
set O of pairwise disjoint simple polygons with a total of m edges, whose interiors constitute
forbidden regions for placing the centers of the covering disks. (These obstacles are referred
to as locational constraints in the standard theory of facility location [10].) We are not aware
of existing efficient solutions to this problem. The analogous 1-center problem, namely the
minimum enclosing disk problem with obstacles has been recently studied by Halperin and
Linhart [9] who give an algorithm with running time O((m + n) log(mn)) to solve it. They also
provide an approximation algorithm for the problem and a publicly accessible Java applet that
implements the approximation algorithm [9]. See Figure 1 for an illustration.

Figure 1: The minimum enclosing disk problem with and without obstacles. .S consists of 4 points
and O consists of one rectangle. The minimum enclosing disk without obstacles (whose center is
inside the rectangle) is shown in dashed line and the minimum enclosing disk centered at a free
location (on the top edge of the rectangle) is shown in bold line.

We present two algorithms to solve the 2-center problem with obstacles. The first algorithm
follows the general approach of Sharir [16] for the standard 2-center problem, but it has to handle
the presence of the polygons of O, which requires the introduction of several new and nontrivial
techniques. A major innovation in our algorithm is a data structure that dynamically maintains
a set P of points in the plane, under insertions and deletions of points, such that after each
update we can efficiently (in polylogarithmic time) determine whether the intersection of fixed-
radius congruent disks centered at the points of P and the complement F' of the obstacles in O
is nonempty (any point in this intersection can serve as the center of a ‘free’ disk that contains
P). In contrast, the parallel procedure in [16] only has to determine whether the intersection of
those disks is nonempty—a considerably simpler task. As in the improved solutions of Eppstein
and Chan for the standard 2-center problem, we also aim to minimize the use of parametric
searching in our algorithm, so that (a) we keep it simpler, (b) we improve its running time by
a polylogarithmic factor, and (¢) we gain more insight into the structure of the problem. To
achieve this, we note that one can use an interplay between the standard 2-center problem and
the one in the presence of obstacles. Informally, we show that, after various reductions and
restrictions are imposed on the problem, one can solve it by solving the standard version of the
(restricted) problem in which there are no obstacles. This will become clearer later on. The
algorithm runs in randomized expected time O(m log?(mn) + mn log® nlog(mn)).

Since the exact algorithm does not have a near-linear complexity, we develop a second algo-
rithm that is an efficient approximation scheme for the problem. Given ¢ > 0 we find two congru-

ent disks that cover the points in S, whose centers lie outside the obstacles in O and whose radii
are each at most (1+¢)r*, where r* is the optimal radius, in time O(1/e log(1/¢) (m log® m + nlog® n))
or in randomized expected time O(1/elog(1/e)((m + nlogn)log(mn))). The algorithm is driven

by a variant of binary search for the optimal radius, within a range that depends on the diameter

of S, and uses a simplified decision procedure for the search, which makes it more efficient. A
variant of this algorithm also yields an approximation scheme for the standard 2-center problem,
which is more efficient than the exact algorithm and is considerably simpler.

Discussing the introduction of obstacles in facility location problems, the authors in [10] argue
that “such [locational] constraints are ubiquitous and important in practice”. Our work however
has been inspired by the following problem in robotics. Several CAD vendors are developing
software for rapid setup of automated workcells [6]. A fundamental problem is where to place
robot arms and other devices so that certain desired points can be reached. The distance the
robot reaches for each point influences robot precision and settling time; it is therefore desirable
to minimize this distance. Furthermore, operations such as inspection and assembly must be
performed in tight quarters, so it is also necessary to position robots such that their base does
not intersect with other devices in the workcell. The real-life (two) robot placement problem is
complicated by many factors, and each factor raises new and more involved problems (e.g., the
robot joints may have mechanical limits so that the robot’s workspace is a disk-sector rather
than a full disk). Nevertheless, we view our current work as a first step in approaching this
family of problems.

In the next section we present the dynamic data structure to maintain the intersection of
disks and free space. The exact algorithm is described in Section 3 and the approximation
scheme is presented in Section 4. Direction for future work are proposed in Section 5.

2 Dynamic Maintenance of the Intersection of Disks and
Free Space

In this section we describe a dynamic data structure which is a key ingredient of our solution
to the 2-center problem with obstacles.

Let F' denote the free space, namely the complement of O. We assume here that r is a fixed
radius. The following notation is borrowed from [16]. B,(p) denotes the closed disk of radius r
centered at p. For a set P of points, K (P) denotes the intersection N,cp B, (p). We will maintain
two structures K+ (P) = N,cp B, (p) and K~ (P) = Nyep By (p), where B (p) (resp. B, (p)) is
the region consisting of all the points that lie in or above (resp. in or below) B, (p).

Our goal is to dynamically maintain a set P of points in the plane, under insertions and
deletions of points. After each update we need to determine whether the intersection K(P)N F
is nonempty. If this intersection is nonempty this means that we can cover the set P by a disk
of radius r whose center lies outside O.

We prepare auxiliary static data structures. The first is for point location in the planar
map induced by the polygons in O. For a query point ¢ we determine with this data structure
the polygon whose interior contains ¢, or otherwise that ¢ lies in F' (i.e., outside all polygons).

Construction of this standard data structure takes O(mlogm) time, requires O(m) space, and
a point location query takes O(logm) time.

Secondly, we construct for each polygon a fixed-radius circular-shooting structure as de-
scribed in [3]. We summarize its performance in the following theorem.

Theorem 2.1 (Cheng et al. [3]) Let Q) be a simple polygon with k edges. A data structure for
fized radius circular shooting inside @QQ can be constructed in O(klogk) time using O(k) space,
such that the first intersection point of a query arc of the given radius with the boundary of Q
along the arc, if any, can be found in O(logk) time.

The radius of all the circular arcs we are shooting is the fixed r» we will be using throughout
this section. By Theorem 2.1 the construction of these structures for all polygons in O together
requires O(mlogm) time, O(m) space, and a query is answered in O(logm) time, once we are
given the polygon containing the initial point of the query arc. Below we will always query with
x-monotone arcs whose starting point is the leftmost point of the arc. For an z-monotone arc
«, we will denote its leftmost point by I(«).

We denote all the static data structures collectively by S, and we use them as follows. We
query & with an xz-monotone arc «. The answer is the leftmost point of N F', or NULL if «
is completely contained inside a single polygon of O. We do this by first querying the point
location structure with [(«). If I(«) lies in F' we return [(«). Otherwise we obtain the polygon in
which /() lies and we shoot with « in the respective circular-shooting data structure to obtain
the desired answer. Thus, querying S with an arc takes O(logm) time.

The Overmars-van Leeuwen-like data structure developed in [16] maintains the intersections
K*(P) and K~ (P). The boundary of either intersection consists of a sequence of circular arcs,
with breakpoints between each consecutive pair of arcs. We augment the structure describing
K™ (P) so that we can efficiently obtain the following information: for each breakpoint b on the
boundary of K (P) what is the leftmost point on the boundary whose z-coordinate is greater
than or equal to that of b and that lies in F', or NULL if there is no such point. In other words
we wish to determine for a breakpoint b what is the first free point that we will encounter when
walking along the boundary from b to the right, if there is such a point. We consider the points
on the boundaries of the polygons in O to be free. The same augmentation will be applied to
K~ (P).

