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Abstra
tGiven a set S of n points in the plane and a set O of pairwise disjoint simple polygonswith a total of m edges, we wish to �nd two 
ongruent disks of smallest radius whose union
overs S and whose 
enters lie outside the polygons in O (referred to as lo
ational 
on-straints in fa
ility lo
ation theory). We present an algorithm to solve this problem in ran-domized expe
ted time O(m log2(mn) +mn log2 n log(mn)). We also present an eÆ
ientapproximation s
heme that 
onstru
ts, for a given " > 0, two disks as above of radius atmost (1+")r�, where r� is the optimal radius, in time O(1=" log(1=")(m log2m+ n log2 n))or in randomized expe
ted time O(1=" log(1=")((m + n logn) log(mn))).1 Introdu
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over the points of S. This is a spe
ial 
ase of the p-
enterproblem, where the goal is to 
over S with p 
ongruent disks of minimum radius. When p ispart of the input the problem is known to be NP-
omplete [14℄. For p = 1 this is the \smallesten
losing disk" problem whi
h 
an be solved in linear time [13℄. The 
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We study a variant of the 2-
enter problem, where in addition to the set S we are given aset O of pairwise disjoint simple polygons with a total of m edges, whose interiors 
onstituteforbidden regions for pla
ing the 
enters of the 
overing disks. (These obsta
les are referredto as lo
ational 
onstraints in the standard theory of fa
ility lo
ation [10℄.) We are not awareof existing eÆ
ient solutions to this problem. The analogous 1-
enter problem, namely theminimum en
losing disk problem with obsta
les has been re
ently studied by Halperin andLinhart [9℄ who give an algorithm with running time O((m+ n) log(mn)) to solve it. They alsoprovide an approximation algorithm for the problem and a publi
ly a

essible Java applet thatimplements the approximation algorithm [9℄. See Figure 1 for an illustration.

Figure 1: The minimum en
losing disk problem with and without obsta
les. S 
onsists of 4 pointsand O 
onsists of one re
tangle. The minimum en
losing disk without obsta
les (whose 
enter isinside the re
tangle) is shown in dashed line and the minimum en
losing disk 
entered at a freelo
ation (on the top edge of the re
tangle) is shown in bold line.We present two algorithms to solve the 2-
enter problem with obsta
les. The �rst algorithmfollows the general approa
h of Sharir [16℄ for the standard 2-
enter problem, but it has to handlethe presen
e of the polygons of O, whi
h requires the introdu
tion of several new and nontrivialte
hniques. A major innovation in our algorithm is a data stru
ture that dynami
ally maintainsa set P of points in the plane, under insertions and deletions of points, su
h that after ea
hupdate we 
an eÆ
iently (in polylogarithmi
 time) determine whether the interse
tion of �xed-radius 
ongruent disks 
entered at the points of P and the 
omplement F of the obsta
les in Ois nonempty (any point in this interse
tion 
an serve as the 
enter of a `free' disk that 
ontainsP ). In 
ontrast, the parallel pro
edure in [16℄ only has to determine whether the interse
tion ofthose disks is nonempty|a 
onsiderably simpler task. As in the improved solutions of Eppsteinand Chan for the standard 2-
enter problem, we also aim to minimize the use of parametri
sear
hing in our algorithm, so that (a) we keep it simpler, (b) we improve its running time bya polylogarithmi
 fa
tor, and (
) we gain more insight into the stru
ture of the problem. Toa
hieve this, we note that one 
an use an interplay between the standard 2-
enter problem andthe one in the presen
e of obsta
les. Informally, we show that, after various redu
tions andrestri
tions are imposed on the problem, one 
an solve it by solving the standard version of the(restri
ted) problem in whi
h there are no obsta
les. This will be
ome 
learer later on. Thealgorithm runs in randomized expe
ted time O(m log2(mn) +mn log2 n log(mn)).Sin
e the exa
t algorithm does not have a near-linear 
omplexity, we develop a se
ond algo-rithm that is an eÆ
ient approximation s
heme for the problem. Given " > 0 we �nd two 
ongru-2



ent disks that 
over the points in S, whose 
enters lie outside the obsta
les in O and whose radiiare ea
h at most (1+")r�, where r� is the optimal radius, in timeO(1=" log(1=")(m log2m + n log2 n))or in randomized expe
ted time O(1=" log(1=")((m+ n logn) log(mn))). The algorithm is drivenby a variant of binary sear
h for the optimal radius, within a range that depends on the diameterof S, and uses a simpli�ed de
ision pro
edure for the sear
h, whi
h makes it more eÆ
ient. Avariant of this algorithm also yields an approximation s
heme for the standard 2-
enter problem,whi
h is more eÆ
ient than the exa
t algorithm and is 
onsiderably simpler.Dis
ussing the introdu
tion of obsta
les in fa
ility lo
ation problems, the authors in [10℄ arguethat \su
h [lo
ational℄ 
onstraints are ubiquitous and important in pra
ti
e". Our work howeverhas been inspired by the following problem in roboti
s. Several CAD vendors are developingsoftware for rapid setup of automated work
ells [6℄. A fundamental problem is where to pla
erobot arms and other devi
es so that 
ertain desired points 
an be rea
hed. The distan
e therobot rea
hes for ea
h point in
uen
es robot pre
ision and settling time; it is therefore desirableto minimize this distan
e. Furthermore, operations su
h as inspe
tion and assembly must beperformed in tight quarters, so it is also ne
essary to position robots su
h that their base doesnot interse
t with other devi
es in the work
ell. The real-life (two) robot pla
ement problem is
ompli
ated by many fa
tors, and ea
h fa
tor raises new and more involved problems (e.g., therobot joints may have me
hani
al limits so that the robot's workspa
e is a disk-se
tor ratherthan a full disk). Nevertheless, we view our 
urrent work as a �rst step in approa
hing thisfamily of problems.In the next se
tion we present the dynami
 data stru
ture to maintain the interse
tion ofdisks and free spa
e. The exa
t algorithm is des
ribed in Se
tion 3 and the approximations
heme is presented in Se
tion 4. Dire
tion for future work are proposed in Se
tion 5.2 Dynami
 Maintenan
e of the Interse
tion of Disks andFree Spa
eIn this se
tion we des
ribe a dynami
 data stru
ture whi
h is a key ingredient of our solutionto the 2-
enter problem with obsta
les.Let F denote the free spa
e, namely the 
omplement of O. We assume here that r is a �xedradius. The following notation is borrowed from [16℄. Br(p) denotes the 
losed disk of radius r
entered at p. For a set P of points, K(P ) denotes the interse
tion Tp2P Br(p). We will maintaintwo stru
tures K+(P ) = Tp2P B+r (p) and K�(P ) = Tp2P B�r (p), where B+r (p) (resp. B�r (p)) isthe region 
onsisting of all the points that lie in or above (resp. in or below) Br(p).Our goal is to dynami
ally maintain a set P of points in the plane, under insertions anddeletions of points. After ea
h update we need to determine whether the interse
tion K(P )\Fis nonempty. If this interse
tion is nonempty this means that we 
an 
over the set P by a diskof radius r whose 
enter lies outside O.We prepare auxiliary stati
 data stru
tures. The �rst is for point lo
ation in the planarmap indu
ed by the polygons in O. For a query point q we determine with this data stru
turethe polygon whose interior 
ontains q, or otherwise that q lies in F (i.e., outside all polygons).3



