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Abstrat

We present several appliations in omputational geometry of Megiddo's parametri

searhing tehnique. These appliations inlude: (1) Finding the minimum Hausdor�

distane in the Eulidean metri between two polygonal regions under translation; (2)

Computing the biggest line segment that an be plaed inside a simple polygon; (3)

Computing the smallest width annulus that ontains a given set of given points in the

plane; (4) Given a set of n points in 3-spae, �nding the largest radius r suh that if

we plae a ball of radius r around eah point, no segment onneting a pair of points

is interseted by a third ball. Besides obtaining eÆient solutions to all these problems

(whih, in every ase, either improve onsiderably previous solutions or are the �rst

non-trivial solutions to these problems), our goal is to demonstrate the versatility of

the parametri searhing tehnique.

1 Introdution

In this paper we present several appliations in omputational geometry of the parametri

searhing tehnique of Megiddo [34℄. This tehnique, whih we briey review below, is

a powerful and ingenious tool for solving eÆiently a variety of optimization problems.
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Introdution 2

Although it has been applied suessfully to several problems in omputational geometry

[1, 2, 3, 4, 20, 21, 36, 38℄, its potential for problems in geometri optimization does not seem

to be widely reognized as yet. Many problems of this kind, whih ould be easily attaked

by the tehnique, are either solved by more ompliated and more ad-ho tehniques, or

are simply left unsolved. The purpose of this paper is to present eÆient solutions, via the

parametri searhing tehnique, to several problems of this kind, with the by-produt goal

of publiizing the tehnique and making it more aessible to the omputational geometry

ommunity.

The parametri searhing tehnique an be desribed in the following general terms

(whih are not as general as possible, but suÆe for our purposes). Suppose we have a

deision problem P(d) that depends on a real parameter d, and is monotone in d, meaning

that if P(d

0

) is true for some d

0

, then P(d) is true for all d < d

0

. Our goal is to �nd the

maximum d for whih P(d) is true (or, if none exists, the supremum of all d for whih P(d)

is true). Suppose further that P(d) an be solved by a (sequential) algorithm A

s

(d) whose

input is a set of data objets (independent of d) and d, and whose ontrol ow is governed

by omparisons, eah of whih amounts to testing the sign of some low degree polynomial in

d. Megiddo's tehnique then runs A

s

\generially" at the unknown maximum d

?

. Whenever

A

s

reahes a branhing point that depends on some omparison with assoiated polynomial

p(d), it omputes all its roots and runs A

s

with the value of d equal to eah of these roots.

This yields an interval between two adjaent roots, known to ontain d

?

, and thus enables

A

s

to determine the sign of p(d

?

), thereby resolving the omparison and allowing the generi

exeution to proeed. As the algorithm proeeds, the interval known to ontain d

?

keeps

shrinking as a result of resolving further omparisons, and at the end either the interval

beomes a singleton, whih is thus the desired d

?

, or else d

?

an be shown to be equal to

its upper endpoint.

The ost of the proedure just desribed is generally too high, beause the number of

times A

s

is invoked within the generi exeution is proportional to the number of ompar-

isons in the generi A

s

. To speed up the exeution, Megiddo proposes to replae the generi

algorithm by a parallel algorithm A

p

. If A

p

uses P proessors and runs in T

p

parallel steps,

then eah parallel step involves at most P independent omparisons. We an then ompute

the roots of all polynomials assoiated with these omparisons, and perform a binary searh

to loate d

�

among them using A

s

at eah binary step. If A

s

has running time T

s

, then the

ost of simulating a parallel step of A

p

is O(P +T

s

logP ), for a total of O(PT

p

+T

p

T

s

logP ).

In most ases the seond term dominates the running time. (Sine the parallel algorithm

is simulated sequentially, we an use the omparison model of Valiant [40℄, whih measures

parallelism only in terms of omparisons being made, and ignores all other operations. This

observation simpli�es the tehnique onsiderably.)

This brief overview of parametri searhing does not over all aspets of the tehnique.

Various extensions and variants inlude a trik due to Cole [20℄, whih in ertain ases im-

proves the running time of the proedure by a logarithmi fator, a variant due to Matou�sek
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Introdution 3

[31℄ and others whih replaes in ertain appliations the parallel generi algorithm by a

randomized (sequential) one, leading to simpli�ed solutions, and a variant due to Frederik-

son and Johnson [24, 25℄, where the optimal solution d

?

is an element of an impliitly given

matrix, whose elements satisfy ertain monotoniity properties. There are various other

extensions of the tehnique. For example, Megiddo's subsequent linear-time algorithm for

linear programming [35℄ an be regarded as an optimized variant of the parametri searhing

tehnique.

Sine its design, about 13 years ago, the parametri searhing tehnique has been su-

essfully applied to a variety of optimization problems. In omputational geometry it has

been applied to the slope seletion problem [21℄, omputing the enter of a set of points in

2 and 3 dimensions [36℄, seleting distanes in the plane [1℄, ertain 2-enter problems for

planar point sets [4℄, range searhing and ray shooting [3℄, and extremal polygon ontain-

ment problems [38℄. This is still a relatively small rop, given the large body of literature

on geometri optimization problems.

In this paper we demonstrate the power of the parametri searhing tehnique by apply-

ing it to solve a variety of additional geometri optimization problems. Roughly speaking,

the reipe for suh an appliation is �rst to solve the �xed-size problem (i.e. the deision

problem P(d)) by an eÆient sequential algorithm and an eÆient parallel one (in Valiant's

model). Then the appliation of parametri searhing is almost routine and yields eÆient

solution to the related optimization problem.

The problems that we solve in this paper are (see also the subsequent setions for

additional disussion of the results and omparison with previous work):

Biggest stik: Computing the longest line segment that an be plaed inside a simple

n-gon. We present an algorithm with running time O(n

8=5+�

), for any � > 0,

1

onsid-

erably improving the previous algorithm of [18℄ whose running time is O(n

1:9999

).

Minimum width annulus: Computing the smallest-width annulus that ontains a given

set of n points in the plane. We give an algorithm with running time O(n

8=5+�

),

signi�antly improving the quadrati-time algorithm of [23℄.

Minimum Hausdor� distane between polygons: Finding the minimum Hausdor�

distane in the Eulidean metri between two polygonal regions in the plane under

translation. This is a hard instane of a general pattern mathing problem, studied

in [7, 28, 29℄. It was left untreated in [29℄, and was solved by a brute-fore ineÆient

method in [7℄. We solve it in time O((mn)

2

log

3

(mn)), where m and n are the number

of edges of the given polygons. This is about three orders of magnitude faster than

the algorithm of [7℄.

1

Throughout this paper, � denotes an arbitrarily small positive onstant. The meaning of suh a om-

plexity bound is that, for any � > 0, the algorithm an be alibrated so that its running time admits the

given bound, where the onstant of proportionality usually depends on �.
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The Biggest Stik Problem 4

Complete mutual visibility among spheres: Given a set of n points in 3-spae, �nd

the largest radius r so that if we plae a ball of radius r around eah point, the balls

are pairwise disjoint, and no segment onneting a pair of points is interseted by

a third ball. This problem arises in the ontext of optial interonnetions between

proessors in 3-spae. We present an O(n

2

log

5

n) algorithm for this problem, whih,

as far as we know, is the �rst nontrivial solution.