Before we give details on how we augment the structures, we describe how we use them.
Recall that we wish to determine whether K (P) N F is nonempty. We first look for the left and
right intersection points of the boundaries of K*(P) and K~ (P)—this can be done in O(log® n)
time. If K*(P) and K~ (P) do not intersect then we are done (the intersection K (P) is empty).
If they intersect, let & and 7 denote the left and right intersection points of their boundaries,
respectively. See Figure 2. Let b be the first breakpoint along 0K (P) (the boundary of K*(P))
to the right of £. Let a be the arc which is the portion of 0K (P) between £ and b, or between
¢ and n if b lies to the right of n. Assume that b lies to the left of n; we first have to find b which
we do in O(logn) time (we defer the description of this simple operation to the full description
of the data structure below). We query the static structure S with «, in O(logm) time. If we
get a free point in return, then K(P) N F is ‘nonempty’, and we are done. Otherwise « lies
completely inside an obstacle.

DK+ (P)

0K~ (P)

Figure 2: The arc « on the boundary of K(P). The small dashes mark breakpoints.

Note that in this case, since our obstacles are simple polygons, K (P) N F is nonempty if and
only if there is a free point along the boundary of K(P). We query the augmented dynamic
structure with the breakpoint b to get the first free point to the right of b on 0K (P). As
explained below, this can be done in O(logn) time. If the answer is a point lying to the left of
or coinciding with 7 then again the answer to our original question is ‘nonempty’. If in all the
above queries we found no free point along 0K *(P), we turn to the boundary of K~ (P) and
repeat the same sequence of operations from £ to the right. If we find a free point along the
portion of 0K~ (P) that bounds K (P) then the answer to our question is ‘nonempty’, otherwise
the answer is ‘empty’. The overall time to decide whether K(P) N F' is nonempty is thus
O(log® n + log m).

Next we describe how to augment the dynamic data structure describing K+ (P) so that it
efficiently answers a query of the type: Given a breakpoint b along 0K (P), what is the first
point on 0K (P) that is free and whose z-coordinate is greater than or equal to that of b, if
one exists? The dynamization is under insertions and deletions of points to and from the set
P, where all the points are from the original set S. The structure describing K~ (P) and its
augmentation are analogous.

We first recall the structure describing K+ (P) [16]. We sort the points of S by their z-
coordinates and store them, from left to right, in the leaves of a minimum-height binary tree
T. Each leaf of T" maintains a flag that indicates whether the point p of S associated with it
is currently in P. To conform with the structure of internal nodes, each leaf stores the x-range
of Bf(p) if p belongs to the current set P, and stores the full z-axis otherwise. A node v of
T (indirectly) maintains K*(P,), where P, is the subset of points of P stored at the leaves of
the subtree of T" rooted at v. Let w; and w, be the left and right children of v, respectively;
then v stores the z-range of Kt (P,), which is the intersection of the z-ranges of K*(P,,) and
K*(P,,). If the z-range of K*(P,) is nonempty then we also store at v the single intersection
point g, between 0K (P,,) and 0K (P,,), with pointers to the pair of circles that intersect at
¢y. For more details, see [16].

In the augmented structure 7, at each node v, besides the intersection point ¢,, we will also
store the first free point ¢ = ¢(g,) along OK*(P,) such that x(¢) > z(g,) or NULL if no such
point exists. At a leaf corresponding to point p, the role of g, will be played by the leftmost
point I, of the semicircle v(p) bounding B;"(p), namely we will store the first free point ¢ = ¢(l,)

along v(p) such that z(¢) > z(l,) or NULL if no such point exists.

We now describe how we compute, update and search for the information ¢(q), where ¢ is
either the breakpoint stored at an internal node, or the leftmost point [, in case of a leaf. We
start with the computation of ¢(g) for all the relevant nodes of T' for a given initial set P C 5,
which we compute bottom-up. At a leaf associated with point p, we query the static structure S
with the arc y(p) and store the answer at the leaf; this requires O(logm) time. Next we compute
#(q,) for an internal node v with a left child w; and a right child w,, where for all nodes in the
subtree rooted at v besides v we already have the information ¢(q). As above, let ¢, denote the
intersection point of 0K*(P,,) and 0K *(P,,). Let b denote the next breakpoint when moving
from ¢, along OK*(P,) rightwards (possibly the rightmost point of 0K *(P,)). Next we show
how to find b.

We are looking for the leftmost breakpoint of 0K (P,) to the right of g,. We search down
the subtree rooted at v and maintain the leftmost breakpoint to the right of ¢, that we have
found so far, call it b. We know that b is a breakpoint along OK*(P,,) hence we start the search
at w;. At a node w along the search path (where originally w := w;) we compare z(g,) and
the interval [z(q,), #(b)]. If x(q,) falls inside the interval then we let b := ¢, and we continue
to the right child of w. Else, if 2(g,) > x(b) we move to the right child of w. Else (namely,
z(qw) < z(gy)) we move to the left child of w. Once we have reached the end of the search path

(a leaf), the final value of b is the desired breakpoint b. The cost of this search is O(logn).

We query S with the arc which is the portion of 0K (P,) between ¢, and b (in time O(logm)).
If the answer is not NULL then we store it at ¢(q,). Else, if b is the rightmost point of 0K (P,)
we store NULL at ¢(g,). Otherwise, namely if b is an internal breakpoint of 0K *(P,) and the
answer to the query was NULL, we ‘jump’ to the node u containing the breakpoint b.

We denote the nodes along the search path from v to u in reverse order vy = u, vy, vg,..., v =
v. At the node vy, the information ¢(q,,) is correct for K (P,,), namely ¢(q,,) is the first free
point along 0K *(P,,) such that z(¢(qy,)) > x(b), if such a point exists. We now move up from
vg to v along the reverse of the search path and ‘correct’ this information so that when we
reach v, we will have the first free point ¢ along 0K *(P,,) such that z(¢) > x(b). We maintain
an auxiliary variable ¢'. At the beginning of the process we let ¢ := ¢(q,,). When we move

from v; to v; 1 we distinguish two cases (see Figure 3):

e The node v; is a left child of v;,;. Then ¢’ remains unchanged, since from b rightwards
the boundary of Kt (P,,,,) is the same as the boundary of K*(P,,).

Vi1

e The node v; is a right child of v;1,. If ¢" is NULL or 2(¢') > x(qu,,,), we put ¢’ := ¢(qu,,,)-
Otherwise, ¢' remains unchanged.

At the end of the process, we set ¢(g,) := ¢'.
Lemma 2.2 The overall construction time of the augmented structure T* is O(nlog(mn)).

Proof: At each of the O(n) nodes of the tree we spend O(logn) time for searching the break-
point b, and we do one circular shooting query at the cost of O(logm) time, for an overall time

6

OK*(P.,)

Qu; 1,

qvi+1

Figure 3: Moving up the search path: on the left v; is the left child in which case the portion
of the boundary to the right of b does not change when we move up; on the right v; is a right
child and ¢(b) may be affected by the other child of v;,;.

