Applications of Parametric Searching in Geometric
Optimization *

Pankaj K. Agarwal' Micha Sharirt Sivan Toledo®

June 17, 2002

Abstract

We present several applications in computational geometry of Megiddo’s parametric
searching technique. These applications include: (1) Finding the minimum Hausdorff
distance in the Euclidean metric between two polygonal regions under translation; (2)
Computing the biggest line segment that can be placed inside a simple polygon; (3)
Computing the smallest width annulus that contains a given set of given points in the
plane; (4) Given a set of n points in 3-space, finding the largest radius r such that if
we place a ball of radius r around each point, no segment connecting a pair of points
is intersected by a third ball. Besides obtaining efficient solutions to all these problems
(which, in every case, either improve considerably previous solutions or are the first
non-trivial solutions to these problems), our goal is to demonstrate the versatility of
the parametric searching technique.

1 Introduction

In this paper we present several applications in computational geometry of the parametric
searching technique of Megiddo [34]. This technique, which we briefly review below, is
a powerful and ingenious tool for solving efficiently a variety of optimization problems.

*Pankaj Agarwal has been supported by National Science Foundation Grant CCR-91-06514. Micha Sharir
has been supported by Office of Naval Research Grant N00014-90-J-1284, by National Science Foundation
Grant CCR-89-01484, and by grants from the U.S.—Israeli Binational Science Foundation, the G.I.LF. — the
German Israeli Foundation for Scientific Research and Development, and the Fund for Basic Research admin-
istered by the Israeli Academy of Sciences. Sivan Toledo has been supported by the Special Interdisciplinary
Program at Tel-Aviv University.

tDepartment of Computer Science, Duke University.

tCourant Institute of Mathematical Sciences, New York University, and School of Mathematical Sciences,
Tel Aviv University.

§School of Mathematical Sciences, Tel Aviv University; Current address: Laboratory for Computer Sci-
ence, Massachusetts Institute of Technology.

INTRODUCTION 2

Although it has been applied successfully to several problems in computational geometry
1,2, 3,4, 20, 21, 36, 38], its potential for problems in geometric optimization does not seem
to be widely recognized as yet. Many problems of this kind, which could be easily attacked
by the technique, are either solved by more complicated and more ad-hoc techniques, or
are simply left unsolved. The purpose of this paper is to present efficient solutions, via the
parametric searching technique, to several problems of this kind, with the by-product goal
of publicizing the technique and making it more accessible to the computational geometry
community.

The parametric searching technique can be described in the following general terms
(which are not as general as possible, but suffice for our purposes). Suppose we have a
decision problem P(d) that depends on a real parameter d, and is monotone in d, meaning
that if P(dp) is true for some doy, then P(d) is true for all d < dy. Our goal is to find the
maximum d for which P(d) is true (or, if none exists, the supremum of all d for which P(d)
is true). Suppose further that P(d) can be solved by a (sequential) algorithm A, (d) whose
input is a set of data objects (independent of d) and d, and whose control flow is governed
by comparisons, each of which amounts to testing the sign of some low degree polynomial in
d. Megiddo’s technique then runs Ag “generically” at the unknown maximum d*. Whenever
Ay reaches a branching point that depends on some comparison with associated polynomial
p(d), it computes all its roots and runs A; with the value of d equal to each of these roots.
This yields an interval between two adjacent roots, known to contain d*, and thus enables
A to determine the sign of p(d*), thereby resolving the comparison and allowing the generic
execution to proceed. As the algorithm proceeds, the interval known to contain d* keeps
shrinking as a result of resolving further comparisons, and at the end either the interval
becomes a singleton, which is thus the desired d*, or else d* can be shown to be equal to
its upper endpoint.

The cost of the procedure just described is generally too high, because the number of
times A is invoked within the generic execution is proportional to the number of compar-
isons in the generic A;. To speed up the execution, Megiddo proposes to replace the generic
algorithm by a parallel algorithm A,. If A, uses P processors and runs in 7}, parallel steps,
then each parallel step involves at most P independent comparisons. We can then compute
the roots of all polynomials associated with these comparisons, and perform a binary search
to locate d* among them using A, at each binary step. If A; has running time Ty, then the
cost of simulating a parallel step of A, is O(P+Tj;log P), for a total of O(PT,+T,T; log P).
In most cases the second term dominates the running time. (Since the parallel algorithm
is simulated sequentially, we can use the comparison model of Valiant [40], which measures
parallelism only in terms of comparisons being made, and ignores all other operations. This
observation simplifies the technique considerably.)

This brief overview of parametric searching does not cover all aspects of the technique.
Various extensions and variants include a trick due to Cole [20], which in certain cases im-
proves the running time of the procedure by a logarithmic factor, a variant due to Matousek

Applications of Parametric Searching June 17, 2002

INTRODUCTION 3

[31] and others which replaces in certain applications the parallel generic algorithm by a
randomized (sequential) one, leading to simplified solutions, and a variant due to Frederick-
son and Johnson [24, 25], where the optimal solution d* is an element of an implicitly given
matrix, whose elements satisfy certain monotonicity properties. There are various other
extensions of the technique. For example, Megiddo’s subsequent linear-time algorithm for
linear programming [35] can be regarded as an optimized variant of the parametric searching
technique.

Since its design, about 13 years ago, the parametric searching technique has been suc-
cessfully applied to a variety of optimization problems. In computational geometry it has
been applied to the slope selection problem [21], computing the center of a set of points in
2 and 3 dimensions [36], selecting distances in the plane [1], certain 2-center problems for
planar point sets [4], range searching and ray shooting [3], and extremal polygon contain-
ment problems [38]. This is still a relatively small crop, given the large body of literature
on geometric optimization problems.

In this paper we demonstrate the power of the parametric searching technique by apply-
ing it to solve a variety of additional geometric optimization problems. Roughly speaking,
the recipe for such an application is first to solve the fized-size problem (i.e. the decision
problem P(d)) by an efficient sequential algorithm and an efficient parallel one (in Valiant’s
model). Then the application of parametric searching is almost routine and yields efficient
solution to the related optimization problem.

The problems that we solve in this paper are (see also the subsequent sections for
additional discussion of the results and comparison with previous work):

Biggest stick: Computing the longest line segment that can be placed inside a simple
n-gon. We present an algorithm with running time O(ns/ 5+€), for any € > 0,! consid-

erably improving the previous algorithm of [18] whose running time is O(n!9%99),

Minimum width annulus: Computing the smallest-width annulus that contains a given
set of n points in the plane. We give an algorithm with running time O(n®/5%¢),
significantly improving the quadratic-time algorithm of [23].

Minimum Hausdorff distance between polygons: Finding the minimum Hausdorff
distance in the Euclidean metric between two polygonal regions in the plane under
translation. This is a hard instance of a general pattern matching problem, studied
in [7, 28, 29]. It was left untreated in [29], and was solved by a brute-force inefficient
method in [7]. We solve it in time O((mn)? log®(mn)), where m and n are the number
of edges of the given polygons. This is about three orders of magnitude faster than
the algorithm of [7].

!Throughout this paper, ¢ denotes an arbitrarily small positive constant. The meaning of such a com-
plexity bound is that, for any € > 0, the algorithm can be calibrated so that its running time admits the
given bound, where the constant of proportionality usually depends on e.

Applications of Parametric Searching June 17, 2002

THE BIGGEST STICK PROBLEM 4

Complete mutual visibility among spheres: Given a set of n points in 3-space, find
the largest radius r so that if we place a ball of radius r around each point, the balls
are pairwise disjoint, and no segment connecting a pair of points is intersected by
a third ball. This problem arises in the context of optical interconnections between
processors in 3-space. We present an O(n? log® n) algorithm for this problem, which,
as far as we know, is the first nontrivial solution.