Constru
tion of this standard data stru
ture takes O(m logm) time, requires O(m) spa
e, anda point lo
ation query takes O(logm) time.Se
ondly, we 
onstru
t for ea
h polygon a �xed-radius 
ir
ular-shooting stru
ture as de-s
ribed in [3℄. We summarize its performan
e in the following theorem.Theorem 2.1 (Cheng et al. [3℄) Let Q be a simple polygon with k edges. A data stru
ture for�xed radius 
ir
ular shooting inside Q 
an be 
onstru
ted in O(k log k) time using O(k) spa
e,su
h that the �rst interse
tion point of a query ar
 of the given radius with the boundary of Qalong the ar
, if any, 
an be found in O(log k) time.The radius of all the 
ir
ular ar
s we are shooting is the �xed r we will be using throughoutthis se
tion. By Theorem 2.1 the 
onstru
tion of these stru
tures for all polygons in O togetherrequires O(m logm) time, O(m) spa
e, and a query is answered in O(logm) time, on
e we aregiven the polygon 
ontaining the initial point of the query ar
. Below we will always query withx-monotone ar
s whose starting point is the leftmost point of the ar
. For an x-monotone ar
�, we will denote its leftmost point by l(�).We denote all the stati
 data stru
tures 
olle
tively by S, and we use them as follows. Wequery S with an x-monotone ar
 �. The answer is the leftmost point of � \ F , or NULL if �is 
ompletely 
ontained inside a single polygon of O. We do this by �rst querying the pointlo
ation stru
ture with l(�). If l(�) lies in F we return l(�). Otherwise we obtain the polygon inwhi
h l(�) lies and we shoot with � in the respe
tive 
ir
ular-shooting data stru
ture to obtainthe desired answer. Thus, querying S with an ar
 takes O(logm) time.The Overmars-van Leeuwen-like data stru
ture developed in [16℄ maintains the interse
tionsK+(P ) and K�(P ). The boundary of either interse
tion 
onsists of a sequen
e of 
ir
ular ar
s,with breakpoints between ea
h 
onse
utive pair of ar
s. We augment the stru
ture des
ribingK+(P ) so that we 
an eÆ
iently obtain the following information: for ea
h breakpoint b on theboundary of K+(P ) what is the leftmost point on the boundary whose x-
oordinate is greaterthan or equal to that of b and that lies in F , or NULL if there is no su
h point. In other wordswe wish to determine for a breakpoint b what is the �rst free point that we will en
ounter whenwalking along the boundary from b to the right, if there is su
h a point. We 
onsider the pointson the boundaries of the polygons in O to be free. The same augmentation will be applied toK�(P ).Before we give details on how we augment the stru
tures, we des
ribe how we use them.Re
all that we wish to determine whether K(P )\F is nonempty. We �rst look for the left andright interse
tion points of the boundaries of K+(P ) and K�(P )|this 
an be done in O(log2 n)time. If K+(P ) and K�(P ) do not interse
t then we are done (the interse
tion K(P ) is empty).If they interse
t, let � and � denote the left and right interse
tion points of their boundaries,respe
tively. See Figure 2. Let b be the �rst breakpoint along �K+(P ) (the boundary of K+(P ))to the right of �. Let � be the ar
 whi
h is the portion of �K+(P ) between � and b, or between� and � if b lies to the right of �. Assume that b lies to the left of �; we �rst have to �nd b whi
hwe do in O(logn) time (we defer the des
ription of this simple operation to the full des
riptionof the data stru
ture below). We query the stati
 stru
ture S with �, in O(logm) time. If weget a free point in return, then K(P ) \ F is `nonempty', and we are done. Otherwise � lies
ompletely inside an obsta
le. 4



�� b �
�K+(P )

�K�(P )Figure 2: The ar
 � on the boundary of K(P ). The small dashes mark breakpoints.Note that in this 
ase, sin
e our obsta
les are simple polygons, K(P )\F is nonempty if andonly if there is a free point along the boundary of K(P ). We query the augmented dynami
stru
ture with the breakpoint b to get the �rst free point to the right of b on �K+(P ). Asexplained below, this 
an be done in O(logn) time. If the answer is a point lying to the left ofor 
oin
iding with � then again the answer to our original question is `nonempty'. If in all theabove queries we found no free point along �K+(P ), we turn to the boundary of K�(P ) andrepeat the same sequen
e of operations from � to the right. If we �nd a free point along theportion of �K�(P ) that bounds K(P ) then the answer to our question is `nonempty', otherwisethe answer is `empty'. The overall time to de
ide whether K(P ) \ F is nonempty is thusO(log2 n + logm).Next we des
ribe how to augment the dynami
 data stru
ture des
ribing K+(P ) so that iteÆ
iently answers a query of the type: Given a breakpoint b along �K+(P ), what is the �rstpoint on �K+(P ) that is free and whose x-
oordinate is greater than or equal to that of b, ifone exists? The dynamization is under insertions and deletions of points to and from the setP , where all the points are from the original set S. The stru
ture des
ribing K�(P ) and itsaugmentation are analogous.We �rst re
all the stru
ture des
ribing K+(P ) [16℄. We sort the points of S by their x-
oordinates and store them, from left to right, in the leaves of a minimum-height binary treeT . Ea
h leaf of T maintains a 
ag that indi
ates whether the point p of S asso
iated with itis 
urrently in P . To 
onform with the stru
ture of internal nodes, ea
h leaf stores the x-rangeof B+r (p) if p belongs to the 
urrent set P , and stores the full x-axis otherwise. A node v ofT (indire
tly) maintains K+(Pv), where Pv is the subset of points of P stored at the leaves ofthe subtree of T rooted at v. Let wl and wr be the left and right 
hildren of v, respe
tively;then v stores the x-range of K+(Pv), whi
h is the interse
tion of the x-ranges of K+(Pwl) andK+(Pwr). If the x-range of K+(Pv) is nonempty then we also store at v the single interse
tionpoint qv between �K+(Pwl) and �K+(Pwr), with pointers to the pair of 
ir
les that interse
t atqv. For more details, see [16℄.In the augmented stru
ture T �, at ea
h node v, besides the interse
tion point qv, we will alsostore the �rst free point � = �(qv) along �K+(Pv) su
h that x(�) � x(qv) or NULL if no su
hpoint exists. At a leaf 
orresponding to point p, the role of qv will be played by the leftmostpoint lp of the semi
ir
le 
(p) bounding B+r (p), namely we will store the �rst free point � = �(lp)5



along 
(p) su
h that x(�) � x(lp) or NULL if no su
h point exists.We now des
ribe how we 
ompute, update and sear
h for the information �(q), where q iseither the breakpoint stored at an internal node, or the leftmost point lp in 
ase of a leaf. Westart with the 
omputation of �(q) for all the relevant nodes of T for a given initial set P � S,whi
h we 
ompute bottom-up. At a leaf asso
iated with point p, we query the stati
 stru
ture Swith the ar
 
(p) and store the answer at the leaf; this requires O(logm) time. Next we 
ompute�(qv) for an internal node v with a left 
hild wl and a right 
hild wr, where for all nodes in thesubtree rooted at v besides v we already have the information �(q). As above, let qv denote theinterse
tion point of �K+(Pwl) and �K+(Pwr). Let b denote the next breakpoint when movingfrom qv along �K+(Pv) rightwards (possibly the rightmost point of �K+(Pv)). Next we showhow to �nd b.We are looking for the leftmost breakpoint of �K+(Pv) to the right of qv. We sear
h downthe subtree rooted at v and maintain the leftmost breakpoint to the right of qv that we havefound so far, 
all it �b. We know that b is a breakpoint along �K+(Pwl) hen
e we start the sear
hat wl. At a node w along the sear
h path (where originally w := wl) we 
ompare x(qw) andthe interval [x(qv); x(�b)℄. If x(qw) falls inside the interval then we let �b := qw and we 
ontinueto the right 
hild of w. Else, if x(qw) > x(�b) we move to the right 
hild of w. Else (namely,x(qw) < x(qv)) we move to the left 
hild of w. On
e we have rea
hed the end of the sear
h path(a leaf), the �nal value of �b is the desired breakpoint b. The 
ost of this sear
h is O(logn).We query S with the ar
 whi
h is the portion of �K+(Pv) between qv and b (in timeO(logm)).If the answer is not NULL then we store it at �(qv). Else, if b is the rightmost point of �K+(Pv)we store NULL at �(qv). Otherwise, namely if b is an internal breakpoint of �K+(Pv) and theanswer to the query was NULL, we `jump' to the node u 
ontaining the breakpoint b.We denote the nodes along the sear
h path from v to u in reverse order v0 = u; v1; v2; : : : ; vk =v. At the node v0, the information �(qv0) is 
orre
t for K+(Pv0), namely �(qv0) is the �rst freepoint along �K+(Pv0) su
h that x(�(qv0)) � x(b), if su
h a point exists. We now move up fromv0 to vk along the reverse of the sear
h path and `
orre
t' this information so that when werea
h vk we will have the �rst free point � along �K+(Pvk) su
h that x(�) � x(b). We maintainan auxiliary variable �0. At the beginning of the pro
ess we let �0 := �(qv0). When we movefrom vi to vi+1 we distinguish two 
ases (see Figure 3):� The node vi is a left 
hild of vi+1. Then �0 remains un
hanged, sin
e from b rightwardsthe boundary of K+(Pvi+1) is the same as the boundary of K+(Pvi).� The node vi is a right 
hild of vi+1. If �0 is NULL or x(�0) � x(qvi+1), we put �0 := �(qvi+1).Otherwise, �0 remains un
hanged.At the end of the pro
ess, we set �(qv) := �0.Lemma 2.2 The overall 
onstru
tion time of the augmented stru
ture T � is O(n log(mn)).Proof: At ea
h of the O(n) nodes of the tree we spend O(logn) time for sear
hing the break-point b, and we do one 
ir
ular shooting query at the 
ost of O(logm) time, for an overall time6



