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Abstract

Let C be a collection of n compact convex sets in the plane, such that the boundaries of
any pair of sets in C intersect in at most s points, for some constant s ≥ 4. We show that
the maximum number of regular vertices (intersection points of two boundaries that intersect
twice) on the boundary of the union U of C is1 O∗(n4/3), which improves earlier bounds due to
Aronov et al. [5]. The bound is nearly tight in the worst case.
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1 Introduction

Let C be a collection of n compact convex sets in the plane, as in the abstract. Let U denote the
union of C. If the boundaries of a pair of sets in C intersect exactly twice, we refer to their two
intersection points as regular intersections; all other boundary intersections are called irregular.
Several recent papers have considered the problem of obtaining sharp bounds on the number of
regular intersection points that can appear on the boundary of the union U . In the simplest
instance of this problem, we assume that the boundaries of any pair of sets in C intersect at most
twice, but make no other assumption on the shape of these sets; we then refer to C as a collection
of pseudo-disks. In an early paper [11], Kedem et al. showed that in this case the boundary of
the union contains at most 6n − 12 intersection points, and that this bound is tight in the worst
case. Pach and Sharir [14] have considered the general case, where the sets are not necessarily
pseudo-disks, and have shown that, in the restricted case when C consists of convex sets, one has
R ≤ 2I +6n− 12, where R (resp., I) denotes the number of regular (resp., irregular) points on ∂U ,
thus generalizing the result of Kedem et al., in which I = 0.

The bound of Pach and Sharir is tight in the worst case, but since I can be large, it does not
provide a good “absolute” upper bound (a bound that depends only on n) on R. In fact, I can
be Ω(n2) even when each pair of boundary sets are allowed to intersect in at most s ≥ 4 points,
where s is constant; see Figure 1(a). Moreover, there exist constructions in which both I and R are
Θ(n2) (see Figure 1(b)). However, in these constructions, some pairs of the boundaries of the sets
in C intersect in an arbitrarily large number of points (that is, the assumption in the abstract does
not hold). It is therefore interesting to seek bounds on R that are independent of I and depend
only on n, in the case when any pair of sets share at most a bounded number of boundary points.
This has been done by Aronov et al. [5]. Assuming, in addition to the above assumption, that the
sets are convex, they obtained the upper bound R = O∗(n3/2). For the more general case, where
the sets in C are not necessarily convex, they show the existence of a positive constant δ, which
depends only on s, so that R = O(n2−δ).

Our result. In this paper we consider the case where C satisfies the assumptions in the abstract,
and derive an improved bound on R. Specifically, we show that R = O∗(n4/3). This improves
the first bound of [5]. Moreover, this bound is nearly tight in the worst case, already for s = 4
(the smallest interesting case), since one can easily construct n rectangles and disks that generate
Θ(n4/3) regular vertices on the boundary of their union; see [14] and below for details.

A key step in our proof uses the fact that the sets in C are convex. We conjecture that the
bound also holds for more general sets. Additional results in more general scenarios have been
obtained in [8, Ch. 7]. These bounds, albeit being weaker than the bound presented in this paper,
are much sharper than the general bound in [5]. See the end of this paper for a discussion.

2 Preliminaries and Overview

Let C be a collection of n compact convex sets in the plane, such that any pair of them share at
most s boundary points, for some constant s.

Recall that two sets C,C ′ ∈ C are said to intersect regularly if |∂C ∩ ∂C ′| = 2. Both of these
intersection points are called regular vertices of the arrangement A(C) of (the boundary curves of
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(a) (b)

Figure 1: (a) A construction with I = Θ(n2) irregular vertices on ∂U . (b) A construction with
R = Θ(n2) regular vertices on ∂U .

(a) (b)

Figure 2: From incidences to regular vertices: The lower bound.

the sets in) C. All other vertices are irregular. If two boundary sets are externally tangent to each
other at a single point, we regard this point as a pair of coincident regular vertices.

We establish an upper bound on the maximum number of regular vertices on the boundary of
the union U of C, which improves the earlier bound O∗(n3/2), due to Aronov et al. [5].

Theorem 2.1. Let C be a set of n compact convex sets as above. Then the number of regular vertices

on the boundary of the union of C is at most O∗(n4/3), where the constant of proportionality depends

on s. This bound is nearly worst-case tight, as there are constructions that yield Ω
(

n4/3
)

regular

vertices that appear on the boundary of the union, already for s = 4.