Although the common theme of our solutions is the application of parametric searching,
the bulk of the technical contribution of this paper is in the solutions of the corresponding
fixed-size problems, which are by no means easy. They require the application of a variety of
sophisticated geometric techniques, such as range searching, point location among algebraic
varieties, computing Minkowski sums, and output-sensitive hidden surface removal in 3-
space. We also remark that the challenge is not only in solving these fixed-size problems
efficiently by a sequential algorithm, but also to design efficient parallel algorithms (in
Valiant’s model) for these problems.

The paper is organized as follows. We present a solution to the biggest stick problem
in Section 2 and to the minimum-width annulus problem in Section 3. Section 4 studies
the problem of computing the minimum Hausdorff distance between two polygons, and
Section 5 solves the complete mutual visibility problem for spheres in 3-space. We conclude
with some final remarks in Section 6.

2 The Biggest Stick Problem

In this section we obtain an improved solution to a problem posed by M. McKenna in 1986:
Given a simple polygon P with n edges, find the “biggest stick” (i.e. longest line segment)
that can be placed inside P (i.e. be disjoint from the exterior of P). It is easy to design an
algorithm for solving this problem in time O(n?), and the goal is to obtain subquadratic
solutions. Chazelle and Sharir [18] have given such a subquadratic solution, which runs in
time O(n!?9%?) and is based on Collins’ cylindrical algebraic decomposition technique [22].
The running time of their algorithm can be improved to O(n'*?) using the results of Chazelle
et al. [14] on point location among algebraic surfaces. In this section we give a considerably
improved solution, whose running time is O(n8/5+¢). We note that if the endpoints of the
stick are constrained to lie at vertices of P then a faster solution is known [6].

Our solution is based on the following approach, also used by the previous algorithms
mentioned above. We find, in linear time, a chord e that partitions P into two subpolygons,
Py, P,, such that each contains at most 2n/3 vertices [11]. We recursively find the biggest
stick in P, and in P,. Then we compute the biggest stick within P which crosses e, and the
final answer is the largest of these three candidate sticks. To compute a biggest stick that
crosses ¢ we proceed as follows.

Applications of Parametric Searching June 17, 2002

THE BIGGEST STICK PROBLEM 5

Without loss of generality assume that e is vertical and lies on the y axis, and that the
right (resp. left) side of e is in P (resp. P»). Let p be a rightward directed ray emanating
from e. Using a standard duality transformation, we can map the line supporting p to a
point p*. We will refer to the point p* as the dual of p. The duality yields a planar map M7,
each of whose faces is the set of points dual to lines supporting the rays emanating from e
and hitting first (the interior of) some fixed edge a of P, (i.e., the portion of p between e
and a lies inside the closed P;). Every edge g of M; is the locus of points dual to the rays
that either hit a fixed vertex v of Pj, or touch a vertex v of P, before hitting an edge a of
Py, and every vertex of M is a point dual to a ray that either passes through two vertices
of P; before hitting an edge of P;, or passes through a vertex and hits another vertex of P;.
We can define a similar map Mj for P». By a result of Chazelle and Guibas [17], each M; is
a convex planar subdivision having O(n) faces, edges and vertices, and it can be computed
in O(nlogn) time (actually, in O(n) time, using the recent polygon triangulation algorithm
of Chazelle [13]).

Figure 1: Polygon and its visibility map

It is easy to check that a biggest stick B placed inside P and crossing e must touch two
vertices of P. Hence, there are three cases to consider, depending on the vertices p,q € P
that B touches:

1. both p and g are in Py;
2. both p and ¢ are in P»;

3. pisin P; and ¢ is in Ps.
For each of the three subcases we find the longest segment that can be placed inside P

Applications of Parametric Searching June 17, 2002

THE BIGGEST STICK PROBLEM 6

and crosses e, and then choose the longest of the three segments.

If a segment lying inside P crosses e and touches two vertices p, g of P;, then the point z
dual to the line supporting B is a vertex of M;. By locating z in M we can determine the
length of the longest segment crossing e and passing through p and ¢, which can be placed
inside P. Hence, by locating all vertices of My in M, we can determine in O(nlogn) time a
longest segment that satisfies the first condition. Similarly, we can determine in O(nlogn)
time a longest segment that satisfies the second condition.

The hard case is when p lies in P; and ¢ lies in P». The point dual to the line supporting
such a segment is an intersection point between an edge of My and an edge of Ms. The
number of such intersections can be ©(n?) in the worst case, so we cannot afford to compute
all of them explicitly. Consequently, we have to use a more clever approach.

Let us fix a length § > 0, and consider the decision subproblem of determining whether
a line segment of length at least & can be placed inside P such that it touches a vertex
of P and another vertex of P». We preprocess the edges of one of the maps, say Mo,
for efficient range searching queries of a particular kind (detailed below), and then query
the resulting structure with range queries derived from the edges of M;. These queries
collectively determine whether there exists a critical placement of the segment with the
required properties, thereby solving the fixed-size subproblem.

Recall that every edge g of M; corresponds to a pair (v,a), where v is a vertex and a is
an edge of P;; the points of g are dual to rays p that pass through v and hit a behind (or
at) v, so that the portion of p between its intersections with e and a, excluding the point
v, lies in the interior of P;.

We regard each edge g € M; as the zy-projection of an arc 7 in 3-space. For a point
z € g, let x(z) denote the length of the portion of the line dual to z between its intersections
with e and a. Then the height of v above z, denoted ~(z), is equal to § — x(2). In this
manner, the edges of My are mapped into a collection G of arcs in 3-space.

Next, we map each edge h € My, associated with a pair (w,b) of a vertex w and an
edge b of P, to an arc n in 3-space, so that the zy-projection of 1 is h and the height of n
above any z € h, denoted n(z), is the length of the portion of the line dual to z between
its intersections with e and with b. Let o be the intersection of A with an edge g of M;.
Then n passes above v at o (i.e., n(c) —v(o) > 0) if and only if the line dual to o contains
a placement of a line segment with length § crossing e and lying inside P.

The problem has therefore been reduced to the following. Given a collection G of n arcs
in 3-space, corresponding to the edges of M in the manner described above, and a second
collection H of n arcs, corresponding to the edges of Ms, determine whether there exists a
pair of arcs, v € G, n € H, such that n passes above 7.

We solve this problem in two stages. First, following the “hereditary segment tree”

Applications of Parametric Searching June 17, 2002

THE BIGGEST STICK PROBLEM 7

technique of [15], we construct, in O(nlog?n) time, a family
M = {(My1, My,1), (My2, M), - }

of O(nlogn) canonical pairs of sets of edges, such that

1. Each My ; is a subset of the edges of M, and each Ms; is a subset of the edges of M5.
2. 2i(|Myg| + |Ma]) = O(nlog® n),
3. each edge g € M, ; intersects every edge of My ;, for each 7, and

4. for every pair of intersecting edges g € My, h € My, there is a pair (M, Mz ;) such
that g € Ml,i and h € Mg’i.

Consider one of the pairs of subsets, say (M1, M21). Since every pair of segments in
(M1, Ms;) intersect, we can extend the segments to full lines without introducing new
intersection points. Let Gy and H(denote the sets of arcs (actually curves) corresponding
to the lines in M) ; and My, respectively; let |Ho| = £, |Go| = (. We want to determine
whether any arc of Gy lies above any arc of H,.