b �K+(Pvi)�K+(Pvi) bqvi+1 qvi+1Figure 3: Moving up the sear
h path: on the left vi is the left 
hild in whi
h 
ase the portionof the boundary to the right of b does not 
hange when we move up; on the right vi is a right
hild and �(b) may be a�e
ted by the other 
hild of vi+1.O(n logn+ n logm) = O(n log(mn)). 2We query T � with a breakpoint b for the �rst free point � alongK+(P ) su
h that x(�) � x(b)in the same way that we 
ompute �(qv) originally. Only this time v is the root of the tree.Namely, we �rst sear
h the tree for the node 
ontaining the breakpoint b and then we moveba
k up along the sear
h path and maintain a variable �0 so that when we 
ome ba
k to the rootwe get in �0 the desired answer. Sin
e we spend 
onstant time at ea
h node along the sear
hpath, the query time is O(logn).It remains to show how we update T � when a point p is inserted to or deleted from P . We�rst sear
h the tree for the leaf 
orresponding to p. It is easily seen that we need to updatethe information �(qv) only at nodes v along this sear
h path �(p), and we update it bottomup. As we rea
h a node v along �(p), we need to update both the interse
tion point qv and theinformation �(qv). The latter may require 
ir
ular shooting from the new qv, and 
omputing theinformation �(b) at the breakpoint b to the right of qv, whi
h in turn requires sear
hing for b inthe subtree rooted at v and going ba
k up along this `lo
al' sear
h path to get the desired output.This means that at ea
h of the O(logn) nodes along �(p) we spend O(logn) time for the sear
hand O(logm) time for 
ir
ular shooting, for a total of O(log2 n+logn logm) = O(logn log(mn))time per update.Note that the resour
es required by the extra information (the �(qv)'s) in T � dominate theresour
es required by the original dynami
 stru
ture T [15℄, [16℄. We 
on
lude:Theorem 2.3 Given a set of points S and a set of polygonal obsta
les O as above, we 
an
onstru
t a dynami
 data stru
ture to determine whether K(P ) \ F is nonempty, where F isthe 
omplement of the obsta
les and P � S is the 
urrent a
tive set of points. Ea
h su
h testtakes O(log2 n + logm) time. The 
onstru
tion of the stru
ture takes O(m logm + n log(mn))time. An update of the stru
ture when a single point is inserted to or deleted from P takesO(logn log(mn)) time. The spa
e required by the dynami
 stru
ture is O(n) and additionalO(m) spa
e is required by the auxiliary stati
 stru
ture S.In our algorithm we will also need to report whether there is a solution with radius smallerthan the given r. To this end, we augment our dynami
 stru
ture as follows. When we obtain a7



positive answer to the interse
tion query, the stru
ture in fa
t �nds a \witness" point w in theinterse
tion K(P )\F . We 
he
k in O(1) time if lo
ally w is an isolated point of the interse
tion;if the answer is no, then we report that there is a solution with radius smaller than the givenr|this is justi�ed by Lemma 3.1 below. Otherwise, if w is isolated and it is the rightmost point� of K(P ) there is no solution with smaller radius. Finally, if w is an isolated point whi
h isnot the rightmost point of the interse
tion, we 
ontinue querying our data stru
ture as abovefrom w (i.e., we shoot a 
ir
ular ray from w along the boundary of K(P ), et
.). The generalposition assumption, that will be made in the following se
tion, assures us that if we get anotherfree point along the boundary of K(P ) then this 
annot be an isolated point, in whi
h 
ase wereport that there is a solution with a smaller radius.Corollary 2.4 The stru
ture of Theorem 2.3 
an also report whether there is a solution withradius smaller than the given r, within the same resour
e bounds.3 The Overall Exa
t AlgorithmThe overall exa
t algorithm follows 
losely the te
hnique of [16℄ and its enhan
ements in [2, 8℄for the standard 2-
enter problem, but it has to handle additional 
on�gurations that 
an arisebe
ause of the existen
e of obsta
les.3.1 PreliminariesLemma 3.1 Let P be a �nite point set and F a 
losed polygonal free region. Let D be asmallest disk that 
ontains P and is 
entered at F . If D is 
entered at int(F ) then it is the(un
onstrained) smallest en
losing disk of P .Proof: We use the following well-known approa
h. Parametrize the spa
e of all disks in theplane so that a disk 
entered at (x; y) and having radius r is represented by the triple (x; y; (r2�x2�y2)). The set of disks that 
ontain a point (a; b) is the halfspa
e z � �2ax�2by+(a2+ b2).Hen
e the set of disks that 
ontain P is a 
onvex polyhedron K formed by the interse
tion ofjP j su
h halfspa
es, one for ea
h point of P . An (un
onstrained) smallest en
losing disk of Pis a point of K that minimizes the 
onvex fun
tion x2 + y2 + z, and hen
e it is unique. Anyother point of K 
an be moved 
ontinuously within K in a dire
tion where x2 + y2 + z stri
tlyde
reases.Now ifD is a disk as in the lemma, and is not equal to the (un
onstrained) smallest en
losingdisk of P , then D is represented by a point in K whi
h 
an thus be moved slightly within K sothat x2 + y2 + z de
reases. In other words, we 
an slightly shift and shrink D so that its 
enterremains in F and it 
ontinues to 
ontain P . This 
ontradi
ts the assumed minimality of D andthus establishes the lemma. 2Lemma 3.2 Let S and F be as above. Let � denote the diameter of S. If the radius of theoptimal solution of the two-
enter problem with obsta
les is larger than � then at least one ofthe 
enters must lie on an edge of F . 8