Lower bound. We use a construction given in [14], which we present for the sake of completeness.
We start with a system of n lines and n points with Θ(n4/3) incidences between them (see, e.g.,
[15]). Then we map each line to a long and thin rectangle, and each point to a small disk, in such
a way that, for each pair of a point p incident to a line ℓ, the disk into which p is mapped slightly
penetrates the rectangle into which ℓ is mapped, and all the intersections between the boundaries
of the disks and the rectangles are regular, and lie on the boundary of their union. See Figure 2.
Clearly, s = 4 in this construction. Hence, we obtain a collection of 2n convex regions, each pair
of whose boundaries intersect in at most four points, which have Θ(n4/3) regular vertices on the
boundary of their union.
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Figure 3: Demonstration of the transformation rule. (a) The boundary of C creates with the boundary
of each of the three sets C1, C2, C3 regular vertices that appear on the boundary of the union. (b)
Each of C1, C2, C3 is truncated by the chords connecting its intersections with ∂C. (c) Truncating C
by similar shortcuts; wz is replaced by a nearby chord wz′ to make C and C3 touch at a single point.
The shaded region is a newly created connected component of the complement of the union (a new
“hole”).

Upper bound: Overview of the proof. We apply the truncating transformation of Aronov et al. [5]
to the input collection C, as described in [5, Lemma 1] (see also the beginning of Section 3 for more
details), such that at the end of this process, the transformed sets satisfy the following properties
(see Figure 3 for an illustration of this process): (i) They are convex. (ii) Any two boundaries
intersect at most s times. (iii) Any two sets C,C ′ ∈ C that intersected regularly before the trans-
formation either become disjoint (if this intersection did not create vertices on ∂U), or touch each
other at a single point (if at least one point of their boundary intersection appeared on ∂U). We
continue to denote by C the collection of the truncated sets in order to simplify the notation.

For each C ∈ C, the segment connecting the leftmost and the rightmost points of C is called
the spine of C, and is denoted by σC . We can assume (without loss of generality, rotating the
coordinate frame if necessary) that σC is uniquely determined. Since C is convex, we have σC ⊆ C.
Note that, after the truncating transformation described above, any regular vertex on the boundary
of the union must be formed by a pair of sets whose spines do not cross.

As a preliminary step, we dispose immediately of all regular vertices that appear as either a
leftmost or a rightmost extreme point of one of their incident truncated sets. There are at most 2n
such points. We can thus consider from now on only those regular vertices on the boundary of the
union that are formed by a pair of sets whose spines are disjoint, and lie in the relative interior of
the upper or lower hulls of their incident sets.

We then apply a decomposition scheme that consists of two phases. The first phase represents
all pairs of sets of C with disjoint spines, so that one of these spines lies below the other, as the
edge-disjoint union of complete bipartite graphs A × B, whose overall complexity is sufficiently
small, in a sense to be made precise below.

We then fix one such complete bipartite subgraph A × B, in which the spines of the sets in A
all lie below those of the sets of B, and analyze the number of regular vertices that it contributes
to the union boundary. A crucial property of such a graph, established in Claim 3.2 below, is that
each of these regular vertices must lie either on the upper envelope of the top boundaries of the
sets in A, or on the lower envelope of the bottom boundaries of the sets in B. We then form, say,
the upper envelope E+

A of the top boundaries of the sets in A, and decompose it into maximal
connected arcs, each contained in the boundary of a single set, and having openly disjoint x-spans

(i.e., projections onto the x-axis).

The fact that regular vertices are formed by touching pairs, suggests a second decomposition
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phase, in which we decompose A × B into a union of complete bipartite subgraphs such that each
such subgraph A′ ×B′ is associated with some vertical strip Σ, and each spine σ of a set in B′ lies,
within the strip Σ, above every arc δ whose corresponding set belongs to A′. It is then fairly easy
to show that the number of regular vertices of the union, induced by pairs of sets in A′ × B′, is
only nearly linear in |A′| + |B′|.

The second decomposition phase is somewhat involved. It consists of decomposition steps
that alternate between the primal and dual planes, where each step is based on a cutting of a
certain line arrangement (in the primal) or pseudo-line arrangement (in the dual). While the dual
decomposition is more “conventional” (in our problem it involves points and convex x-monotone
curves), the primal one is trickier, because it involves the (lines containing the) spines and the arcs
δ of the envelope. Since both families consist of curves, it is harder to control the efficiency of
the process, and we need careful analysis of the way in which the arcs δ interact with the spines
from the other set. Finally, we collect all these bounds, put them together, and obtain the bound
asserted in the theorem.

