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Overview 

- Vertical decomposition 

- Construction 

- Running time analysis 

- The bounded moments theorem 

- General settings 

- The sampling model 

- The exponential decay lemma 

- Applications 

- Proving the guess (of vertical decomposition) 

- (1/r)-cutting 

 



Basic definitions 



We would like to build a data structure, which 
will make it easy to answer the following 
questions –  
Are p1 and p2 in the same face? 

Vertical decomposition - motivation 



  
Can one traverse from p1 to p2 without 

crossing any segment? 



- S – set of segments (lines) 

 

- A(S) – plane arrangement - Decomposition of 𝑅2 by the 

segments into edges, vertices and faces. 

 

- A’(S) – the data structure that stores the arrangement 

A(S). 

Vertical decomposition - definitions 



Draw a vertical line through each vertex in our 
arrangement (including endpoints), until it hits a 
segment or until infinity. The result is called vertical 
decomposition. 

Vertical decomposition - algorithm 



The vertical decomposition breaks the plane 

into trapezoids. Some of them might be 

degenerate. 



Trapezoids structure types 
- Every trapezoid must have a ceiling or a floor (or both).  

 

- If the ceiling touches the floor – we get a degenerate 

triangle trapezoid. 

 

- If there is no ceiling or no floor, we get a degenerate 

unbounded trapezoid. 

 

 



Trapezoids structure types - cont 
- The left and right walls of the trapezoids are defined by one of the following – 

-  A segment which crosses the ceiling or the floor 

- An endpoint of a segment 

- In the case of a triangle, one wall is missing 

 

Therefore, every trapezoid 

is defined by up to 4  

segments. 

 

 



Data structure for A(S) 

The data structure that represents A(S) will consists of – 

T – a linked list of all trapezoids 

S – a linked list of all segments 

 

Each cell in T maintains up to 4 pointers to S, which 

represent the segments which define it. 

 

We will call the data structure A’(S). 



A’(S) - Example 



- We take the group of segments 𝑆 and apply a random 
permutation on it. Denote it as - 

𝑆 =< 𝑠1, 𝑠2, … , 𝑠𝑛 > 

 

- Let 𝑆𝑖 be the prefix of length i of S. 𝑆𝑖 =< 𝑠1, 𝑠2, … , 𝑠𝑖 > 

 

- Before step 1, T and S are empty. 

 

- On every step i we will add one segment 𝑆𝑖 to the data 
structure. 

 
- 𝐴′ 𝑆𝑖  - the data structure created after adding 𝑆𝑖 
 
- 𝐴′(𝑆𝑛) – the final desire structure 

 

Constructing A’(S) - Algorithm 



Algorithm - continued 
On each step we also maintain the following lists- 

 

- 𝑐𝑙(𝜎) – contains the segments which intersect the trapezoid 𝜎. We call 

it the conflict list of 𝜎. 

- 𝑐𝑙(𝑠𝑖) – contains the trapezoids which intersect the segment 𝑠𝑖. We 

call it the conflict list of 𝑠𝑖 . 

 

 

 

 

 

 

 

 

 

 

 



Example: After adding 4 segments 
We’ve added 𝑠1, 𝑠2, 𝑠3, 𝑠4 and still have 𝑠5, 𝑠6, 𝑠7, s8 to add. 



Example: Adding 𝑠5 
We  want to add 𝑠5. We go through the conflict list of 𝑠5 and split every 
trapezoid in this list. There will be up to 4 new trapezoids created for each 
entry in the conflict list.  



Example: Adding 𝑠5 - continuation 
When creating the new trapezoids, we construct their conflict lists out of 

the old trapezoid conflict list. 



Possible splits of the trapezoid 



Example: Adding 𝑠5 - continuation 
After creating the new trapezoids, some of them might be invalid. I.e if we 

would do a full decomposition, we would not get those trapezoids.  

In the example below, 𝜎12 and 𝜎14 are invalid. 



Merging invalid trapezoids 
- To fix the problem of the invalid trapezoids, we need to perform 

the “merge” operation. 
 

- Every invalid trapezoid has an adjacent trapezoid which has 
the same ceiling and floor. 
 