Although the ommon theme of our solutions is the appliation of parametri searhing,

the bulk of the tehnial ontribution of this paper is in the solutions of the orresponding

�xed-size problems, whih are by no means easy. They require the appliation of a variety of

sophistiated geometri tehniques, suh as range searhing, point loation among algebrai

varieties, omputing Minkowski sums, and output-sensitive hidden surfae removal in 3-

spae. We also remark that the hallenge is not only in solving these �xed-size problems

eÆiently by a sequential algorithm, but also to design eÆient parallel algorithms (in

Valiant's model) for these problems.

The paper is organized as follows. We present a solution to the biggest stik problem

in Setion 2 and to the minimum-width annulus problem in Setion 3. Setion 4 studies

the problem of omputing the minimum Hausdor� distane between two polygons, and

Setion 5 solves the omplete mutual visibility problem for spheres in 3-spae. We onlude

with some �nal remarks in Setion 6.

2 The Biggest Stik Problem

In this setion we obtain an improved solution to a problem posed by M. MKenna in 1986:

Given a simple polygon P with n edges, �nd the \biggest stik" (i.e. longest line segment)

that an be plaed inside P (i.e. be disjoint from the exterior of P ). It is easy to design an

algorithm for solving this problem in time O(n

2

), and the goal is to obtain subquadrati

solutions. Chazelle and Sharir [18℄ have given suh a subquadrati solution, whih runs in

time O(n

1:9999

) and is based on Collins' ylindrial algebrai deomposition tehnique [22℄.

The running time of their algorithm an be improved to O(n

1:9

) using the results of Chazelle

et al. [14℄ on point loation among algebrai surfaes. In this setion we give a onsiderably

improved solution, whose running time is O(n

8=5+�

). We note that if the endpoints of the

stik are onstrained to lie at verties of P then a faster solution is known [6℄.

Our solution is based on the following approah, also used by the previous algorithms

mentioned above. We �nd, in linear time, a hord e that partitions P into two subpolygons,

P

1

, P

2

, suh that eah ontains at most 2n=3 verties [11℄. We reursively �nd the biggest

stik in P

1

and in P

2

. Then we ompute the biggest stik within P whih rosses e, and the

�nal answer is the largest of these three andidate stiks. To ompute a biggest stik that

rosses e we proeed as follows.
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The Biggest Stik Problem 5

Without loss of generality assume that e is vertial and lies on the y axis, and that the

right (resp. left) side of e is in P

1

(resp. P

2

). Let � be a rightward direted ray emanating

from e. Using a standard duality transformation, we an map the line supporting � to a

point �

�

. We will refer to the point �

�

as the dual of �. The duality yields a planar mapM

1

,

eah of whose faes is the set of points dual to lines supporting the rays emanating from e

and hitting �rst (the interior of) some �xed edge a of P

1

(i.e., the portion of � between e

and a lies inside the losed P

1

). Every edge g of M

1

is the lous of points dual to the rays

that either hit a �xed vertex v of P

1

, or touh a vertex v of P

1

before hitting an edge a of

P

1

, and every vertex of M

1

is a point dual to a ray that either passes through two verties

of P

1

before hitting an edge of P

1

, or passes through a vertex and hits another vertex of P

1

.

We an de�ne a similar mapM

2

for P

2

. By a result of Chazelle and Guibas [17℄, eah M

i

is

a onvex planar subdivision having O(n) faes, edges and verties, and it an be omputed

in O(n log n) time (atually, in O(n) time, using the reent polygon triangulation algorithm

of Chazelle [13℄).

P

1

5

6

7

8

`

e

a

(a; 4)

(a; 2)

(a; 1)

(a; 5)

(a; 7)

(a; 8)

M

1

(a)

`

�

P

2

1

2

3

4

(a; 6)

(a; 3)

Figure 1: Polygon and its visibility map

It is easy to hek that a biggest stik B plaed inside P and rossing e must touh two

verties of P . Hene, there are three ases to onsider, depending on the verties p; q 2 P

that B touhes:

1. both p and q are in P

1

;

2. both p and q are in P

2

;

3. p is in P

1

and q is in P

2

.

For eah of the three subases we �nd the longest segment that an be plaed inside P
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The Biggest Stik Problem 6

and rosses e, and then hoose the longest of the three segments.

If a segment lying inside P rosses e and touhes two verties p; q of P

1

, then the point z

dual to the line supporting B is a vertex of M

1

. By loating z in M

2

we an determine the

length of the longest segment rossing e and passing through p and q, whih an be plaed

inside P . Hene, by loating all verties ofM

1

inM

2

, we an determine in O(n log n) time a

longest segment that satis�es the �rst ondition. Similarly, we an determine in O(n logn)

time a longest segment that satis�es the seond ondition.

The hard ase is when p lies in P

1

and q lies in P

2

. The point dual to the line supporting

suh a segment is an intersetion point between an edge of M

1

and an edge of M

2

. The

number of suh intersetions an be �(n

2

) in the worst ase, so we annot a�ord to ompute

all of them expliitly. Consequently, we have to use a more lever approah.

Let us �x a length Æ > 0, and onsider the deision subproblem of determining whether

a line segment of length at least Æ an be plaed inside P suh that it touhes a vertex

of P

1

and another vertex of P

2

. We preproess the edges of one of the maps, say M

2

,

for eÆient range searhing queries of a partiular kind (detailed below), and then query

the resulting struture with range queries derived from the edges of M

1

. These queries

olletively determine whether there exists a ritial plaement of the segment with the

required properties, thereby solving the �xed-size subproblem.

Reall that every edge g of M

i

orresponds to a pair (v; a), where v is a vertex and a is

an edge of P

i

; the points of g are dual to rays � that pass through v and hit a behind (or

at) v, so that the portion of � between its intersetions with e and a, exluding the point

v, lies in the interior of P

i

.

We regard eah edge g 2 M

1

as the xy-projetion of an ar  in 3-spae. For a point

z 2 g, let �(z) denote the length of the portion of the line dual to z between its intersetions

with e and a. Then the height of  above z, denoted (z), is equal to Æ � �(z). In this

manner, the edges of M

1

are mapped into a olletion G of ars in 3-spae.

Next, we map eah edge h 2 M

2

, assoiated with a pair (w; b) of a vertex w and an

edge b of P

2

, to an ar � in 3-spae, so that the xy-projetion of � is h and the height of �

above any z 2 h, denoted �(z), is the length of the portion of the line dual to z between

its intersetions with e and with b. Let � be the intersetion of h with an edge g of M

1

.

Then � passes above  at � (i.e., �(�)� (�) � 0) if and only if the line dual to � ontains

a plaement of a line segment with length Æ rossing e and lying inside P .

The problem has therefore been redued to the following. Given a olletion G of n ars

in 3-spae, orresponding to the edges of M

1

in the manner desribed above, and a seond

olletion H of n ars, orresponding to the edges of M

2

, determine whether there exists a

pair of ars,  2 G, � 2 H, suh that � passes above .

We solve this problem in two stages. First, following the \hereditary segment tree"
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tehnique of [15℄, we onstrut, in O(n log

2

n) time, a family

M = f (M

1;1

;M

2;1

); (M

1;2

;M

2;2

); : : : g

of O(n logn) anonial pairs of sets of edges, suh that

1. Eah M

1;i

is a subset of the edges of M

1

, and eah M

2;i

is a subset of the edges ofM

2

.

2.

