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Abstra
t

We present several appli
ations in 
omputational geometry of Megiddo's parametri


sear
hing te
hnique. These appli
ations in
lude: (1) Finding the minimum Hausdor�

distan
e in the Eu
lidean metri
 between two polygonal regions under translation; (2)

Computing the biggest line segment that 
an be pla
ed inside a simple polygon; (3)

Computing the smallest width annulus that 
ontains a given set of given points in the

plane; (4) Given a set of n points in 3-spa
e, �nding the largest radius r su
h that if

we pla
e a ball of radius r around ea
h point, no segment 
onne
ting a pair of points

is interse
ted by a third ball. Besides obtaining eÆ
ient solutions to all these problems

(whi
h, in every 
ase, either improve 
onsiderably previous solutions or are the �rst

non-trivial solutions to these problems), our goal is to demonstrate the versatility of

the parametri
 sear
hing te
hnique.

1 Introdu
tion

In this paper we present several appli
ations in 
omputational geometry of the parametri


sear
hing te
hnique of Megiddo [34℄. This te
hnique, whi
h we brie
y review below, is

a powerful and ingenious tool for solving eÆ
iently a variety of optimization problems.
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Although it has been applied su

essfully to several problems in 
omputational geometry

[1, 2, 3, 4, 20, 21, 36, 38℄, its potential for problems in geometri
 optimization does not seem

to be widely re
ognized as yet. Many problems of this kind, whi
h 
ould be easily atta
ked

by the te
hnique, are either solved by more 
ompli
ated and more ad-ho
 te
hniques, or

are simply left unsolved. The purpose of this paper is to present eÆ
ient solutions, via the

parametri
 sear
hing te
hnique, to several problems of this kind, with the by-produ
t goal

of publi
izing the te
hnique and making it more a

essible to the 
omputational geometry


ommunity.

The parametri
 sear
hing te
hnique 
an be des
ribed in the following general terms

(whi
h are not as general as possible, but suÆ
e for our purposes). Suppose we have a

de
ision problem P(d) that depends on a real parameter d, and is monotone in d, meaning

that if P(d

0

) is true for some d

0

, then P(d) is true for all d < d

0

. Our goal is to �nd the

maximum d for whi
h P(d) is true (or, if none exists, the supremum of all d for whi
h P(d)

is true). Suppose further that P(d) 
an be solved by a (sequential) algorithm A

s

(d) whose

input is a set of data obje
ts (independent of d) and d, and whose 
ontrol 
ow is governed

by 
omparisons, ea
h of whi
h amounts to testing the sign of some low degree polynomial in

d. Megiddo's te
hnique then runs A

s

\generi
ally" at the unknown maximum d

?

. Whenever

A

s

rea
hes a bran
hing point that depends on some 
omparison with asso
iated polynomial

p(d), it 
omputes all its roots and runs A

s

with the value of d equal to ea
h of these roots.

This yields an interval between two adja
ent roots, known to 
ontain d

?

, and thus enables

A

s

to determine the sign of p(d

?

), thereby resolving the 
omparison and allowing the generi


exe
ution to pro
eed. As the algorithm pro
eeds, the interval known to 
ontain d

?

keeps

shrinking as a result of resolving further 
omparisons, and at the end either the interval

be
omes a singleton, whi
h is thus the desired d

?

, or else d

?


an be shown to be equal to

its upper endpoint.

The 
ost of the pro
edure just des
ribed is generally too high, be
ause the number of

times A

s

is invoked within the generi
 exe
ution is proportional to the number of 
ompar-

isons in the generi
 A

s

. To speed up the exe
ution, Megiddo proposes to repla
e the generi


algorithm by a parallel algorithm A

p

. If A

p

uses P pro
essors and runs in T

p

parallel steps,

then ea
h parallel step involves at most P independent 
omparisons. We 
an then 
ompute

the roots of all polynomials asso
iated with these 
omparisons, and perform a binary sear
h

to lo
ate d

�

among them using A

s

at ea
h binary step. If A

s

has running time T

s

, then the


ost of simulating a parallel step of A

p

is O(P +T

s

logP ), for a total of O(PT

p

+T

p

T

s

logP ).

In most 
ases the se
ond term dominates the running time. (Sin
e the parallel algorithm

is simulated sequentially, we 
an use the 
omparison model of Valiant [40℄, whi
h measures

parallelism only in terms of 
omparisons being made, and ignores all other operations. This

observation simpli�es the te
hnique 
onsiderably.)

This brief overview of parametri
 sear
hing does not 
over all aspe
ts of the te
hnique.

Various extensions and variants in
lude a tri
k due to Cole [20℄, whi
h in 
ertain 
ases im-

proves the running time of the pro
edure by a logarithmi
 fa
tor, a variant due to Matou�sek
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[31℄ and others whi
h repla
es in 
ertain appli
ations the parallel generi
 algorithm by a

randomized (sequential) one, leading to simpli�ed solutions, and a variant due to Frederi
k-

son and Johnson [24, 25℄, where the optimal solution d

?

is an element of an impli
itly given

matrix, whose elements satisfy 
ertain monotoni
ity properties. There are various other

extensions of the te
hnique. For example, Megiddo's subsequent linear-time algorithm for

linear programming [35℄ 
an be regarded as an optimized variant of the parametri
 sear
hing

te
hnique.

Sin
e its design, about 13 years ago, the parametri
 sear
hing te
hnique has been su
-


essfully applied to a variety of optimization problems. In 
omputational geometry it has

been applied to the slope sele
tion problem [21℄, 
omputing the 
enter of a set of points in

2 and 3 dimensions [36℄, sele
ting distan
es in the plane [1℄, 
ertain 2-
enter problems for

planar point sets [4℄, range sear
hing and ray shooting [3℄, and extremal polygon 
ontain-

ment problems [38℄. This is still a relatively small 
rop, given the large body of literature

on geometri
 optimization problems.

In this paper we demonstrate the power of the parametri
 sear
hing te
hnique by apply-

ing it to solve a variety of additional geometri
 optimization problems. Roughly speaking,

the re
ipe for su
h an appli
ation is �rst to solve the �xed-size problem (i.e. the de
ision

problem P(d)) by an eÆ
ient sequential algorithm and an eÆ
ient parallel one (in Valiant's

model). Then the appli
ation of parametri
 sear
hing is almost routine and yields eÆ
ient

solution to the related optimization problem.

The problems that we solve in this paper are (see also the subsequent se
tions for

additional dis
ussion of the results and 
omparison with previous work):

Biggest sti
k: Computing the longest line segment that 
an be pla
ed inside a simple

n-gon. We present an algorithm with running time O(n

8=5+�

), for any � > 0,

1


onsid-

erably improving the previous algorithm of [18℄ whose running time is O(n

1:9999

).

Minimum width annulus: Computing the smallest-width annulus that 
ontains a given

set of n points in the plane. We give an algorithm with running time O(n

8=5+�

),

signi�
antly improving the quadrati
-time algorithm of [23℄.

Minimum Hausdor� distan
e between polygons: Finding the minimum Hausdor�

distan
e in the Eu
lidean metri
 between two polygonal regions in the plane under

translation. This is a hard instan
e of a general pattern mat
hing problem, studied

in [7, 28, 29℄. It was left untreated in [29℄, and was solved by a brute-for
e ineÆ
ient

method in [7℄. We solve it in time O((mn)

2

log

3

(mn)), where m and n are the number

of edges of the given polygons. This is about three orders of magnitude faster than

the algorithm of [7℄.

1

Throughout this paper, � denotes an arbitrarily small positive 
onstant. The meaning of su
h a 
om-

plexity bound is that, for any � > 0, the algorithm 
an be 
alibrated so that its running time admits the

given bound, where the 
onstant of proportionality usually depends on �.
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Complete mutual visibility among spheres: Given a set of n points in 3-spa
e, �nd

the largest radius r so that if we pla
e a ball of radius r around ea
h point, the balls

are pairwise disjoint, and no segment 
onne
ting a pair of points is interse
ted by

a third ball. This problem arises in the 
ontext of opti
al inter
onne
tions between

pro
essors in 3-spa
e. We present an O(n

2

log

5

n) algorithm for this problem, whi
h,

as far as we know, is the �rst nontrivial solution.