- If we merge all the trapezoids with same ceiling and floor, we 
get rid of the invalid trapezoids and get a valid vertical 
decomposition. 

 

- We maintain a list of adjacent trapezoids. 
 

- After creation of new trapezoids, we go through adjacent 
trapezoids and merge them if they have same ceiling and 
floor. 



Merging invalid trapezoids – cont. 



Example: A’(S) 
This way we will proceed until we add all the segments. In the end, all the conflict 
lists will be empty (because the segments which already added can’t be in conflict 
list). 



Claim 1: the amortized running time of constructing of 𝐴′ 𝑆𝑖  is 
proportional to the size of the conflict lists of the trapezoids in 
𝐴′ 𝑆𝑖 \A′(𝑆𝑖−1). 
 
Proof: 
Every time we create new trapezoids, we break an existing 
trapezoid. When we construct new trapezoids out of existing 
one, we do three things: 
 

- Vertical decomposition of new trapezoids – for this we go 
through all 5 segments (4 old and one new) intersections. – up 
to 52 actions - O(1) per trapezoid 
 

- Merging of new trapezoids – we go through all new trapezoids 
once (up to 4 new trapezoids from each old one) and merge 
them – O(1) per trapezoid 
 

- We create the conflict list of the new trapezoids out of the old 
ones. 

Running time 



Running time – proof cont. 

- Each old conflict list is used by at most 4 new conflict lists 

 

- Each new conflict list is created out of the “ruins” of an 

old. So old destroyed lists pay for creation of new ones. 

 

Therefore we can charge every time a conflict list is 

created. And the charges at step i are proportional to the 

size of the conflict lists of the trapezoids created at step i. 

 

∎ 

 



Running time – illustration 



Running time – illustration 



Running time of the algorithm 
Therefore it is enough to bound the expected size of the 

conflict lists created in the 𝑖𝑡ℎ iteration. (Which is the size of 

the conflict lists in 𝐴′(𝑆𝑖)\A′(𝑆𝑖−1)) 
 

We will analyze the running time in two steps: 

 

1) Find the expected size of 𝐴′ 𝑆𝑖  

 

2) Do backward analysis to compute the expected size of  

𝐴′(𝑆𝑖)\A′(𝑆𝑖−1) 



Lemma 1: Let S be a set of segments with k intersection 

points. Let 𝑆𝑖 be the first i segments in the random 

permutation of S .The expected size of 𝐴′(𝑆𝑖) (i.e the 

number of trapezoids  

in 𝐴′(𝑆𝑖)), denoted by 𝜏 𝑖 , 

is 𝑂 𝑖 + 𝑘
𝑖

𝑛

2
. 

 

 

  

Step 1 – the size of 𝐴′(𝑆𝑖) 



Proof:  Consider an intersection point 𝑝 = 𝑠 ∩ 𝑠′, where 𝑠, 𝑠′ ∈ 𝑆. 
The probability that p is present in 𝐴′(𝑆𝑖) is the probability that 
both s and s’ are in 𝑆𝑖. 
 

𝑆4 =< 𝑠1, 𝑠2, 𝑠3, 𝑠4 > 
𝑝 = 𝑠6 ∩ 𝑠7 



Proof continuation 
Now we define an indicator variable 𝑋𝑝 which is 1 if the two 

defining segments of p are in 𝑆𝑖. 0 otherwise. 

 

From before we have 𝐸 𝑋𝑝 = 𝛼. 

 

Therefore, the expected number 

of the intersections in 𝐴(𝑆𝑖) is  

 

 

 

 

where V is the set of k intersection 

points of A(S). 