P

i

(jM

1;i

j+ jM

2;i

j) = O(n log

2

n),

3. eah edge g 2M

1;i

intersets every edge of M

2;i

, for eah i, and

4. for every pair of interseting edges g 2 M

1

; h 2 M

2

, there is a pair (M

1;i

;M

2;i

) suh

that g 2M

1;i

and h 2M

2;i

.

Consider one of the pairs of subsets, say (M

1;1

;M

2;1

). Sine every pair of segments in

(M

1;1

;M

2;1

) interset, we an extend the segments to full lines without introduing new

intersetion points. Let G

0

and H

0

denote the sets of ars (atually urves) orresponding

to the lines in M

1;1

and M

2;1

, respetively; let jH

0

j = �, jG

0

j = �. We want to determine

whether any ar of G

0

lies above any ar of H

0

.

Reall that eah ar  2 G

0

(resp.  2 H

0

) is assoiated with a vertex v



and an edge a



of the polygon P

1

(resp. P

2

), so we an map  to a point ̂ = (v

1



; v

2



; a

1



; a

2



) in IR

4

, where

(v

1



, v

2



) are the oordinates of the vertex v



and y = a

1



x + a

2



is the equation of the line

supporting the edge a



(the preeding �ltering segment tree tehnique allows us to ignore

the endpoints of a



and to regard it as a full line). Let S = f̂ j  2 G

0

g be the resulting

set of � points in IR

4

. We assoiate a 4-variate funtion F

�

(x

1

; x

2

; x

3

; x

4

) with eah ar

� 2 H

0

, suh that F

�

(̂) expresses the di�erene in height between � and the ar  2 G

0

at the point of intersetion between their xy-projetions. Let `

;�

denote the line passing

through the verties v



and v

�

, and let z



(resp. z

�

) denote the intersetion point of `

;�

and the line ontaining a



(resp. a

�

); see Figure 2. Then F

�

(̂) = d(z

�

; z



)� Æ. Our goal is

thus to determine whether there exists  2 G

0

suh that

max

�2H

0

F

�

(̂) � 0 : (2.1)

Let �

�

denote the surfae F

�

(x

1

; x

2

; x

3

; x

4

) = 0 in IR

4

; let � = f�

�

j� 2 H

0

g. Notie that,

if we �x � and also �x the �rst three oordinates (v

1



; v

2



; a

1



) in IR

4

, the orresponding line

`

;�

and the point z

�

are �xed, and z



is the intersetion point of `

;�

and some line with slope

a

1



. Hene (as long as a

1



6= slope(`

;�

)), for eah funtion F

�

and any triple (x

1

; x

2

; x

3

) for

whih these orresponding slopes are distint, there is a unique �x

4

= x

4

(x

1

; x

2

; x

3

) suh that

F

�

(x

1

; x

2

; x

3

; �x

4

) = 0, that is, a unique point (x

1

; x

2

; x

3

; �x

4

) on the surfae �

�

. Moreover,

as x

4

inreases beyond �x

4

, F

�

beomes positive or negative, depending on the values of

x

1

; x

2

; x

3

. Assume, for spei�ity, that P

1

lies to the right of e (in a suÆiently small
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`

;�

`

;�

z

�

z



e

e

v

�

v



a



a

�

a

�

a



v



v

�

z

�

z



Figure 2: Illustration of F

�

(̂): (a) slope (`

;�

) > slope(a



); (b) slope (`

;�

) < slope(a



)

neighborhood of e). If x

3

is greater (resp. smaller) than the slope of the line `

;�

, then the

value of F

�

is negative (resp. positive) for x

4

> �x

4

(see Figure 2).

For eah � 2 H

0

, we an thus regard the surfae �

�

as the graph of a funtion x

4

=

�

�

(x

1

; x

2

; x

3

). The funtion is de�ned for all (x

1

; x

2

; x

3

) for whih the orresponding slope

of `

;�

is di�erent from x

3

. Property (3) of anonial pairs in M implies that eah �

�

is

de�ned at the (x

1

; x

2

; x

3

)-oordinates of every point of S.

-1-

[1℄: Verify it!!

The problem at hand an thus be restated as a problem in whih we want to determine

whether there is any point of S lying on the \good" side of some surfae in �. However,

the problem gets ompliated beause the good side may be above the surfae or below it,

depending on the (x

1

; x

2

; x

3

) oordinates of the point and on the surfae parameters. Our

approah is to �rst deompose the problem into subproblems, in eah of whih these good

sides are known and �xed, and then solve eah subproblem separately and see if any of

them yields a good pair of point and surfae.

Suppose, as a speial ase, that

v

2

�

� v

2



v

1

�

� v

1



> a

1



(2.2)

for eah pair � 2 H

0

;  2 G

0

(i.e., the slope of the line `

;�

is greater than that of the edge

a



), then max

�

F

�

(̂) � 0 if and only if ̂ lies above (or on) at least one surfae �

�

, that

is, ̂ does not lie in the (open) bottommost ell B(�) of the arrangement of the surfaes.

In this ase the problem of determining whether any ar of H

0

lies above any ar of G

0

thus redues to determining whether any point of S lies in B(�)



, where B(�)



denotes the

omplement of B(�). A similar formulation holds if the inequality (2.2) is reversed for all

pairs , �. However, for tehnial reasons to be detailed below, we will require that in eah

subproblem one of the following stronger onditions is satis�ed for all pairs , �:

v

2

�

�v

2



v

1

�

�v

1



> maxfa

1



; a

1

�

g (2.3)
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v

2

�

�v

2



v

1

�

�v

1



< minfa

1



; a

1

�

g (2.4)

a

1



<

v

2

�

�v

2



v

1

�

�v

1



< a

1

�

(2.5)

a

1

�

<

v

2

�

�v

2



v

1

�

�v

1



< a

1



: (2.6)

We will show below how to deompose our problem into subproblems of these types.

But �rst we present an eÆient solution of a subproblem in whih the ondition (2.3) holds

for all  and �; the other ases an be handled in a fully symmetri fashion.

First Algorithm

Let � and S be two olletions of � surfaes and � points as de�ned above, so that they

satisfy ondition (2.3). Let r be some suÆiently large onstant. We ompute a

1

r

-net

R � � of size t = O(r log r) in linear time.

2

If there is a pair ̂ 2 S and � 2 R suh that ̂

lies above (or on) �, then we already know that max

�

F

�

(̂) � 0, so we an stop right away.

Otherwise, we deompose the bottommost ell B(R) below the lower envelope of R into

onstant-size ells as follows. Fix a surfae �

i

of R. For every other surfae �

j

2 R� f�

i

g,

we projet the intersetion surfae �

i

\�

j

orthogonally onto the hyperplane x

4

= 0. Let �

�

i

denote the set of resulting t� 1 surfaes in IR

3

. We deompose the arrangement of �

�

i

into

a family �

i

of O(t

3

�(t)) = O(r

3

log

3

r �(r)) ells, using the algorithm of [14℄, where �(:) is

an extremely slowly growing funtion depending on the maximum degree of the surfaes in

�

�

i

(whih is a onstant) and on the inverse Akermann funtion.