Although the 
ommon theme of our solutions is the appli
ation of parametri
 sear
hing,

the bulk of the te
hni
al 
ontribution of this paper is in the solutions of the 
orresponding

�xed-size problems, whi
h are by no means easy. They require the appli
ation of a variety of

sophisti
ated geometri
 te
hniques, su
h as range sear
hing, point lo
ation among algebrai


varieties, 
omputing Minkowski sums, and output-sensitive hidden surfa
e removal in 3-

spa
e. We also remark that the 
hallenge is not only in solving these �xed-size problems

eÆ
iently by a sequential algorithm, but also to design eÆ
ient parallel algorithms (in

Valiant's model) for these problems.

The paper is organized as follows. We present a solution to the biggest sti
k problem

in Se
tion 2 and to the minimum-width annulus problem in Se
tion 3. Se
tion 4 studies

the problem of 
omputing the minimum Hausdor� distan
e between two polygons, and

Se
tion 5 solves the 
omplete mutual visibility problem for spheres in 3-spa
e. We 
on
lude

with some �nal remarks in Se
tion 6.

2 The Biggest Sti
k Problem

In this se
tion we obtain an improved solution to a problem posed by M. M
Kenna in 1986:

Given a simple polygon P with n edges, �nd the \biggest sti
k" (i.e. longest line segment)

that 
an be pla
ed inside P (i.e. be disjoint from the exterior of P ). It is easy to design an

algorithm for solving this problem in time O(n

2

), and the goal is to obtain subquadrati


solutions. Chazelle and Sharir [18℄ have given su
h a subquadrati
 solution, whi
h runs in

time O(n

1:9999

) and is based on Collins' 
ylindri
al algebrai
 de
omposition te
hnique [22℄.

The running time of their algorithm 
an be improved to O(n

1:9

) using the results of Chazelle

et al. [14℄ on point lo
ation among algebrai
 surfa
es. In this se
tion we give a 
onsiderably

improved solution, whose running time is O(n

8=5+�

). We note that if the endpoints of the

sti
k are 
onstrained to lie at verti
es of P then a faster solution is known [6℄.

Our solution is based on the following approa
h, also used by the previous algorithms

mentioned above. We �nd, in linear time, a 
hord e that partitions P into two subpolygons,

P

1

, P

2

, su
h that ea
h 
ontains at most 2n=3 verti
es [11℄. We re
ursively �nd the biggest

sti
k in P

1

and in P

2

. Then we 
ompute the biggest sti
k within P whi
h 
rosses e, and the

�nal answer is the largest of these three 
andidate sti
ks. To 
ompute a biggest sti
k that


rosses e we pro
eed as follows.
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Without loss of generality assume that e is verti
al and lies on the y axis, and that the

right (resp. left) side of e is in P

1

(resp. P

2

). Let � be a rightward dire
ted ray emanating

from e. Using a standard duality transformation, we 
an map the line supporting � to a

point �

�

. We will refer to the point �

�

as the dual of �. The duality yields a planar mapM

1

,

ea
h of whose fa
es is the set of points dual to lines supporting the rays emanating from e

and hitting �rst (the interior of) some �xed edge a of P

1

(i.e., the portion of � between e

and a lies inside the 
losed P

1

). Every edge g of M

1

is the lo
us of points dual to the rays

that either hit a �xed vertex v of P

1

, or tou
h a vertex v of P

1

before hitting an edge a of

P

1

, and every vertex of M

1

is a point dual to a ray that either passes through two verti
es

of P

1

before hitting an edge of P

1

, or passes through a vertex and hits another vertex of P

1

.

We 
an de�ne a similar mapM

2

for P

2

. By a result of Chazelle and Guibas [17℄, ea
h M

i

is

a 
onvex planar subdivision having O(n) fa
es, edges and verti
es, and it 
an be 
omputed

in O(n log n) time (a
tually, in O(n) time, using the re
ent polygon triangulation algorithm

of Chazelle [13℄).

P

1

5

6

7

8

`

e

a

(a; 4)

(a; 2)

(a; 1)

(a; 5)

(a; 7)

(a; 8)

M

1

(a)

`

�

P

2

1

2

3

4

(a; 6)

(a; 3)

Figure 1: Polygon and its visibility map

It is easy to 
he
k that a biggest sti
k B pla
ed inside P and 
rossing e must tou
h two

verti
es of P . Hen
e, there are three 
ases to 
onsider, depending on the verti
es p; q 2 P

that B tou
hes:

1. both p and q are in P

1

;

2. both p and q are in P

2

;

3. p is in P

1

and q is in P

2

.

For ea
h of the three sub
ases we �nd the longest segment that 
an be pla
ed inside P
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and 
rosses e, and then 
hoose the longest of the three segments.

If a segment lying inside P 
rosses e and tou
hes two verti
es p; q of P

1

, then the point z

dual to the line supporting B is a vertex of M

1

. By lo
ating z in M

2

we 
an determine the

length of the longest segment 
rossing e and passing through p and q, whi
h 
an be pla
ed

inside P . Hen
e, by lo
ating all verti
es ofM

1

inM

2

, we 
an determine in O(n log n) time a

longest segment that satis�es the �rst 
ondition. Similarly, we 
an determine in O(n logn)

time a longest segment that satis�es the se
ond 
ondition.

The hard 
ase is when p lies in P

1

and q lies in P

2

. The point dual to the line supporting

su
h a segment is an interse
tion point between an edge of M

1

and an edge of M

2

. The

number of su
h interse
tions 
an be �(n

2

) in the worst 
ase, so we 
annot a�ord to 
ompute

all of them expli
itly. Consequently, we have to use a more 
lever approa
h.

Let us �x a length Æ > 0, and 
onsider the de
ision subproblem of determining whether

a line segment of length at least Æ 
an be pla
ed inside P su
h that it tou
hes a vertex

of P

1

and another vertex of P

2

. We prepro
ess the edges of one of the maps, say M

2

,

for eÆ
ient range sear
hing queries of a parti
ular kind (detailed below), and then query

the resulting stru
ture with range queries derived from the edges of M

1

. These queries


olle
tively determine whether there exists a 
riti
al pla
ement of the segment with the

required properties, thereby solving the �xed-size subproblem.

Re
all that every edge g of M

i


orresponds to a pair (v; a), where v is a vertex and a is

an edge of P

i

; the points of g are dual to rays � that pass through v and hit a behind (or

at) v, so that the portion of � between its interse
tions with e and a, ex
luding the point

v, lies in the interior of P

i

.

We regard ea
h edge g 2 M

1

as the xy-proje
tion of an ar
 
 in 3-spa
e. For a point

z 2 g, let �(z) denote the length of the portion of the line dual to z between its interse
tions

with e and a. Then the height of 
 above z, denoted 
(z), is equal to Æ � �(z). In this

manner, the edges of M

1

are mapped into a 
olle
tion G of ar
s in 3-spa
e.

Next, we map ea
h edge h 2 M

2

, asso
iated with a pair (w; b) of a vertex w and an

edge b of P

2

, to an ar
 � in 3-spa
e, so that the xy-proje
tion of � is h and the height of �

above any z 2 h, denoted �(z), is the length of the portion of the line dual to z between

its interse
tions with e and with b. Let � be the interse
tion of h with an edge g of M

1

.

Then � passes above 
 at � (i.e., �(�)� 
(�) � 0) if and only if the line dual to � 
ontains

a pla
ement of a line segment with length Æ 
rossing e and lying inside P .

The problem has therefore been redu
ed to the following. Given a 
olle
tion G of n ar
s

in 3-spa
e, 
orresponding to the edges of M

1

in the manner des
ribed above, and a se
ond


olle
tion H of n ar
s, 
orresponding to the edges of M

2

, determine whether there exists a

pair of ar
s, 
 2 G, � 2 H, su
h that � passes above 
.

We solve this problem in two stages. First, following the \hereditary segment tree"
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te
hnique of [15℄, we 
onstru
t, in O(n log

2

n) time, a family

M = f (M

1;1

;M

2;1

); (M

1;2

;M

2;2

); : : : g

of O(n logn) 
anoni
al pairs of sets of edges, su
h that

1. Ea
h M

1;i

is a subset of the edges of M

1

, and ea
h M

2;i

is a subset of the edges ofM

2

.