 



Proof continuation 
Also, every end point of segment s of 𝑆𝑖 
contributes 2 endpoints to 𝐴′ 𝑆𝑖  

Thus, we get that the expected  

number of vertices in 𝐴′(𝑆𝑖) is 

 

2i + k𝛼 =   
 

Since the number of trapezoids in 

𝐴′(𝑆𝑖) is proportional to number of 

vertices in 𝐴(𝑆𝑖), we conclude  

that the expected number of  

trapezoids in 𝐴′(𝑆𝑖) is 𝑂 𝑖 + 𝑘
𝑖

𝑛

2
 

as desired. ∎ 



Claim 2: Pr 𝜎 ∈ 𝐴′ 𝑆𝑖 \A
′ 𝑆𝑖−1 ≤

4

i
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Proof: if a trapezoid 𝜎 is in 𝐴′(𝑆𝑖) but not in 𝐴′(𝑆𝑖−1), that means 
that at least one of its defining segments 𝑠𝑖 was added the last in 
𝑆𝑖. The probability of a segment 𝑠𝑖 to be the last in 𝑆𝑖 is 

1

𝑖
. 

Therefore, the probability that at least one of the segments was 
added at 𝑆𝑖 is at most  

4

𝑖
. ∎ 

Step 2 – backward analysis 



Definitions: 

- 𝐵𝑖 = 𝐴
′ 𝑆𝑖  

- 𝐶𝑖 = |𝑐𝑙 𝐵𝑖\B𝑖−1 | - size of conflict lists  
introduced in step i. 

- 𝑊𝑖 = |𝑐𝑙 𝐵𝑖 | - total size of conflict  
lists in 𝐴′ 𝑆𝑖  

- By claim 2: Pr 𝜎 ∈ 𝐵𝑖\B𝑖−1 ≤
4

i
 

- 𝑊𝑖 =  |𝑐𝑙 𝜎 |𝜎∈𝐴′(𝑆𝑖)
 

 
 

Therefore,  

𝐸 𝐶𝑖 𝐵𝑖 =  Pr 𝜎 ∈ 𝐵𝑖\B𝑖−1 ∙ 𝑐𝑙 𝜎 ≤  
4

𝑖
𝑐𝑙 𝜎

𝜎∈𝐴′ 𝑆𝑖

≤
4

𝑖
𝑊𝑖

𝜎∈𝐴′(𝑆𝑖)

 

 
Intuition: The expected size of conflict lists added in step i is getting 
lower as i grows: the trapezoids become lighter and lighter. 

Running time analysis – summing up 



Summing up - continuation 

- 𝐵𝑖 = 𝐴
′ 𝑆𝑖  

-𝑊𝑖 =  |𝑐𝑙 𝜎 |𝜎∈𝐴′(𝑆𝑖)
 

- By lemma 1: 𝐵𝑖 = 𝑂 𝑖 + 𝑘
𝑖

𝑛

2
 

- Guess: the average size of the conflict list of a 
trapezoid of 𝐵𝑖 is 𝑂(

𝑛

𝑖
).  

 
 
Therefore  
 

𝐸 𝑊𝑖 = 𝐵𝑖 ∙ 𝑂
𝑛

𝑖
= 𝑂 𝑖 + 𝑘

𝑖

𝑛

2
∙ 𝑂
𝑛

𝑖
=

𝑂 𝑛 + 𝑘
𝑖

𝑛
 

 



- 𝐶𝑖 - size of conflict lists introduced in step i. 

- 𝐸 𝑊𝑖 = 𝑂 𝑛 + 𝑘
𝑖

𝑛
 

Therefore 

 

 

 

 

And finally, the overall expected running time of the 

algorithm is  

Running time analysis - continuation 



Intuition for the guess 
We will now try to get some intuition for the guess from 

before –  

 

On average, the size of the conflict list of a trapezoid of 𝐵𝑖 

is about 𝑂(
𝑛

𝑖
) 

 

Intuition: In 𝑆𝑖 we pick i out of n segments ≈ pick each 

segment with probability of 
𝑖

𝑛
. 

 

If 𝑐𝑙 𝜎 ≫
𝑛

𝑖
, we expect to pick ≈

𝑖

𝑛
∙ 𝑐𝑙 𝜎 ≫ 1 segments 

from it. 

But we picked none! 



Intuition cont. 
Let’s look on the one dimensional case. 
 
In this case we have a line instead of plane, interval I is a 
trapezoid, points 𝑠𝑖 are the segments. 
 