O(nlogn + nlogm) = O(nlog(mn)). O

We query T™* with a breakpoint b for the first free point ¢ along K (P) such that z(¢) > x(b)
in the same way that we compute ¢(g,) originally. Only this time v is the root of the tree.
Namely, we first search the tree for the node containing the breakpoint b and then we move
back up along the search path and maintain a variable ¢’ so that when we come back to the root
we get in ¢’ the desired answer. Since we spend constant time at each node along the search
path, the query time is O(logn).

It remains to show how we update 7™ when a point p is inserted to or deleted from P. We
first search the tree for the leaf corresponding to p. It is easily seen that we need to update
the information ¢(g,) only at nodes v along this search path 7(p), and we update it bottom
up. As we reach a node v along 7 (p), we need to update both the intersection point g, and the
information ¢(q,). The latter may require circular shooting from the new ¢,, and computing the
information ¢(b) at the breakpoint b to the right of ¢,, which in turn requires searching for b in
the subtree rooted at v and going back up along this ‘local’ search path to get the desired output.
This means that at each of the O(logn) nodes along 7(p) we spend O(logn) time for the search
and O(logm) time for circular shooting, for a total of O(log® n+lognlogm) = O(lognlog(mn))
time per update.

Note that the resources required by the extra information (the ¢(g,)’s) in 7% dominate the
resources required by the original dynamic structure 7' [15], [16]. We conclude:

Theorem 2.3 Given a set of points S and a set of polygonal obstacles O as above, we can
construct a dynamic data structure to determine whether K(P) N F is nonempty, where F' is
the complement of the obstacles and P C S is the current active set of points. Fach such test
takes O(log® n +logm) time. The construction of the structure takes O(mlogm + nlog(mn))
time. An update of the structure when a single point is inserted to or deleted from P takes
O(lognlog(mn)) time. The space required by the dynamic structure is O(n) and additional
O(m) space is required by the auziliary static structure S.

In our algorithm we will also need to report whether there is a solution with radius smaller
than the given r. To this end, we augment our dynamic structure as follows. When we obtain a

7

positive answer to the intersection query, the structure in fact finds a “witness” point w in the
intersection K (P)NF. We check in O(1) time if locally w is an isolated point of the intersection;
if the answer is no, then we report that there is a solution with radius smaller than the given
r—this is justified by Lemma 3.1 below. Otherwise, if w is isolated and it is the rightmost point
n of K(P) there is no solution with smaller radius. Finally, if w is an isolated point which is
not the rightmost point of the intersection, we continue querying our data structure as above
from w (i.e., we shoot a circular ray from w along the boundary of K(P), etc.). The general
position assumption, that will be made in the following section, assures us that if we get another
free point along the boundary of K (P) then this cannot be an isolated point, in which case we
report that there is a solution with a smaller radius.

Corollary 2.4 The structure of Theorem 2.3 can also report whether there is a solution with
radius smaller than the given r, within the same resource bounds.

3 The Overall Exact Algorithm

The overall exact algorithm follows closely the technique of [16] and its enhancements in [2, 8]
for the standard 2-center problem, but it has to handle additional configurations that can arise
because of the existence of obstacles.

3.1 Preliminaries

Lemma 3.1 Let P be a finite point set and F a closed polygonal free region. Let D be a
smallest disk that contains P and is centered at F. If D is centered at int(F') then it is the
(unconstrained) smallest enclosing disk of P.

Proof: We use the following well-known approach. Parametrize the space of all disks in the
plane so that a disk centered at (z,y) and having radius 7 is represented by the triple (x,y, (r* —
12 —y?)). The set of disks that contain a point (a, b) is the halfspace z > —2ax — 2by + (a* + b?).
Hence the set of disks that contain P is a convex polyhedron K formed by the intersection of
|P| such halfspaces, one for each point of P. An (unconstrained) smallest enclosing disk of P
is a point of K that minimizes the convex function x? + % + 2, and hence it is unique. Any
other point of K can be moved continuously within K in a direction where 22 + y2? + 2z strictly
decreases.

Now if D is a disk as in the lemma, and is not equal to the (unconstrained) smallest enclosing
disk of P, then D is represented by a point in K which can thus be moved slightly within K so
that 22 + y? + 2 decreases. In other words, we can slightly shift and shrink D so that its center
remains in F' and it continues to contain P. This contradicts the assumed minimality of D and
thus establishes the lemma. O

Lemma 3.2 Let S and F be as above. Let A denote the diameter of S. If the radius of the
optimal solution of the two-center problem with obstacles is larger than A then at least one of
the centers must lie on an edge of F'.

Proof: Since S can be enclosed in a disk of radius A, it follows that the radius of the (uncon-
strained) smallest enclosing disk of any subset of S is at most A. Let Dy, Dy be the two disks
of an optimal solution of the two-center problem with obstacles for S and O. It follows that D,
is not the (unconstrained) smallest disk enclosing S N Dy, and similarly for D,. If the centers
of both D; and Dy lie in int(F) then Lemma 3.1 implies that we can shrink both of them and
obtain a solution with a smaller radius, contrary to assumption. O

Lemma 3.3 (Eppstein [7]) Let S be a set of n points in the plane and let Sy, S, ..., Sk be
a sequence of subsets of S such that for each 1 < m, S;y1 is obtained from S; by inserting or
deleting a single point. Then the smallest enclosing disks of the sets S; can all be computed in
overall randomized expected time O((n + k) log? nlog®logn).

In what follows, we assume that S and O are in general position. Loosely speaking, this
means that we rule out any coincidence between various unrelated quantities that are defined in
terms of S and O and that would not coincide for randomly chosen values of the parameters that
specify S and O. For example, we assume that the radii of disks passing through three points
of S or having two points of S as a diameter are all distinct. Several additional requirements of
this sort will be noted when they arise in the analysis (one of them has already been made at
the end of the preceding section). The algorithms can also handle inputs in degenerate position,
using a variety of known techniques (such as symbolic perturbations).

3.2 Centers lying on obstacle edges

The first (and new) stage of the algorithm aims to compute the smallest radius r; such that S
can be covered by two disks of radius r; so that at least one of them is centered at a point of
OF (and the other at any point of F).

To this end, we consider the following subproblem: Let e be a fixed edge of F'. For simplicity,
assume that e is the unit interval [0, 1] along the z-axis. Let S be the given set of points. We
want to find the smallest r such that S can be covered by two disks of radius r, so that one of
them is centered at a point of e and the other is centered at a point of F'.

Enumerate the points of S as (si,...,s,), where the coordinates of s; are (a;,b;), for i =
1,...,n. For each i, define a function f; on e, parametrized by & € [0, 1], as follows:

fi(€) = d*((£,0),85) = (€ — ai)* + b} =& — 2a,€ + (af + b}).

For simplicity, we will regard these functions as defined over the entire £-axis.

Consider the arrangement A(F) of the set F of the graphs of the functions f;, represented
in a coordinate frame (&,7). We will regard each point (£,7) in this frame as representing the
disk D(§,n) = B 5((£,0)). Clearly, a point s; lies in D(&, n) if and only if its associated function
graph f; lies below the point (£,7). Let S(&,7n) denote the subset of S consisting of those points
that lie outside D(&,n) (i.e., points whose associated function graphs lie above (&, 7)).