2.

P

i

(jM

1;i

j+ jM

2;i

j) = O(n log

2

n),

3. ea
h edge g 2M

1;i

interse
ts every edge of M

2;i

, for ea
h i, and

4. for every pair of interse
ting edges g 2 M

1

; h 2 M

2

, there is a pair (M

1;i

;M

2;i

) su
h

that g 2M

1;i

and h 2M

2;i

.

Consider one of the pairs of subsets, say (M

1;1

;M

2;1

). Sin
e every pair of segments in

(M

1;1

;M

2;1

) interse
t, we 
an extend the segments to full lines without introdu
ing new

interse
tion points. Let G

0

and H

0

denote the sets of ar
s (a
tually 
urves) 
orresponding

to the lines in M

1;1

and M

2;1

, respe
tively; let jH

0

j = �, jG

0

j = �. We want to determine

whether any ar
 of G

0

lies above any ar
 of H

0

.

Re
all that ea
h ar
 
 2 G

0

(resp. 
 2 H

0

) is asso
iated with a vertex v




and an edge a




of the polygon P

1

(resp. P

2

), so we 
an map 
 to a point 
̂ = (v

1




; v

2




; a

1




; a

2




) in IR

4

, where

(v

1




, v

2




) are the 
oordinates of the vertex v




and y = a

1




x + a

2




is the equation of the line

supporting the edge a




(the pre
eding �ltering segment tree te
hnique allows us to ignore

the endpoints of a




and to regard it as a full line). Let S = f
̂ j 
 2 G

0

g be the resulting

set of � points in IR

4

. We asso
iate a 4-variate fun
tion F

�

(x

1

; x

2

; x

3

; x

4

) with ea
h ar


� 2 H

0

, su
h that F

�

(
̂) expresses the di�eren
e in height between � and the ar
 
 2 G

0

at the point of interse
tion between their xy-proje
tions. Let `


;�

denote the line passing

through the verti
es v




and v

�

, and let z




(resp. z

�

) denote the interse
tion point of `


;�

and the line 
ontaining a




(resp. a

�

); see Figure 2. Then F

�

(
̂) = d(z

�

; z




)� Æ. Our goal is

thus to determine whether there exists 
 2 G

0

su
h that

max

�2H

0

F

�

(
̂) � 0 : (2.1)

Let �

�

denote the surfa
e F

�

(x

1

; x

2

; x

3

; x

4

) = 0 in IR

4

; let � = f�

�

j� 2 H

0

g. Noti
e that,

if we �x � and also �x the �rst three 
oordinates (v

1




; v

2




; a

1




) in IR

4

, the 
orresponding line

`


;�

and the point z

�

are �xed, and z




is the interse
tion point of `


;�

and some line with slope

a

1




. Hen
e (as long as a

1




6= slope(`


;�

)), for ea
h fun
tion F

�

and any triple (x

1

; x

2

; x

3

) for

whi
h these 
orresponding slopes are distin
t, there is a unique �x

4

= x

4

(x

1

; x

2

; x

3

) su
h that

F

�

(x

1

; x

2

; x

3

; �x

4

) = 0, that is, a unique point (x

1

; x

2

; x

3

; �x

4

) on the surfa
e �

�

. Moreover,

as x

4

in
reases beyond �x

4

, F

�

be
omes positive or negative, depending on the values of

x

1

; x

2

; x

3

. Assume, for spe
i�
ity, that P

1

lies to the right of e (in a suÆ
iently small
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`


;�

`


;�

z

�

z




e

e

v

�

v




a




a

�

a

�

a




v




v

�

z

�

z




Figure 2: Illustration of F

�

(
̂): (a) slope (`


;�

) > slope(a




); (b) slope (`


;�

) < slope(a




)

neighborhood of e). If x

3

is greater (resp. smaller) than the slope of the line `


;�

, then the

value of F

�

is negative (resp. positive) for x

4

> �x

4

(see Figure 2).

For ea
h � 2 H

0

, we 
an thus regard the surfa
e �

�

as the graph of a fun
tion x

4

=

�

�

(x

1

; x

2

; x

3

). The fun
tion is de�ned for all (x

1

; x

2

; x

3

) for whi
h the 
orresponding slope

of `


;�

is di�erent from x

3

. Property (3) of 
anoni
al pairs in M implies that ea
h �

�

is

de�ned at the (x

1

; x

2

; x

3

)-
oordinates of every point of S.

-1-

[1℄: Verify it!!

The problem at hand 
an thus be restated as a problem in whi
h we want to determine

whether there is any point of S lying on the \good" side of some surfa
e in �. However,

the problem gets 
ompli
ated be
ause the good side may be above the surfa
e or below it,

depending on the (x

1

; x

2

; x

3

) 
oordinates of the point and on the surfa
e parameters. Our

approa
h is to �rst de
ompose the problem into subproblems, in ea
h of whi
h these good

sides are known and �xed, and then solve ea
h subproblem separately and see if any of

them yields a good pair of point and surfa
e.

Suppose, as a spe
ial 
ase, that

v

2

�

� v

2




v

1

�

� v

1




> a

1




(2.2)

for ea
h pair � 2 H

0

; 
 2 G

0

(i.e., the slope of the line `


;�

is greater than that of the edge

a




), then max

�

F

�

(
̂) � 0 if and only if 
̂ lies above (or on) at least one surfa
e �

�

, that

is, 
̂ does not lie in the (open) bottommost 
ell B(�) of the arrangement of the surfa
es.

In this 
ase the problem of determining whether any ar
 of H

0

lies above any ar
 of G

0

thus redu
es to determining whether any point of S lies in B(�)




, where B(�)




denotes the


omplement of B(�). A similar formulation holds if the inequality (2.2) is reversed for all

pairs 
, �. However, for te
hni
al reasons to be detailed below, we will require that in ea
h

subproblem one of the following stronger 
onditions is satis�ed for all pairs 
, �:

v

2

�

�v

2




v

1

�

�v

1




> maxfa

1




; a

1

�

g (2.3)
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v

2

�

�v

2




v

1

�

�v

1




< minfa

1




; a

1

�

g (2.4)

a

1




<

v

2

�

�v

2




v

1

�

�v

1




< a

1

�

(2.5)

a

1

�

<

v

2

�

�v

2




v

1

�

�v

1




< a

1




: (2.6)

We will show below how to de
ompose our problem into subproblems of these types.

But �rst we present an eÆ
ient solution of a subproblem in whi
h the 
ondition (2.3) holds

for all 
 and �; the other 
ases 
an be handled in a fully symmetri
 fashion.

First Algorithm

Let � and S be two 
olle
tions of � surfa
es and � points as de�ned above, so that they

satisfy 
ondition (2.3). Let r be some suÆ
iently large 
onstant. We 
ompute a

1

r

-net

R � � of size t = O(r log r) in linear time.

2

If there is a pair 
̂ 2 S and � 2 R su
h that 
̂

lies above (or on) �, then we already know that max

�

F

�

(
̂) � 0, so we 
an stop right away.

Otherwise, we de
ompose the bottommost 
ell B(R) below the lower envelope of R into


onstant-size 
ells as follows. Fix a surfa
e �

i

of R. For every other surfa
e �

j

2 R� f�

i

g,

we proje
t the interse
tion surfa
e �

i

\�

j

orthogonally onto the hyperplane x

4

= 0. Let �

�

i

denote the set of resulting t� 1 surfa
es in IR

3

. We de
ompose the arrangement of �

�

i

into

a family �

i

of O(t

3

�(t)) = O(r

3

log

3

r �(r)) 
ells, using the algorithm of [14℄, where �(:) is

an extremely slowly growing fun
tion depending on the maximum degree of the surfa
es in

�

�

i

(whi
h is a 
onstant) and on the inverse A
kermann fun
tion.