 

 

 
 
We choose i points Si = {𝑠𝑘1 , … , 𝑠𝑘𝑖}, out of 𝑆 = 𝑠1, … , 𝑠𝑛  at 

random. Our trapezoids will be the biggest intervals we can draw 
that don’t contain any 𝑠 ∈ {𝑠𝑘1 , … , 𝑠𝑘𝑖} in their interior.  

 
In the resulting decomposition, the number of the points which 
appear inside the intervals is the size of the conflict list of the 
trapezoid. 



Intuition – cont. 

 

 

 

 

 

We are interested in the expected size of conflict list of 𝜎𝑖. 
If we fix a point s and got to the right of it, while the probability of 

any point to be chosen to 𝑆𝑖 is 
𝑖

𝑛
, the random variable which is 

the number of the points in the interval (excluding the chosen 

points), acts like a geometric variable with probability 
𝑖

𝑛
.  

Therefore, the expected size of the conflict list of the trapezoid 

(ie number of points which fall into the interval) is 𝑂
𝑛

𝑖
. 



As a main part of the proof, we first need to introduce and prove 
the “Bounded moments Theorem”.  
 
The Bounded moments theorem will give us some bound on the 
expected size of the conflict lists in step i. 
 
To prove this theorem, we will need to introduce the following: 
 
- The sampling model - how we sample the segments 
 

- General settings – a framework for the analysis, more general 
than segments and trapezoids. 
 
- The exponential decay lemma – a lemma which tells that the 
number of trapezoids with big conflict lists is dropping 
exponentially 

Proof of the guess - preparation 



The sampling model 

In algorithms when we want to build a group of r randomly 

chosen objects out of n, we will usually implement it by first 

permuting the group and taking its r prefix. 

 

For analysis, this sampling model is much harder to 

calculate than the model where we pick every object with 

probability r/n. We will use the “easier” model in our 

analysis. 



General Settings 

- Let S be a set of objects 

- For a subset 𝑅 ⊆ 𝑆, we define a collection of regions 

F(R). 

 

For the case of vertical decomposition, S will be the set of 

segments and F(R) will be the set of trapezoids. 

 

- Let T be the set of all possible regions, defined by the 

subsets of S. 

 



General Settings - continuation 

- 𝐷(𝜎) – is the defining set of 𝜎. - In the case of vertical 

decomposition 𝐷(𝜎) is the set of segments which define 

𝜎. 
- We assume that for every 𝜎 ∈ 𝑇, 𝑫 𝝈 ≤ 𝒅 for a small 

constant d. - In the case of vertical decomposition, each 

trapezoid is defined by at most 4 segments, therefore 

d=4. 

- 𝐾 𝜎  - is the stopping set of 𝜎. – In the case of vertical 

decomposition 𝐾(𝜎) is the set of segments of S 

intersecting the interior of the trapezoid 𝜎 (its conflict list). 

- 𝜔 𝜎  - is the weight of 𝜎. Defined to be |𝐾 𝜎 |. 





Axioms 
Let S, F(R), 𝐷(𝜎) and 𝐾(𝜎) be such that for any subset 

𝑅 ⊆ 𝑆, the set F(R) satisfies the following axioms: 

 

1) For any 𝜎 ∈ 𝐹 𝑅 , we have  

𝐷 𝜎 ⊆ 𝑅 and 𝑅 ∩ 𝐾 𝜎 = ∅. 
 

I.e: choose all defining  

segments. Don’t choose any  

conflicting/stopping one. 

 

2) If 𝐷 𝜎 ⊆ 𝑅 and 𝐾 𝜎 ∩ 𝑅 = ∅,  
then 𝜎 ∈ 𝐹 𝑅  



Probability of region to be created 
Let S be a set complying with the axioms. 

 

We denote by 𝝆𝒓,𝒏(𝒅, 𝒌) the  

probability that a region 𝜎 ∈ 𝑇  
appears in F(R).  

Where its defining set is of size d,  

its stopping set is of size k,  

R is random sample of size r  

from S, and n=|S|. 