3 The Number of Regular Vertices on the Boundary of the Union

Transforming the sets. We begin by applying to C the truncating transformation of Aronov et al. [5]
to the input collection C; see [5, Lemma 1]. For the sake of completeness, we briefly review it now.
The transformation process is iterative. We arbitrarily order the regions in C as (C1, . . . , Cn). Let
Ci denote the collection after the first i steps of the transformation, with C0 = C. The i-th step
constructs Ci from Ci−1 by considering the intersections of Ci with the other sets. Specifically, it
shortcuts each set C which meets Ci regularly by the chord connecting the two intersections of ∂C
and ∂Ci, and then shortcuts C similarly. See Figure 3 for an illustration of this process. At the
end of the entire process, the transformed sets satisfy the following properties (see once again [5,
Lemma 1] and Figure 3 for further details): (i) They are convex. (ii) Any two boundaries intersect
at most s times. (iii) Any two sets C,C ′ ∈ C that intersected regularly before the transformation
either become disjoint or touch each other at a single point. More precisely, if C, C ′ intersected
regularly with at least one point of intersection of their boundaries on ∂U , the transformed sets
are openly disjoint and touch each other at a point on the new union boundary. If they intersected
regularly without creating vertices on ∂U , they become disjoint. To simplify the notation, from
now on we let C denote the set of the transformed regions, and we refer to the tangency points (that
correspond to regular vertices of the boundary of the union before the transformation) as regular
vertices. We assume, without loss of generality, that the transformed sets in C are in general posi-
tion, in the sense that no point is incident to more than two boundaries, and when two boundaries
meet at a point, they cross each other there, except for the points that represent previous regular
vertices, at which the respective sets now touch each other.

Let C and C ′ be two members of C that touch each other at a point that lies on ∂U . As already
noted, we may assume that their spines σC and σC′ are disjoint, and one of them, say, σC , lies

below the other, which means that (i) their x-spans have nonempty intersection J ; (ii) σC lies below
σC′ at each x ∈ J .

The first bi-clique decomposition. We collect all pairs of spines so that one of them lies below
the other, as the edge-disjoint union of complete bipartite graphs (bi-cliques), so that the overall
size of their vertex sets is O∗(n4/3). More precisely, the following stronger property holds.
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Figure 4: If the vertex v does not lie on either E+
A or E−

B , then it is “hidden” from E+
A by ∂+C1, and

from E−
B by ∂−C2, for some C1 ∈ A, C2 ∈ B. However, then v is contained in (the interior of) C1∪C2,

contrary to the assumption that v is a boundary vertex of the union.

Lemma 3.1. Given a collection C as above, let G be the graph whose vertices are the members of

C, and whose edges connect pairs of members (C,C ′) such that σC lies below σC′ . Then there exists

a decomposition G =
⋃

i Ai × Bi into pairwise edge-disjoint bi-cliques such that

∑

i

(

|Ai|2/3|Bi|2/3 + |Ai| + |Bi|
)

= O∗(n4/3). (1)

This is a fairly standard consequence of the techniques for “batched” range searching, which
are based on multi-level data structures, as reviewed in [3, 13]. Results of a similar nature, yielding
decompositions of other relations (although not the specific one in the lemma) into an edge-disjoint
union of complete bipartite graphs, have appeared in the literature; see [10] for the case of points
inside unit disks; and [2] for the case of intersecting segments. In fact, a decomposition of this kind
has also been used in the previous paper [5] that has studied this problem, where in each bi-clique
A × B the spine of each C ∈ B lies fully above each of the sets in A, and the spine of each C ′ ∈ A
lies fully below each of the sets in B. We present a detailed proof of the lemma in the appendix in
order to (a) aid readers unfamiliar with the range searching machinery, and (b) obtain an explicit
derivation for the specific relation that we need to handle.

Handling a single bi-clique. Fix one of the resulting graphs A × B := Ai × Bi. All the spines
of the sets in A lie below all the spines of the sets in B. Put nA = |A| and nB = |B|.

Recall that our goal is to bound the overall number of tangencies between the boundaries of
the sets in A and B. Let v be a regular vertex of the union lying on the top boundary ∂+C and on
the bottom boundary ∂−C ′, for two sets C ∈ A, C ′ ∈ B; this is the only possible situation, since
v is an external tangency and is not the leftmost or rightmost point of either of the two incident
sets. We have:

Claim 3.2. The vertex v lies either on the upper envelope E+
A of the top boundaries of the sets in

A, or on the lower envelope E−
B of the bottom boundaries of the sets in B, or both.

Proof: Suppose for the sake of contradiction that this were not the case. Then v would lie below
some top boundary ∂+C1, for C1 ∈ A, and above some bottom boundary ∂−C2, for C2 ∈ B; see
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Figure 4. By construction, σC1
lies below σC2

at the x-coordinate xv of v, which implies that the
entire vertical segment connecting ∂+C1 and ∂−C2 at xv is fully contained in C1 ∪C2, so v cannot
lie on the boundary of the union, a contradiction that establishes the claim. �

Without loss of generality, we consider only the case where v lies on the upper envelope E+
A

of the top boundaries of the sets in A. Since any pair of these boundaries intersect in at most s
points, the number m = mA of connected portions of top boundaries that constitute E+

A satisfies
m ≤ λs+2(nA), where λt(q) is the maximal length of Davenport-Schinzel sequences of order t on q
symbols (see [16]). Enumerate these arcs from left to right as δ1, . . . , δm, and let A∗ denote the set
of these arcs.