For ea
h 
ell � 2 �

i

, let

�

0

= f (x

1

; x

2

; x

3

; x

4

) j (x

1

; x

2

; x

3

) 2 � and x

4

< �

i

(x

1

; x

2

; x

3

) g ;

where �

i

is the fun
tion that represents the surfa
e �

i

. If �

0

does not interse
t any surfa
e of

R, we add �

0

to the �nal de
omposition of B(R). Repeating the above step for all surfa
es

in R gives a de
omposition � of B(R). Sin
e ea
h 
ell of �

i


ontributes at most one 
ell

to �, j�j = O(r

4

log

4

r �(r)).

For ea
h 
ell � 2 �, we 
ompute �

�

, the set of surfa
es in � interse
ting the interior of

� , and S

�

, the set of points of S lying in � . Thus, we obtain O(r

4

log

4

r �(r)) subproblems,

where the subproblem 
orresponding to a 
ell � 2 � involves �

�

and S

�

. Let H

�

and G

�

denote the set of ar
s 
orresponding to �

�

and S

�

, respe
tively, and let �

�

= j�

�

j, �

�

= jS

�

j.

2

Spe
ializing from the general 
on
ept, we 
all a subset R � � of a set of n (algebrai
) surfa
es a

1

r

-net,

r < n, if every (open) 
ell of 
onstant 
omplexity, of the form obtained in the strati�
ation algorithm of [14℄,

whi
h does not interse
t any surfa
e of R, interse
ts at most n=r surfa
es of �; see [27℄ for a more formal

de�nition. Haussler and Welzl [27℄ showed that a random subset of � of size O(r log r) is a

1

r

-net with high

probability. Later Matou�sek [32℄ gave an O(nr

O(1)

)-time deterministi
 algorithm for 
omputing a

1

r

-net of

size O(r log r).
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Note that

P

�

�

�

= � and �

�

� �=r. We solve ea
h subproblem re
ursively. The re
ursion

stops when �

�

� �

4

�

. In this 
ase, we 
ip the roles of �

�

and S

�

. We map the ar
s of H

�

to a set �

�

�

= f�̂ j � 2 H

�

g of points, and the ar
s of G

�

to a set S

�

�

= f�




j 
 2 G

�

g of

surfa
es. We also reverse the dire
tion of the x

4

-axis.

Sin
e P

2

lies to the left of the 
hord e, by (2.3) and the above dis
ussion, there is a pair


 2 G

�

, � 2 H

�

su
h that F




(�̂) � 0 if and only if �̂ lies above the surfa
e �




(with the

reversed dire
tion of the x

4

-axis). We therefore pro
eed as above | re
ursively applying the

de
omposition te
hnique to determine whether any point of �

�

�

lies above the bottommost


ell B(S

�

�

). But we now 
ontinue the re
ursion until we are left with 
onstant number of

points or surfa
es (in whi
h 
ase we use any naive brute-for
e algorithm), and do not 
ip

the surfa
es and points any more.

We now analyze the running time of the above pro
edure. Let T (�; �) denote the max-

imum running time of the pro
edure involving � surfa
es and � points. First 
onsider the

`bottom part' of the pro
edure (after 
ipping the roles of G

�

and H

�

). We get the following

re
urren
e

T (�

�

; �

�

) =


r

4

log

4

r�(r)

X

j=1

T

�

�

�

r

; �

�

j

�

+O(�

�

+ �

�

) ;

where

P

j

�

�

j

= �

�

and 
 is some 
onstant. T (�

�

; �

�

) = O(�

�

+ �

�

) if �

�

or �

�

is less than

some �xed 
onstant. Following the same analysis as in [14℄, one 
an show that the solution

of the above re
urren
e is O(�

4+�

�

+ �

�

log �

�

) = O(�

1+�

�

) time, sin
e �

�

� �

4

�

.

Next, for the top part of the pro
edure, we get the following re
urren
e.

T (�; �) =

8

>

>

<

>

>

:


r

4

log

4

r�(r)

X

j=1

T

�

�

r

; �

�

j

�

+O(� + �) if � < �

4

O(�

1+�

) if � � �

4

;

where

P

�

�

�

= � and 
 is some appropriate 
onstant. The solution of the above re
urren
e

is (see e.g. [5℄)

T (�; �) = O(�

4=5+�

�

4=5

+ �

1+�

+ �

1+�

) (2.7)

(where � is a fun
tion of r, and 
an be made arbitrarily small by in
reasing r).

We leave it to the reader to verify that appropriately modi�ed variants of this pro
edure

will 
orre
tly handle any subproblem satisfying one of the other 
onditions (2.4){(2.6), with

the same bound on their running time.

Se
ond Algorithm

Next, we extend the algorithm to the general 
ase, where none of (2.3){(2.6) hold uniformly

for all pairs of ar
s. Essentially, the extended algorithm de
omposes the problem into
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subproblems, ea
h satisfying one of these 
onditions, and then applies the previous algorithm

to ea
h subproblem separately.

For an ar
 � 2 G

0

[H

0

, let h

�

denote the surfa
e

(x� v

1

�

) �

h

y � a

1

�

(x� v

1

�

)� v

2

�

i

= 0 ; (2.8)

and let  

�

denote the surfa
e

(x� v

1

�

) �

h

y � z(x� v

1

�

)� v

2

�

i

= 0 (2.9)

in IR

3

. We 
ompute a

1

r

-net R � H

0

of size O(r log r) (r is a suÆ
iently large 
onstant),

and de
ompose the arrangement fh

�

;  

�

j � 2 Rg in IR

3

into a family � of O(r

3

log

3

r �(r))


onstant-size 
ells using the algorithm of [14℄. We asso
iate with ea
h 
ell � 2 � a subset

H

�

� H

0

and another subset G

�

� G

0

. An ar
 � 2 H

0

is in H

�

if either h

�

or  

�

interse
ts

� , and an ar
 
 2 G

0

is in G

�

if the point (v

1




; v

2




; a

1




) lies in � . Any ar
 � 2 H

0

�H

�

is su
h

that ea
h of the left-hand sides of (2.8), (2.9) has a �xed sign over all points (x; y; z) 2 � .

We de
ompose H

0

� H

�

into four subsets, denoted A

(Æ

1

;Æ

2

)

�

, for Æ

1

; Æ

2

2 f�1;+1g, where

� 2 A

(Æ

1

;Æ

2

)

�

if the 
orresponding �xed signs of (2.8), (2.9) are Æ

1

, Æ

2

, respe
tively.

We now have to determine, for ea
h 
ell � 2 �, whether there is an ar
 � either in one of

the sets A

(Æ

1

;Æ

2

)

�

or in H

�

su
h that max


2G

�

F

�

(
̂) � 0. Noti
e that, by 
onstru
tion, ea
h

of the four pairs (A

(Æ

1

;Æ

2

)

�

;G

�

) satisfy one of the 
onditions (2.3){(2.6), so we 
an use the

�rst algorithm to determine whether any ar
 of G

�

lies above any ar
 of A

(Æ

1

;Æ

2

)

�

. We repeat

this step for all 
ells � 2 �. By (2.7), the total time spent is O(�

4=5+�

�

4=5+�

+ �

1+�

+ �

1+�

)

(sin
e r is a 
onstant).

Next, we re
ursively solve the O(r

3

�(r)) subproblems, where the subproblem 
orre-

sponding to a 
ell � requires determining whether any ar
 of H

�

lies above any ar
 of G

�

.

The re
ursion stops when �

�

� �

4

�

. As in the previous algorithm, we now 
ip the roles of

G

�

and H

�

| we 
hoose a

1

r

-net of G

�

of size O(r log r) and map the ar
s of H

�

to points,

and 
ontinue as above. Following a similar argument, the total time spent by the algorithm

after 
ipping the roles of G

�

and H

�

is O(�

1+�

�

). Therefore, we get the following re
urren
e

T (�; �) =

8

>

>

<

>

>

:

O(�

4=5+�

�

4=5

+ �

1+�

+ �

1+�

) +


r

3

log

3

r�(r)

X

i=1

T

�

�

r

; �

i

�

if � < �

4

O(�

1+�

) if � � �

4

;

where

P

�

�

�

= � and 
 is some appropriate 
onstant. The solution of this re
urren
e is also

T (�; �) = O(�

4=5+�

�

4=5

+ �

1+�

+ �

1+�

) : (2.10)

We apply the entire pro
edure to all 
anoni
al pairs (M

1;i

;M

2;i

) in M. By (2.10) and

the se
ond property of 
anoni
al pairs, we 
an 
on
lude that the running time of the overall
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algorithm is O(n

8=5+�

0

) for a slightly larger, but still arbitrarily small �

0

> 0. Putting

everything together, we obtain an algorithm with O(n

8=5+�

) time, to determine whether

a line segment of length Æ 
an be pla
ed inside a given polygon P so that it 
rosses the

diagonal e.