Proof: Sin
e S 
an be en
losed in a disk of radius �, it follows that the radius of the (un
on-strained) smallest en
losing disk of any subset of S is at most �. Let D1, D2 be the two disksof an optimal solution of the two-
enter problem with obsta
les for S and O. It follows that D1is not the (un
onstrained) smallest disk en
losing S \ D1, and similarly for D2. If the 
entersof both D1 and D2 lie in int(F ) then Lemma 3.1 implies that we 
an shrink both of them andobtain a solution with a smaller radius, 
ontrary to assumption. 2Lemma 3.3 (Eppstein [7℄) Let S be a set of n points in the plane and let S1; S2; : : : ; Sk bea sequen
e of subsets of S su
h that for ea
h i < m, Si+1 is obtained from Si by inserting ordeleting a single point. Then the smallest en
losing disks of the sets Si 
an all be 
omputed inoverall randomized expe
ted time O((n+ k) log2 n log2 logn).In what follows, we assume that S and O are in general position. Loosely speaking, thismeans that we rule out any 
oin
iden
e between various unrelated quantities that are de�ned interms of S and O and that would not 
oin
ide for randomly 
hosen values of the parameters thatspe
ify S and O. For example, we assume that the radii of disks passing through three pointsof S or having two points of S as a diameter are all distin
t. Several additional requirements ofthis sort will be noted when they arise in the analysis (one of them has already been made atthe end of the pre
eding se
tion). The algorithms 
an also handle inputs in degenerate position,using a variety of known te
hniques (su
h as symboli
 perturbations).3.2 Centers lying on obsta
le edgesThe �rst (and new) stage of the algorithm aims to 
ompute the smallest radius r1 su
h that S
an be 
overed by two disks of radius r1 so that at least one of them is 
entered at a point of�F (and the other at any point of F ).To this end, we 
onsider the following subproblem: Let e be a �xed edge of F . For simpli
ity,assume that e is the unit interval [0; 1℄ along the x-axis. Let S be the given set of points. Wewant to �nd the smallest r su
h that S 
an be 
overed by two disks of radius r, so that one ofthem is 
entered at a point of e and the other is 
entered at a point of F .Enumerate the points of S as (s1; : : : ; sn), where the 
oordinates of si are (ai; bi), for i =1; : : : ; n. For ea
h i, de�ne a fun
tion fi on e, parametrized by � 2 [0; 1℄, as follows:fi(�) = d2((�; 0); si) = (� � ai)2 + b2i = �2 � 2ai� + (a2i + b2i ):For simpli
ity, we will regard these fun
tions as de�ned over the entire �-axis.Consider the arrangement A(F) of the set F of the graphs of the fun
tions fi, representedin a 
oordinate frame (�; �). We will regard ea
h point (�; �) in this frame as representing thedisk D(�; �) = Bp�((�; 0)). Clearly, a point si lies in D(�; �) if and only if its asso
iated fun
tiongraph fi lies below the point (�; �). Let S(�; �) denote the subset of S 
onsisting of those pointsthat lie outside D(�; �) (i.e., points whose asso
iated fun
tion graphs lie above (�; �)).Lemma 3.4 (a) Ea
h pair of fun
tions fi, fj interse
t at most on
e.9



(b) A pair of fun
tions fi, fj interse
t below the horizontal line � = �0 if and only if the pair of�-ordinates where fi(�) = �0 and the pair where fj(�) = �0 de�ne two intervals (denotedas Ii(�0) and Ij(�0)) that are overlapping (i.e., neither disjoint nor nested).(
) The number of verti
es of A(F) that lie below a given horizontal line � = �0 
an be 
ountedin O(n logn) time.(d) Given any number 0 � k � �n2�, one 
an �nd the k-th highest vertex of A(F) in O(n log2 n)time.Proof: The 
laim in (a) is immediate. Con
erning (b), if Ii(�0) and Ij(�0) are overlapping thenit is 
lear, using a 
ontinuity argument, that fi and fj interse
t below � = �0. Conversely, iffi and fj interse
t below � = �0 (at a unique point, whose �-ordinate is denoted as �ij), thenIi(�0) and Ij(�0) 
annot be disjoint (they both 
ontain �ij) and they 
annot be nested either, forthis would for
e the two graphs to interse
t twi
e. Hen
e, 
ounting the number of interse
tionsbelow � = �0 is equivalent to 
ounting the number of pairs of overlapping intervals in a givensystem of n intervals on a line. This 
an be done in time O(n logn) using, e.g., a standard tree-based algorithm for 
ounting inversions in a permutation (see, e.g., [5℄). Indeed, sort the leftendpoints of the given intervals in in
reasing order, and sort the right endpoints in de
reasingorder. Regarding the �rst permutation as the identity, the number of inversions in the se
ondpermutation is equal to the number of overlapping pairs of intervals. This establishes (
). The�nal assertion (d) follows by using an appropriately modi�ed variant of the algorithm of [5℄for the slope sele
tion problem. Spe
i�
ally, this algorithm applies parametri
 sear
hing to theinversion 
ounting algorithm. The simplest version runs in O(n log3 n) time, whi
h is redu
edto O(n log2 n) time using an enhan
ement te
hnique due to Cole [4℄. Both of these approa
hesare appli
able in our 
ase too. (The �nal improvement in the algorithm of [5℄, whi
h redu
es its
omplexity to O(n logn), does not seem to be appli
able in our 
ase, and has no e�e
t anywayon the overall asymptoti
 bound on the running time of the algorithm.) 2The �rst stage of the algorithm pro
eeds through the following steps.(i) Maintain a horizontal slab � : �� � � � �+. Initially, this is the whole ��-plane.(ii) Find a horizontal line 
 : � = �0 that bise
ts the subset of verti
es of A(F) that lie in �.(iii) Determine whether there exists a point (�; �0) 2 
 su
h that S(�; �0) 
an be 
overed bya disk of radius �0 = p�0 
entered at F . (To a

omplish this step, we interse
t e withthe 
ir
les bounding the disks B�0(si), for i = 1; : : : ; n, sort these interse
tions along e,and iterate over these points in sorted order. Whenever we pass from one point to thenext, a single element is added to or deleted from S(�; �0), and we use the dynami
 datastru
ture of the previous se
tion to determine whether the new set 
an be 
overed by adisk of radius �0 
entered at F .) If su
h a point was found, repla
e � by its portion below
; otherwise repla
e it by its portion above 
.(iv) Repeat these steps until � 
ontains no vertex of A(F) in its interior. Suppose that this�nal � is �1 � � � �2. This means that step (iii) was su

essful at �2 and failed at �1.The line � = �2 
ontains a single vertex v of A(F), indu
ed by two points p; q 2 S. Weexamine all the solutions found when step (iii) pro
essed � = �2. Two sub
ases 
an arise:10



(iv.a) v is the only possible 
enter along this line. Assuming general position, the radius ofthe smallest (
onstrained) disk en
losing S(v) is stri
tly smaller than �2 = p�2. This iseasily seen to imply that there is no disk of radius smaller than �2 and 
entered at e that
ontains both p and q (for otherwise � = �2 would have 
ontained other solutions in thevi
inity of v). This in turn implies that the solution with the minimum radius and withone 
enter lying on e is at v itself. Hen
e in this 
ase we return D(v) and the sibling diskthat 
overs S(v).(iv.b) There are other solutions along � = �2. This means that any of the subsets of S thatthe disk D(�; �2) 
ontains, as its 
enter moves along e, with the possible ex
eption of thesubset de�ned by D(v), are also 
ontained by smaller disks 
entered at e; in fa
t, the radiiof these smaller disks 
an be made (at least) as small as �1 = p�1; see Figure 4 for anillustration. Sin
e step (iii) failed at �1, this 
an only be be
ause the smallest (
onstrained)disks 
ontaining the 
omplementary sets S(�; �2) all have radii stri
tly greater than �1. Inview of Lemma 3.1, this implies that, for ea
h su
h set S(�; �2), either the radius of its(un
onstrained) smallest en
losing disk is greater than �1, or the radius of its 
onstrainedsmallest en
losing disk is greater than �1 and this disk is 
entered at an edge e0 of F .We 
an ignore the latter kind of situation be
ause, as is easily seen, it will be dete
tedin sub
ase (iv.a) when e0 is pro
essed. (More pre
isely, either it will be dete
ted, or asolution with a smaller radius will be found.)(v) We thus pro
eed as follows. The data gathered so far implies that the sequen
e of 
riti
alevents de�ned in step (iii) is 
ombinatorially the same for all horizontal lines � = �0 through�. We apply the algorithm in Lemma 3.3 to the �xed sequen
e of subsets S(�; �0) of Sthat arise in step (iii) (and is independent of �0), to obtain the (un
onstrained) smallesten
losing disk of ea
h of these subsets. From among those disks whose 
enters lie in F ,we take the smallest one, and return this disk and the 
orresponding disk D(�; �1). Notethat the largest of the radii of these two disks is between �1 and �2 (for otherwise step (iii)would not have failed at � = �1). v
� = �1
� = �2�

Figure 4: The arrangement A(F) within the �nal slab �We apply the pro
edure to ea
h of the m edges of F , and output the solution with thesmallest radius. The overall (expe
ted) running time of this pro
edure is O(mn log2 n log(mn))11