Lemma 3.4 (a) Each pair of functions f;, f; intersect at most once.

9

(b) A pair of functions f;, f; intersect below the horizontal line n = 1y if and only if the pair of
&-ordinates where f;(§) = ny and the pair where f;(§) = 1o define two intervals (denoted
as I;(no) and I;(ny)) that are overlapping (i.e., neither disjoint nor nested).

(¢) The number of vertices of A(F) that lie below a given horizontal line n = ny can be counted
in O(nlogn) time.

(d) Given any number 0 < k < (g), one can find the k-th highest vertex of A(F) in O(nlog®n)
time.

Proof: The claim in (a) is immediate. Concerning (b), if ;(no) and I;(ny) are overlapping then
it is clear, using a continuity argument, that f; and f; intersect below n = 7y. Conversely, if
fi and f; intersect below 1 = 1y (at a unique point, whose {-ordinate is denoted as &;;), then
I;(no) and I;(ny) cannot be disjoint (they both contain &;;) and they cannot be nested either, for
this would force the two graphs to intersect twice. Hence, counting the number of intersections
below 1 = 1y is equivalent to counting the number of pairs of overlapping intervals in a given
system of n intervals on a line. This can be done in time O(nlogn) using, e.g., a standard tree-
based algorithm for counting inversions in a permutation (see, e.g., [5]). Indeed, sort the left
endpoints of the given intervals in increasing order, and sort the right endpoints in decreasing
order. Regarding the first permutation as the identity, the number of inversions in the second
permutation is equal to the number of overlapping pairs of intervals. This establishes (¢). The
final assertion (d) follows by using an appropriately modified variant of the algorithm of [5]
for the slope selection problem. Specifically, this algorithm applies parametric searching to the
inversion counting algorithm. The simplest version runs in O(nlog®n) time, which is reduced
to O(nlog”n) time using an enhancement technique due to Cole [4]. Both of these approaches
are applicable in our case too. (The final improvement in the algorithm of [5], which reduces its
complexity to O(nlogn), does not seem to be applicable in our case, and has no effect anyway
on the overall asymptotic bound on the running time of the algorithm.) O

The first stage of the algorithm proceeds through the following steps.

(i) Maintain a horizontal slab o : = <n < n*. Initially, this is the whole {n-plane.
(ii) Find a horizontal line v : 7 = 1y that bisects the subset of vertices of A(F) that lie in o.

(iii) Determine whether there exists a point (£,1) € v such that S(&,7) can be covered by
a disk of radius py = /7o centered at F'. (To accomplish this step, we intersect e with
the circles bounding the disks B,,(s;), for i = 1,...,n, sort these intersections along e,
and iterate over these points in sorted order. Whenever we pass from one point to the
next, a single element is added to or deleted from S(&, 1), and we use the dynamic data
structure of the previous section to determine whether the new set can be covered by a
disk of radius pg centered at F'.) If such a point was found, replace o by its portion below
v; otherwise replace it by its portion above 7.

(iv) Repeat these steps until o contains no vertex of A(F) in its interior. Suppose that this
final o is 7 < n < my. This means that step (iii) was successful at 7o and failed at 7.
The line = 1, contains a single vertex v of A(F), induced by two points p,q € S. We
examine all the solutions found when step (iii) processed n = 1. Two subcases can arise:

10

(iv.a) v is the only possible center along this line. Assuming general position, the radius of
the smallest (constrained) disk enclosing S(v) is strictly smaller than p, = /7. This is
easily seen to imply that there is no disk of radius smaller than p, and centered at e that
contains both p and ¢ (for otherwise 7 = 7, would have contained other solutions in the
vicinity of v). This in turn implies that the solution with the minimum radius and with
one center lying on e is at v itself. Hence in this case we return D(v) and the sibling disk
that covers S(v).

(iv.b) There are other solutions along 1 = 7,. This means that any of the subsets of S that
the disk D(&,) contains, as its center moves along e, with the possible exception of the
subset defined by D(v), are also contained by smaller disks centered at e; in fact, the radii
of these smaller disks can be made (at least) as small as p, = /71; see Figure 4 for an
illustration. Since step (iii) failed at 7, this can only be because the smallest (constrained)
disks containing the complementary sets S(&, 1) all have radii strictly greater than p;. In
view of Lemma 3.1, this implies that, for each such set S(&, 159), either the radius of its
(unconstrained) smallest enclosing disk is greater than p;, or the radius of its constrained
smallest enclosing disk is greater than p; and this disk is centered at an edge €' of F.
We can ignore the latter kind of situation because, as is easily seen, it will be detected
in subcase (iv.a) when €' is processed. (More precisely, either it will be detected, or a
solution with a smaller radius will be found.)

(v) We thus proceed as follows. The data gathered so far implies that the sequence of critical
events defined in step (iii) is combinatorially the same for all horizontal lines = 7, through
o. We apply the algorithm in Lemma 3.3 to the fixed sequence of subsets S(&,n) of S
that arise in step (iii) (and is independent of 7)), to obtain the (unconstrained) smallest
enclosing disk of each of these subsets. From among those disks whose centers lie in F,
we take the smallest one, and return this disk and the corresponding disk D(,n;). Note
that the largest of the radii of these two disks is between p; and p, (for otherwise step (iii)
would not have failed at n = ;).

VAN

Figure 4: The arrangement A(F) within the final slab o

We apply the procedure to each of the m edges of F', and output the solution with the
smallest radius. The overall (expected) running time of this procedure is O(mn log® nlog(mn))

11

(note that the only randomized part of the algorithm is Eppstein’s procedure used in step (v)).
Its correctness follows from the analysis given above.

In conclusion, we can, in O(mnlog? nlog(mn)) time, find the smallest radius 7, such that S
can be covered by two disks of radius r; so that at least one of them is centered at a point of
OF (and the other is centered somewhere in F'). From now on, our goal is to determine whether
there exist a pair of congruent disks of radius smaller than r; which are both centered at points
in the interior of F' and whose union covers S. Recall that, by Lemma 3.1, each of these disks
D is the (unconstrained) smallest disk containing D N'S. Recall also that, by Lemma 3.2, we
have r; < A.

Remark: This stage is the only part of the algorithm that requires more than near-linear time.
We leave it as an open problem to find a subquadratic implementation of this stage.

We now proceed following the general approach of [16]. It treats separately three subcases:
(a) the case where the disks in an optimal solution are far apart (the distance between their
centers is at least 3r*, where r* is their common radius); (b) the case where the disks are ‘nearly
concentric’ (the distance between their centers is smaller than 7*); and (c¢) the case where the
disks are ‘nearly tangent’ (the distance between their centers is between r* and 3r*). We consider
the same three cases, and show how to replace or modify the procedures used in the previous
papers in order to handle the presence of obstacles.

3.3 The case where the disks are far apart

We next compute the smallest 7* < r; such that S can be covered by two disks of radius r* that
are centered at points of int(F') and the distance between their centers is at least 3r*.