Finding the longest segment

Finally, we apply parametri
 sear
hing to turn the pre
eding algorithm into one that 
om-

putes the biggest segment that 
an be pla
ed inside P and 
rosses the diagonal e. To this

end, we need an eÆ
ient parallel version of the above pro
edure in Valiant's model [40℄.

Noti
e that 
anoni
al subsets 
an be 
omputed sequentially, be
ause the properties (1){(4)

do not depend on the value of Æ. So, we only have to parallelize the pro
edure that, given

two 
olle
tions of ar
s G

0

and H

0

, determines whether any ar
 of G

0

lies above any ar
 of

H

0

. This is easy to do in Valiant's model. Consider the �rst algorithm. Sin
e r is 
ho-

sen to be some 
onstant, the set R 
an be 
omputed in polylogarithmi


-2-

time using O(n) [2℄: Mi
ha! WHat is

the exponent??

pro
essors as des
ribed in [16℄, and the sets �

�

and S

�


an be 
omputed in 
onstant par-

allel time using a linear number of pro
essors. We then obtain a 
olle
tion of independent

subproblems, whi
h 
an all be pro
essed in parallel. The running time of this pro
edure is

easily seen to be logarithmi
 and the number of pro
essors 
an be bounded by the same re-


urren
e as for the sequential running time. The se
ond algorithm 
an also be parallelized

similarly. The only di�eren
e is that we now invoke the �rst pro
edure at every stage,

whi
h will take logarithmi
 time, so the se
ond algorithm runs in polylogarithmi
 time with

O(�

4=5+�

�

4=5

+ �

1+�

+ �

1+�

) number of pro
essors. Omitting some of the (rather routine)

details related to parallelization, and plugging all of this into the parametri
 sear
hing

paradigm, we obtain an algorithm with O(n

8=5+�

) time, for 
omputing the longest segment

that 
an be pla
ed inside P and that 
rosses the diagonal e.

Going ba
k to our original divide-and-
onquer algorithm for �nding the biggest sti
k,

the merge step requires O(n

8=5+�

) time. Hen
e, we 
an 
on
lude

Theorem 2.1 Given a simple polygon P with n edges, one 
an 
ompute, in time O(n

8=5+�

),

a longest line segment that 
an be pla
ed inside P .

3 The Minimum Width Annulus Problem

Next we 
onsider the problem of approximating a planar point set S, of n points, by a 
ir
le.

One way of obtaining su
h an approximation is to 
ompute two 
on
entri
 
ir
les C

1

and

C

2

of radii r

1

< r

2

su
h that all points of S lie in the exterior of C

1

and in the interior of C

2

,

and su
h that r

2

� r

1

is minimized (see Figure 3). In other words, we wish to 
ompute an

annulus of minimum width that 
ontains all points of S. An O(n

2

) algorithm was proposed
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by Ebara et al. [23℄. We present an algorithm whose running time is O(n

8=5+�

). As it turns

out, this appli
ation is a variant of the te
hnique used above for the biggest sti
k problem.

Figure 3: Minimum width annulus

Spe
i�
ally, let Vor




(S);Vor

f

(S) be the 
losest and the farthest-point Voronoi diagrams

of S, respe
tively. For a point � 2 IR

2

lying in the Voronoi 
ell V




(p

i

) (p

i

2 S) of Vor




(S),

let D




(�) denote the distan
e between � and p

i

. Analogously, de�ne D

f

(�) for Vor

f

(S).

Given a point � in the plane, the width of the thinnest annulus 
entered at �, whi
h 
overs

S, is D

f

(�)�D




(�). Thus, our goal is to 
ompute

min

�2IR

2

D

f

(�)�D




(�) :

As in the 
ase of the biggest sti
k problem, it suÆ
es to des
ribe an algorithm that, for a

given parameter W , 
an determine whether

min

�2IR

2

D

f

(�)�D




(�) �W : (3.1)

It has been shown in [23℄ that the desired minimum is attained either at a vertex of one

of the two Voronoi diagrams or at an interse
tion of two diagram edges. By prepro
essing

Vor




(S);Vor

f

(S) for eÆ
ient planar point lo
ation queries, and by lo
ating ea
h vertex of

either diagram in the other diagram, we 
an test in O(n logn) time whether any vertex of

the two diagrams satis�es (3.1). The hard part is testing the (up to quadrati
ally many)

interse
tion points of edges of the two diagrams, whi
h 
an be done following the same

approa
h as in the previous se
tion. We will sket
h the general idea and leave it for the

reader to �ll in the details.

Let R denote the set of edges of Vor




(S) and let B denote the set of edges of Vor

f

(S).

First, we de
ompose R and B, in O(n log

2

n) time, into a family of O(n log n) 
anoni
al
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pairs (R

1

; B

1

); (R

2

; B

2

); : : :, whi
h staisfy the properties 1{4 stated in the previous se
tion.

Consider one of the 
anoni
al pairs (R

i

; B

i

). Ea
h edge 
 of a Voronoi diagram is a portion

of a perpendi
ular bise
tor of two points p




; q




2 S, so we 
an map it to a point 
̂ =

(v

1




; v

2




;m




; Æ




), where (v

1




; v

2




) are the 
oordinates of the midpoint v




between p




and q




,

m




� 0 is the slope of 
, and Æ




� 0 is the distan
e between p




and v




. Let P = f
̂ j 
 2 R

i

g.

We asso
iate with ea
h edge � 2 B

i

a 4-variate fun
tion F

�

(x

1

; x

2

; x

3

; x

4

), su
h that F

�

(
̂)

is equal to

D




(�)�D

f

(�) +W = d(�; p




)� d(�; p

�

) +W ;

d(�; p




)

d(�; p

�

)




p




�

p

�

q

�

q




Æ




�

v




Figure 4: Illustration of 
̂ and F

�

(x

1

; x

2

; x

3

; x

4

)

where p

�

is any one of the two points of S de�ning �, and where � is the interse
tion point

of � and 
. For a �xed edge � 2 B

i

and a �xed triple (v

1




; v

2




;m




), the line 
ontaining the


orresponding 
, and the midpoint v




, are both �xed; hen
e, the interse
tion point �, and

the distan
e d(�; p

�

) are also �xed. It follows that there is at most one

�

Æ




= x

4

(v

1




; v

2




;m




)

su
h that F

�

(v

1




; v

2




;m




;

�

Æ




) = 0. Moreover, F

�

is positive (resp. negative) for x

4

>

�

Æ




(resp. x

4

<

�

Æ




). Hen
e, D

f

(�) � D




(�) � W for an interse
tion point � of R

i

and B

i

if

and only if there is a point of P that does not lie below the lower envelope of the surfa
es

fF

�

(x

1

; x

2

; x

3

; x

4

) = 0j� 2 B

i

g. Noti
e that one 
an 
ip the roles of R

i

and B

i

and still

redu
e the problem to lo
ating a 
olle
tion of points below the lower envelope of a 
olle
tion

of surfa
es in IR

4

. Therefore the �rst algorithm of the previous se
tion 
an be adapted to

solve the above problem in sequential time O(n

8=5+�

), or in O(log n) parallel time with

O(n

8=5+�

) pro
essors. Plugging all this into the parametri
 sear
hing paradigm, we obtain

Theorem 3.1 Given a set S of n points in the plane, one 
an 
ompute, in time O(n

8=5+�

),

a minimum width annulus that 
ontains all points of S.

Remark 3.2: An annulus of minimum area 
an be 
omputed in linear time using Megiddo's
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linear programming algorithm.