Let H0 denote the subgraph of A∗ ×B consisting of all the pairs (δ, C), such that C forms with
the set of A containing δ a regular vertex on ∂U (where the two sets touch each other), so that
(a) the touching point lies on δ and on ∂−C, and (b) δ lies fully below σC (i.e., the x-span of σC

contains that of δ). If (b) does not hold, then an endpoint of σC lies above δ, and there can be at
most two such arcs δ, for any fixed C, so the number of excluded pairs is at most 2nB . Hence, the
number of regular “bichromatic” vertices formed by A∪B, lying on E+

A , and not counted in H0, is
only O(nB).

The second bi-clique decomposition. Our next step is to construct a collection of complete
bipartite graphs {A∗

i × Bi}i, such that, for each i, A∗
i ⊂ A∗, Bi ⊂ B, and these graphs are edge-

disjoint and cover H0. In addition: (i) The sum
∑

i(|A∗
i |+ |Bi|) will be small, in a sense to be made

precise below. (ii) For each i, there is an x-interval Ii such that, for each δ ∈ A∗
i and C ∈ Bi, the

line ℓC containing the spine σC of C passes fully above δ over Ii. (We require the x-span of δ to
contain Ii, but allow σC to end within Ii.) (iii) For each pair (δ, C) ∈ H0, there exists i such that
δ ∈ A∗

i , C ∈ Bi, and the x-coordinate of the touching point δ ∩ ∂−C lies in Ii.

Suppose we have such a collection at hand. Fix one of the graphs A∗
i × Bi. We now claim:

Claim 3.3. For any δ ∈ A∗
i , C ∈ Bi, such that (δ, C) ∈ H0, the relevant touching vertex v of

δ ∩ ∂−C lies on the lower envelope E−
Bi

of the bottom boundaries of the sets in Bi.

Proof: The proof follows using the same arguments as in Claim 3.2 (see also [5]). That is, suppose
to the contrary that v lies above the bottom boundary ∂−C ′ of another set C ′ ∈ Bi. By assumption,
σC′ lies above v (because v ∈ δ) and thus v lies in the interior of C ′, contradicting the assumption
that v is a vertex of the union. See Figure 5(a). Note that it is crucial that the x-coordinate of v
lies in the x-interval Ii as above, because the property that δ lies below σC′ is only enforced within
Ii; see Figure 5(b). �

In other words, each vertex v of this kind is an intersection point of E−
Bi

and the concatenation

of the arcs in A∗
i . Hence, by merging, in the x-order, the breakpoints of E−

Bi
and the endpoints of

the arcs in A∗
i , it easily follows that the number of such vertices is O(λs+2(|Bi|) + |A∗

i |). Summing
this bound over all subgraphs A∗

i × Bi yields an overall bound for the number of pairs (δ, C) ∈ H0

(to which we add the linear number of pairs that are not counted in H0, as above). See below for
the precise bound.

To obtain the desired cover of H0, we proceed as follows. Let L denote the set of the lines
supporting the spines of the sets in B. Fix a sufficiently large constant parameter r, and construct
a (1/r)-cutting Ξ of the arrangement A(L), as in [6]. It consists of O(r2) vertical trapezoids, each
crossed by at most nB/r lines of L (and thus by at most nB/r spines of the sets in B). We assume
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Figure 5: (a) If the vertex v does not lie on E−
Bi

, then it is hidden from E−
Bi

by ∂−C ′, for some
C ′ ∈ Bi. But then v is contained in (the interior of) C ′, contrary to the assumption that v appears on
the boundary of the union. (b) The tangency point v, formed by the lower boundary of C and δ, and
lying outside the interval Ii, can be “hidden” from E−

B by the lower boundary of another C ′ ∈ B.

v

δ

∂−C

σC

τ

Figure 6: A touching occurs within a cell τ of the cutting.

in what follows that mA, nB ≥ r2; otherwise, we reach the bottom of the recursion, and different
handling is applied—see below.

Consider a pair (δ, C) ∈ H0, where the touching between δ and ∂−C occurs in some cell τ of Ξ.
In this case δ crosses τ (or has an endpoint inside τ), and σC either intersects τ (ending inside it
or fully crossing it), or lies above τ (i.e., within the common x-span of C and τ , σC lies fully above
τ). See Figure 6.

For technical reasons, we classify the arcs δ that cross τ as being either short, if either δ has an
endpoint inside τ , or δ does not intersect the top edge of τ , or tall, if δ intersects the top edge and
has no endpoint in τ . Let As

τ be the set of short arcs in τ , and At
τ the set of tall arcs in τ .

The next lemma shows that the overall number of short arcs, over all cells τ , is small.