For eah ell � 2 �

i

, let

�

0

= f (x

1

; x

2

; x

3

; x

4

) j (x

1

; x

2

; x

3

) 2 � and x

4

< �

i

(x

1

; x

2

; x

3

) g ;

where �

i

is the funtion that represents the surfae �

i

. If �

0

does not interset any surfae of

R, we add �

0

to the �nal deomposition of B(R). Repeating the above step for all surfaes

in R gives a deomposition � of B(R). Sine eah ell of �

i

ontributes at most one ell

to �, j�j = O(r

4

log

4

r �(r)).

For eah ell � 2 �, we ompute �

�

, the set of surfaes in � interseting the interior of

� , and S

�

, the set of points of S lying in � . Thus, we obtain O(r

4

log

4

r �(r)) subproblems,

where the subproblem orresponding to a ell � 2 � involves �

�

and S

�

. Let H

�

and G

�

denote the set of ars orresponding to �

�

and S

�

, respetively, and let �

�

= j�

�

j, �

�

= jS

�

j.

2

Speializing from the general onept, we all a subset R � � of a set of n (algebrai) surfaes a

1

r

-net,

r < n, if every (open) ell of onstant omplexity, of the form obtained in the strati�ation algorithm of [14℄,

whih does not interset any surfae of R, intersets at most n=r surfaes of �; see [27℄ for a more formal

de�nition. Haussler and Welzl [27℄ showed that a random subset of � of size O(r log r) is a

1

r

-net with high

probability. Later Matou�sek [32℄ gave an O(nr

O(1)

)-time deterministi algorithm for omputing a

1

r

-net of

size O(r log r).
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Note that

P

�

�

�

= � and �

�

� �=r. We solve eah subproblem reursively. The reursion

stops when �

�

� �

4

�

. In this ase, we ip the roles of �

�

and S

�

. We map the ars of H

�

to a set �

�

�

= f�̂ j � 2 H

�

g of points, and the ars of G

�

to a set S

�

�

= f�



j  2 G

�

g of

surfaes. We also reverse the diretion of the x

4

-axis.

Sine P

2

lies to the left of the hord e, by (2.3) and the above disussion, there is a pair

 2 G

�

, � 2 H

�

suh that F



(�̂) � 0 if and only if �̂ lies above the surfae �



(with the

reversed diretion of the x

4

-axis). We therefore proeed as above | reursively applying the

deomposition tehnique to determine whether any point of �

�

�

lies above the bottommost

ell B(S

�

�

). But we now ontinue the reursion until we are left with onstant number of

points or surfaes (in whih ase we use any naive brute-fore algorithm), and do not ip

the surfaes and points any more.

We now analyze the running time of the above proedure. Let T (�; �) denote the max-

imum running time of the proedure involving � surfaes and � points. First onsider the

`bottom part' of the proedure (after ipping the roles of G

�

and H

�

). We get the following

reurrene

T (�

�

; �

�

) =

r

4

log

4

r�(r)

X

j=1

T

�

�

�

r

; �

�

j

�

+O(�

�

+ �

�

) ;

where

P

j

�

�

j

= �

�

and  is some onstant. T (�

�

; �

�

) = O(�

�

+ �

�

) if �

�

or �

�

is less than

some �xed onstant. Following the same analysis as in [14℄, one an show that the solution

of the above reurrene is O(�

4+�

�

+ �

�

log �

�

) = O(�

1+�

�

) time, sine �

�

� �

4

�

.

Next, for the top part of the proedure, we get the following reurrene.

T (�; �) =

8

>

>

<

>

>

:

r

4

log

4

r�(r)

X

j=1

T

�

�

r

; �

�

j

�

+O(� + �) if � < �

4

O(�

1+�

) if � � �

4

;

where

P

�

�

�

= � and  is some appropriate onstant. The solution of the above reurrene

is (see e.g. [5℄)

T (�; �) = O(�

4=5+�

�

4=5

+ �

1+�

+ �

1+�

) (2.7)

(where � is a funtion of r, and an be made arbitrarily small by inreasing r).

We leave it to the reader to verify that appropriately modi�ed variants of this proedure

will orretly handle any subproblem satisfying one of the other onditions (2.4){(2.6), with

the same bound on their running time.

Seond Algorithm

Next, we extend the algorithm to the general ase, where none of (2.3){(2.6) hold uniformly

for all pairs of ars. Essentially, the extended algorithm deomposes the problem into

Appliations of Parametri Searhing June 17, 2002



The Biggest Stik Problem 11

subproblems, eah satisfying one of these onditions, and then applies the previous algorithm

to eah subproblem separately.

For an ar � 2 G

0

[H

0

, let h

�

denote the surfae

(x� v

1

�

) �

h

y � a

1

�

(x� v

1

�

)� v

2

�

i

= 0 ; (2.8)

and let  

�

denote the surfae

(x� v

1

�

) �

h

y � z(x� v

1

�

)� v

2

�

i

= 0 (2.9)

in IR

3

. We ompute a

1

r

-net R � H

0

of size O(r log r) (r is a suÆiently large onstant),

and deompose the arrangement fh

�

;  

�

j � 2 Rg in IR

3

into a family � of O(r

3

log

3

r �(r))

onstant-size ells using the algorithm of [14℄. We assoiate with eah ell � 2 � a subset

H

�

� H

0

and another subset G

�

� G

0

. An ar � 2 H

0

is in H

�

if either h

�

or  

�

intersets

� , and an ar  2 G

0

is in G

�

if the point (v

1



; v

2



; a

1



) lies in � . Any ar � 2 H

0

�H

�

is suh

that eah of the left-hand sides of (2.8), (2.9) has a �xed sign over all points (x; y; z) 2 � .

We deompose H

0

� H

�

into four subsets, denoted A

(Æ

1

;Æ

2

)

�

, for Æ

1

; Æ

2

2 f�1;+1g, where

� 2 A

(Æ

1

;Æ

2

)

�

if the orresponding �xed signs of (2.8), (2.9) are Æ

1

, Æ

2

, respetively.

We now have to determine, for eah ell � 2 �, whether there is an ar � either in one of

the sets A

(Æ

1

;Æ

2

)

�

or in H

�

suh that max

2G

�

F

�

(̂) � 0. Notie that, by onstrution, eah

of the four pairs (A

(Æ

1

;Æ

2

)

�

;G

�

) satisfy one of the onditions (2.3){(2.6), so we an use the

�rst algorithm to determine whether any ar of G

�

lies above any ar of A

(Æ

1

;Æ

2

)

�

. We repeat

this step for all ells � 2 �. By (2.7), the total time spent is O(�

4=5+�

�

4=5+�

+ �

1+�

+ �

1+�

)

(sine r is a onstant).

Next, we reursively solve the O(r

3

�(r)) subproblems, where the subproblem orre-

sponding to a ell � requires determining whether any ar of H

�

lies above any ar of G

�

.

The reursion stops when �

�

� �

4

�

. As in the previous algorithm, we now ip the roles of

G

�

and H

�

| we hoose a

1

r

-net of G

�

of size O(r log r) and map the ars of H

�

to points,

and ontinue as above. Following a similar argument, the total time spent by the algorithm

after ipping the roles of G

�

and H

�

is O(�

1+�

�

). Therefore, we get the following reurrene

T (�; �) =

8

>

>

<

>

>

:

O(�

4=5+�

�

4=5

+ �

1+�

+ �

1+�

) +

r

3

log

3

r�(r)

X

i=1

T

�

�

r

; �

i

�

if � < �

4

O(�

1+�

) if � � �

4

;

where

P

�

�

�

= � and  is some appropriate onstant. The solution of this reurrene is also

T (�; �) = O(�

4=5+�

�

4=5

+ �

1+�

+ �

1+�

) : (2.10)

We apply the entire proedure to all anonial pairs (M

1;i

;M

2;i

) in M. By (2.10) and

the seond property of anonial pairs, we an onlude that the running time of the overall
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The Minimum Width Annulus Problem 12

algorithm is O(n

8=5+�

0

) for a slightly larger, but still arbitrarily small �

0

> 0. Putting

everything together, we obtain an algorithm with O(n

8=5+�

) time, to determine whether

a line segment of length Æ an be plaed inside a given polygon P so that it rosses the

diagonal e.