4 Minimum Hausdor� Distan
e Between Polygonal Obje
ts

In this se
tion, we 
onsider the following problem: \Let P be a 
olle
tion ofm obje
ts in the

plane and Q another 
olle
tion of n obje
ts in the plane. We wish to 
ompute a translation

t of Q whi
h minimizes the Hausdor� distan
e between P and the translated 
opy of Q."

The Hausdor� distan
e between two sets A and B of obje
ts is de�ned as

H(A;B) = maxfh(A;B); h(B;A)g ;

where

h(A;B) = max

p2[A

min

q2[B

d(p; q)

(we assume that the obje
ts of A and B are all 
ompa
t sets, so the minima and maxima

appearing in this formula are all well de�ned). Here d(�; �) denotes the Eu
lidean distan
e

between two points. For a set � � IR

2

and a ve
tor t, let � � t = fp + t j p 2 �g be the

Minkowski sum of � and t, and, for a set A of obje
ts, let A � t = f� � t j � 2 Ag. We

want to 
ompute

D(P;Q) = min

t2IR

2

H(P;Q � t) = min

t2IR

2

H(P � t;Q) :

P

Q � t

Q

Figure 5: Minimum Hausdor� distan
e between two polygons

See Figure 5 for an illustration of the problem for the 
ase where P and Q are simple

polygons.

The value of D(P;Q) gives a measure of the resemblan
e between P and Q, so its (ef-

�
ient) 
omputation has appli
ations in pattern re
ognition, 
omputer vision, et
. Hutten-

lo
her and Kedem [28℄ showed that if P and Q are sets of m and n points, respe
tively, then

D(P;Q) 
an be 
omputed in O((mn)

2

�(mn)) time, where �(�) is the inverse A
kermann
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fun
tion. This bound has been re
ently improved to O(mn(m+n) logmn) by Huttenlo
her

et al. [29℄. They also showed that if the distan
e between two points is measured in the

L

1

or L

1

metri
s, the distan
e D(P;Q), for sets P, Q ea
h 
onsisting of non-interse
ting

segments, 
an be 
omputed in time O((mn)

2

logmn), where m = jPj, n = jQj. However,

their algorithm does not extend to the more useful 
ase of the Eu
lidean metri
. For this


ase, Alt et al. [7℄ presented a brute for
e algorithm with the rather high time 
omplexity

O((mn)

3

(m+ n) log(m+ n)).

In this se
tion we show that if P and Q are sets ea
h 
onsisting of non-interse
ting seg-

ments, thenD(P;Q), for the Eu
lideanmetri
, 
an be 
omputed in timeO((mn)

2

log

3

(mn)).

We �rst solve the �xed-size problem, whi
h, given a parameter Æ > 0, determines whether

D(P;Q) � Æ. We then 
onvert this pro
edure, using the parametri
 sear
h te
hnique, into

another algorithm that 
omputes the value of D(P;Q).

We are thus given two sets P, Q, ea
h 
onsisting of non-interse
ting segments, and

a parameter Æ > 0, and we wish to determine whether D(P;Q) � Æ. Without loss of

generality, we 
an assume that P is �xed and we seek a translation of Q whi
h brings it

within distan
e Æ of P. A pla
ement of Q 
an be de�ned by the position of some �xed

referen
e point O

Q

rigidly atta
hed to Q. We assume that the original set Q is pla
ed so

that O

Q

lies at the origin.

P

Æ

e

Æ

e

Figure 6: e

Æ

and P

Æ

Let B

Æ

denote a disk of radius Æ around the origin. For a segment e, let e

Æ

= e�B

Æ

=

S

fp + B

Æ

j p 2 eg be the Minkowski sum of e and B

Æ

. The expanded segment e

Æ

has the

Appli
ations of Parametri
 Sear
hing June 17, 2002



Minimum Hausdorff Distan
e Between Polygonal Obje
ts 17

shape of a ra
etra
k | a re
tangle of width 2Æ with two semi
ir
les of radius Æ atta
hed

to its sides. Let P

Æ

=

S

e2P

e

Æ

(see Figure 6). Sin
e the relative interiors of the segments

in P do not interse
t ea
h other, the boundaries of e

Æ

and e

0

Æ

, for e; e

0

2 P, interse
t in at

most two points (assuming general position of e, e

0

[30℄; in any 
ase, it is easy to show that

the interse
tion of the boundaries of e

Æ

, e

0

Æ


onsists of at most two 
onne
ted 
omponents).

Therefore, by the result of [30℄, P

Æ

has only O(m) edges (and, symmetri
ally, Q

Æ

has O(n)

edges); here ea
h edge of P

Æ

or of Q

Æ

is either a straight segment or a 
ir
ular ar
.

For a set A � IR

2

, let A




denote the 
omplement IR

2

� A. Let K

QP

= P




Æ

	Q be the

Minkowski di�eren
e of P




Æ

and Q.

Lemma 4.1 K




QP

is the set of translations t of Q for whi
h h(Q� t;P) � Æ.

Proof: Let t be a pla
ement of Q for whi
h h(Q� t;P) � Æ. This is equivalent to asserting

that, for every point � 2 Q, there is a point � 2 P, su
h that d(�+ t; �) � Æ. In other words,

h(Q� t;P) � Æ if and only if (Q� t)\P




Æ

= ;. That is, there is no point q 2 Q and a point

p in P




Æ

with q + t = p or t = p� q. Hen
e, h(Q� t;P) � Æ if and only if t 2 K




QP

. 2

Ea
h edge of K




QP

is 
ontained in an ar
 of the form z� q, where z is an edge of P

Æ

and

q is an endpoint of a segment of Q, or z is a vertex of P

Æ

and q is a segment of Q, or z is a

point on a 
ir
ular ar
 of P

Æ

whose tangent is parallel to a segment q of Q. Sin
e K




QP

is

de�ned by O(mn) segments and 
ir
ular ar
s, its 
ombinatorial 
omplexity is O((mn)

2

).

In order to de�ne the set of translations t for whi
h h(P;Q� t) � Æ, we 
ip the roles P

and Q, i.e., we �x Q and de�ne the set of pla
ements t of P for whi
h h(P � t;Q) � Æ. By

the pre
eding lemma, this set is K




PQ

, where K

PQ

= Q




Æ

	P. It now follows that

Lemma 4.2 D(P;Q) � Æ if and only if K




QP

\ (�K




PQ

) is not empty, where �K




PQ

=

f�x j x 2 K




PQ

g.

In view of the above dis
ussion, an algorithm for determining whether D(P;Q) � Æ 
an

be summarized as follows:

1. Compute P

Æ

and Q

Æ

.

2. Compute K

QP

= P




Æ

	Q and K

PQ

= Q




Æ

	P.

3. Determine whether K




QP

and �(K




PQ

) have nonempty interse
tion.

As for the time 
omplexity of (a sequential version of) the algorithm, Step 1 
an be

a

omplished in time O((m + n) log

2

(m + n)) using the algorithm of [30℄. Steps 2 and 3


an be performed together by 
onstru
ting the entire arrangement of ar
s that de�ne the

edges of K




QP

and �K




PQ

and then, for ea
h fa
e in the resulting arrangement, determining
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whether it lies in both K




QP

and �K




PQ

. Sin
e the edges of K

QP

and �K




PQ

are de�ned by

O(mn) segments and 
ir
ular ar
s, a sweep line algorithm 
an perform the above steps in

O((mn)

2

logmn) time. Hen
e, we 
an 
on
lude

Theorem 4.3 Given a 
olle
tion P of m non-interse
ting segments and another 
olle
tion

Q of n non-interse
ting segments in the plane, one 
an determine whether D(P;Q) � Æ in

time O((mn)

2

log(mn)).

Next, in order to apply parametri
 sear
hing, we need an eÆ
ient parallel version of

the algorithm. It is well known that the arrangement of a 
olle
tion of t `well-behaving'

ar
s in the plane 
an be 
omputed in O(log t) time using O(t

2

) pro
essors, see e.g. [1℄.