Lemma 3.4.
∑

τ |As
τ | = O(r2 log r + |A∗| log r) = O(|A∗| log r) .

Proof: Note first that there are at most 2|A∗| pairs (δ, τ), such that δ ends inside τ . We may
therefore ignore these short arcs. Construct a segment tree T on the x-projections of the cells of
Ξ. Consider a node v of the tree, let Ξv denote the set of cells stored at v, and let Iv denote the
x-span of v (the x-spans of the stored cells contain Iv but do not contain Iparent(v)). The cells in
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τ2

τ3

Iv

τ1

τ2

τ3

δ

Iv

(a) (b)

Figure 7: The cells τ1, τ2, τ3 cross the vertical strip built on the x-span Iv of v from left to right. (a)
Any vertical line in Iv crosses all these cells in the same order. (b) The arc δ crosses τ1, τ2, τ3, where
τ1 is the unique cell whose top boundary edge is not crossed by δ; δ is short there and tall in τ2, τ3.

Ξv are linearly ordered in the y-direction, in the sense that for each x0 ∈ Iv the vertical line x = x0

crosses all of them in a fixed order; see Figure 7(a).

In each cell τ , there are at most two (either tall or short) arcs, whose x-spans overlap, but are
not contained in, Iv (the first intersects the vertical line through the left endpoint of Iv, and the
second intersects the vertical line through its right endpoint). Since each cell τ is stored in O(log r)
nodes of T , there are O(r2 log r) such arcs in total.

We thus continue the analysis for those (short) arcs δ of A∗, whose x-span is contained in
Iv. There is at most one cell τ ∈ Ξv such that δ ∈ As

τ , namely the highest that δ meets; see
Figure 7(b). The number of nodes v at which δ has this property is O(log r), because Iv contains
the x-coordinate of an endpoint (actually, both endpoints) of δ. Hence, the contribution of arcs δ
as above to

∑

τ |As
τ | is O(|A∗| log r). Combining this with the previous bound, and recalling that

we assume |A∗| = mA ≥ r2, complete the proof of the lemma. �

Remarks: (1) The fact that the arcs δ have pairwise openly disjoint x-projections is crucial for
the bound that we obtain in Lemma 3.4. The decomposition of (a cover of) H0 that we construct
is a variant of the decomposition obtained in [5]; however, the analysis in [5] does not exploit the
special structure of the arcs δ, and results in a suboptimal bound.

(2) An individual arc δ may cross Ω(r) cells τ , each of whose top boundary is disjoint from δ.
However, Lemma 3.4 shows that the overall number of these crossings, summed over all arcs δ, is
relatively small.

Each cell τ for which |As
τ | > |A∗| log r

r2 is next split, by vertical lines, into subcells, such that

each subcell τ ′ satisfies |As
τ ′ | ≤ |A∗| log r

r2 . The number of cells is still O(r2), which follows from
Lemma 3.4.

Fix a (new) cell τ , and form the complete bipartite graph As
τ ×C∗

τ , where C∗
τ consists of all sets

C ∈ B such that ℓC passes above τ . We associate the interval Iτ (the x-span of τ) with this graph.
Since r is a constant, we have

∑

τ

(|As
τ | + |C∗

τ |) = O(mA + nB)
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δ2 δ3
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τ

v1 v3

Figure 8: ∂−C touches δ1 and δ3 inside τ at v1 and v3, respectively, and cannot touch the intermediate
tall arc δ2.

(where the constant of proportionality depends on r), and the overall number of boundary touchings
that they involve, over all cells τ , is O(mA + λs+2(nB)).

We next show:

Lemma 3.5. The overall number of boundary touchings on the boundary of the union, occurring

within a cell τ and involving a tall arc in τ , summed over all cells τ , is only linear in nB.

Proof: Let τ be a cell of Ξ, and let ℓC be the line containing the spine σC of a set C, so that ℓC

intersects τ or passes fully above τ . We claim that there are at most two tall arcs in τ that touch
∂−C within τ , at a point that lies on ∂U . Indeed, suppose to the contrary that there are three such
arcs δ1, δ2, δ3, which appear on E+

A in that order (from left to right). Consider the two respective
boundary touchings that ∂−C forms with δ1, δ3, at two respective points v1, v3 inside τ . Then, due
to the convexity of C, its portion γ between v1 and v3 lies below the top edge of τ , and δ2 lies fully
below (and touches) that portion, so it cannot be tall in τ (note that the x-span of δ is contained
in that of γ), a contradiction that establishes the claim; see Figure 8. Thus the overall number of
regular vertices of the above kind is O(r2nB) = O(nB), as asserted. �

Remark: Lemma 3.5 implies that we do not need to provide a compact representation for pairs
of the above kind, and can simply add them as singletons to the output cover of H0.