(note that the only randomized part of the algorithm is Eppstein's pro
edure used in step (v)).Its 
orre
tness follows from the analysis given above.In 
on
lusion, we 
an, in O(mn log2 n log(mn)) time, �nd the smallest radius r1 su
h that S
an be 
overed by two disks of radius r1 so that at least one of them is 
entered at a point of�F (and the other is 
entered somewhere in F ). From now on, our goal is to determine whetherthere exist a pair of 
ongruent disks of radius smaller than r1 whi
h are both 
entered at pointsin the interior of F and whose union 
overs S. Re
all that, by Lemma 3.1, ea
h of these disksD is the (un
onstrained) smallest disk 
ontaining D \ S. Re
all also that, by Lemma 3.2, wehave r1 � �.Remark: This stage is the only part of the algorithm that requires more than near-linear time.We leave it as an open problem to �nd a subquadrati
 implementation of this stage.We now pro
eed following the general approa
h of [16℄. It treats separately three sub
ases:(a) the 
ase where the disks in an optimal solution are far apart (the distan
e between their
enters is at least 3r�, where r� is their 
ommon radius); (b) the 
ase where the disks are `nearly
on
entri
' (the distan
e between their 
enters is smaller than r�); and (
) the 
ase where thedisks are `nearly tangent' (the distan
e between their 
enters is between r� and 3r�). We 
onsiderthe same three 
ases, and show how to repla
e or modify the pro
edures used in the previouspapers in order to handle the presen
e of obsta
les.3.3 The 
ase where the disks are far apartWe next 
ompute the smallest r� < r1 su
h that S 
an be 
overed by two disks of radius r� thatare 
entered at points of int(F ) and the distan
e between their 
enters is at least 3r�.Suppose that there exist a pair D1, D2 of disks of radius r� < r1 so that their union 
overs Sand their respe
tive 
enters 
1, 
2 satisfy j
1
2j � 3r�. Let � denote the diameter of S. Clearly,we have � � j
1
2j + 2r� � 5=3j
1
2j. On the other hand, j
1
2j � 2r� � �, whi
h implies thatj
1
2j � 3� and r� � � (the latter inequality is of 
ourse also a 
onsequen
e of Lemma 3.2).Suppose that we guess, as in [16℄, that the orientation of 
1
2 is nearly horizontal. Proje
t S ontothe x-axis. The span of this proje
tion is at most �, and 
1 and 
2 proje
t to two points, ea
hlying at most r� � � away from this span. Hen
e, we 
an 
onstru
t an interval on the x-axis,of length at most 3�, whi
h 
ontains the proje
tions of both 
1 and 
2. Sin
e j
1
2j � 0:6�, itfollows that we 
an 
onstru
t a 
onstant number of verti
al lines (spa
ed �� apart, for somesuÆ
iently small 
onstant � > 0), su
h that at least one of them is guaranteed to separate D1and D2.The 
urrent stage of the algorithm is thus straightforward: Constru
t a set of O(1) 
andidateseparating lines (a 
onstant number of lines for a 
onstant number of orientations). For ea
hof these lines `, obtain the partition of S into two subsets indu
ed by `, and 
ompute the(un
onstrained) smallest en
losing disk for ea
h of the two subsets (this 
an be done in O(n)time). Dis
ard any output in whi
h one of the radii of the two en
losing disks is larger than orequal to r1 or one of the 
enters is not in F . For any surviving output, take the largest of thetwo radii, and return the solution whi
h minimizes this value.The 
orre
tness of this pro
edure is an immediate 
onsequen
e of Lemma 3.1. Spe
i�
ally,12



suppose that the optimal solution (in the presen
e of obsta
les) is a pair of disks D1, D2, whi
hare well-separated in the above sense, whose 
ommon radius r� is smaller than r1, and whi
h are
entered at points of int(F ). (If there is no su
h solution, it is 
lear that the pro
edure will notreport any solution.) As argued, one of the lines that the pro
edure pro
esses separates D1 andD2, and thus separates the sets S1 = S\D1, S2 = S\D2. Let D01 (resp. D02) denote the smallest(un
onstrained) disk en
losing S1 (resp. S2). By Lemma 3.1, either D1 = D01 or it 
an be shrunk
ontinuously while 
ontinuing to 
ontain S1. This shrinking pro
ess must eventually rea
h D01,for otherwise the 
enter of the shrinking disk would rea
h �F and this would 
ontradi
t thede�nition of r1. A similar argument applies to D2, and thus establishes the 
orre
tness of thispro
edure. The overall 
ost of this step is O(n+ logm).3.4 The 
ase where the disks are nearly 
on
entri
In this subse
tion we handle the 
ase in whi
h the optimum solution 
onsists of two disks D1; D2,that are 
entered at points 
1; 
2 2 F , have 
ommon radius r� < r1 � � and satisfy j
1
2j � r�.In this 
ase we pro
eed in a manner similar to that in [2, 8, 16℄. We brie
y des
ribe the approa
h,and refer the reader to these papers for more details. Spe
i�
ally, in this 
ase there is a largeoverlap between the disks, and we 
an guess a point z, out of a set of O(1) 
andidate points,that lies in D1 \ D2. We 
an also guess an orientation, out of O(1) possible ones, so that theline ` passing through z at that orientation separates the two interse
tion points of �D1 and�D2. Without loss of generality, assume ` to be horizontal.Let S+ (resp. S�) be the subset of the points of S that lie above (resp. below) `. Sort thepoints of S+ (resp. of S�) in 
ounter
lo
kwise (resp. 
lo
kwise) angular order about z. De�ne amatrix stru
ture M whose rows (resp. 
olumns) 
orrespond to the points of S+ (resp. of S�) insorted order. The (i; j)-th entry ofM represents the partition of S into a left subset SL(i; j) anda right subset SR(i; j), separated by the ray emanating from z upwards and passing between thei-th and (i+ 1)-st points of S+ and the ray emanating from z downwards and passing betweenthe j-th and (j + 1)-st points of S�. Clearly, the two disks D1, D2 of the optimum solutionsatisfy SL(i; j) � D1 and SR(i; j) � D2, for the entry (i; j) indu
ed by the two rays that emanatefrom z towards the two points of interse
tion of �D1 and �D2. See Figure 5 for an illustration.For ea
h (i; j), we asso
iate four values with the (i; j)-th entry of this stru
ture:� rL(i; j) = radius of the smallest disk that en
loses SL(i; j) and is 
entered at a point of F ;� rR(i; j) = radius of the smallest disk that en
loses SR(i; j) and is 
entered at a point of F ;� r0L(i; j) = radius of the (un
onstrained) smallest disk en
losing SL(i; j);� r0R(i; j) = radius of the (un
onstrained) smallest disk en
losing SR(i; j).Note that all four resulting matri
es are monotone. Spe
i�
ally:� rL(i1; j1) � rL(i2; j2) for i1 � i2, j1 � j2.� rR(i1; j1) � rR(i2; j2) for i1 � i2, j1 � j2. 13



zS+
S�

�+

��Figure 5: The 
ase where j
1
2j < r� r0L(i1; j1) � r0L(i2; j2) for i1 � i2, j1 � j2.� r0R(i1; j1) � r0R(i2; j2) for i1 � i2, j1 � j2.We �rst run a matrix sear
hing step that 
omputes all entries (i; j) for whi
h rL(i; j) < r1and rR(i; j) < r1. This is done as in [16℄, by tra
ing two monotone paths through the stru
ture,s
anning in total a linear number of entries, and using the dynami
 data stru
ture of Se
tion 2to navigate through the matrix. (As noted in that se
tion, the data stru
ture is also able,under the general position assumption, to dete
t the 
ase where there is a stri
t inequalitybetween the optimal solution and the given r1.) The output of this phase is a 
olle
tion ofmatrix substru
tures M1; : : : ;Mt that have pairwise-disjoint sets of rows and of 
olumns andare arranged in row-in
reasing and 
olumn-de
reasing order; see Figure 6 for an illustration.We now solve within these submatri
es the un
onstrained two-
enter problem, using thete
hniques of Eppstein [8℄ or Chan [2℄. We note that these te
hniques treat the matri
es ina fully abstra
t manner, and do not rely on any spe
i�
 geometri
 stru
ture. All that theyrequire is that the matri
es be monotone, as above, and that there are `bla
k-box' routinesthat return any spe
i�
 value r0L(i; j) or r0R(i; j), or that 
ompare any of these values with anygiven r (where the latter operation is 
heaper than the former one). We modify the r0L and r0Rmatri
es as follows: Conne
t all the substru
tures M1; : : : ;Mt by a sequen
e of row-in
reasingand 
olumn-de
reasing paths. For any entry (i; j) that lies above this path and outside thematri
es Mq, we put r0L(i; j) = +1, r0R(i; j) = 0, and for any entry (i; j) that lies below thispath and outside the matri
es Mq, we put r0L(i; j) = 0, r0R(i; j) = +1. The values of r0L(i; j)and r0R(i; j) remain un
hanged within ea
h of the Mq submatri
es. See Figure 6. It is easy to seethat the new matri
es remain monotone, and that the bla
k-box routines mentioned above retaintheir asymptoti
 