Therefore the arrangement of fe � B

Æ

j e 2 Pg 
an be 
omputed in O(logm) time with

O(m

2

) pro
essors. After having 
omputed the arrangement, we determine for ea
h fa
e f

of the arrangement the number of ra
etra
ks e

Æ

that 
ontain f ; we denote this quantity by




f

. For two adja
ent fa
es f; f

0

, we have j


f

� 


f

0

j = 1. We �rst 
ompute a spanning tree

of the dual graph of the arrangement, and then 
onvert it to an Eulerian path �. Using

an algorithm of Tarjan and Vishkin [39℄, � 
an be 
omputed in O(logm) time with O(m

2

)

pro
essors (see also [1℄). On
e we have 
omputed �, we 
an 
ompute 


f

for ea
h fa
e of

the arrangement by a parallel pre�x 
omputation algorithm, see e.g. [1℄. It is easily seen

that an edge 
 of the arrangement is in the boundary of P

Æ

if and only if 


f

= 0 for one of

the fa
es adja
ent to 
. Testing ea
h edge of the arrangement in parallel, we 
an 
ompute

the edges of P

Æ

in 
onstant time. Thus P

Æ


an be 
omputed in O(logm) time with O(m

2

)

pro
essors. Similarly, one 
an 
ompute Q




Æ

in O(log n) time using O(n

2

) pro
essors. Finally,

an interse
tion between K




QP

and �K




PQ


an be dete
ted in O(logmn) time with O(m

2

n

2

)

pro
essors by 
omputing the arrangement of ar
s de�ning the edges of K

QP

and �K




PQ

and by determining whether there is a fa
e in the resulting arrangement that lies in both

K




QP

and �K




PQ

. A variant of the pro
edure that 
omputes P

Æ


an be used to perform

the above two steps. Hen
e, the overall running time of the algorithm is O(logmn) using

O(m

2

n

2

) pro
essors. Applying the parametri
 sear
h te
hnique to the resulting algorithm,

we 
an 
on
lude

Theorem 4.4 Given a 
olle
tion P of m non-interse
ting segments and another 
olle
tion

Q of n non-interse
ting segments in the plane, one 
an 
ompute the minimum Hausdor�

distan
e between P and Q, under translation, in time O((mn)

2

log

3

(mn)).

5 Complete Mutual Visibility Among Spheres

Let S = fS

1

; : : : ; S

n

g be a given set of n spheres in IR

3

, all with the same radius. Let 


i

denote the 
enter of S

i

, for i = 1; : : : ; n. Two spheres S

i

and S

j

are said to be mutually
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visible if the line segment 


i




j

does not interse
t (the interior of) any other sphere, and S

is 
ompletely mutually visible if every pair of spheres in S is mutually visible.

The problem studied in this se
tion is: \Given a set P of n points in IR

3

, we wish to

determine the largest possible 
ommon radius r su
h that the set of n spheres of radius r,


entered at the given points, is (pairwise disjoint and) 
ompletely mutually visible."

This problem arises in the 
ontext of parallel 
omputations using opti
al inter
onne
tions.

-3-

[3℄: GIve a referen
e??

The spheres model the individual pro
essors, and mutual visibility between a pair of spheres

models the ability of the two pro
essors to 
ommuni
ate by an opti
al link. In our problem

the lo
ations of the (
enters of the) pro
essors are predetermined, and we want to determine

how large 
an the pro
essors be if every pair is to be able to 
ommuni
ate opti
ally.

By running any 
losest-pair algorithm, e.g., [10℄, we 
an determine in O(n log n) time

the largest radius r

0

so that the interiors of all spheres of radius r

0


entered at the points

of P are pairwise disjoint. Therefore, we only have to determine the largest radius r

�

� r

0

su
h that the spheres of radius r

�


entered at the points of P are mutually visible. In order

to employ the parametri
 sear
hing te
hnique, we solve the following �xed-size de
ision

problem: \Given a set S of n pairwise disjoint spheres of unit radius, determine if it is


ompletely mutually visible".

We use the following simple s
heme. Fix a sphere of S, say S

n

. We determine in

O(n log

2

n) time whether all other spheres of S are mutually visible from S

n

. Repeating this

pro
edure for all spheres of S yields an O(n

2

log

2

n) time algorithm to determine whether

S is 
ompletely mutually visible.

Let 


i

denote the 
enter of S

i

, for i = 1; : : : ; n. In order to determine whether there is

any sphere S

i

for whi
h the segment 


i




n

interse
ts the interior of any other sphere, we sort

the spheres of S � fS

n

g in the nonde
reasing order of the distan
es of their 
enters from




n

. Let S

1

; : : : ; S

n�1

be the resulting sequen
e. Sin
e the spheres in S are pairwise disjoint

and 
ongruent, it 
an be shown that if i > j then S

i


annot hide S

j

when viewed from 


n

(i.e., for any point p 2 S

j

, the segment p


n


annot interse
t the interior of S

i

). We de�ne

the proje
tion of a point p 2 IR

3

on S

n

, denoted p

�

, to be the interse
tion point of the the

sphere S

n

and the ray emanating from 


n

in dire
tion ~


n

p. Let S

�

i

denote the proje
tion of

S

i

on S

n

, and let S

�

= fS

�

i

j i < n g. S

�

is a 
olle
tion of spheri
al 
aps; the 
ap S

�

i

has 


�

i

as its 
enter, for i = 1; : : : ; n.

Lemma 5.1 S

n

and S

j

are mutually visible if and only if 


�

j

does not lie in the union of

S

�

1

; : : : ; S

�

j�1

.

Proof: Consider the segment 


n




j

. By the above dis
ussion, if i > j then S

i


annot

interse
t 


n




j

. Therefore, S

j

and S

n

are mutually visible if and only if none of S

1

; : : : ; S

j�1

interse
t the segment 


n




j

, whi
h immediately implies the lemma. 2

In view of the lemma, it suÆ
es to determine for ea
h S

j

whether 


�

j

lies in

S

k<j

S

�

k

. We
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onstru
t a minimum height binary tree B on S

�

whose i

th

-leftmost leaf stores S

�

i

. For ea
h

node Æ 2 B, let U

Æ

denote the union of the 
aps stored at the leaves of the subtree rooted

at Æ. If Æ is a left 
hild of its parent, then we also asso
iate with Æ the subset C

Æ

of 
enters

of the 
aps stored at the leaves of the subtree rooted at the right sibling of Æ. If Æ is the

root of B or the right 
hild of its parent, we set C

Æ

= ;. Sin
e the boundaries of every pair

of 
aps in S

�

interse
ts in at most two points, U

Æ

has linear 
omplexity [30℄. Moreover, U

Æ


an be 
omputed in a bottom-up fashion, be
ause U

Æ

= U

lson(Æ)

[ U

rson(Æ)

. It follows from

the 
onstru
tion and Lemma 5.1 that S

n

is not mutually visible to all the other spheres if

and only if there is a node Æ 2 B su
h that one of the points in C

Æ

lies in U

Æ

.

Using a variant of the algorithm of Kedem et al. [30℄, we 
an 
ompute U

Æ

from U

lson(Æ)

and U

rson(Æ)

in O(jU

Æ

j log jU

Æ

j) time.

3

Moreover, the algorithm 
an easily be modi�ed so that

in O(jC

Æ

j log jU

Æ

j) additional time one 
an determine whether any point of C

Æ

lies in U

Æ

.

Sin
e

P

Æ

(jU

Æ

j+ jC

Æ

j) = O(n logn), the total time spent is O(n log

2

n), as 
laimed earlier.

In order to apply the parametri
 sear
h te
hnique, we need a parallel version of the

above pro
edure. Sin
e the algorithm in [30℄ is based on a sweep-line paradigm, it is not so

easy to parallelize. We will des
ribe a di�erent algorithm for 
omputing the union of two

planar or spheri
al regions, whi
h is easy to parallelize. For the sake of simpli
ity we will

des
ribe the algorithm assuming that U

Æ

is a planar map.

Let R;B denote the set of edges in U

lson(Æ)

and U

rson(Æ)

, respe
tively; let m = jRj+ jBj.