We thus conclude:

Corollary 3.6. The overall number of boundary touchings involving both short and tall arcs, in all

subcases considered so far, is O(mA + λs+2(nB)).

We continue the construction recursively, within each cell τ , with As
τ and the subset Cτ of those

C ∈ B whose line ℓC crosses τ . We have |As
τ | ≤ |A∗| log r

r2 = mA log r
r2 , and |Cτ | ≤ nB

r . However,
the next stage of the recursion is performed in the dual plane, and proceeds as follows. For each
resulting cell τ , map As

τ and Cτ to the dual plane. For each C ∈ Cτ , we map ℓC to a dual point ℓ∗C ,
and each arc δ in As

τ is mapped to a convex x-monotone curve δ∗, which is the locus of all points
dual to lines that are tangent to δ (possibly at one of its endpoints) and pass above δ (see [5] and [7]
for further details). Thus a line ℓC lies above an arc δ if and only if the dual point ℓ∗C lies above δ∗.
Each pair of dual arcs δ∗1 , δ∗2 intersect each other exactly once, since any such intersection point is
the dual of a common tangent to δ1, δ2 that passes above both of them, and since δ1, δ2 are two
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convex curves that have openly disjoint x-spans, there is exactly one such common tangent. We
now construct (for each cell τ obtained at the preceding step) a (1/r)-cutting of the arrangement

of the dual arcs δ∗, obtaining O(r2) subcells, each of which is crossed by at most |As
τ |

r ≤ mA log r
r3

dual arcs δ∗, and contains at most |Cτ |
r2 ≤ nB

r3 dual points ℓ∗C ; see [4] for details.

As above, we construct, for each subcell τ ′ of this cutting, a complete bipartite graph that
connects the dual points in τ ′ to the dual arcs that pass fully below that subcell. Again, since r
is a constant, the sum of the sizes of the vertex sets of these graphs is O(mA + nB). We are thus
left with O(r4) subproblems, each involving at most mA log r

r3 arcs of A∗, and at most nB
r3 sets in B.

We now process each subproblem recursively, going back to the primal plane, and keep alternating
in this manner, until we reach subproblems in which either m2

A < nB, or n2
B < mA. In the former

(resp., latter) case, we continue the recursive construction only in the dual (resp., primal) plane,
and stop as soon as one of mA, nB becomes smaller than r2, in which case we output the complete
bipartite graph As

τ × Cτ involving the input sets to the subproblem.

Note that at the bottom of the recurrence, the boundary touchings do not necessarily lie on the
lower envelope of the boundaries of the sets in Cτ , so we use the naive bound |As

τ | · |Cτ | on their
number, which however is O(|As

τ | + |Cτ |), where the constant of proportionality depends on r. We
add to the output cover of H0 only those pairs that result in boundary touchings, as singletons.

The preceding arguments imply that the union of all the bi-cliques constructed by this procedure,
including the interactions with tall arcs and other “leftover” pairs detected by the decomposition,
covers H0. Indeed, for each such pair (δ, C) ∈ H0, the line ℓC containing the spine σC of C lies fully
above δ. Our procedure detects all such pairs (δ, C) either (i) at the bottom of the recurrence, in
which case all these pairs are reported in a brute force manner, or (ii) at a recursive step, performed
in the primal plane and involving a cell τ in which the boundary touching appears, such that ℓC

lies above τ and δ is short in τ , (iii) at a recursive step, performed in the dual plane and involving
a cell τ ′, such that ℓ∗C lies inside τ ′ and δ∗ passes fully below it, or (iv) at some step where δ is tall
at some primal cell τ .

Let R(mA, nB) denote the maximum number of boundary touchings on the boundary of the
union, that arise at a recursive step involving mA arcs δ and nB sets C, as above, and which are
formed between one of the arcs δ and the bottom boundary of one of the sets C. As argued above,
the number of such bichromatic touchings, that arise for any of the complete bipartite graphs
generated at this stage, is nearly-linear in the sizes of the vertex sets of that graph. Hence R
satisfies the following recurrence (where in the first three cases, min{mA, nB} ≥ r2):

R(mA, nB) ≤























































O (mA + λs+2(nB)) + O(r4)R
(

mA log r
r3 , nB

r3

)

, if m2
A ≥ nB ≥ √

mA,

O (mA + λs+2(nB)) + O(r2)R
(

mA
r , nB

r2

)

, if nB > m2
A,

O (mA + λs+2(nB)) + O(r2)R
(

mA log r
r2 , nB

r

)

, if mA > n2
B,

O (mA + nB) , if min{mA, nB} < r2.

It is then easy to see, using induction on mA and nB , that the solution of this recurrence is

R(mA, nB) = O∗(m
2/3
A n

2/3
B + mA + nB) = O∗(n

2/3
A n

2/3
B + nA + nB). (2)
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Summing these bounds over all bi-cliques A×B of the first decomposition phase, and using the
bound in (1), the upper bound of Theorem 2.1 follows.