omplexity for the modi�ed matri
es (we simply augment the old routines withan initial binary sear
h step that determines whether the query entry lies in one of the matri
esMq, above the 
onne
ting paths, or below the paths).14
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+1; 0
0;+1Figure 6: The matrix substru
tures MqSuppose that the optimal solution (to the un
onstrained problem) is attained at entry (i; j)(be
ause of the way we have modi�ed the matri
es, this entry must belong to one of the subma-tri
esMq). We 
laim that it must 
oin
ide with the optimal solution in the presen
e of obsta
les.In other words, we 
laim that the smallest disks DL; DR en
losing, respe
tively, SL(i; j), SR(i; j)are 
entered at points of F . This is argued as in the previous steps of the algorithm, usingLemma 3.1. Spe
i�
ally, suppose to the 
ontrary that, say, DL is 
entered at a point of O.Sin
e (i; j) belongs to Mq, we know that there exists another disk D�L that 
ontains SL(i; j),is 
entered at a point of int(F ), and has radius smaller than r1. By Lemma 3.1, sin
e D�L isnot the smallest en
losing disk of SL(i; j), we 
an shrink it 
ontinuously, while keeping SL(i; j)
ontained in it, until its 
enter rea
hes �F . This is easily seen to 
ontradi
t the de�nition of r1,and thus implies the 
laim.The overall 
ost of this pro
edure is thus (see [2℄)O(n logn log(mn) + n log2 n log2 logn):(The se
ond term redu
es to O(n logn) if randomization is allowed [2℄.) After running thispro
edure, and the pre
eding ones, we obtain a threshold radius r2 � r1, whi
h is the smallestradius for whi
h there exists a solution to the two-
enter problem with obsta
les in whi
h the
ommon radius of the disks is r2 and either at least one 
enter lies on �F or the 
enters are farapart or there is a large overlap between the disks.In the remainder of the algorithm, we seek a solution (if one exists) where the radius r� issmaller than r2 and where the distan
e between the 
enters is between r� and 3r�. Handlingthis `nearly-tangent' situation is the most involved stage of the algorithm.

15



3.5 The NT2DC de
ision pro
edureTo fa
ilitate the handling of the nearly-tangent 
ase by the algorithm, we �rst des
ribe a de
isionpro
edure that will be used in the algorithm. We are given S and F , as above, and a radiusr < r2. The goal is to determine whether there exist two 
ongruent disks of 
ommon radius rwhi
h are 
entered at int(F ), whose union 
overs S, and where the distan
e between the 
enters
1, 
2 is between r and 3r. We refer to this subproblem as the nearly-tangent two-disk 
overingproblem, or the NT2DC problem for short.We follow exa
tly the same te
hnique as in [16℄. That is, we guess, in a 
onstant number ofpossibilities, an approximate orientation of the dire
ted line 
1
2 (hen
eforth assumed to be thepositive horizontal orientation) and a (verti
al) line ` that separates the left 
enter 
1 from thetwo interse
tion points of the disks (if these points exist) or from the leftmost point of the rightdisk, otherwise. See Figure 7 for an illustration.

1 v1

v2
Figure 7: The 
ase r < j
1
2j � 3rLet SL denote the subset of the points of S to the left of `. Form the interse
tion Kr(SL)of all the disks Br(p), for p 2 SL, and interse
t all the other disk boundaries Br(q), and all theedges of F , with the right boundary �r of Kr(SL). We obtain a 
olle
tion of O(m+ n) 
riti
alpoints along �r, whi
h 
an be 
onstru
ted and sorted along �r in O((m + n) log(m + n)) time(this follows from the observation that ea
h disk boundary and ea
h edge of F 
rosses �r atmost twi
e). We now tra
e the 
enter 
1 of the left disk along �r, maintaining the set S2 ofpoints of S not 
ontained in Br(
1). As 
1 moves past a 
riti
al point, S2 
hanges by at most onepoint that is being added or deleted, or, if the 
riti
al point lies on an edge of F , the 
enter 
1enters or leaves F . Using our data stru
ture, we determine, after ea
h su
h transition, whetherS2 
an be 
overed by a disk of radius r that is 
entered at F . We 
onsider as valid only 
aseswhere the portion of �r that 
1 
urrently tra
es is 
ontained in F ; the 
riti
al interse
tion points16



of the edges of �F with �r help us to keep tra
k of this property.The 
ost of this NT2DC de
ision pro
edure is O((m + n logn) log(mn)). Note that in thispro
edure we assume that the left disk determines r�. The 
ase where the right disk determinesr� will be handled when we pro
ess another orientation for whi
h 
1
2 is nearly horizontal and
1 lies to the right of 
2.3.6 The 
ase where the disks are nearly-tangentNext assume that the optimal solution satis�es r� < j
1
2j � 3r� and r� < r2. To dete
t this
ase we use a limited amount of parametri
 sear
hing, applied to the NT2DC pro
edure thatwe have just presented. This is done as follows.We �rst 
onstru
t the farthest-neighbor Voronoi diagram VORF (SL) of SL. For ea
h vertexv of the diagram we 
ompute (in O(1) time) the radius of the smallest disk 
entered at v and
ontaining SL. Similarly, for ea
h edge e of the diagram we 
ompute (again, in O(1) time) theradius of the smallest disk 
entered on e and 
ontaining SL. We obtain a list of O(n) 
riti
alradii (as a matter of fa
t, we keep in the list only 
riti
al radii that are smaller than r2), and we
ondu
t binary sear
h over that list, using the NT2DC de
ision pro
edure as a dis
riminator forthe sear
h. We obtain a range I that is delimited by two 
onse
utive 
riti
al radii and 
ontainsr�. For any r 2 I, the 
ombinatorial stru
ture of the right boundary �r of Kr(SL) is the same,as follows easily from the stru
ture and properties of the farthest-neighbor Voronoi diagram.The 
ost of this step is O((m+ n logn) logn log(mn)).In the next stage of the parametri
 sear
h, we take ea
h edge of F and ea
h 
ir
le �Br�(p),for p =2 SL, and attempt to lo
ate their interse
tion points with �r� along this 
urve (i.e., identifythe ar
 of �r� that 
ontains ea
h of these points). Interse
ting an edge e of �F with �r� amountsto interse
ting the line 
ontaining e with this 
urve and determining whether the endpoints ofe lie inside or outside Kr�(SL). Ea
h of these two operations is easy to a

omplish using binarysear
h on the breakpoints of �r�. Ea
h su
h breakpoint is a point on some edge of VORF (SL)at distan
e r� from the two sites de�ning the edge. It is easy to de�ne the 
riti
al values ofr� where the output to a query that seeks the position of su
h a breakpoint relative to a givenline or point may 
hange. In a similar manner we 
an 
ondu
t an impli
it 
omparison betweena breakpoint of �r� and a query 
ir
le of radius r�. We now exe
ute the generi
 simulation ofall these m+ n queries in parallel, applying the parametri
 sear
hing paradigm at ea
h parallelstep. The 
ost of a single parallel step isO ((log(m+ n)) � (m + n logn) log(mn)) ;and sin
e there areO(logn) parallel steps, the overall 
ost of this step isO((m+n logn) logn log2(mn)).We 
an improve this further, by a fa
tor of O(logn), by using the te
hnique of Cole [4℄. Thiste
hnique is appli
able when the parallel exe
ution 
an be simulated on a network with boundedfan-out, and this property holds for our algorithm, whi
h is just a 
olle
tion of binary sear
hes.At this stage, we have limited the range for r� further, and for any r in the new range,we know the 
ombinatorial stru
ture of �r, as well as all the 
riti
al interse
tion points of diskboundaries and edges of F along ea
h of the ar
s of �r. We still need to sort these points along17