Recall that each arc v € Gy (resp. v € Hy) is associated with a vertex v, and an edge a,,

of the polygon P; (resp. P), so we can map <y to a point 5 = (v}y,v?y, a}y, a%) in IR*, where
(v,ly, v%) are the coordinates of the vertex v, and y = a}yx + a?y is the equation of the line

supporting the edge a, (the preceding filtering segment tree technique allows us to ignore
the endpoints of a, and to regard it as a full line). Let S = {¥ | v € Go} be the resulting
set of ¢ points in IR*. We associate a 4-variate function Fy(x1,29,23,24) with each arc
n € Mo, such that F, (%) expresses the difference in height between n and the arc v € G
at the point of intersection between their zy-projections. Let ¢, , denote the line passing
through the vertices v, and v, and let z, (resp. z,) denote the intersection point of £, ,
and the line containing a., (resp. a,); see Figure 2. Then F),(¥) = d(zy, z,) — d. Our goal is
thus to determine whether there exists v € Gy such that

F. (%) >0. 2.1
max F(7) = (2.1)

Let 0, denote the surface F (z1, 72,23, 74) = 0 in R*; let & = {o,|n € Ho}. Notice that,
if we fix i and also fix the first three coordinates (v}y, v?y, a,ly) in IR*, the corresponding line
{, , and the point z; are fixed, and 2, is the intersection point of /, ; and some line with slope
a}y. Hence (as long as a,ly # slope(?,y)), for each function F,, and any triple (1,22, x3) for
which these corresponding slopes are distinct, there is a unique T, = x4(x1, 22, x3) such that
Fy(x1,29,23,%4) = 0, that is, a unique point (21,22, x3,Z4) on the surface o,. Moreover,
as x4 increases beyond Z4, Fj, becomes positive or negative, depending on the values of

x1,x9,x3. Assume, for specificity, that P; lies to the right of e (in a sufficiently small

Applications of Parametric Searching June 17, 2002

THE BIGGEST STICK PROBLEM 8

Figure 2: Tllustration of F,(¥): (a) slope (¢y,,) > slope(ay); (b) slope (¢,,) < slope(a,)

neighborhood of e). If 3 is greater (resp. smaller) than the slope of the line £, ,, then the
value of F), is negative (resp. positive) for x4 > 74 (see Figure 2).

For each n € Hg, we can thus regard the surface o, as the graph of a function x4 =
@, (x1, 22, 23). The function is defined for all (x1,x2,23) for which the corresponding slope
of £, , is different from x3. Property (3) of canonical pairs in M implies that each ®, is
defined at the (1, 22, z3)-coordinates of every point of g [1]: Verify it!!

The problem at hand can thus be restated as a problem in which we want to determine
whether there is any point of S lying on the “good” side of some surface in ¥. However,
the problem gets complicated because the good side may be above the surface or below it,
depending on the (z1,z2,23) coordinates of the point and on the surface parameters. Our
approach is to first decompose the problem into subproblems, in each of which these good
sides are known and fixed, and then solve each subproblem separately and see if any of
them yields a good pair of point and surface.

Suppose, as a special case, that

2 2
v, — U

T—2 > a, (2.2)
Uy — U

n v

for each pair n € Ho,y € Gy (i.e., the slope of the line £, , is greater than that of the edge
ay), then max, F,(¥) > 0 if and only if 4 lies above (or on) at least one surface oy, that
is, 4 does not lie in the (open) bottommost cell B(X) of the arrangement of the surfaces.
In this case the problem of determining whether any arc of Hy lies above any arc of Gy
thus reduces to determining whether any point of S lies in B(X)¢, where B(X)¢ denotes the
complement of B(X). A similar formulation holds if the inequality (2.2) is reversed for all
pairs v, n. However, for technical reasons to be detailed below, we will require that in each
subproblem one of the following stronger conditions is satisfied for all pairs v, #:

2 b

> max{a,ly, a},} (2.3)

2+

Applications of Parametric Searching June 17, 2002

THE BIGGEST STICK PROBLEM 9

'112—'112 .
vgivg < mln{a,ly,a,li} (2.4)
1 vp—v3 1
ah < ¥t <a (2.5)
2 .2
ay < FoF < ay. (2.6)

We will show below how to decompose our problem into subproblems of these types.
But first we present an efficient solution of a subproblem in which the condition (2.3) holds
for all v and n; the other cases can be handled in a fully symmetric fashion.

First Algorithm

Let X and S be two collections of ¢ surfaces and (points as defined above, so that they
satisfy condition (2.3). Let r be some sufficiently large constant. We compute a %—net
R C ¥ of size t = O(rlogr) in linear time.? If there is a pair 4 € S and o € R such that 4
lies above (or on) o, then we already know that max, F;, (%) > 0, so we can stop right away.
Otherwise, we decompose the bottommost cell B(R) below the lower envelope of R into
constant-size cells as follows. Fix a surface o; of R. For every other surface o; € R — {0;},
we project the intersection surface o; Mo orthogonally onto the hyperplane x4 = 0. Let X}
denote the set of resulting ¢ — 1 surfaces in IR?. We decompose the arrangement of ¥¥ into
a family A; of O(t35(t)) = O(r* log3r B(r)) cells, using the algorithm of [14], where 5(.) is
an extremely slowly growing function depending on the maximum degree of the surfaces in
¥f (which is a constant) and on the inverse Ackermann function.

For each cell T € A, let
' = { (21,72, 73,74) | (v1,72,23) € 7 and x4 < ®;(w1, 72, 73) },

where ®; is the function that represents the surface o;. If 7’ does not intersect any surface of
R, we add 7’ to the final decomposition of B(R). Repeating the above step for all surfaces
in R gives a decomposition A of B(R). Since each cell of A; contributes at most one cell
to A, |A| = O(r* log*r B(r)).

For each cell 7 € A, we compute X, the set of surfaces in ¥ intersecting the interior of
7, and S;, the set of points of S lying in 7. Thus, we obtain O(r*log*r 3(r)) subproblems,
where the subproblem corresponding to a cell 7 € A involves X, and S;. Let H, and G,
denote the set of arcs corresponding to X, and S;, respectively, and let & = ||, & = |S7|.

2Specializing from the general concept, we call a subset R C ¥ of a set of n (algebraic) surfaces a %—net,
r < n, if every (open) cell of constant complexity, of the form obtained in the stratification algorithm of [14],
which does not intersect any surface of R, intersects at most n/r surfaces of X; see [27] for a more formal

definition. Haussler and Welzl [27] showed that a random subset of ¥ of size O(rlogr) is a L-net with high

probability. Later Matousek [32] gave an O(nr®™®)-time deterministic algorithm for computing a L-net of

size O(rlogr).

Applications of Parametric Searching June 17, 2002

THE BIGGEST STICK PROBLEM 10

Note that > . (; = ¢ and & < &/r. We solve each subproblem recursively. The recursion
stops when &, > (2. In this case, we flip the roles of ¥, and S,. We map the arcs of H.,
to a set X% = {f | n € H,} of points, and the arcs of G; to a set S¥ = {0, | v € G;} of
surfaces. We also reverse the direction of the z4-axis.

Since P; lies to the left of the chord e, by (2.3) and the above discussion, there is a pair
vy € Gr, n € H, such that F,()) > 0 if and only if 7} lies above the surface o, (with the
reversed direction of the z4-axis). We therefore proceed as above — recursively applying the
decomposition technique to determine whether any point of X lies above the bottommost
cell B(S}). But we now continue the recursion until we are left with constant number of
points or surfaces (in which case we use any naive brute-force algorithm), and do not flip
the surfaces and points any more.