Suppose that there exist a pair Dy, Dy of disks of radius r* < r; so that their union covers S
and their respective centers ¢y, ¢, satisfy |cico| > 3r*. Let A denote the diameter of S. Clearly,
we have A < |¢jco| + 2r* < 5/3|c1c2|. On the other hand, |cie| — 2r* < A, which implies that
leiea] < 3A and r* < A (the latter inequality is of course also a consequence of Lemma 3.2).
Suppose that we guess, as in [16], that the orientation of ¢;¢; is nearly horizontal. Project S onto
the z-axis. The span of this projection is at most A, and ¢; and ¢, project to two points, each
lying at most r* < A away from this span. Hence, we can construct an interval on the z-axis,
of length at most 3A, which contains the projections of both ¢; and ¢y. Since |cies] > 0.6A, it
follows that we can construct a constant number of vertical lines (spaced aA apart, for some
sufficiently small constant « > 0), such that at least one of them is guaranteed to separate D
and Ds.

The current stage of the algorithm is thus straightforward: Construct a set of O(1) candidate
separating lines (a constant number of lines for a constant number of orientations). For each
of these lines ¢, obtain the partition of S into two subsets induced by ¢, and compute the
(unconstrained) smallest enclosing disk for each of the two subsets (this can be done in O(n)
time). Discard any output in which one of the radii of the two enclosing disks is larger than or
equal to r; or one of the centers is not in F'. For any surviving output, take the largest of the
two radii, and return the solution which minimizes this value.

The correctness of this procedure is an immediate consequence of Lemma 3.1. Specifically,

12

suppose that the optimal solution (in the presence of obstacles) is a pair of disks Dy, Dy, which
are well-separated in the above sense, whose common radius r* is smaller than r, and which are
centered at points of int(F'). (If there is no such solution, it is clear that the procedure will not
report any solution.) As argued, one of the lines that the procedure processes separates Dy and
D,, and thus separates the sets S; = SN Dy, Sy = SN Dy. Let D) (resp. D) denote the smallest
(unconstrained) disk enclosing S; (resp. S;). By Lemma 3.1, either D; = D] or it can be shrunk
continuously while continuing to contain S;. This shrinking process must eventually reach D1,
for otherwise the center of the shrinking disk would reach 0F and this would contradict the
definition of r;. A similar argument applies to D, and thus establishes the correctness of this
procedure. The overall cost of this step is O(n + logm).

3.4 The case where the disks are nearly concentric

In this subsection we handle the case in which the optimum solution consists of two disks Dy, D,
that are centered at points ¢, co € F', have common radius r* < r; < A and satisfy |cco| < r*.
In this case we proceed in a manner similar to that in [2, 8, 16]. We briefly describe the approach,
and refer the reader to these papers for more details. Specifically, in this case there is a large
overlap between the disks, and we can guess a point z, out of a set of O(1) candidate points,
that lies in Dy N Dy. We can also guess an orientation, out of O(1) possible ones, so that the
line ¢ passing through z at that orientation separates the two intersection points of dD; and
0D,. Without loss of generality, assume ¢ to be horizontal.

Let ST (resp. S7) be the subset of the points of S that lie above (resp. below) ¢. Sort the
points of ST (resp. of S7) in counterclockwise (resp. clockwise) angular order about z. Define a
matrix structure A whose rows (resp. columns) correspond to the points of S* (resp. of S7) in
sorted order. The (i, j)-th entry of M represents the partition of S into a left subset Sy (4, j) and
a right subset Sg(i,), separated by the ray emanating from z upwards and passing between the
i-th and (i + 1)-st points of ST and the ray emanating from z downwards and passing between
the j-th and (j + 1)-st points of S~. Clearly, the two disks D;, Dy of the optimum solution
satisty S, (i,7) C Dy and Sg(i,j) C Dy, for the entry (4, j) induced by the two rays that emanate
from z towards the two points of intersection of 0D; and 0D,. See Figure 5 for an illustration.

For each (i, j), we associate four values with the (i, j)-th entry of this structure:

e 7. (i,7) = radius of the smallest disk that encloses Sy, (i,j) and is centered at a point of F;
i,j) = radius of the smallest disk that encloses Sg(i,j) and is centered at a point of F’;
/) = radius of the (unconstrained) smallest disk enclosing Sy, (i, 7);

e 1-(i,j) = radius of the (unconstrained) smallest disk enclosing Sg(i, 7).
Note that all four resulting matrices are monotone. Specifically:

o rr(i1, J1) = 1L(iz, j2) for iy <y, 1 < Ja.

o 7r(i1,J1) < 1r(i2, j2) for iy <idg, j1 < Jo.

13

Figure 5: The case where |cico| <7

o 1 (i1, 51) > 1 (i, J2) for iy <ig, 51 < jo.
o (i1, 1) < rplia, j2) for iy < iy, j1 < jo.

We first run a matrix searching step that computes all entries (7, j) for which rp(i,7) < r;
and rg(7,7) < 7. This is done as in [16], by tracing two monotone paths through the structure,
scanning in total a linear number of entries, and using the dynamic data structure of Section 2
to navigate through the matrix. (As noted in that section, the data structure is also able,
under the general position assumption, to detect the case where there is a strict inequality
between the optimal solution and the given r;.) The output of this phase is a collection of
matrix substructures My, ..., M; that have pairwise-disjoint sets of rows and of columns and
are arranged in row-increasing and column-decreasing order; see Figure 6 for an illustration.

We now solve within these submatrices the unconstrained two-center problem, using the
techniques of Eppstein [8] or Chan [2]. We note that these techniques treat the matrices in
a fully abstract manner, and do not rely on any specific geometric structure. All that they
require is that the matrices be monotone, as above, and that there are ‘black-box’ routines
that return any specific value '/ (i, j) or r,(7, j), or that compare any of these values with any
given r (where the latter operation is cheaper than the former one). We modify the 7, and 7,
matrices as follows: Connect all the substructures My, ..., M; by a sequence of row-increasing
and column-decreasing paths. For any entry (i,j) that lies above this path and outside the
matrices M,, we put 7 (i,j) = 400, rik(i,7) = 0, and for any entry (¢,) that lies below this
path and outside the matrices M,, we put 7 (i,7) = 0, r,(4,5) = +o0o. The values of) (4, j)
and 77, (4, j) remain unchanged within each of the M, submatrices. See Figure 6. It is easy to see
that the new matrices remain monotone, and that the black-box routines mentioned above retain
their asymptotic complexity for the modified matrices (we simply augment the old routines with
an initial binary search step that determines whether the query entry lies in one of the matrices
M,, above the connecting paths, or below the paths).

14

M3 0, +00

Figure 6: The matrix substructures M,

Suppose that the optimal solution (to the unconstrained problem) is attained at entry (i, j)
(because of the way we have modified the matrices, this entry must belong to one of the subma-
trices M,). We claim that it must coincide with the optimal solution in the presence of obstacles.
In other words, we claim that the smallest disks Dy, Dy enclosing, respectively, Sy (4, 7), Sr(i,7)
are centered at points of F'. This is argued as in the previous steps of the algorithm, using
Lemma 3.1. Specifically, suppose to the contrary that, say, D is centered at a point of O.
Since (i,7) belongs to M,, we know that there exists another disk Dj that contains S.(i,),
is centered at a point of int(F'), and has radius smaller than 7. By Lemma 3.1, since Dj is
not the smallest enclosing disk of Sy (i,7), we can shrink it continuously, while keeping Sy, (i, 7)
contained in it, until its center reaches 0F. This is easily seen to contradict the definition of 1,
and thus implies the claim.