ea
h ar
, whi
h we do, in a generi
 simulation mode, in a manner similar to that des
ribedin the pre
eding paragraph. We omit the straightforward details. The 
ost of this step isasymptoti
ally the same as that of the pre
eding one (and Cole's improvement is appli
ablehere as well).At this point we know the exa
t sequen
e of 
riti
al points along �r�. This allows us to
onstru
t expli
itly a sequen
e of O(m + n) bipartitions of S into a left subset S1 and a rightsubset S2, ea
h obtained by pla
ing a disk of radius r� 
entered between a pair of 
onse
utive
riti
al points along �r� and by de�ning the 
orresponding S1 (resp. S2) to be the set of pointsof S that lie inside (resp. outside) that disk.Lemma 3.5 In the spe
i�
 sub
ase under 
onsideration, the optimal radius r� is the upperendpoint of the 
urrent range (whi
h possibly 
onsists of a single point) produ
ed by the pre
edingparametri
 sear
hing steps.Proof: Let D1 be the disk of the optimal solution whose 
enter 
1 lies on �r�. Sin
e r� < r1,we know that D1 is the (un
onstrained) smallest en
losing disk of S1 = D1 \ S. Hen
e theboundary �D1 
ontains either three points of S1 or two diametri
ally-opposite points of S1. By
onstru
tion, at least one of these points belongs to SL. Consider the 
ase where exa
tly one ofthese points, p, belongs to SL, whi
h means that 
1 lies in the relative interior of the ar
 
 of�Br�(p) that appears along �r�. It follows that either there exists another point q =2 SL su
h that�Br�(q) is tangent to 
 (at 
1), or there exist two points q; s =2 SL su
h that �Br�(q) and �Br�(s)interse
t 
 at a 
ommon point (namely, at 
1). However, ea
h of these 
ases 
auses a dis
rete
hange in the sequen
e of 
riti
al points along �r, as r varies through r�, and thus r� will be a
riti
al value in one of the generi
 
omparisons that one of the pre
eding steps makes. Similarreasoning applies when �D1 
ontains two points of SL and one point in the 
omplementary set:In this 
ase 
1 is a breakpoint of �r� and a 
ir
le �Br�(q), for some q =2 SL, passes through 
1.Again, this is an event that 
auses a dis
rete 
hange in the sequen
e of 
riti
al points and sowill also be dete
ted. Finally, the 
ase where �D1 
ontains only (two or three) points of SL willbe dete
ted during the initial stage of the pro
edure that uses the farthest-neighbor Voronoidiagram, sin
e in this 
ase r� is one of the 
riti
al values 
omputed at that stage. 2Finally, we go over the sequen
e of bipartitions and 
he
k, for ea
h bipartition, whetherboth subsets S1, S2 
an be 
overed by a disk of radius r� and 
entered in F . This is easy todo, by simply s
anning through the sequen
e, maintaining dynami
ally the two 
orrespondingsubsets S1, S2, and performing these 
he
ks using our data stru
ture. The 
ost of this step isonly O((m+ n) logn log(mn)). We return the �rst partition, and the two 
overing disks. If thepro
essing of the 
urrent guess for ` has rea
hed this point, the pre
eding analysis implies thatsu
h a solution does exist.Putting everything together, we have shown:Theorem 3.6 The two-
enter problem with obsta
les, for a set S of n points in the plane, anda 
olle
tion of polygonal obsta
les with a total of m edges, 
an be solved in randomized expe
tedO(m log2(mn) +mn log2 n log(mn)) time. 18



4 An EÆ
ient Approximation AlgorithmIn this se
tion we develop a near-linear algorithm that produ
es an approximation to the optimal2-
enter problem with obsta
les. That is, given " > 0, the algorithm 
omputes two 
ongruentdisks whose union 
overs S, whose 
enters lie in F and whose 
ommon radius is at most (1+")r�,where r� is the optimal radius. The algorithm runs in O(1=" log(1=")(m log2m+ n log2 n)) time.We begin with the following easy observation: Let � denote the diameter of S, and letp; q 2 S be two points su
h that jpqj = �. (Clearly, p, q and � 
an be 
omputed in O(n logn)time.) Suppose �rst that r� < �=5. In this 
ase, the distan
e j
1
2j between the 
enters of thetwo optimal 
overing disks must be at least jpqj � 2r� > 3r�. This implies (
f. the analysis inthe �rst 
ase of the algorithm that solves the (exa
t) 2-
enter problem with obsta
les) that thetwo optimal disks are disjoint and 
an be separated by a line whose orientation belongs to some�xed set of 
onstant size.The �rst stage of our algorithm �nds the optimal solution in 
ase r� < �=5, as follows.Clearly, in this 
ase the two 
overing disks are well separated, so, as already noted in theprevious se
tion, we 
an 
onstru
t a set of O(1) lines so that at least one of them separates thetwo 
overing disks. Let ` be a line in this set, and let S1, S2 be the two subsets into whi
h S ispartitioned by `. We �nd the smallest disk en
losing S1 and 
entered at F in O((m+n) log(mn))time, using the algorithm of [9℄, and similarly for S2. Asymptoti
ally the overall running timeof this stage is the same: O((m+ n) log(mn)).The next stage deals with the 
ase where r� is mu
h larger than �. Let p denote the 
entroidof S. Note that for any R > �, if F and BR(p) are disjoint, then any disk 
entered at a pointof F and 
ontaining any point of S must have radius at least R � �. On the other hand,if F \ BR(p) 6= ; and 
 is any point in this interse
tion then S � BR+�(
), implying thatr� � R +�.We apply the observations in the pre
eding paragraph with R = (1+2=")�. Clearly, we 
andete
t in O(m+n) time whether F \BR(p) = ;. If so, we 
ompute the point 
 2 F nearest to p(in O(m) time), and return the single disk Bj
pj+�(
) as an approximate solution. It is 
lear thatthis disk 
overs S. Moreover, as argued above, any disk 
entered at a point of F and 
ontaininga point of S must have radius at least j
pj ��. Hen
e,j
pj+�r� � j
pj+�j
pj �� � (1 + 2=")� +�(1 + 2=")��� = (1 + 2=") + 1(1 + 2=")� 1 = 1 + ";implying that our solution is a (1 + ")-approximation to the optimum.Hen
e, in the remaining part of the algorithm (the third stage), we may assume that�5 � r� � �2 + 2"��:Put r0 = �=5 and � = 10 + 10=". We thus assume that r� 2 [r0; �r0℄. De�ne rj = r0(1 + ")j=2,for j = 0; : : : ; J , where J is the smallest integer for whi
h (1 + ")J=2 � �; that is,J = 2 & log �log(1 + ")' = O�1" log 1"� :19