We now analyze the running time of the above procedure. Let T'(§, () denote the max-
imum running time of the procedure involving ¢ surfaces and (points. First consider the
‘bottom part’ of the procedure (after flipping the roles of G, and H,). We get the following

recurrence
crtlogt rp(r)

Tt = X T(2.6)+ 06 +6),

J=1

where 37, ;. = &; and c is some constant. T(;,&r) = O(&; + (;) if & or ; is less than
some fixed constant. Following the same analysis as in [14], one can show that the solution
of the above recurrence is O((A€ + &, log &) = O(£L7€) time, since &, > 2.

Next, for the top part of the procedure, we get the following recurrence.

crtlog rB(r)

3 : 4
T, () = Jz::l T(Taer>+0(§+C) if €< ¢
O(£1+9) if ¢ > ¢4,

where > _(; = (¢ and c is some appropriate constant. The solution of the above recurrence
is (see e.g. [5])
T(£,¢) = O/ v gt 4 (1) (2.7)

(where € is a function of r, and can be made arbitrarily small by increasing r).

We leave it to the reader to verify that appropriately modified variants of this procedure
will correctly handle any subproblem satisfying one of the other conditions (2.4)-(2.6), with
the same bound on their running time.

Second Algorithm

Next, we extend the algorithm to the general case, where none of (2.3)-(2.6) hold uniformly
for all pairs of arcs. Essentially, the extended algorithm decomposes the problem into

Applications of Parametric Searching June 17, 2002

THE BIGGEST STICK PROBLEM 11

subproblems, each satisfying one of these conditions, and then applies the previous algorithm
to each subproblem separately.

For an arc) € Gy U Hy, let h;, denote the surface

(:v—v};)- {y—a},(m—v};) —v?]] =0, (2.8)

and let 1, denote the surface
(x — v,ll) : [y —z(x — v},) - ’UTQI] =0 (2.9)

in R®. We compute a 1-net R C Hy of size O(rlogr) (r is a sufficiently large constant),
and decompose the arrangement {h,, 1, | n € R} in IR? into a family A of O(r®log®r 5(r))
constant-size cells using the algorithm of [14]. We associate with each cell 7 € A a subset
H; C Ho and another subset G, C Go. An arc n € Hg is in H; if either A, or 1, intersects
7, and an arc v € Gg is in G, if the point (v,ly, v?y, a,ly) lies in 7. Any arc n € Ho — H is such
that each of the left-hand sides of (2.8), (2.9) has a fixed sign over all points (z,y, z) € 7.

We decompose Hy — H, into four subsets, denoted Agl’(b), for 61,00 € {—1,+1}, where

n € ALT%) i the corresponding fixed signs of (2.8), (2.9) are d1, d, respectively.

We now have to determine, for each cell 7 € A, whether there is an arc n either in one of
the sets Agl’(b) or in H, such that max,cg, F,(¥) > 0. Notice that, by construction, each
of the four pairs (A£51’52), G,) satisfy one of the conditions (2.3)—(2.6), so we can use the
first algorithm to determine whether any arc of G, lies above any arc of A(T‘Sl"b). We repeat
this step for all cells 7 € A. By (2.7), the total time spent is Q(&4/5F¢¢4/5+e 4 glte 4 ¢l+e)

(since r is a constant).

Next, we recursively solve the O(r33(r)) subproblems, where the subproblem corre-
sponding to a cell 7 requires determining whether any arc of H, lies above any arc of G,.
The recursion stops when &, > (;4.. As in the previous algorithm, we now flip the roles of
Gr and H, — we choose a %—net of G, of size O(rlogr) and map the arcs of H, to points,
and continue as above. Following a similar argument, the total time spent by the algorithm
after flipping the roles of G, and H, is O(£1F€). Therefore, we get the following recurrence

4/5+¢€4/5 I4e 14e or? log” rA(r) 3 . 4
16,0 = | CETTCT R T(;,ci) e <
O(£1+E) lfé' Z C4 ’

where > (; = (and c is some appropriate constant. The solution of this recurrence is also

T(€,0) = O(E/5H (Y5 ¢t (1. (2.10)

We apply the entire procedure to all canonical pairs (M ;, M2;) in M. By (2.10) and
the second property of canonical pairs, we can conclude that the running time of the overall

Applications of Parametric Searching June 17, 2002

THE MINIMUM WIDTH ANNULUS PROBLEM 12

algorithm is O(ns/ 5+€/) for a slightly larger, but still arbitrarily small ¢ > 0. Putting
everything together, we obtain an algorithm with O(ns/ 5+€) time, to determine whether
a line segment of length ¢ can be placed inside a given polygon P so that it crosses the
diagonal e.

Finding the longest segment

Finally, we apply parametric searching to turn the preceding algorithm into one that com-

putes the biggest segment that can be placed inside P and crosses the diagonal e. To this

end, we need an efficient parallel version of the above procedure in Valiant’s model [40].

Notice that canonical subsets can be computed sequentially, because the properties (1)—(4)

do not depend on the value of . So, we only have to parallelize the procedure that, given

two collections of arcs Gy and Hg, determines whether any arc of Gy lies above any arc of

Ho. This is easy to do in Valiant’s model. Consider the first algorithm. Since r is cho-

sen to be some constant, the set R can be computed in polylogarithmﬁi time using O(n)[2]: Micha! WHat is
processors as described in [16], and the sets ¥, and S, can be computed in constant pau"—the erponentt!
allel time using a linear number of processors. We then obtain a collection of independent
subproblems, which can all be processed in parallel. The running time of this procedure is

easily seen to be logarithmic and the number of processors can be bounded by the same re-

currence as for the sequential running time. The second algorithm can also be parallelized

similarly. The only difference is that we now invoke the first procedure at every stage,

which will take logarithmic time, so the second algorithm runs in polylogarithmic time with
O(€4/5+e¢4/5 4 glte 4 ¢14¢) number of processors. Omitting some of the (rather routine)

details related to parallelization, and plugging all of this into the parametric searching
paradigm, we obtain an algorithm with O(n®/5t€) time, for computing the longest segment

that can be placed inside P and that crosses the diagonal e.

Going back to our original divide-and-conquer algorithm for finding the biggest stick,
the merge step requires O(n8/5+€) time. Hence, we can conclude

Theorem 2.1 Given a simple polygon P with n edges, one can compute, in time O(n8/5+€),
a longest line segment that can be placed inside P.

3 The Minimum Width Annulus Problem

Next we consider the problem of approximating a planar point set S, of n points, by a circle.
One way of obtaining such an approximation is to compute two concentric circles C1 and
Cs of radii r1 < r9 such that all points of S lie in the exterior of C'y and in the interior of Cs,
and such that ro — ry is minimized (see Figure 3). In other words, we wish to compute an
annulus of minimum width that contains all points of S. An O(n?) algorithm was proposed

Applications of Parametric Searching June 17, 2002

THE MINIMUM WIDTH ANNULUS PROBLEM 13

by Ebara et al. [23]. We present an algorithm whose running time is O(n%/°+€). As it turns
out, this application is a variant of the technique used above for the biggest stick problem.