Finding the longest segment

Finally, we apply parametri searhing to turn the preeding algorithm into one that om-

putes the biggest segment that an be plaed inside P and rosses the diagonal e. To this

end, we need an eÆient parallel version of the above proedure in Valiant's model [40℄.

Notie that anonial subsets an be omputed sequentially, beause the properties (1){(4)

do not depend on the value of Æ. So, we only have to parallelize the proedure that, given

two olletions of ars G

0

and H

0

, determines whether any ar of G

0

lies above any ar of

H

0

. This is easy to do in Valiant's model. Consider the �rst algorithm. Sine r is ho-

sen to be some onstant, the set R an be omputed in polylogarithmi

-2-

time using O(n) [2℄: Miha! WHat is

the exponent??

proessors as desribed in [16℄, and the sets �

�

and S

�

an be omputed in onstant par-

allel time using a linear number of proessors. We then obtain a olletion of independent

subproblems, whih an all be proessed in parallel. The running time of this proedure is

easily seen to be logarithmi and the number of proessors an be bounded by the same re-

urrene as for the sequential running time. The seond algorithm an also be parallelized

similarly. The only di�erene is that we now invoke the �rst proedure at every stage,

whih will take logarithmi time, so the seond algorithm runs in polylogarithmi time with

O(�

4=5+�

�

4=5

+ �

1+�

+ �

1+�

) number of proessors. Omitting some of the (rather routine)

details related to parallelization, and plugging all of this into the parametri searhing

paradigm, we obtain an algorithm with O(n

8=5+�

) time, for omputing the longest segment

that an be plaed inside P and that rosses the diagonal e.

Going bak to our original divide-and-onquer algorithm for �nding the biggest stik,

the merge step requires O(n

8=5+�

) time. Hene, we an onlude

Theorem 2.1 Given a simple polygon P with n edges, one an ompute, in time O(n

8=5+�

),

a longest line segment that an be plaed inside P .

3 The Minimum Width Annulus Problem

Next we onsider the problem of approximating a planar point set S, of n points, by a irle.

One way of obtaining suh an approximation is to ompute two onentri irles C

1

and

C

2

of radii r

1

< r

2

suh that all points of S lie in the exterior of C

1

and in the interior of C

2

,

and suh that r

2

� r

1

is minimized (see Figure 3). In other words, we wish to ompute an

annulus of minimum width that ontains all points of S. An O(n

2

) algorithm was proposed

Appliations of Parametri Searhing June 17, 2002



The Minimum Width Annulus Problem 13

by Ebara et al. [23℄. We present an algorithm whose running time is O(n

8=5+�

). As it turns

out, this appliation is a variant of the tehnique used above for the biggest stik problem.

Figure 3: Minimum width annulus

Spei�ally, let Vor



(S);Vor

f

(S) be the losest and the farthest-point Voronoi diagrams

of S, respetively. For a point � 2 IR

2

lying in the Voronoi ell V



(p

i

) (p

i

2 S) of Vor



(S),

let D



(�) denote the distane between � and p

i

. Analogously, de�ne D

f

(�) for Vor

f

(S).

Given a point � in the plane, the width of the thinnest annulus entered at �, whih overs

S, is D

f

(�)�D



(�). Thus, our goal is to ompute

min

�2IR

2

D

f

(�)�D



(�) :

As in the ase of the biggest stik problem, it suÆes to desribe an algorithm that, for a

given parameter W , an determine whether

min

�2IR

2

D

f

(�)�D



(�) �W : (3.1)

It has been shown in [23℄ that the desired minimum is attained either at a vertex of one

of the two Voronoi diagrams or at an intersetion of two diagram edges. By preproessing

Vor



(S);Vor

f

(S) for eÆient planar point loation queries, and by loating eah vertex of

either diagram in the other diagram, we an test in O(n logn) time whether any vertex of

the two diagrams satis�es (3.1). The hard part is testing the (up to quadratially many)

intersetion points of edges of the two diagrams, whih an be done following the same

approah as in the previous setion. We will sketh the general idea and leave it for the

reader to �ll in the details.

Let R denote the set of edges of Vor



(S) and let B denote the set of edges of Vor

f

(S).

First, we deompose R and B, in O(n log

2

n) time, into a family of O(n log n) anonial

Appliations of Parametri Searhing June 17, 2002



The Minimum Width Annulus Problem 14

pairs (R

1

; B

1

); (R

2

; B

2

); : : :, whih staisfy the properties 1{4 stated in the previous setion.

Consider one of the anonial pairs (R

i

; B

i

). Eah edge  of a Voronoi diagram is a portion

of a perpendiular bisetor of two points p



; q



2 S, so we an map it to a point ̂ =

(v

1



; v

2



;m



; Æ



), where (v

1



; v

2



) are the oordinates of the midpoint v



between p



and q



,

m



� 0 is the slope of , and Æ



� 0 is the distane between p



and v



. Let P = f̂ j  2 R

i

g.

We assoiate with eah edge � 2 B

i

a 4-variate funtion F

�

(x

1

; x

2

; x

3

; x

4

), suh that F

�

(̂)

is equal to

D



(�)�D

f

(�) +W = d(�; p



)� d(�; p

�

) +W ;

d(�; p



)

d(�; p

�

)



p



�

p

�

q

�

q



Æ



�

v



Figure 4: Illustration of ̂ and F

�

(x

1

; x

2

; x

3

; x

4

)

where p

�

is any one of the two points of S de�ning �, and where � is the intersetion point

of � and . For a �xed edge � 2 B

i

and a �xed triple (v

1



; v

2



;m



), the line ontaining the

orresponding , and the midpoint v



, are both �xed; hene, the intersetion point �, and

the distane d(�; p

�

) are also �xed. It follows that there is at most one

�

Æ



= x

4

(v

1



; v

2



;m



)

suh that F

�

(v

1



; v

2



;m



;

�

Æ



) = 0. Moreover, F

�

is positive (resp. negative) for x

4

>

�

Æ



(resp. x

4

<

�

Æ



). Hene, D

f

(�) � D



(�) � W for an intersetion point � of R

i

and B

i

if

and only if there is a point of P that does not lie below the lower envelope of the surfaes

fF

�

(x

1

; x

2

; x

3

; x

4

) = 0j� 2 B

i

g. Notie that one an ip the roles of R

i

and B

i

and still

redue the problem to loating a olletion of points below the lower envelope of a olletion

of surfaes in IR

4

. Therefore the �rst algorithm of the previous setion an be adapted to

solve the above problem in sequential time O(n

8=5+�

), or in O(log n) parallel time with

O(n

8=5+�

) proessors. Plugging all this into the parametri searhing paradigm, we obtain

Theorem 3.1 Given a set S of n points in the plane, one an ompute, in time O(n

8=5+�

),

a minimum width annulus that ontains all points of S.