The overall cost of this procedure is thus (see [2])
O(nlognlog(mn) + nlog®nlog®logn).

(The second term reduces to O(nlogn) if randomization is allowed [2].) After running this
procedure, and the preceding ones, we obtain a threshold radius 7, < 7y, which is the smallest
radius for which there exists a solution to the two-center problem with obstacles in which the
common radius of the disks is 7 and either at least one center lies on OF or the centers are far
apart or there is a large overlap between the disks.

In the remainder of the algorithm, we seek a solution (if one exists) where the radius r* is
smaller than r, and where the distance between the centers is between r* and 3r*. Handling
this ‘nearly-tangent’ situation is the most involved stage of the algorithm.

15

3.5 The NT2DC decision procedure

To facilitate the handling of the nearly-tangent case by the algorithm, we first describe a decision
procedure that will be used in the algorithm. We are given S and F', as above, and a radius
r < r9. The goal is to determine whether there exist two congruent disks of common radius r
which are centered at int(F'), whose union covers S, and where the distance between the centers
c1, Co is between r and 3r. We refer to this subproblem as the nearly-tangent two-disk covering
problem, or the NT2DC problem for short.

We follow exactly the same technique as in [16]. That is, we guess, in a constant number of
possibilities, an approximate orientation of the directed line ¢;cy (henceforth assumed to be the
positive horizontal orientation) and a (vertical) line ¢ that separates the left center ¢; from the
two intersection points of the disks (if these points exist) or from the leftmost point of the right
disk, otherwise. See Figure 7 for an illustration.

Figure 7: The case r < |cieo| < 3r

Let Sp denote the subset of the points of S to the left of ¢. Form the intersection K, (Sp)
of all the disks B, (p), for p € Sy, and intersect all the other disk boundaries B,(¢), and all the
edges of F', with the right boundary I, of K,.(S,). We obtain a collection of O(m + n) critical
points along I',, which can be constructed and sorted along I', in O((m + n) log(m + n)) time
(this follows from the observation that each disk boundary and each edge of F crosses I, at
most twice). We now trace the center ¢; of the left disk along I',, maintaining the set Sy of
points of S not contained in B, (¢;). As ¢; moves past a critical point, So changes by at most one
point that is being added or deleted, or, if the critical point lies on an edge of F', the center ¢,
enters or leaves F'. Using our data structure, we determine, after each such transition, whether
S, can be covered by a disk of radius r that is centered at F'. We consider as valid only cases
where the portion of I',. that ¢; currently traces is contained in F; the critical intersection points

16

of the edges of OF with I', help us to keep track of this property.

The cost of this NT2DC decision procedure is O((m + nlogn)log(mn)). Note that in this
procedure we assume that the left disk determines r*. The case where the right disk determines
r* will be handled when we process another orientation for which c¢;¢; is nearly horizontal and
¢, lies to the right of c,.

3.6 The case where the disks are nearly-tangent

Next assume that the optimal solution satisfies r* < |cica| < 3r* and r* < 1. To detect this
case we use a limited amount of parametric searching, applied to the NT2DC procedure that
we have just presented. This is done as follows.

We first construct the farthest-neighbor Voronoi diagram VORg(S) of Sp. For each vertex
v of the diagram we compute (in O(1) time) the radius of the smallest disk centered at v and
containing Sy. Similarly, for each edge e of the diagram we compute (again, in O(1) time) the
radius of the smallest disk centered on e and containing S;. We obtain a list of O(n) critical
radii (as a matter of fact, we keep in the list only critical radii that are smaller than ry), and we
conduct binary search over that list, using the NT2DC decision procedure as a discriminator for
the search. We obtain a range I that is delimited by two consecutive critical radii and contains
r*. For any r € I, the combinatorial structure of the right boundary I', of K,.(S}) is the same,
as follows easily from the structure and properties of the farthest-neighbor Voronoi diagram.
The cost of this step is O((m + nlogn)lognlog(mn)).

In the next stage of the parametric search, we take each edge of F' and each circle 0B, (p),
for p ¢ S}, and attempt to locate their intersection points with I', along this curve (i.e., identify
the arc of [';- that contains each of these points). Intersecting an edge e of OF with I';« amounts
to intersecting the line containing e with this curve and determining whether the endpoints of
e lie inside or outside K,-(S). Each of these two operations is easy to accomplish using binary
search on the breakpoints of I';«. Each such breakpoint is a point on some edge of VOR:(S})
at distance r* from the two sites defining the edge. It is easy to define the critical values of
r* where the output to a query that seeks the position of such a breakpoint relative to a given
line or point may change. In a similar manner we can conduct an implicit comparison between
a breakpoint of [',« and a query circle of radius r*. We now execute the generic simulation of
all these m + n queries in parallel, applying the parametric searching paradigm at each parallel
step. The cost of a single parallel step is

O ((log(m +n)) - (m + nlogn) log(mn)) ,

and since there are O(log n) parallel steps, the overall cost of this step is O((m-+nlogn) lognlog?(mn)).
We can improve this further, by a factor of O(logn), by using the technique of Cole [4]. This
technique is applicable when the parallel execution can be simulated on a network with bounded
fan-out, and this property holds for our algorithm, which is just a collection of binary searches.

At this stage, we have limited the range for r* further, and for any r in the new range,
we know the combinatorial structure of I',., as well as all the critical intersection points of disk
boundaries and edges of F' along each of the arcs of I',. We still need to sort these points along

17

each arc, which we do, in a generic simulation mode, in a manner similar to that described
in the preceding paragraph. We omit the straightforward details. The cost of this step is
asymptotically the same as that of the preceding one (and Cole’s improvement is applicable
here as well).

At this point we know the exact sequence of critical points along [',«. This allows us to
construct explicitly a sequence of O(m + n) bipartitions of S into a left subset S; and a right
subset Sy, each obtained by placing a disk of radius r* centered between a pair of consecutive
critical points along I',« and by defining the corresponding S; (resp. Ss) to be the set of points
of S that lie inside (resp. outside) that disk.

Lemma 3.5 In the specific subcase under consideration, the optimal radius r* is the upper
endpoint of the current range (which possibly consists of a single point) produced by the preceding
parametric searching steps.

Proof: Let D; be the disk of the optimal solution whose center ¢; lies on I',«. Since r* < rq,
we know that D; is the (unconstrained) smallest enclosing disk of S; = D; N S. Hence the
boundary 0D, contains either three points of S; or two diametrically-opposite points of S;. By
construction, at least one of these points belongs to Sp. Consider the case where exactly one of
these points, p, belongs to Sy, which means that c¢; lies in the relative interior of the arc v of
0B, (p) that appears along I'.-. It follows that either there exists another point ¢ ¢ S;, such that
0B,+(q) is tangent to -y (at ¢;), or there exist two points ¢, s ¢ S, such that 0B,«(¢) and 0B, (s)
intersect v at a common point (namely, at ¢;). However, each of these cases causes a discrete
change in the sequence of critical points along I',., as r varies through r*, and thus r* will be a
critical value in one of the generic comparisons that one of the preceding steps makes. Similar
reasoning applies when 0D, contains two points of S;, and one point in the complementary set:
In this case ¢; is a breakpoint of I';« and a circle 0B,«(q), for some ¢ ¢ S}, passes through ¢;.
Again, this is an event that causes a discrete change in the sequence of critical points and so
will also be detected. Finally, the case where 0D, contains only (two or three) points of Sy, will
be detected during the initial stage of the procedure that uses the farthest-neighbor Voronoi
diagram, since in this case r* is one of the critical values computed at that stage. O

Finally, we go over the sequence of bipartitions and check, for each bipartition, whether
both subsets S, S; can be covered by a disk of radius r* and centered in F'. This is easy to
do, by simply scanning through the sequence, maintaining dynamically the two corresponding
subsets Sy, S, and performing these checks using our data structure. The cost of this step is
only O((m + n)lognlog(mn)). We return the first partition, and the two covering disks. If the
processing of the current guess for ¢ has reached this point, the preceding analysis implies that
such a solution does exist.