Figure 3: Minimum width annulus

Specifically, let Vor,(S), Vor(S) be the closest and the farthest-point Voronoi diagrams
of S, respectively. For a point ¢ € IR? lying in the Voronoi cell V.(p;) (p; € S) of Vor.(S),
let D.(§) denote the distance between £ and p;. Analogously, define Dy (&) for Vors(S).
Given a point £ in the plane, the width of the thinnest annulus centered at &, which covers
S, is Df(§) — D(&). Thus, our goal is to compute

min D;(€) - Do(€).
EER

As in the case of the biggest stick problem, it suffices to describe an algorithm that, for a
given parameter W, can determine whether

min D;(€) — De(€) < W. (3.1)
(elR

It has been shown in [23] that the desired minimum is attained either at a vertex of one
of the two Voronoi diagrams or at an intersection of two diagram edges. By preprocessing
Vor,(S), Vorf(S) for efficient planar point location queries, and by locating each vertex of
either diagram in the other diagram, we can test in O(nlogn) time whether any vertex of
the two diagrams satisfies (3.1). The hard part is testing the (up to quadratically many)
intersection points of edges of the two diagrams, which can be done following the same
approach as in the previous section. We will sketch the general idea and leave it for the
reader to fill in the details.

Let R denote the set of edges of Vor.(S) and let B denote the set of edges of Vors(S).
First, we decompose R and B, in O(nlog?n) time, into a family of O(nlogn) canonical

Applications of Parametric Searching June 17, 2002

THE MINIMUM WIDTH ANNULUS PROBLEM 14

pairs (Ry, By), (R2, Bs), ..., which staisfy the properties 1-4 stated in the previous section.
Consider one of the canonical pairs (R;, B;). Each edge v of a Voronoi diagram is a portion
of a perpendicular bisector of two points py,qy, € S, so we can map it to a point § =
(v}y,v?y,my, d), where (v}y,v?y) are the coordinates of the midpoint v, between p, and ¢y,
m~ > 0 is the slope of v, and §, > 0 is the distance between p, and v,. Let P = {¥ | v € R;}.
We associate with each edge n € B; a 4-variate function F, (21,2, x3,x4), such that F; (%)
is equal to

De(&) = Dy(§) + W = d(&,py) — d(&,pp) + W,

Figure 4: Illustration of 4 and F (1, z2, 3, x4)

where p,, is any one of the two points of S defining 1, and where ¢ is the intersection point
of n and ~v. For a fixed edge n € B; and a fixed triple (v}y, v?y, m.), the line containing the
corresponding 7, and the midpoint v, are both fixed; hence, the intersection point &, and
the distance d(&, p,) are also fixed. It follows that there is at most one d, = $4(v,1y, v,%, M)
such that Fn(vé,v?y,m.y,gv) = 0. Moreover, F, is positive (resp. negative) for z4 > 4,
(resp. x4 < §,). Hence, D¢(§) — D.({) < W for an intersection point { of R; and B; if
and only if there is a point of P that does not lie below the lower envelope of the surfaces
{F,(x1,22,23,24) = O|n € B;}. Notice that one can flip the roles of R; and B; and still
reduce the problem to locating a collection of points below the lower envelope of a collection
of surfaces in IR*. Therefore the first algorithm of the previous section can be adapted to
solve the above problem in sequential time O(n%°%€), or in O(logn) parallel time with
O(ng/ 5+€) processors. Plugging all this into the parametric searching paradigm, we obtain

Theorem 3.1 Given a set S of n points in the plane, one can compute, in time O(n8/5+€),
a minimum width annulus that contains all points of S.

Remark 3.2: An annulus of minimum area can be computed in linear time using Megiddo’s

Applications of Parametric Searching June 17, 2002

MINIMUM HAUSDORFF DISTANCE BETWEEN POLYGONAL OBJECTS 15

linear programming algorithm.

4 Minimum Hausdorff Distance Between Polygonal Objects

In this section, we consider the following problem: “Let P be a collection of m objects in the
plane and Q another collection of n objects in the plane. We wish to compute a translation
t of @ which minimizes the Hausdorff distance between P and the translated copy of Q.”
The Hausdorff distance between two sets A and B of objects is defined as

H(A, B) = max{h(A, B), h(B, A)},

where

h(4, B) = max min d(p,q)

(we assume that the objects of A and B are all compact sets, so the minima and maxima
appearing in this formula are all well defined). Here d(-,-) denotes the Euclidean distance
between two points. For a set 7 C IR? and a vector ¢, let 7 &t = {p+t|p € 7} be the
Minkowski sum of m and ¢, and, for a set A of objects, let A®t={rdt| e A}. We
want to compute

D(P,Q) =min HP,Q®t)=min HP ®t, Q).
teR? telR?

Qat

Figure 5: Minimum Hausdorff distance between two polygons

See Figure 5 for an illustration of the problem for the case where P and Q are simple
polygons.

The value of D(P, Q) gives a measure of the resemblance between P and Q, so its (ef-
ficient) computation has applications in pattern recognition, computer vision, etc. Hutten-
locher and Kedem [28] showed that if P and Q are sets of m and n points, respectively, then
D(P, Q) can be computed in O((mn)2a(mn)) time, where a(:) is the inverse Ackermann

Applications of Parametric Searching June 17, 2002

MINIMUM HAUSDORFF DISTANCE BETWEEN POLYGONAL OBJECTS 16

function. This bound has been recently improved to O(mn(m+n)logmn) by Huttenlocher
et al. [29]. They also showed that if the distance between two points is measured in the
Ly or Lo, metrics, the distance D(P, Q), for sets P, Q each consisting of non-intersecting
segments, can be computed in time O((mn)%logmn), where m = |P|, n = |Q|. However,
their algorithm does not extend to the more useful case of the Euclidean metric. For this
case, Alt et al. [7] presented a brute force algorithm with the rather high time complexity
O((mn)3(m + n)log(m + n)).

In this section we show that if P and Q are sets each consisting of non-intersecting seg-
ments, then D(P, Q), for the Euclidean metric, can be computed in time O((mn)? log®(mn)).
We first solve the fixed-size problem, which, given a parameter § > 0, determines whether
D(P,Q) < 6. We then convert this procedure, using the parametric search technique, into
another algorithm that computes the value of D(P, Q).

We are thus given two sets P, Q, each consisting of non-intersecting segments, and
a parameter 4 > 0, and we wish to determine whether D(P,Q) < 4. Without loss of
generality, we can assume that P is fixed and we seek a translation of Q which brings it
within distance § of P. A placement of @ can be defined by the position of some fixed
reference point Og rigidly attached to Q. We assume that the original set Q is placed so
that Og lies at the origin.

Ps

€s

Figure 6: e5 and Pj

Let Bs denote a disk of radius § around the origin. For a segment e, let e = e @ By =
U{p + Bs | p € e} be the Minkowski sum of e and Bs. The expanded segment es has the

Applications of Parametric Searching June 17, 2002

MINIMUM HAUSDORFF DISTANCE BETWEEN POLYGONAL OBJECTS 17

shape of a racetrack — a rectangle of width 2§ with two semicircles of radius § attached
to its sides. Let Ps = U.cp €5 (see Figure 6). Since the relative interiors of the segments
in P do not intersect each other, the boundaries of e; and €ef, for e,e’ € P, intersect in at
most two points (assuming general position of e, ¢’ [30]; in any case, it is easy to show that
the intersection of the boundaries of es, €} consists of at most two connected components).
Therefore, by the result of [30], Ps has only O(m) edges (and, symmetrically, Qs has O(n)
edges); here each edge of Ps or of Qj is either a straight segment or a circular arc.

For a set A C IR?, let A® denote the complement IR? — A. Let Kop = P§ © Q be the
Minkowski difference of P§ and Q.

Lemma 4.1 K is the set of translations t of Q for which h(Q ©t,P) < 4.