Remark 3.2: An annulus of minimum area an be omputed in linear time using Megiddo's
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linear programming algorithm.

4 Minimum Hausdor� Distane Between Polygonal Objets

In this setion, we onsider the following problem: \Let P be a olletion ofm objets in the

plane and Q another olletion of n objets in the plane. We wish to ompute a translation

t of Q whih minimizes the Hausdor� distane between P and the translated opy of Q."

The Hausdor� distane between two sets A and B of objets is de�ned as

H(A;B) = maxfh(A;B); h(B;A)g ;

where

h(A;B) = max

p2[A

min

q2[B

d(p; q)

(we assume that the objets of A and B are all ompat sets, so the minima and maxima

appearing in this formula are all well de�ned). Here d(�; �) denotes the Eulidean distane

between two points. For a set � � IR

2

and a vetor t, let � � t = fp + t j p 2 �g be the

Minkowski sum of � and t, and, for a set A of objets, let A � t = f� � t j � 2 Ag. We

want to ompute

D(P;Q) = min

t2IR

2

H(P;Q � t) = min

t2IR

2

H(P � t;Q) :

P

Q � t

Q

Figure 5: Minimum Hausdor� distane between two polygons

See Figure 5 for an illustration of the problem for the ase where P and Q are simple

polygons.

The value of D(P;Q) gives a measure of the resemblane between P and Q, so its (ef-

�ient) omputation has appliations in pattern reognition, omputer vision, et. Hutten-

loher and Kedem [28℄ showed that if P and Q are sets of m and n points, respetively, then

D(P;Q) an be omputed in O((mn)

2

�(mn)) time, where �(�) is the inverse Akermann
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funtion. This bound has been reently improved to O(mn(m+n) logmn) by Huttenloher

et al. [29℄. They also showed that if the distane between two points is measured in the

L

1

or L

1

metris, the distane D(P;Q), for sets P, Q eah onsisting of non-interseting

segments, an be omputed in time O((mn)

2

logmn), where m = jPj, n = jQj. However,

their algorithm does not extend to the more useful ase of the Eulidean metri. For this

ase, Alt et al. [7℄ presented a brute fore algorithm with the rather high time omplexity

O((mn)

3

(m+ n) log(m+ n)).

In this setion we show that if P and Q are sets eah onsisting of non-interseting seg-

ments, thenD(P;Q), for the Eulideanmetri, an be omputed in timeO((mn)

2

log

3

(mn)).

We �rst solve the �xed-size problem, whih, given a parameter Æ > 0, determines whether

D(P;Q) � Æ. We then onvert this proedure, using the parametri searh tehnique, into

another algorithm that omputes the value of D(P;Q).

We are thus given two sets P, Q, eah onsisting of non-interseting segments, and

a parameter Æ > 0, and we wish to determine whether D(P;Q) � Æ. Without loss of

generality, we an assume that P is �xed and we seek a translation of Q whih brings it

within distane Æ of P. A plaement of Q an be de�ned by the position of some �xed

referene point O

Q

rigidly attahed to Q. We assume that the original set Q is plaed so

that O

Q

lies at the origin.

P

Æ

e

Æ

e

Figure 6: e

Æ

and P

Æ

Let B

Æ

denote a disk of radius Æ around the origin. For a segment e, let e

Æ

= e�B

Æ

=

S

fp + B

Æ

j p 2 eg be the Minkowski sum of e and B

Æ

. The expanded segment e

Æ

has the
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shape of a raetrak | a retangle of width 2Æ with two semiirles of radius Æ attahed

to its sides. Let P

Æ

=

S

e2P

e

Æ

(see Figure 6). Sine the relative interiors of the segments

in P do not interset eah other, the boundaries of e

Æ

and e

0

Æ

, for e; e

0

2 P, interset in at

most two points (assuming general position of e, e

0

[30℄; in any ase, it is easy to show that

the intersetion of the boundaries of e

Æ

, e

0

Æ

onsists of at most two onneted omponents).

Therefore, by the result of [30℄, P

Æ

has only O(m) edges (and, symmetrially, Q

Æ

has O(n)

edges); here eah edge of P

Æ

or of Q

Æ

is either a straight segment or a irular ar.

For a set A � IR

2

, let A



denote the omplement IR

2

� A. Let K

QP

= P



Æ

	Q be the

Minkowski di�erene of P



Æ

and Q.

Lemma 4.1 K



QP

is the set of translations t of Q for whih h(Q� t;P) � Æ.

Proof: Let t be a plaement of Q for whih h(Q� t;P) � Æ. This is equivalent to asserting

that, for every point � 2 Q, there is a point � 2 P, suh that d(�+ t; �) � Æ. In other words,

h(Q� t;P) � Æ if and only if (Q� t)\P



Æ

= ;. That is, there is no point q 2 Q and a point

p in P



Æ

with q + t = p or t = p� q. Hene, h(Q� t;P) � Æ if and only if t 2 K



QP

. 2

Eah edge of K



QP

is ontained in an ar of the form z� q, where z is an edge of P

Æ

and

q is an endpoint of a segment of Q, or z is a vertex of P

Æ

and q is a segment of Q, or z is a

point on a irular ar of P

Æ

whose tangent is parallel to a segment q of Q. Sine K



QP

is

de�ned by O(mn) segments and irular ars, its ombinatorial omplexity is O((mn)

2

).

In order to de�ne the set of translations t for whih h(P;Q� t) � Æ, we ip the roles P

and Q, i.e., we �x Q and de�ne the set of plaements t of P for whih h(P � t;Q) � Æ. By

the preeding lemma, this set is K



PQ

, where K

PQ

= Q



Æ

	P. It now follows that

Lemma 4.2 D(P;Q) � Æ if and only if K



QP

\ (�K



PQ

) is not empty, where �K



PQ

=

f�x j x 2 K



PQ

g.

In view of the above disussion, an algorithm for determining whether D(P;Q) � Æ an

be summarized as follows:

1. Compute P

Æ

and Q

Æ

.

2. Compute K

QP

= P



Æ

	Q and K

PQ

= Q



Æ

	P.

3. Determine whether K



QP

and �(K



PQ

) have nonempty intersetion.

As for the time omplexity of (a sequential version of) the algorithm, Step 1 an be

aomplished in time O((m + n) log

2

(m + n)) using the algorithm of [30℄. Steps 2 and 3

an be performed together by onstruting the entire arrangement of ars that de�ne the

edges of K



QP

and �K



PQ

and then, for eah fae in the resulting arrangement, determining
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whether it lies in both K



QP

and �K



PQ

. Sine the edges of K

QP

and �K



PQ

are de�ned by

O(mn) segments and irular ars, a sweep line algorithm an perform the above steps in

O((mn)

2

logmn) time. Hene, we an onlude

Theorem 4.3 Given a olletion P of m non-interseting segments and another olletion

Q of n non-interseting segments in the plane, one an determine whether D(P;Q) � Æ in

time O((mn)

2

log(mn)).

Next, in order to apply parametri searhing, we need an eÆient parallel version of

the algorithm. It is well known that the arrangement of a olletion of t `well-behaving'

ars in the plane an be omputed in O(log t) time using O(t

2

) proessors, see e.g. [1℄.