Putting everything together, we have shown:

Theorem 3.6 The two-center problem with obstacles, for a set S of n points in the plane, and
a collection of polygonal obstacles with a total of m edges, can be solved in randomized expected
O(mlog®(mn) + mnlog® nlog(mn)) time.

18

4 An Efficient Approximation Algorithm

In this section we develop a near-linear algorithm that produces an approximation to the optimal
2-center problem with obstacles. That is, given € > 0, the algorithm computes two congruent
disks whose union covers S, whose centers lie in F' and whose common radius is at most (1+¢)r*,
where 7* is the optimal radius. The algorithm runs in O(1/¢log(1/¢)(mlog? m + nlog®n)) time.

We begin with the following easy observation: Let A denote the diameter of S, and let
p,q € S be two points such that |pg| = A. (Clearly, p, ¢ and A can be computed in O(nlogn)
time.) Suppose first that * < A/5. In this case, the distance |cico| between the centers of the
two optimal covering disks must be at least |pg| — 2r* > 3r*. This implies (cf. the analysis in
the first case of the algorithm that solves the (exact) 2-center problem with obstacles) that the
two optimal disks are disjoint and can be separated by a line whose orientation belongs to some
fixed set of constant size.

The first stage of our algorithm finds the optimal solution in case r* < A/5, as follows.
Clearly, in this case the two covering disks are well separated, so, as already noted in the
previous section, we can construct a set of O(1) lines so that at least one of them separates the
two covering disks. Let ¢ be a line in this set, and let Sy, Sy be the two subsets into which S’ is
partitioned by ¢. We find the smallest disk enclosing S} and centered at F'in O((m+n) log(mn))
time, using the algorithm of [9], and similarly for Sy. Asymptotically the overall running time
of this stage is the same: O((m + n) log(mn)).

The next stage deals with the case where r* is much larger than A. Let p denote the centroid
of S. Note that for any R > A, if F' and Bg(p) are disjoint, then any disk centered at a point
of F' and containing any point of S must have radius at least R — A. On the other hand,
if F'N Bgr(p) # 0 and ¢ is any point in this intersection then S C Bgya(c), implying that
r* < R+ A.

We apply the observations in the preceding paragraph with R = (1+2/¢)A. Clearly, we can
detect in O(m+n) time whether F'N Bg(p) = 0. If so, we compute the point ¢ € F' nearest to p
(in O(m) time), and return the single disk Bj.,+a(c) as an approximate solution. It is clear that
this disk covers S. Moreover, as argued above, any disk centered at a point of F' and containing
a point of S must have radius at least |cp| — A. Hence,

lep| + A < lep| + A < (1+2/e)A+A (14+2/e)+1
T epl —A T (14+2/e)A-A (1+2/5) -1

=1+e¢,

implying that our solution is a (1 + €)-approximation to the optimum.

Hence, in the remaining part of the algorithm (the third stage), we may assume that

A 2
— <rr< <2+—>A.
5) €

Put ry = A/5 and 8 = 10 + 10/s. We thus assume that r* € [ry, Bro]. Define r; = ro(1 + £)7/2,
for j =0,...,J, where J is the smallest integer for which (1 +¢)”/? > B; that is,

B log (8 B 1 1
/=2 Log(l —i—a)} =0 (8 10g6> '

19

The idea of the final stage of the algorithm is to run a binary search on the list of ‘critical
radii’ (rg,71,...,7). At each step of the search, we run an approximating procedure for the
two-disk-covering problem with obstacles. The exact version of this procedure receives as input
S, O and F, as above, and a radius r, and aims to determine whether S can be covered by
two disks of radius r, both centered at F. The approximating solution of this problem will be
presented in the following subsection. At each search step, we run this procedure with some r;
as the input radius. The approximating procedure can have one of the following two possible
(not mutually exclusive) outputs: (a) r* > r;; (b) r* < rj41; in the latter case, the procedure
also outputs two congruent disks of radius at most (1+¢)"/ ?r; = rj41 that are centered at points
of F" and whose union covers S. Hence, after O(log(1/¢)) calls to this procedure, we will have
obtained a radius r; < r* and two congruent covering disks of radius < rjo = (1 +¢)ry. In
other words, we will have obtained an approximate solution with the desired properties.

4.1 An approximation algorithm for the two-disk-covering problem
with obstacles

Let S, O, F and € > 0 be as above, and let » > 0 be an input radius. Recall that the goal
of the exact problem is to determine whether there exist two congruent disks of radius r which
are centered at points of F' and whose union covers S. The goal of the approximating version
is to determine whether there exist two congruent disks of radius at most (1 + ¢)'/? which are
centered at points of /' and whose union covers S. We first establish the following lemma:

Lemma 4.1 If there exist two congruent disks Dy, Dy of radius v that are centered at points of
F and whose union contains S then there also exist two other disks D', D) of radius at most
(14 0/2)r such that

(a) D} U Dy covers S;

(b) The centers of D} and Di both lie in the Minkowski sum (where By, /o is the ball of radius
dr/2 centered at the origin)

Fs =F®Bsjo={v+y|xeckFlyl <dr/2};
and

(¢) Either D} and D}, are disjoint and there exists a line that separates them and has orientation
70/6, for some integer 0 < j < 127/§, or D' and D} intersect and the line connecting the
two crossing points of their boundaries has orientation j§/6 for some j as above.

Proof: Let ¢; and ¢y be the centers of Dy and D, respectively. If |¢ico| > 3r then it is clear that
D' = Dy and D), = D, satisfy (a)—(c) (in fact, they satisfy a stronger property than (c), already
used in Subsection 3.3, that there is a line separating these disks whose orientation belongs to
a canonical set of constant size, independent of 0). So assume that |cico| < 3r. Without loss
of generality, assume that the orientation € of cic, is between /2 and 7/2 + 0/6. Rotate o
about ¢; by the angle § — /2 in clockwise direction, and let ¢, be the resulting point, which

20

lies vertically above ¢;. We claim that D] = B(i1s/2)r(c1) and Diy = B 1s/2)r(¢h) are two disks
with the desired properties. Indeed, we have |coc)| < |c1¢2]|0/6 < 3rd/6 = dr/2. This implies
that Dy C D5, from which (a) follows. Property (b) trivially holds for D} and is an immediate
consequence of the preceding inequality for D). Property (¢) (with j = 0 in the specific case
assumed above) is also immediate. O

The algorithm is now obvious. We put 6 = (1 +¢)"/2 — 1. We first compute Fs. As is well
known, F; has O(m) complexity and it can be computed in (deterministic) O(mlog®m) time
[11], or in randomized expected O(mlogm) time [12]. We next iterate over the O(1/d) canonical
orientations in Lemma 4.1. Let 6 be one of them, and assume for convenience that 6 is vertical.
Sort the points of S in their increasing z-order; suppose that this order is (py, po,...,pn). Put
Si =A{p1,...,pi} and S! = {pit1,...,pn}, for i = 0,...,n, and test whether there exists an ¢
such that each of S;, S! can be covered by a disk of radius (1+ 6/2)r that is centered at a point
of Fs. This can be efficiently carried out using the dynamic data structure of Section 2.