Proof: Let t be a placement of Q for which A(Q @ ¢,P) < §. This is equivalent to asserting
that, for every point (€ Q, there is a point £ € P, such that d(¢+¢,£) < §. In other words,
h(Q@t,P) <4 if and only if (Q@®¢t) NP5 = (). That is, there is no point ¢ € Q and a point
p in P§ with ¢+t =p or t = p — q. Hence, h(Q @ t,P) < ¢ if and only if ¢ € K&p. O

Each edge of K§p is contained in an arc of the form z — ¢, where 2 is an edge of Ps and
q is an endpoint of a segment of Q, or z is a vertex of Py and ¢ is a segment of Q, or z is a
point on a circular arc of Ps whose tangent is parallel to a segment q of Q. Since K§p is
defined by O(mn) segments and circular arcs, its combinatorial complexity is O((mn)?).

In order to define the set of translations ¢ for which h(P, Q ®t) < §, we flip the roles P
and Q, i.e., we fix Q and define the set of placements ¢ of P for which h(P @ t, Q) < . By
the preceding lemma, this set is K5, where Kpg = Q5 © P. It now follows that

Lemma 4.2 D(P,Q) < § if and only if KGp N (—Kpg) is not empty, where —K%o =
[~z |7 € Ko}

In view of the above discussion, an algorithm for determining whether D(P, Q) < ¢ can
be summarized as follows:

1. Compute Py and Qy.

2. Compute Kop = P§ © Q and Kpg = Q5 O P.

3. Determine whether K&, and —(K%o) have nonempty intersection.

As for the time complexity of (a sequential version of) the algorithm, Step 1 can be
accomplished in time O((m + n)log?(m + n)) using the algorithm of [30]. Steps 2 and 3

can be performed together by constructing the entire arrangement of arcs that define the
edges of KGp and —K5 4 and then, for each face in the resulting arrangement, determining

Applications of Parametric Searching June 17, 2002

COMPLETE MUTUAL VISIBILITY AMONG SPHERES 18

whether it lies in both K§p and —K54. Since the edges of Kop and —Kj, are defined by
O(mn) segments and circular arcs, a sweep line algorithm can perform the above steps in
O((mn)?logmn) time. Hence, we can conclude

Theorem 4.3 Given a collection P of m non-intersecting segments and another collection
Q of n non-intersecting segments in the plane, one can determine whether D(P, Q) < § in
time O((mn)? log(mn)).

Next, in order to apply parametric searching, we need an efficient parallel version of
the algorithm. It is well known that the arrangement of a collection of ¢ ‘well-behaving’
arcs in the plane can be computed in O(logt) time using O(#2) processors, see e.g. [1].
Therefore the arrangement of {e¢ © Bs | e € P} can be computed in O(logm) time with
O(m?) processors. After having computed the arrangement, we determine for each face f
of the arrangement the number of racetracks es that contain f; we denote this quantity by
cs. For two adjacent faces f, f', we have |c; — cpr| = 1. We first compute a spanning tree
of the dual graph of the arrangement, and then convert it to an Eulerian path II. Using
an algorithm of Tarjan and Vishkin [39], IT can be computed in O(logm) time with O(m?)
processors (see also [1]). Once we have computed II, we can compute cy for each face of
the arrangement by a parallel prefix computation algorithm, see e.g. [1]. It is easily seen
that an edge 7 of the arrangement is in the boundary of Ps if and only if ¢; = 0 for one of
the faces adjacent to . Testing each edge of the arrangement in parallel, we can compute
the edges of Ps in constant time. Thus Ps can be computed in O(logm) time with O(m?)
processors. Similarly, one can compute Q% in O(logn) time using O(n?) processors. Finally,
an intersection between K&, and —K% 4 can be detected in O(log mn) time with O(m?n?)
processors by computing the arrangement of arcs defining the edges of Kgp and —Kpg
and by determining whether there is a face in the resulting arrangement that lies in both
K§p and —K%5. A variant of the procedure that computes Ps can be used to perform
the above two steps. Hence, the overall running time of the algorithm is O(logmn) using
O(m?n?) processors. Applying the parametric search technique to the resulting algorithm,
we can conclude

Theorem 4.4 Given a collection P of m non-intersecting segments and another collection
Q of n non-intersecting segments in the plane, one can compute the minimum Hausdorff
distance between P and Q, under translation, in time O((mn)? log®(mn)).

5 Complete Mutual Visibility Among Spheres

Let S = {Si,...,5,} be a given set of n spheres in IR3, all with the same radius. Let c;
denote the center of S;, for « = 1,...,n. Two spheres S; and S; are said to be mutually

Applications of Parametric Searching June 17, 2002

COMPLETE MUTUAL VISIBILITY AMONG SPHERES 19

visible if the line segment c;c; does not intersect (the interior of) any other sphere, and S
is completely mutually visible if every pair of spheres in § is mutually visible.

The problem studied in this section is: “Given a set P of n points in R?, we wish to
determine the largest possible common radius r such that the set of n spheres of radius r,
centered at the given points, is (pairwise disjoint and) completely mutually visible.”

This problem arises in the context of parallel computations using optical interconnectioﬂsSig]; Glve a reference??
The spheres model the individual processors, and mutual visibility between a pair of spheres
models the ability of the two processors to communicate by an optical link. In our problem
the locations of the (centers of the) processors are predetermined, and we want to determine
how large can the processors be if every pair is to be able to communicate optically.

By running any closest-pair algorithm, e.g., [10], we can determine in O(nlogn) time
the largest radius 7o so that the interiors of all spheres of radius ry centered at the points
of P are pairwise disjoint. Therefore, we only have to determine the largest radius r* < rg
such that the spheres of radius r* centered at the points of P are mutually visible. In order
to employ the parametric searching technique, we solve the following fixed-size decision
problem: “Given a set § of n pairwise disjoint spheres of unit radius, determine if it is
completely mutually visible”.

We use the following simple scheme. Fix a sphere of &, say S,. We determine in
O(nlog® n) time whether all other spheres of S are mutually visible from S,,. Repeating this
procedure for all spheres of S yields an O(n? log? n) time algorithm to determine whether
S is completely mutually visible.

Let ¢; denote the center of S;, for « = 1,...,n. In order to determine whether there is
any sphere S; for which the segment c¢;c,, intersects the interior of any other sphere, we sort
the spheres of S — {S,,} in the nondecreasing order of the distances of their centers from
cn- Let S, ..., S,_1 be the resulting sequence. Since the spheres in S are pairwise disjoint
and congruent, it can be shown that if ¢ > j then S; cannot hide S; when viewed from c,
(i.e., for any point p € S;, the segment pc,, cannot intersect the interior of S;). We define
the projection of a point p € IR? on S,,, denoted p*, to be the intersection point of the the
sphere S, and the ray emanating from ¢, in direction ¢,p. Let S} denote the projection of
Si on Sy, and let 8* = { S} |i <n}. §*is a collection of spherical caps; the cap S has ¢}
as its center, for i = 1,...,n.