Therefore the arrangement of fe � B

Æ

j e 2 Pg an be omputed in O(logm) time with

O(m

2

) proessors. After having omputed the arrangement, we determine for eah fae f

of the arrangement the number of raetraks e

Æ

that ontain f ; we denote this quantity by



f

. For two adjaent faes f; f

0

, we have j

f

� 

f

0

j = 1. We �rst ompute a spanning tree

of the dual graph of the arrangement, and then onvert it to an Eulerian path �. Using

an algorithm of Tarjan and Vishkin [39℄, � an be omputed in O(logm) time with O(m

2

)

proessors (see also [1℄). One we have omputed �, we an ompute 

f

for eah fae of

the arrangement by a parallel pre�x omputation algorithm, see e.g. [1℄. It is easily seen

that an edge  of the arrangement is in the boundary of P

Æ

if and only if 

f

= 0 for one of

the faes adjaent to . Testing eah edge of the arrangement in parallel, we an ompute

the edges of P

Æ

in onstant time. Thus P

Æ

an be omputed in O(logm) time with O(m

2

)

proessors. Similarly, one an ompute Q



Æ

in O(log n) time using O(n

2

) proessors. Finally,

an intersetion between K



QP

and �K



PQ

an be deteted in O(logmn) time with O(m

2

n

2

)

proessors by omputing the arrangement of ars de�ning the edges of K

QP

and �K



PQ

and by determining whether there is a fae in the resulting arrangement that lies in both

K



QP

and �K



PQ

. A variant of the proedure that omputes P

Æ

an be used to perform

the above two steps. Hene, the overall running time of the algorithm is O(logmn) using

O(m

2

n

2

) proessors. Applying the parametri searh tehnique to the resulting algorithm,

we an onlude

Theorem 4.4 Given a olletion P of m non-interseting segments and another olletion

Q of n non-interseting segments in the plane, one an ompute the minimum Hausdor�

distane between P and Q, under translation, in time O((mn)

2

log

3

(mn)).

5 Complete Mutual Visibility Among Spheres

Let S = fS

1

; : : : ; S

n

g be a given set of n spheres in IR

3

, all with the same radius. Let 

i

denote the enter of S

i

, for i = 1; : : : ; n. Two spheres S

i

and S

j

are said to be mutually
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visible if the line segment 

i



j

does not interset (the interior of) any other sphere, and S

is ompletely mutually visible if every pair of spheres in S is mutually visible.

The problem studied in this setion is: \Given a set P of n points in IR

3

, we wish to

determine the largest possible ommon radius r suh that the set of n spheres of radius r,

entered at the given points, is (pairwise disjoint and) ompletely mutually visible."

This problem arises in the ontext of parallel omputations using optial interonnetions.

-3-

[3℄: GIve a referene??

The spheres model the individual proessors, and mutual visibility between a pair of spheres

models the ability of the two proessors to ommuniate by an optial link. In our problem

the loations of the (enters of the) proessors are predetermined, and we want to determine

how large an the proessors be if every pair is to be able to ommuniate optially.

By running any losest-pair algorithm, e.g., [10℄, we an determine in O(n log n) time

the largest radius r

0

so that the interiors of all spheres of radius r

0

entered at the points

of P are pairwise disjoint. Therefore, we only have to determine the largest radius r

�

� r

0

suh that the spheres of radius r

�

entered at the points of P are mutually visible. In order

to employ the parametri searhing tehnique, we solve the following �xed-size deision

problem: \Given a set S of n pairwise disjoint spheres of unit radius, determine if it is

ompletely mutually visible".

We use the following simple sheme. Fix a sphere of S, say S

n

. We determine in

O(n log

2

n) time whether all other spheres of S are mutually visible from S

n

. Repeating this

proedure for all spheres of S yields an O(n

2

log

2

n) time algorithm to determine whether

S is ompletely mutually visible.

Let 

i

denote the enter of S

i

, for i = 1; : : : ; n. In order to determine whether there is

any sphere S

i

for whih the segment 

i



n

intersets the interior of any other sphere, we sort

the spheres of S � fS

n

g in the nondereasing order of the distanes of their enters from



n

. Let S

1

; : : : ; S

n�1

be the resulting sequene. Sine the spheres in S are pairwise disjoint

and ongruent, it an be shown that if i > j then S

i

annot hide S

j

when viewed from 

n

(i.e., for any point p 2 S

j

, the segment p

n

annot interset the interior of S

i

). We de�ne

the projetion of a point p 2 IR

3

on S

n

, denoted p

�

, to be the intersetion point of the the

sphere S

n

and the ray emanating from 

n

in diretion ~

n

p. Let S

�

i

denote the projetion of

S

i

on S

n

, and let S

�

= fS

�

i

j i < n g. S

�

is a olletion of spherial aps; the ap S

�

i

has 

�

i

as its enter, for i = 1; : : : ; n.

Lemma 5.1 S

n

and S

j

are mutually visible if and only if 

�

j

does not lie in the union of

S

�

1

; : : : ; S

�

j�1

.

Proof: Consider the segment 

n



j

. By the above disussion, if i > j then S

i

annot

interset 

n



j

. Therefore, S

j

and S

n

are mutually visible if and only if none of S

1

; : : : ; S

j�1

interset the segment 

n



j

, whih immediately implies the lemma. 2

In view of the lemma, it suÆes to determine for eah S

j

whether 

�

j

lies in

S

k<j

S

�

k

. We
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onstrut a minimum height binary tree B on S

�

whose i

th

-leftmost leaf stores S

�

i

. For eah

node Æ 2 B, let U

Æ

denote the union of the aps stored at the leaves of the subtree rooted

at Æ. If Æ is a left hild of its parent, then we also assoiate with Æ the subset C

Æ

of enters

of the aps stored at the leaves of the subtree rooted at the right sibling of Æ. If Æ is the

root of B or the right hild of its parent, we set C

Æ

= ;. Sine the boundaries of every pair

of aps in S

�

intersets in at most two points, U

Æ

has linear omplexity [30℄. Moreover, U

Æ

an be omputed in a bottom-up fashion, beause U

Æ

= U

lson(Æ)

[ U

rson(Æ)

. It follows from

the onstrution and Lemma 5.1 that S

n

is not mutually visible to all the other spheres if

and only if there is a node Æ 2 B suh that one of the points in C

Æ

lies in U

Æ

.

Using a variant of the algorithm of Kedem et al. [30℄, we an ompute U

Æ

from U

lson(Æ)

and U

rson(Æ)

in O(jU

Æ

j log jU

Æ

j) time.

3

Moreover, the algorithm an easily be modi�ed so that

in O(jC

Æ

j log jU

Æ

j) additional time one an determine whether any point of C

Æ

lies in U

Æ

.

Sine

P

Æ

(jU

Æ

j+ jC

Æ

j) = O(n logn), the total time spent is O(n log

2

n), as laimed earlier.

In order to apply the parametri searh tehnique, we need a parallel version of the

above proedure. Sine the algorithm in [30℄ is based on a sweep-line paradigm, it is not so

easy to parallelize. We will desribe a di�erent algorithm for omputing the union of two

planar or spherial regions, whih is easy to parallelize. For the sake of simpliity we will

desribe the algorithm assuming that U

Æ

is a planar map.

Let R;B denote the set of edges in U

lson(Æ)

and U

rson(Æ)

, respetively; let m = jRj+ jBj.