This completes the proof of Theorem 2.1. �

Open problems. A major open problem is to extend the bound to the case where the sets in C
are not convex. A natural case to study is where the sets in C are x-monotone (i.e., each of the lower
and upper portions of ∂C is an x-monotone curve), for each set C ∈ C, the spine σC is contained
in C, and each pair of boundaries intersect in at most some constant number, s, of points. In an
expanded version of the paper (see [8, Ch. 7]), we obtained the upper bound O∗(n(3s+1)/(2s+1))
for this case, which, albeit weaker than the bound derived above, is still considerably sharper than
the general bound of [5]. We conjecture that the new bound O∗(n4/3) also holds in this extended
scenario, provided that each set in C has constant description complexity (that is, each set is defined
as a Boolean combination of a constant number of polynomial equalities and inequalities of constant
maximum degree).

Acknowledgments. The authors wish to thank Boris Aronov, Alon Efrat and an anonymous
referee for their useful comments.
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Appendix - The First Bi-Clique Decomposition

Proof of Lemma 3.1: Let σ = pq, σ′ = p′q′ be a pair of spines such that σ lies below σ′. This re-
lationship can be expressed as the disjunction of a constant number of conjunctions of above/below
relationships, over the possible x-orders of p, q, p′ and q′, where each atomic relationship asserts
that an endpoint of one spine lies above or below the line containing the other spine. For example,
if the x-order of the endpoints is p, p′, q, q′, then we require that p′ lie above the line ℓ containing σ
and that q lie below the line ℓ′ containing σ′; see Figure 9(a)–(c). For simplicity of exposition, we
describe the construction only for the subgraph of G that consists of pairs of sets with the above
specific order of the endpoints of their spines; all other subcases are handled in a fully symmetric
manner.

We apply a multi-level decomposition scheme (see [3]), where each level produces a decompo-
sition into bi-cliques that satisfy some of the constraints, and each of them is passed to the next
level to enforce additional constraints. At the two top levels, we produce a collection of pair-
wise edge-disjoint bi-cliques such that, for each of these graphs A1 × B1, for each pair of spines
σ = pq ∈ A1 and σ′ = p′q′ ∈ B1, the x-order of the endpoints is p, p′, q, q′, and such that the union
of these graphs gives all such pairs of spines. This is easily done using a 2-dimensional range tree
construction [1, 9]. The sum of the vertex sets of the resulting subgraphs is O(n log2 n). Moreover,
(a slightly sharper variant of) (1) is easily seen to hold for the decomposition thus far.

The next level enforces, for each resulting subgraph of A1 × B1, the condition that p′ lie above
the line ℓ containing σ, for σ ∈ A1 and p′ the left endpoint of a spine σ′ ∈ B1. Put m1 = |A1|
and n1 = |B1|. To accomplish the task at hand, we choose a sufficiently large constant parameter
r, and construct a (1/r)-cutting [12] of the arrangement of the lines that contain the spines of A1.
We obtain O(r2) cells, each of which is crossed by at most m1/r lines and contains at most n1/r

2

left endpoints of spines of B1. (The latter property can be enforced by further splitting some cells
of the cutting; also, assuming general position, we can construct the cutting so that no endpoint of
any spine lies on the boundary of any of the cutting cells.) For each cell ∆, we form the bi-clique
A′

2(∆)×B2(∆), where B2(∆) consists of all spines whose left endpoints are in ∆, and where A′
2(∆)

consists of all spines whose supporting lines pass completely below ∆. These graphs are passed to
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Figure 9: (a) The two spines σ, σ′ are disjoint and σ lies below σ′. (b) The left endpoint p′ of σ′ lies
above the line ℓ containing σ, and (c) the right endpoint q of σ lies below the line ℓ′ containing σ′.

the next level of the structure. We then consider, for each cell ∆, the set A2(∆) of spines of A1

that cross ∆, and the set B2(∆) as defined above. We pass to the dual plane, where the lines of the
spines in A2(∆) are mapped to points and the left endpoints of spines in B2(∆) are mapped to lines.
We construct a (1/r)-cutting of the arrangement of these dual lines, obtaining O(r2) cells, each of
which is crossed by at most |B2(∆)|/r ≤ n1/r

3 lines and contains at most |A2(∆)|/r2 ≤ m1/r
3

points. As above, we construct, for each cell of the cutting, a bi-clique from the dual points in the
cell and the lines that pass fully above the cell, and pass all these graphs to the next level. We are
left with O(r4) subproblems, each involving at most m1/r

3 spines of A1 and at most n1/r
3 spines of

B1, which we process recursively. We continue to process each subproblem as above, going back to
the primal plane, and keep alternating in this manner, until we reach subproblems in which either
m2

1 < n1, or n2
1 < m1. In the former (resp., latter) case, we continue the recursive construction

only in the primal (resp., dual) plane, and stop as soon as one of m1, n1 becomes smaller than r,
in which case we produce a collection of singleton bi-cliques.