Lemma 5.1 S, and S; are mutually visible if and only if ¢; does not lie in the union of

Sty S

Proof: Consider the segment c,c;. By the above discussion, if ¢ > j then S; cannot
intersect c,c;. Therefore, S; and S, are mutually visible if and only if none of 51, ... ,5; 1
intersect the segment c,c;, which immediately implies the lemma. O

In view of the lemma, it suffices to determine for each S; whether ¢} lies in Uk<; Sk We

Applications of Parametric Searching June 17, 2002

COMPLETE MUTUAL VISIBILITY AMONG SPHERES 20

construct a minimum height binary tree B on S* whose i-leftmost leaf stores S;. For each
node ¢ € B, let Us denote the union of the caps stored at the leaves of the subtree rooted
at 0. If ¢ is a left child of its parent, then we also associate with d the subset Cjs of centers
of the caps stored at the leaves of the subtree rooted at the right sibling of §. If § is the
root of B or the right child of its parent, we set Cs = (). Since the boundaries of every pair
of caps in §* intersects in at most two points, Us has linear complexity [30]. Moreover, Us
can be computed in a bottom-up fashion, because Us = Ulson(s) U Urson(s)- It follows from
the construction and Lemma 5.1 that S5, is not mutually visible to all the other spheres if
and only if there is a node § € B such that one of the points in Cs lies in Us.

Using a variant of the algorithm of Kedem et al. [30], we can compute Us from Ujgon(s)
and Urgon(s) in O(|Us|log |Us|) time.?> Moreover, the algorithm can easily be modified so that
in O(|C;s|log |Us|) additional time one can determine whether any point of Cjs lies in Us.
Since Y5(|Us| + |Cs]) = O(nlogn), the total time spent is O(nlog®n), as claimed earlier.

In order to apply the parametric search technique, we need a parallel version of the
above procedure. Since the algorithm in [30] is based on a sweep-line paradigm, it is not so
easy to parallelize. We will describe a different algorithm for computing the union of two
planar or spherical regions, which is easy to parallelize. For the sake of simplicity we will
describe the algorithm assuming that Uy is a planar map.

Let R, B denote the set of edges in Ulgon(s) and Usgon(s), respectively; let m = |R| + |B].
By splitting each edge into two subedges, if required, we can assume that the edges in RUB
are r-monotone. We also assume that for every edge v of Ujson(s) (resp. Usgon(s)) We know
whether the top or the bottom side of v lies in Uygoy(s) (resp. Urson((;)). Notice that each
intersection point of an edge of R and an edge of B is a vertex of Us, the other vertices
being those vertices of Uyson(s) (resp. Usson(s)) lying outside Upgon(sy (resp. Ulson(s))-

To compute the intersection points of R and B, we construct a segment tree 7 on the
edges of RU B; see [37] for details. Each node v of T is associated with a horizontal interval
A,, a subset R, of edges in R, and a subset B, of edges in B. The z-projection of any
edge in R, U B, covers the interval A,, and an edge of RU B is stored in at most O(logm)
nodes along two paths of 7. We assume that the edges of R, U B, are clipped to within the
vertical strip A, X [—00,+00]. If ¥ € R, then, for each ancestor w of v (including v itself),
we determine the edges of B, that intersect . Since the arcs of B, fully cross the strip
from left to right and are nonintersecting, they form a list which is totally ordered in the y-
direction. Since <y intersects any arc of By, in at most two points, we can determine all edges
that intersect v in O(logm) time by doing a multiple binary search, in which we locate the
endpoints of v and the highest and lowest arcs of B, that intersect . After the searches,
we simply go over all the arcs that were found, which form a contiguous sublist of B,,, and

% Although the original algorithm of [30] computes the union of two planar maps, it can be easily extended
to spherical maps. Actually, one can convert Us, for any § € B, into a planar map by taking a stereographic
projection of caps in S* on a horizontal plane.

Applications of Parametric Searching June 17, 2002

COMPLETE MUTUAL VISIBILITY AMONG SPHERES 21

report all the corresponding intersection points. Since the total number of intersections,
over all pairs of arcs, is only O(m), we have enough processors to report all intersections in
constant parallel time (in Valiant’s model). We apply a symmetric procedure to the arcs v
in B,. Repeating the same procedure at all nodes v € 7, we can determine all intersection
points of R and B. Note that the searches also find all vertices of Uysop(5) that lie outside
Urson(s), and vice versa. Recall that there are only O(m) intersection points. The above
procedure can be implemented in O(logm) time using O(m logm) processors; see [15, 37]
for details.

Once we have computed the intersection points, we can complete the construction of the
boundary of Uy, denoted as AUy, which involves the determination of the edges of Us and
the connected components of its boundary, using a sequential algorithm, because it does not
involve any comparisons. We first split the edges of Ujson(5) and Urgon(s) at the intersection
points of R and B. It decomposes each connected component of OUjon(s) and OUygon(s) into
maximal chains (the chain is the whole component if it does not contain any intersection
point), so that no chain contains an intersection point in its (relative) interior. It is easily
seen that either the entire chain appears on dUj, or it does not appear at all. If a chain is
an entire connected component of Uygon(s) (resp. Upson(s)), then either all of its vertices lie
on dUs, or none of them lie on dUs, so by picking one vertex of the component and locating
it in Upgon(s) (resp. Ulson(s)), we can determine whether it appears on 9U;. On the other
hand, if a chain is not the entire component, i.e., its endpoints are intersection points, we
can determine whether it appears on dUs by a local test at one of its endpoints. We discard
all chains that do not appear on the boundary of Us. We now complete the construction of
Us by gluing the remaining chains together, i.e., we connect a chain of Ujg,p(5) With a chain
of Upson(s) if they share a common endpoint. Since the endpoints of chains are intersection
points of R and B, it is easily seen that the chains glue together properly. The total time
spent in these two steps is O(nlogn), because apart from local tests it only requires O(n)
point location queries in planar subdivisions.

As for locating the points of Cy in Uy, we associate a point p of Cs with a node v of
T if the z-projection of p lies in A,; p is stored at O(logm) nodes along a path in 7. Let
C, be the set of points associated with v. Let =, (resp. 7)) be the edge of R, (resp. By)
lying immediately above p. If there is a node v such that p € C,, and either the bottom
side of 7, is in Ujson(s) or the bottom side of v is in Urson(s), then p € Us. By doing binary
searches in parallel at all O(log m) nodes where p is stored, we can determine in O(logm)
time whether p lies in Us. Since Y, |Cy| = O(|Cs|log m), the total number of processors
required over all points of Cs is O(|Cs|log m).

Finally, to determine whether S,, is mutually visible from all other spheres, we run
the above procedure on the binary tree B in a bottom-up fashion, running at all nodes of
the same level in parallel. Since a cap of S§* or a point of C* is being stored at only one
node of B for any given level, the total number of processors required to run the above
procedure is O(nlogn). The total time spent by the algorithm under Valiant’s model is

Applications of Parametric Searching June 17, 2002

CONCLUSION 29

O(log? n). Tt thus yields an overall parallel algorithm for determining whether S is mutually
visible, which requires O(log?n) time and O(n?logn) processors. Plugging all this in the
parametric search paradigm, we can conclude

Theorem 5.2 Given a set of n points in R3, we can determine, in time O(n?log®n), the
largest possible common radius r, so that the spheres with radius r centered at the given
points are (pairwise disjoint and) completely mutually visible.

6 Conclusion

In this paper we applied the parametric searching technique to a number of problems —
the biggest stick problem, the minimum width annulus problem, the problem of computing
the minimum Hausdorff distance under translation in the Euclidean metric between two
polygonal regions, and the problem of finding largest mutually visible spheres. For each of
these problems we either obtained the first nontrivial solution, or developed a significantly
faster algorithm than the previously best known one. We nevertheless feel that most of our
algorithms are not close to optimal and better bounds can be achieved.

We conclude by mentioning some open problems:

1. In Section 2, we described an algorithm for partitioning the lower envelope of n alge-
braic surfaces of fixed degree in R into a family of O(n*3(r)) constant-size cells. We
are not aware of any matching lower bound. A better solution for this problem will
yield an improved algorithm for the biggest stick and the minimum width annulus
problems. We conjecture an upper bound that is nearly cubic in n.