The idea of the �nal stage of the algorithm is to run a binary sear
h on the list of `
riti
alradii' (r0; r1; : : : ; rJ). At ea
h step of the sear
h, we run an approximating pro
edure for thetwo-disk-
overing problem with obsta
les. The exa
t version of this pro
edure re
eives as inputS, O and F , as above, and a radius r, and aims to determine whether S 
an be 
overed bytwo disks of radius r, both 
entered at F . The approximating solution of this problem will bepresented in the following subse
tion. At ea
h sear
h step, we run this pro
edure with some rjas the input radius. The approximating pro
edure 
an have one of the following two possible(not mutually ex
lusive) outputs: (a) r� > rj; (b) r� � rj+1; in the latter 
ase, the pro
edurealso outputs two 
ongruent disks of radius at most (1+")1=2rj = rj+1 that are 
entered at pointsof F and whose union 
overs S. Hen
e, after O(log(1=")) 
alls to this pro
edure, we will haveobtained a radius rj � r� and two 
ongruent 
overing disks of radius � rj+2 = (1 + ")rj. Inother words, we will have obtained an approximate solution with the desired properties.4.1 An approximation algorithm for the two-disk-
overing problemwith obsta
lesLet S, O, F and " > 0 be as above, and let r > 0 be an input radius. Re
all that the goalof the exa
t problem is to determine whether there exist two 
ongruent disks of radius r whi
hare 
entered at points of F and whose union 
overs S. The goal of the approximating versionis to determine whether there exist two 
ongruent disks of radius at most (1 + ")1=2r whi
h are
entered at points of F and whose union 
overs S. We �rst establish the following lemma:Lemma 4.1 If there exist two 
ongruent disks D1, D2 of radius r that are 
entered at points ofF and whose union 
ontains S then there also exist two other disks D01, D02 of radius at most(1 + Æ=2)r su
h that(a) D01 [D02 
overs S;(b) The 
enters of D01 and D02 both lie in the Minkowski sum (where BÆr=2 is the ball of radiusÆr=2 
entered at the origin)FÆ = F � BÆr=2 = fx + y j x 2 F; jyj � Ær=2g;and(
) Either D01 and D02 are disjoint and there exists a line that separates them and has orientationjÆ=6, for some integer 0 � j � 12�=Æ, or D01 and D02 interse
t and the line 
onne
ting thetwo 
rossing points of their boundaries has orientation jÆ=6 for some j as above.Proof: Let 
1 and 
2 be the 
enters of D1 and D2, respe
tively. If j
1
2j > 3r then it is 
lear thatD01 = D1 and D02 = D2 satisfy (a){(
) (in fa
t, they satisfy a stronger property than (
), alreadyused in Subse
tion 3.3, that there is a line separating these disks whose orientation belongs toa 
anoni
al set of 
onstant size, independent of Æ). So assume that j
1
2j � 3r. Without lossof generality, assume that the orientation � of 
1
2 is between �=2 and �=2 + Æ=6. Rotate 
2about 
1 by the angle � � �=2 in 
lo
kwise dire
tion, and let 
02 be the resulting point, whi
h20



lies verti
ally above 
1. We 
laim that D01 = B(1+Æ=2)r(
1) and D02 = B(1+Æ=2)r(
02) are two diskswith the desired properties. Indeed, we have j
2
02j < j
1
2jÆ=6 � 3rÆ=6 = Ær=2. This impliesthat D2 � D02, from whi
h (a) follows. Property (b) trivially holds for D01 and is an immediate
onsequen
e of the pre
eding inequality for D02. Property (
) (with j = 0 in the spe
i�
 
aseassumed above) is also immediate. 2The algorithm is now obvious. We put Æ = (1 + ")1=2 � 1. We �rst 
ompute FÆ. As is wellknown, FÆ has O(m) 
omplexity and it 
an be 
omputed in (deterministi
) O(m log2m) time[11℄, or in randomized expe
ted O(m logm) time [12℄. We next iterate over the O(1=Æ) 
anoni
alorientations in Lemma 4.1. Let � be one of them, and assume for 
onvenien
e that � is verti
al.Sort the points of S in their in
reasing x-order; suppose that this order is (p1; p2; : : : ; pn). PutSi = fp1; : : : ; pig and S 0i = fpi+1; : : : ; png, for i = 0; : : : ; n, and test whether there exists an isu
h that ea
h of Si, S 0i 
an be 
overed by a disk of radius (1+ Æ=2)r that is 
entered at a pointof FÆ. This 
an be eÆ
iently 
arried out using the dynami
 data stru
ture of Se
tion 2.The �xed-radius 
ir
le shooting stru
tures of [3℄ work with the same resour
e bounds as 
itedin Theorem 2.1 for the generalized polygons that 
onstitute the 
omplement of FÆ. We brie
yjustify this 
laim; for this we assume familiarity of the reader with the paper [3℄. We note thatthe verti
al de
omposition used in [3℄ goes through for the generalized polygons after breaking
ir
ular ar
s into subar
s at points of verti
al tangen
y. Also, the data stru
ture of [3℄ 
alls forthe 
omputation of the lower envelope of a 
olle
tion of graphs, ea
h being the boundary of theMinkowski sum of a disk of radius r with either a segment or a 
ir
ular ar
 of radius Ær=2. We
ompute the envelopes separately for ea
h family of obje
ts in O(k log k) time, where k is thenumber of obje
ts in the family, and then merge the resulting envelopes in time linear in their
omplexity, whi
h itself is linear in the number of obje
ts de�ning the envelope.If no solution was found for any of the 
anoni
al orientations, we 
on
lude that r� > r andoutput this inequality. Otherwise, we take ea
h of the resulting disks, 
all it D, and �nd thepoint q 2 F nearest to its 
enter 
. We repla
e D by Bj
qj+(1+Æ=2)r(q), and note that its radiusis at most (1 + Æ)r = (1 + ")1=2r. We output the two new disks. (Stri
tly speaking, if the diskshave unequal radii, we repla
e the smaller one by a 
on
entri
 disk that is 
ongruent to thelarger one.)For ea
h of the O(1=") 
anoni
al orientations and for ea
h of the O(logJ) = O(log(1=")) bi-nary sear
h steps, the de
ision pro
edure of the third stage of the algorithm runs inO((m log2m+n logn log(mn)) = O(m log2m + n log2 n) time, or in randomized expe
ted time O((m logm +n logn log(mn)). Putting everything together, we obtain:Theorem 4.2 Given S, O and F as above, and a parameter " > 0, one 
an 
onstru
t two 
on-gruent disks that are 
entered at points of F , whose union 
overs S and whose 
ommon radius isat most 1+" times the optimal radius; the algorithm runs in time O(1=" log(1=")(m log2m+ n log2 n))or in randomized expe
ted time O(1=" log(1=")((m+ n logn) log(mn))).
21



5 Con
lusionsThe introdu
tion of obsta
les in the p-
enter problem is natural in the 
ontext of fa
ility-lo
ationtheory as it expresses 
onstraints on where fa
ilities 
an be pla
ed. We presented two algorithmsfor solving the 2-
enter problem with obsta
les: an exa
t algorithm and a near-linear approxi-mation algorithm. These seem to be the �rst published eÆ
ient solutions to this problem.A major problem that remains open is to devise a near-linear exa
t algorithm for the problem.In fa
t, any solution with running time o(mn) would be interesting. Noti
e that the only stage inour solution whose time requirements involve an mn fa
tor is the stage where we look for disks,at least one of whi
h has a 
enter lying on an obsta
le edge. The other stages take near-lineartime.As mentioned in the Introdu
tion, our motivation to study this problem 
omes from robotwork
ell layout. The robot pla
ement problem has several variants that also merit investigation:� Industrial robots or other fa
ilities may experien
e downtime. Pla
e robots or fa
ilities toinsure redundan
y (i.e., ea
h workpoint 
overed by at least 2 disks).� Consider non-
ir
ular 
overs. For example 
over all workpoints with 
ones (e.g., as thoughpositioning 
ameras or other sensors). Industrial robots have joints limits, so the e�e
tive
over may be a disk se
tor instead of a disk. This adds another dimension to the problemsin
e non-
ir
ular 
overs require spe
ifying orientation.� Similarly, industrial robots and fa
ilities may be mobile. Consider the pla
ement problemwhen one or more robots are mounted on linear tra
ks that allow translation. De
idewhere to pla
e the tra
ks avoiding 
ollision with the obsta
les. This is an extension of thesegment-
enter problem [1℄ where obsta
les are also 
onsidered.� Often industrial robots are limited in how 
lose the end-e�e
tor 
an get to the robot base.This means that instead of 
overing the workpoints by disks we a
tually need to 
overthem by annuli, where the inner radius is �xed.� If the workspa
es of the robots overlap, then robots may 
ollide as they rea
h the work-points. This 
ould be avoided during run-time using motion planning, or by 
overing withdisjoint disks, whi
h gives rise to a new variant of the p-
enter problem.Finally, it would be interesting to devise eÆ
ient solutions (exa
t or approximate) to the p-
enterproblem with obsta
les with p > 2.Referen
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