By splitting eah edge into two subedges, if required, we an assume that the edges in R[B

are x-monotone. We also assume that for every edge  of U

lson(Æ)

(resp. U

rson(Æ)

) we know

whether the top or the bottom side of  lies in U

lson(Æ)

(resp. U

rson(Æ)

). Notie that eah

intersetion point of an edge of R and an edge of B is a vertex of U

Æ

, the other verties

being those verties of U

lson(Æ)

(resp. U

rson(Æ)

) lying outside U

rson(Æ)

(resp. U

lson(Æ)

).

To ompute the intersetion points of R and B, we onstrut a segment tree T on the

edges of R[B; see [37℄ for details. Eah node v of T is assoiated with a horizontal interval

�

v

, a subset R

v

of edges in R, and a subset B

v

of edges in B. The x-projetion of any

edge in R

v

[B

v

overs the interval �

v

, and an edge of R[B is stored in at most O(logm)

nodes along two paths of T . We assume that the edges of R

v

[B

v

are lipped to within the

vertial strip �

v

� [�1;+1℄. If  2 R

v

then, for eah anestor w of v (inluding v itself),

we determine the edges of B

w

that interset . Sine the ars of B

w

fully ross the strip

from left to right and are noninterseting, they form a list whih is totally ordered in the y-

diretion. Sine  intersets any ar of B

w

in at most two points, we an determine all edges

that interset  in O(logm) time by doing a multiple binary searh, in whih we loate the

endpoints of  and the highest and lowest ars of B

w

that interset . After the searhes,

we simply go over all the ars that were found, whih form a ontiguous sublist of B

w

, and

3

Although the original algorithm of [30℄ omputes the union of two planar maps, it an be easily extended

to spherial maps. Atually, one an onvert U

Æ

, for any Æ 2 B, into a planar map by taking a stereographi

projetion of aps in S

�

on a horizontal plane.
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report all the orresponding intersetion points. Sine the total number of intersetions,

over all pairs of ars, is only O(m), we have enough proessors to report all intersetions in

onstant parallel time (in Valiant's model). We apply a symmetri proedure to the ars 

in B

v

. Repeating the same proedure at all nodes v 2 T , we an determine all intersetion

points of R and B. Note that the searhes also �nd all verties of U

lson(Æ)

that lie outside

U

rson(Æ)

, and vie versa. Reall that there are only O(m) intersetion points. The above

proedure an be implemented in O(logm) time using O(m logm) proessors; see [15, 37℄

for details.

One we have omputed the intersetion points, we an omplete the onstrution of the

boundary of U

Æ

, denoted as �U

Æ

, whih involves the determination of the edges of U

Æ

and

the onneted omponents of its boundary, using a sequential algorithm, beause it does not

involve any omparisons. We �rst split the edges of U

lson(Æ)

and U

rson(Æ)

at the intersetion

points of R and B. It deomposes eah onneted omponent of �U

lson(Æ)

and �U

rson(Æ)

into

maximal hains (the hain is the whole omponent if it does not ontain any intersetion

point), so that no hain ontains an intersetion point in its (relative) interior. It is easily

seen that either the entire hain appears on �U

Æ

, or it does not appear at all. If a hain is

an entire onneted omponent of U

lson(Æ)

(resp. U

rson(Æ)

), then either all of its verties lie

on �U

Æ

, or none of them lie on �U

Æ

, so by piking one vertex of the omponent and loating

it in U

rson(Æ)

(resp. U

lson(Æ)

), we an determine whether it appears on �U

Æ

. On the other

hand, if a hain is not the entire omponent, i.e., its endpoints are intersetion points, we

an determine whether it appears on �U

Æ

by a loal test at one of its endpoints. We disard

all hains that do not appear on the boundary of U

Æ

. We now omplete the onstrution of

U

Æ

by gluing the remaining hains together, i.e., we onnet a hain of U

lson(Æ)

with a hain

of U

rson(Æ)

if they share a ommon endpoint. Sine the endpoints of hains are intersetion

points of R and B, it is easily seen that the hains glue together properly. The total time

spent in these two steps is O(n log n), beause apart from loal tests it only requires O(n)

point loation queries in planar subdivisions.

As for loating the points of C

Æ

in U

Æ

, we assoiate a point p of C

Æ

with a node v of

T if the x-projetion of p lies in �

v

; p is stored at O(logm) nodes along a path in T . Let

C

v

be the set of points assoiated with v. Let 

v

(resp. 

0

v

) be the edge of R

v

(resp. B

v

)

lying immediately above p. If there is a node v suh that p 2 C

v

, and either the bottom

side of 

v

is in U

lson(Æ)

or the bottom side of 

0

v

is in U

rson(Æ)

, then p 2 U

Æ

. By doing binary

searhes in parallel at all O(logm) nodes where p is stored, we an determine in O(logm)

time whether p lies in U

Æ

. Sine

P

v

jC

v

j = O(jC

Æ

j logm), the total number of proessors

required over all points of C

Æ

is O(jC

Æ

j logm).

Finally, to determine whether S

n

is mutually visible from all other spheres, we run

the above proedure on the binary tree B in a bottom-up fashion, running at all nodes of

the same level in parallel. Sine a ap of S

�

or a point of C

�

is being stored at only one

node of B for any given level, the total number of proessors required to run the above

proedure is O(n logn). The total time spent by the algorithm under Valiant's model is
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O(log

2

n). It thus yields an overall parallel algorithm for determining whether S is mutually

visible, whih requires O(log

2

n) time and O(n

2

logn) proessors. Plugging all this in the

parametri searh paradigm, we an onlude

Theorem 5.2 Given a set of n points in IR

3

, we an determine, in time O(n

2

log

5

n), the

largest possible ommon radius r, so that the spheres with radius r entered at the given

points are (pairwise disjoint and) ompletely mutually visible.

6 Conlusion

In this paper we applied the parametri searhing tehnique to a number of problems |

the biggest stik problem, the minimum width annulus problem, the problem of omputing

the minimum Hausdor� distane under translation in the Eulidean metri between two

polygonal regions, and the problem of �nding largest mutually visible spheres. For eah of

these problems we either obtained the �rst nontrivial solution, or developed a signi�antly

faster algorithm than the previously best known one. We nevertheless feel that most of our

algorithms are not lose to optimal and better bounds an be ahieved.

We onlude by mentioning some open problems:

1. In Setion 2, we desribed an algorithm for partitioning the lower envelope of n alge-

brai surfaes of �xed degree in IR

4

into a family of O(n

4

�(r)) onstant-size ells. We

are not aware of any mathing lower bound. A better solution for this problem will

yield an improved algorithm for the biggest stik and the minimum width annulus

problems. We onjeture an upper bound that is nearly ubi in n.

2. Is there a subquadrati algorithm for omputing a longest segment that an be plaed

inside a polygonal region with holes?

3. Is it possible to determine whether the minimum Hausdor� distane between two

sets of segments, as in Setion 4, is at most Æ, without omputing K



PQ

\ (�K



QP

)

expliitly? In partiular, an suh a omputation be arried out in o((mn)

2

) time?

4. In general, there is the hallenge of applying the parametri searhing tehnique to

other problems in omputational geometry and geometri optimization. Reently,

Chazelle et al. [16℄ have obtained improved solutions for some other geometri prob-

lems, inluding the omputation of the diameter and width of point sets in IR

3

, using

the parametri searhing tehnique.
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