 

Claim 3: 

 



Proof of the claim 

Claim 3:  

 

 

 

Proof in simpler sampling model:  

If we assume that every segment is  

picked with the probability r/n, then  

the probability that the defining segments are chosen and  

that the stopping segments  

 

aren’t is indeed  



The exponential decay lemma 

- S – set of objects 

- 𝑟 ≤ 𝑛 

- 1 ≤ 𝑡 ≤ 𝑟/𝑑, where 
 𝑑 = max

𝜎∈𝑇 𝑆
|𝐷 𝜎 | 

- S comply to the axioms 

- 𝐸𝑓 r = E 𝐹 R  

- 𝜎 ∈ 𝐹(𝑅) is t-heavy if 𝜔 𝜎 ≥ 𝑡(
𝑛

𝑟
) 

- 𝐸𝑓≥𝑡 r = E[|F≥t(R)|] 
 
 
Then 
 
We will prove the lemma in steps. 



The exponential decay intuition 

- Consider R to be a random sample  

of size r from S without repetitions. 

- A region 𝜎 ∈ 𝐹(𝑅) is t-heavy  

if 𝜔 𝜎 ≥ 𝑡
𝑛

𝑟
 

- 𝐹≥𝑡 𝑅  - all t-heavy regions of F(R) 

Intuition: the probability of creating a 

t-heavy trapezoid drops exponentially in t 

- Indeed  



The exponential decay - proof 

Lemma 2:  

- 𝑟 ≤ 𝑛 and t, such that 1 ≤ 𝑡 ≤
𝑟

𝑑
 

- R - sample of size r 

- R’ - sample of size 𝑟′ =
𝑟

𝑡
 

- 𝜎 ∈ 𝑇 - trapezoid with weight 𝜔 𝜎 ≥ 𝑡
𝑛

𝑟
 

 
Then  
 
 
Intuition: the probability that a heavy trapezoid will be created in 
the large sample R drops exponentially from its probability to be 
created in the small sample R’. (Because we are more likely to 
choose a conflicting segment in R). 



Lemma 2 - proof - illustration 



- 

- 𝑟′ =
𝑟

𝑡
 

- By claim 3: 
 

Therefore we get – 
 

                                                                                ~ 
22𝑑 𝑒

−
𝑟𝑘
2𝑛 𝑟 𝑑

1

22𝑑
𝑒
−
4𝑟′𝑘
𝑛 𝑟′𝑑

 

 

 

~
22𝑑(𝑒−

𝑡
2)

1
22𝑑
(𝑒−4)
td = O e−

t
2td  

 

 (The third transition is because 1 − 𝑥 ~ 𝑒−𝑥) 
∎ 

Lemma 2 - proof – cont. 



The exponential decay lemma 

- S – set of objects 

- 𝑟 ≤ 𝑛 

- 1 ≤ 𝑡 ≤ 𝑟/𝑑, where 

 𝑑 = max
𝜎∈𝑇 𝑆
|𝐷 𝜎 | 

- S complies to the axioms 

- 𝐸𝑓 r = E[|𝐹 (R)|] 

- 𝐸𝑓≥𝑡 r = E[|F≥t(R)|]  
 

Then 

 

 

 



- R - sample of size r 

- R’ - sample of size 𝑟′ =
𝑟

𝑡
 

- 𝑋𝜎 - indicator variable which is 1iff 𝜎 ∈ 𝐹 𝑅  

 

 

 

 

 

 

∎ 

The exponential decay lemma - proof 



Bounded moments theorem 

- 𝑅 ⊆ 𝑆 a random sample of size r 

- Denote 𝐸𝑓 𝑟 = 𝐸[ 𝐹 𝑅 ] 

- 𝑐 ≥ 1 – arbitrary constant 

 

 

Then 

 

 

Intuition:  if we want to sum up all the sizes of conflict lists 

after sample R (powered by some constant c), it would be 

similar to taking the expected number of trapezoids and 

multiplying it by 
𝑛

𝑟

𝑐
, the expected weight to the power c. 



Sketch of the proof: By the exponential decay lemma, 

most regions have weight ≈
𝑛

𝑟
. 

The very few that have large weight contribute little to the 

sum. 