Suppose first that
√

m1 ≤ n1 ≤ m2
1. We show below that, for any fixed initial subgraph A1×B1,

the resulting bi-clique decomposition {A′
2(∆) × B2(∆)}∆, over all cells ∆ of all the cuttings, satisfies

∑

∆

(

|A′
2(∆)|2/3|B2(∆)|2/3 + |A′

2(∆)| + |B2(∆)|
)

= O∗
(

|A1|2/3|B1|2/3 + |A1| + |B1|
)

, (3)

and the same holds for the corresponding decompositions in the dual spaces.

Indeed, let us consider only the primal decompositions, since the dual ones are handled in
exactly the same manner. Since r is taken to be a constant, the sum in (3), over the graphs
produced at the top level of the recursion, is at most C(r)

(

|A1|2/3|B1|2/3 + |A1| + |B1|
)

, where
C(r) is a constant that depends on r. In the next level, we have at most C ′r4 subproblems, for
some absolute constant C ′ > 0, each involving at most |A1|/r3 spines of A1 and at most |B1|/r3

spines of B1. The overall contribution to the sum in (3) by the bi-cliques produced at this level is
at most

C ′r4 · C(r)

(

( |A1|
r3

)2/3( |B1|
r3

)2/3

+
|A1|
r3

+
|B1|
r3

)

=

C ′C(r)
(

|A1|2/3|B1|2/3 + |A1|r + |B1|r
)

.

Continuing in this manner, the contribution to the sum in (3) at the j-th level of the recursion is
at most

(C ′)jr4j · C(r)

(

|A1|2/3

r2j

|B1|2/3

r2j
+

|A1|
r3j

+
|B1|
r3j

)

=
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(C ′)jC(r)
(

|A1|2/3|B1|2/3 + |A1|rj + |B1|rj
)

,

where, at the last level, rj = min
{

|A1|2/3

|B1|1/3
, |B1|2/3

|A1|1/3

}

. Summing over the logarithmically many levels

of the recursion, we obtain the overall bound O∗(|A1|2/3|B1|2/3), assuming r is sufficiently large.

It remains to consider the cases |A1|2 < |B1|, |B1|2 < |A1|. It suffices to consider only the first
case. Here, after j levels of recursion (only in the primal plane), the contribution to (3) is at most

(C ′′)jr2j · C(r)

(

( |A1|
rj

)2/3( |B1|
r2j

)2/3

+
|A1|
rj

+
|B1|
r2j

)

=

(C ′′)jC(r)
(

|A1|2/3|B1|2/3 + |A1|rj + |B1|
)

,

where C ′′ is another absolute constant, and where the last j satisfies rj = O(|A1|). Substituting
this value, summing over all j, and using the inequality |A1|2 ≤ |B1|, we get the overall bound
O∗(|B1|). Similarly, when |B1|2 < |A1|, we get the overall bound O∗(|A1|).

Note that, for the case
√

|A1| ≤ |B1| ≤ |A1|2, when the recursion bottoms out, we have sets
A′, B′ that satisfy |A′

1|2 ≤ |B′
1| or |B′

1|2 ≤ |A′
1|, so the same analysis adds to (3) the terms

O∗(|A1| + |B1|), which thus completes the proof of the claim.

The final level of the structure enforces, for each resulting subgraph of A2 × B2, the condition
that q lie below the line ℓ′ containing σ′, for σ′ ∈ B2 and q the right endpoint of a spine σ ∈ A2.
This is done in a fully analogous manner to the preceding step. It is easily checked that, in complete
analogy to the preceding analysis, the bi-clique decomposition {A2,α ×B2,α}α that results from the
fixed bi-clique A2 × B2, over all cells of all the cuttings, satisfies

∑

α

(

|A2,α|2/3|B2,α|2/3 + |A2,α| + |B2,α|
)

=

O∗
(

|A2|2/3|B2|2/3 + |A2| + |B2|
)

.

Combining this with (3), summing over the entire collection of these last-stage decompositions, and
using the fact that (1) holds for the initial-level decomposition, we conclude that (1) holds for the
overall final decomposition, thus completing the proof of the lemma. �

Remark: Inspecting the proof of the lemma, we see that it can be adapted to handle any relation
which is a conjunction of several sub-relations, each involving points and curves in the plane, such
that the given curves have two degrees of freedom (and constant description complexity), so that
the problem can be dualized to another plane, where the curves become points and the points
become curves. For example, the two instances mentioned above, of points inside unit disks and of
intersecting segments, can be handled by the same proof technique, as can be many other related
instances.
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