2. Is there a subquadratic algorithm for computing a longest segment that can be placed
inside a polygonal region with holes?

3. Is it possible to determine whether the minimum Hausdorff distance between two
sets of segments, as in Section 4, is at most J, without computing K5 N (—K&p)
explicitly? In particular, can such a computation be carried out in o((mn)?) time?

4. In general, there is the challenge of applying the parametric searching technique to
other problems in computational geometry and geometric optimization. Recently,
Chazelle et al. [16] have obtained improved solutions for some other geometric prob-
lems, including the computation of the diameter and width of point sets in R?, using
the parametric searching technique.

Applications of Parametric Searching June 17, 2002

CONCLUSION 23

Acknowledgments

The authors wish to thank Jirka Matousek for a useful discussion which helped in improving
the running time of some of the algorithms. Thanks are also due to referees for their helpful

comments.

References

[1]

[2]

3]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

P.K. Agarwal, B. Aronov, M. Sharir and S. Suri, Selecting distances in the plane, Proc. 6th
ACM Symp. on Computational Geometry, 1990, 321-331. (Also to appear in Algorithmica.)

P.K. Agarwal, A. Efrat, M. Sharir and S. Toledo, Computing a segment-center for a planar
point set, Tech. Rept. CS-1991-33, Dept. Computer Science, Duke University, 1991.

P.K. Agarwal and J. Matousek, Ray shooting and parametric search, Proc. 2/th ACM Symp.
on Theory of Computing, 1992, pp. 517-526.

P.K. Agarwal and M. Sharir, Planar geometric location problems, Tech. Rept. 90-58, DIMACS,
Rutgers University, August 1990. (Also to appear in Algorithmica.)

P.K. Agarwal and M. Sharir, Counting circular arc intersections, Proc. 7th ACM Symp. on
Computational Geometry, 1991, pp. 10—20.

A. Aggarwal and S. Suri, The biggest diagonal in a simple polygon, Inf. Proc. Letters 35 (1990),
13-18.

H. Alt, B. Behrends and J. Blémer, Approximate matching of polygonal shapes, Proc. 7th
ACM Symp. on Computational Geometry, 1991, pp. 186-193.

M. Atallah, R. Cole and M. Goodrich, Cascading divide-and-conquer: A technique for designing
parallel algorithms, SIAM J. Computing 18 (1989), 499-532.

J.L. Bentley and T. Ottmann, Algorithms for reporting and counting geometric intersections,
IEEFE Trans. on Computers C-28 (1979), 643-647.

J.L. Bentley and M. Shamos, Divide-and-conquer in multidimensional space, Proc. 8th ACM
Symp. on Theory of Computing, 1976, pp. 220-230.

B. Chazelle, A polygon cutting theorem, Proceedings 23rd Annual IEEE Symposium on Foun-
dations of Computer Science, 1982, pp. 339-349.

B. Chazelle, The polygon containment problem, in Advances in Computing Research, Vol. I:
Computational Geometry, (F.P. Preparata, Ed.), JAI Press, Greenwich, Connecticut (1983),
pp. 1-33.

B. Chazelle, Triangulating a simple polygon in linear time, Discrete and Computational Geom-
etry 6 (1991), 485-524.

Applications of Parametric Searching June 17, 2002

CONCLUSION 24

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, A singly exponential stratification
scheme for real semi—algebraic varieties and its applications, Theoretical Computer Science 84
(1991), 77-105. (Also in Proc. 16th Int. Colloq. Automata, Lang. Prog., 1989, pp. 179-192.)

B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, Algorithms for bichromatic line segment
problems and polyhedral terrains, to appear in Algorithmica.

B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, Diameter, width, closest line-pair, and
parametric searching, Proc. 8th ACM Symp. on Computational Geometry, 1992, pp. 120-129.

B. Chazelle and L. Guibas, Visibility and intersection problems in plane geometry, Discrete
Comput. Geom. 4 (1989), 551-589.

B. Chazelle and M. Sharir, An algorithm for generalized point location and its applications, J.
Symbolic Computation 10 (1990), pp. 281-3009.

K. Clarkson and P. Shor, Applications of random sampling in computational geometry, II,
Discrete Comput. Geom. 4 (1989), 387-422.

R. Cole, Slowing down sorting networks to obtain faster sorting algorithms, J. ACM 31 (1984),
200-208.

R. Cole, J. Salowe, W. Steiger and E. Szemerédi, Optimal slope selection, STAM J. Computing
18 (1989), 792-810.

G. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition,
Lecture Notes in Computer Science 33 (1975), Springer-Verlag, Berlin, pp. 134-183.

H. Ebara, N. Fukuyama, H. Nakano and Y. Nakanishi, Roundness algorithms using the Voronoi
diagrams, First Canadian Conf. Computational Geometry, 1989.

G. Frederickson, Optimal algorithms for tree partitioning, Proc. 2nd ACM-SIAM Symp. on
Discrete Algorithms, 1991, pp. 168-177.

G. Frederickson and D. Johnson, Finding the kth shortest paths and p-centers by generating
and searching good data structures, J. Algorithms 4 (1983), 61-80.

G. Frederickson and D. Johnson, Generalized selection and ranking: sorted matrices, STAM J.
Computing 13 (1984), 14-30.

D. Haussler and E. Welzl, e-nets and simplex range queries, Discrete Comput. Geom. 2 (1987),
127-151.

D. Huttenlocher and K. Kedem, Efficiently computing the Hausdorff distance for point sets
under translation, Proc. 6th ACM Symp. on Computational Geometry, 1990, pp. 340-349.

D. Huttenlocher, K. Kedem and M. Sharir, The upper envelope of Voronoi surfaces and its
applications, Proc. 7th ACM Symp. on Computational Geometry, 1991, pp. 194-203.

K. Kedem, R. Livne, J. Pach and M. Sharir, On the union of Jordan regions and collision-free
translational motion amidst polygonal obstacles, Discrete Comput. Geom. 1 (1986), 59-71.

Applications of Parametric Searching June 17, 2002

CONCLUSION 25

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

J. Matousek, Randomized optimal algorithm for slope selection, Inf. Proc. Letters 39 (1991),
183-187.

J. Matougek, Approximations and optimal geometric divide-and-conquer, Proc. 28rd ACM
Symp. on Theory of Computing, 1991, pp. 506-511.

J. Matousek. Efficient partition trees, Proc. 7th ACM Symp. on Computational Geometry,
1991, pp. 1-9.

N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J.
ACM 30 (1983), 852-865.

N. Megiddo, Linear programming in linear time when the dimension is fixed, J. ACM 31 (1984),
114-127.

N. Naor and M. Sharir, Computing the center of a point set in three dimensions, Proc. 2nd
Canadian Conf. on Computational Geometry (1990), pp. 10-13.

F. Preparata and M. Shamos, Computational Geometry: An Introduction, Springer—Verlag,
New York, 1985.

M. Sharir and S. Toledo, Extremal polygon containment problems, Tech. Rept. 228/91, Dept.
Computer Science, Tel Aviv University, 1991. (See also S. Toledo, Extremal polygon contain-
ment problems, Proc. 7th ACM Symp. on Computational Geometry, 1991, pp. 176-185.)

R. Tarjan and U. Vishkin, An efficient parallel biconnectivity algorithm, STAM J. Comp. 14
(1985), 862-874.

L. Valiant, Parallelism in comparison problems, SIAM J. Computing 4 (1975), 348-355.

Applications of Parametric Searching June 17, 2002