Bounded moments theorem 



Applications 

- Analyzing the running time of the vertical decomposition 

algorithm - proving the guess that the average size of the 

conflict list of the trapezoid of 𝐵𝑖 is 𝑂
𝑛

𝑖
 

 

- Showing an algorithm for creating a small size (1/r)-cutting 



Proving the guess 
- By lemma 1: the expected size of 𝐵𝑖 (i.e the number of 

trapezoids in 𝐵𝑖 ) is 𝑂 𝑖 + 𝑘
𝑖

𝑛

2
. 

 

- By bounded moments theorem (plugging c=1), we have 

that the total expected size of the conflict lists computed 

at step i of the vertical decomposition algorithm is 

 

 

 

 



The Running Time of the Algorithm 

 

 

 

 

And since the expected amortized work done by the 

algorithm in step i is 𝑂(
𝑊𝑖

𝑖
), we get that the total running 

time of the algorithm is - 



(1/r)-cuttings 

- S - set of n lines in the plane  

- r – arbitrary parameter (<n) 

- (1/r)-cutting of S is the partition of the plane into constant 

complexity regions, such that each region intersects at 

most n/r lines of S 



Building (1/r)-cutting using vertical decomposition 

- We want to show that using the vertical decomposition, 

we can build a (1/r)-cutting of size 𝑂(𝑟2). 

 

- We will show that 𝑂 𝑟2  is the best (smallest) possible 

size. 

 



- Let (S,T) be the range space, where S  

is the set of lines 

(the ground set)  

 

- T are the trapezoids 

 (ranges). The range of 

𝜎 ∈ 𝑇 : all the segments 

of S that intersect the 

interior of 𝜎 

 

- (S,T) has a VC dimension 

 which is a constant 

 

- 𝑋 ⊆ 𝑆 – an 𝜖-net for (S,T) 

 

- By the 𝜖-net theorem, there exists such an 𝜖-net, of size  

 



Lemma 4: There exists a (1/r)-cutting of a set of lines S in 

the plane of size 𝑂 𝑟𝑙𝑜𝑔𝑟 2 . 

 

Proof: consider the vertical decomposition A’(X) where X is 

as above (X is 𝜖-net). Then, the collection of the trapezoids 

is the desired cutting. 

 

 



Proof continuation: 

The (1/r)-cutting is indeed of size 𝑂( 𝑟𝑙𝑜𝑔𝑟 2), because the 

size of A’(X) (the number of trapezoids) is 𝑂( 𝑋 2) and 

𝑋 = 𝑂(𝑟𝑙𝑜𝑔𝑟). 
 

Correctness: 

- Let 𝜎 ∈ 𝐴′(𝑆)  

- 𝜎 doesn’t intersect any of the 

lines in X (s5, s6) 

- If 𝜎 intersected more than  

n/r (8/2=4) lines of S in the  

interior, then 𝜎 intersects  

one of the lines in X, 

since X is an 𝜖-net.  

Contradiction. ∎ 



Claim 4: any (1/r)-cutting in the plane of n lines, contains at 

least Ω(𝑟2) regions. 

 

Proof:  

- Number of intersections in 

a region is at most 𝑚 = 𝑛/𝑟
2

 

- Number of all intersections  

of n lines is 𝑀 = 𝑛
2

 

 

Therefore, number of regions in  

a cutting must be at least  

 

 

∎ 



Theorem:  

- S - set of lines in the plane  

- r – arbitrary parameter 

We can construct a (1/r)-cutting of size 𝑶(𝒓𝟐). 

 

Building (1/r)-cutting using vertical decomposition 



Theorem – proof  

- Pick r random  

lines 

 

- Build vertical  

decomposition 

 

- If a trapezoid 𝜎 intersects at most n/r lines of S – add it to 

the cutting 

- Otherwise, 𝜎 intersects t(n/r) lines of s (for some t>1) – 

apply a (1/t)-cutting on this trapezoid. 

- Now, each trapezoid in this cutting intersects at most n/r 

lines in S. 



Theorem – proof cont. 

- The size of the cutting inside 𝜎 is 𝑂 𝑡2 log2 𝑡 = 𝑂(𝑡4) 

- By the bounded moments theorem, the expected size of 

the cutting is  

 

 

 

 

 

 

 

 

∎ 