The fixed-radius circle shooting structures of [3] work with the same resource bounds as cited
in Theorem 2.1 for the generalized polygons that constitute the complement of Fs. We briefly
justify this claim; for this we assume familiarity of the reader with the paper [3]. We note that
the vertical decomposition used in [3] goes through for the generalized polygons after breaking
circular arcs into subarcs at points of vertical tangency. Also, the data structure of [3] calls for
the computation of the lower envelope of a collection of graphs, each being the boundary of the
Minkowski sum of a disk of radius r with either a segment or a circular arc of radius dr/2. We
compute the envelopes separately for each family of objects in O(klogk) time, where k is the
number of objects in the family, and then merge the resulting envelopes in time linear in their
complexity, which itself is linear in the number of objects defining the envelope.

If no solution was found for any of the canonical orientations, we conclude that r* > r and
output this inequality. Otherwise, we take each of the resulting disks, call it D, and find the
point ¢ € F' nearest to its center c. We replace D by Bjcgj+(1+s/2)r(q), and note that its radius
is at most (14 8)r = (1 +£)/?r. We output the two new disks. (Strictly speaking, if the disks
have unequal radii, we replace the smaller one by a concentric disk that is congruent to the
larger one.)

For each of the O(1/¢) canonical orientations and for each of the O(logJ) = O(log(1/¢)) bi-
nary search steps, the decision procedure of the third stage of the algorithm runs in O((m log® m+
nlognlog(mn)) = O(mlog®m + nlog®n) time, or in randomized expected time O((mlogm +
nlognlog(mn)). Putting everything together, we obtain:

Theorem 4.2 Given S, O and F as above, and a parameter € > 0, one can construct two con-
gruent disks that are centered at points of F', whose union covers S and whose common radius s

at most 1+¢ times the optimal radius; the algorithm runs in time O(1 /< log(1/£)(mlog® m + nlog®n))
or in randomized expected time O(1/elog(1/e)((m + nlogn)log(mn))).

21

5 Conclusions

The introduction of obstacles in the p-center problem is natural in the context of facility-location
theory as it expresses constraints on where facilities can be placed. We presented two algorithms
for solving the 2-center problem with obstacles: an exact algorithm and a near-linear approxi-
mation algorithm. These seem to be the first published efficient solutions to this problem.

A major problem that remains open is to devise a near-linear exact algorithm for the problem.
In fact, any solution with running time o(mn) would be interesting. Notice that the only stage in
our solution whose time requirements involve an mn factor is the stage where we look for disks,
at least one of which has a center lying on an obstacle edge. The other stages take near-linear
time.

As mentioned in the Introduction, our motivation to study this problem comes from robot
workeell layout. The robot placement problem has several variants that also merit investigation:

e Industrial robots or other facilities may experience downtime. Place robots or facilities to
insure redundancy (i.e., each workpoint covered by at least 2 disks).

e Consider non-circular covers. For example cover all workpoints with cones (e.g., as though
positioning cameras or other sensors). Industrial robots have joints limits, so the effective
cover may be a disk sector instead of a disk. This adds another dimension to the problem
since non-circular covers require specifying orientation.

e Similarly, industrial robots and facilities may be mobile. Consider the placement problem
when one or more robots are mounted on linear tracks that allow translation. Decide
where to place the tracks avoiding collision with the obstacles. This is an extension of the
segment-center problem [1] where obstacles are also considered.

e Often industrial robots are limited in how close the end-effector can get to the robot base.
This means that instead of covering the workpoints by disks we actually need to cover
them by annuli, where the inner radius is fixed.

e [f the workspaces of the robots overlap, then robots may collide as they reach the work-
points. This could be avoided during run-time using motion planning, or by covering with
disjoint disks, which gives rise to a new variant of the p-center problem.

Finally, it would be interesting to devise efficient solutions (exact or approximate) to the p-center
problem with obstacles with p > 2.

References

[1] P. K. Agarwal, A. Efrat, M. Sharir, and S. Toledo. Computing a segment center for a
planar point set. J. Algorithms, 15(2):314-323, 1993.

22

2]

3]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T. Y. Chan. More planar two-center algorithms. Comput. Geom. Theory Appl., 13:189-198,
1999.

S.-W. Cheng, O. Cheong, H. Everett, and R. van Oostrum. Hierarchical vertical decompo-
sition, ray shooting, and circular arc queries in simple polygons. In Proc. 15th Annu. ACM
Sympos. Comput. Geom., pages 227-236, 1999.

R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM,
34(1):200-208, 1987.

R. Cole, J. Salowe, W. Steiger, and E. Szemerédi. An optimal-time algorithm for slope
selection. SIAM J. Comput., 18(4):792-810, 1989.

J. Craig. Geometric algorithms in Adept RAPID. In P. K. Agarwal, L. Kavraki, and
M. Mason, editors, Third Workshop on Algorithmic Foundations of Robotics, pages 133—
139. A. K. Peters, Ltd, Wellesley, MA, 1998.

D. Eppstein. Dynamic three-dimensional linear programming. In Proc. 32nd Annu. IEEE
Sympos. Found. Comput. Sci., pages 488-494, 1991.

D. Eppstein. Faster construction of planar two-centers. In Proc. 8th ACM-SIAM Sympos.
Discrete Algorithms, pages 131-138, 1997.

D. Halperin and C. Linhart. The minimum enclosing disk with obstacles. Manuscript, 1999.
Java applet: http://www.math.tau.ac.il/CGAL/Projects.html.

P. Hansen, B. Jaumard, and H. Tuy. Global optimization in location. In Z. Drezner, editor,
Facility Location, pages 43-68. Springer-Verlag, New York, 1995.

K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-
free translation al motion amidst polygonal obstacles. Discrete Comput. Geom., 1:59-71,
1986.

J. Matousek, N. Miller, J. Pach, M. Sharir, S. Sifrony, and E. Welzl. Fat triangles determine
linearly many holes. In Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pages 49-58,
1991.

N. Megiddo. Linear-time algorithms for linear programming in R* and related problems.
SIAM J. Comput., 12:759-776, 1983.

N. Megiddo and K. J. Supowit. On the complexity of some common geometric location
problems. SIAM J. Comput., 13(1):182-196, 1984.

M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J.
Comput. Syst. Sci., 23:166—204, 1981.

M. Sharir. A near-linear algorithm for the planar 2-center problem. Discrete Comput.
Geom., 18:125-134, 1997.

23