By splitting ea
h edge into two subedges, if required, we 
an assume that the edges in R[B

are x-monotone. We also assume that for every edge 
 of U

lson(Æ)

(resp. U

rson(Æ)

) we know

whether the top or the bottom side of 
 lies in U

lson(Æ)

(resp. U

rson(Æ)

). Noti
e that ea
h

interse
tion point of an edge of R and an edge of B is a vertex of U

Æ

, the other verti
es

being those verti
es of U

lson(Æ)

(resp. U

rson(Æ)

) lying outside U

rson(Æ)

(resp. U

lson(Æ)

).

To 
ompute the interse
tion points of R and B, we 
onstru
t a segment tree T on the

edges of R[B; see [37℄ for details. Ea
h node v of T is asso
iated with a horizontal interval

�

v

, a subset R

v

of edges in R, and a subset B

v

of edges in B. The x-proje
tion of any

edge in R

v

[B

v


overs the interval �

v

, and an edge of R[B is stored in at most O(logm)

nodes along two paths of T . We assume that the edges of R

v

[B

v

are 
lipped to within the

verti
al strip �

v

� [�1;+1℄. If 
 2 R

v

then, for ea
h an
estor w of v (in
luding v itself),

we determine the edges of B

w

that interse
t 
. Sin
e the ar
s of B

w

fully 
ross the strip

from left to right and are noninterse
ting, they form a list whi
h is totally ordered in the y-

dire
tion. Sin
e 
 interse
ts any ar
 of B

w

in at most two points, we 
an determine all edges

that interse
t 
 in O(logm) time by doing a multiple binary sear
h, in whi
h we lo
ate the

endpoints of 
 and the highest and lowest ar
s of B

w

that interse
t 
. After the sear
hes,

we simply go over all the ar
s that were found, whi
h form a 
ontiguous sublist of B

w

, and

3

Although the original algorithm of [30℄ 
omputes the union of two planar maps, it 
an be easily extended

to spheri
al maps. A
tually, one 
an 
onvert U

Æ

, for any Æ 2 B, into a planar map by taking a stereographi


proje
tion of 
aps in S

�

on a horizontal plane.
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report all the 
orresponding interse
tion points. Sin
e the total number of interse
tions,

over all pairs of ar
s, is only O(m), we have enough pro
essors to report all interse
tions in


onstant parallel time (in Valiant's model). We apply a symmetri
 pro
edure to the ar
s 


in B

v

. Repeating the same pro
edure at all nodes v 2 T , we 
an determine all interse
tion

points of R and B. Note that the sear
hes also �nd all verti
es of U

lson(Æ)

that lie outside

U

rson(Æ)

, and vi
e versa. Re
all that there are only O(m) interse
tion points. The above

pro
edure 
an be implemented in O(logm) time using O(m logm) pro
essors; see [15, 37℄

for details.

On
e we have 
omputed the interse
tion points, we 
an 
omplete the 
onstru
tion of the

boundary of U

Æ

, denoted as �U

Æ

, whi
h involves the determination of the edges of U

Æ

and

the 
onne
ted 
omponents of its boundary, using a sequential algorithm, be
ause it does not

involve any 
omparisons. We �rst split the edges of U

lson(Æ)

and U

rson(Æ)

at the interse
tion

points of R and B. It de
omposes ea
h 
onne
ted 
omponent of �U

lson(Æ)

and �U

rson(Æ)

into

maximal 
hains (the 
hain is the whole 
omponent if it does not 
ontain any interse
tion

point), so that no 
hain 
ontains an interse
tion point in its (relative) interior. It is easily

seen that either the entire 
hain appears on �U

Æ

, or it does not appear at all. If a 
hain is

an entire 
onne
ted 
omponent of U

lson(Æ)

(resp. U

rson(Æ)

), then either all of its verti
es lie

on �U

Æ

, or none of them lie on �U

Æ

, so by pi
king one vertex of the 
omponent and lo
ating

it in U

rson(Æ)

(resp. U

lson(Æ)

), we 
an determine whether it appears on �U

Æ

. On the other

hand, if a 
hain is not the entire 
omponent, i.e., its endpoints are interse
tion points, we


an determine whether it appears on �U

Æ

by a lo
al test at one of its endpoints. We dis
ard

all 
hains that do not appear on the boundary of U

Æ

. We now 
omplete the 
onstru
tion of

U

Æ

by gluing the remaining 
hains together, i.e., we 
onne
t a 
hain of U

lson(Æ)

with a 
hain

of U

rson(Æ)

if they share a 
ommon endpoint. Sin
e the endpoints of 
hains are interse
tion

points of R and B, it is easily seen that the 
hains glue together properly. The total time

spent in these two steps is O(n log n), be
ause apart from lo
al tests it only requires O(n)

point lo
ation queries in planar subdivisions.

As for lo
ating the points of C

Æ

in U

Æ

, we asso
iate a point p of C

Æ

with a node v of

T if the x-proje
tion of p lies in �

v

; p is stored at O(logm) nodes along a path in T . Let

C

v

be the set of points asso
iated with v. Let 


v

(resp. 


0

v

) be the edge of R

v

(resp. B

v

)

lying immediately above p. If there is a node v su
h that p 2 C

v

, and either the bottom

side of 


v

is in U

lson(Æ)

or the bottom side of 


0

v

is in U

rson(Æ)

, then p 2 U

Æ

. By doing binary

sear
hes in parallel at all O(logm) nodes where p is stored, we 
an determine in O(logm)

time whether p lies in U

Æ

. Sin
e

P

v

jC

v

j = O(jC

Æ

j logm), the total number of pro
essors

required over all points of C

Æ

is O(jC

Æ

j logm).

Finally, to determine whether S

n

is mutually visible from all other spheres, we run

the above pro
edure on the binary tree B in a bottom-up fashion, running at all nodes of

the same level in parallel. Sin
e a 
ap of S

�

or a point of C

�

is being stored at only one

node of B for any given level, the total number of pro
essors required to run the above

pro
edure is O(n logn). The total time spent by the algorithm under Valiant's model is
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O(log

2

n). It thus yields an overall parallel algorithm for determining whether S is mutually

visible, whi
h requires O(log

2

n) time and O(n

2

logn) pro
essors. Plugging all this in the

parametri
 sear
h paradigm, we 
an 
on
lude

Theorem 5.2 Given a set of n points in IR

3

, we 
an determine, in time O(n

2

log

5

n), the

largest possible 
ommon radius r, so that the spheres with radius r 
entered at the given

points are (pairwise disjoint and) 
ompletely mutually visible.

6 Con
lusion

In this paper we applied the parametri
 sear
hing te
hnique to a number of problems |

the biggest sti
k problem, the minimum width annulus problem, the problem of 
omputing

the minimum Hausdor� distan
e under translation in the Eu
lidean metri
 between two

polygonal regions, and the problem of �nding largest mutually visible spheres. For ea
h of

these problems we either obtained the �rst nontrivial solution, or developed a signi�
antly

faster algorithm than the previously best known one. We nevertheless feel that most of our

algorithms are not 
lose to optimal and better bounds 
an be a
hieved.

We 
on
lude by mentioning some open problems:

1. In Se
tion 2, we des
ribed an algorithm for partitioning the lower envelope of n alge-

brai
 surfa
es of �xed degree in IR

4

into a family of O(n

4

�(r)) 
onstant-size 
ells. We

are not aware of any mat
hing lower bound. A better solution for this problem will

yield an improved algorithm for the biggest sti
k and the minimum width annulus

problems. We 
onje
ture an upper bound that is nearly 
ubi
 in n.

2. Is there a subquadrati
 algorithm for 
omputing a longest segment that 
an be pla
ed

inside a polygonal region with holes?

3. Is it possible to determine whether the minimum Hausdor� distan
e between two

sets of segments, as in Se
tion 4, is at most Æ, without 
omputing K




PQ

\ (�K




QP

)

expli
itly? In parti
ular, 
an su
h a 
omputation be 
arried out in o((mn)

2

) time?

4. In general, there is the 
hallenge of applying the parametri
 sear
hing te
hnique to

other problems in 
omputational geometry and geometri
 optimization. Re
ently,

Chazelle et al. [16℄ have obtained improved solutions for some other geometri
 prob-

lems, in
luding the 
omputation of the diameter and width of point sets in IR

3

, using

the parametri
 sear
hing te
hnique.
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