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Introduction 11 IntroductionProblem statement. Let 
 be a collection of pairwise-disjoint polyhedral obstacles inR3 with a total of n vertices, edges, and faces, and let B be a ball in R3 . With no loss ofgenerality, we assume that the faces of 
 are triangles and that the radius of B is 1. Weconsider the motion-planning problem in which B is allowed to move (translate) freely inR3 without intersecting any obstacle. The free con�guration space F of B with respect to 
is the space of all points p 2 R3 so that if B is placed centered at p then it does not intersectany obstacle. We wish to bound the combinatorial complexity of F (de�ned below) andpresent an e�cient algorithm for computing the boundary of F .Let B0 be the placement of B with its center at the origin. F can be expressed in thefollowing standard manner (see e.g. [19]). For each obstacle ! 2 
, let K! denote theMinkowski sum1 K! = ! �B0 = fx+ y j x 2 !; y 2 B0g:The set K!, referred to as the expanded obstacle of !, is the set of all centers of B atplacements where it intersects !. Hence F = R3 nS!2
K!.

Figure 1: The union of Minkowski sums of triangles and a ball.. Let S be the set of triangular faces of 
. For each triangle s 2 S, we can de�neKs = s� B0. If s is bounded, then Ks is the (nondisjoint) union of (i) a triangular prismof height 2 with s as a middle cross-section, (ii) three bounded cylinders of radius 1 whoseaxes are the edges of s, and (iii) three balls of radius 1 centered at the vertices of s. Ifs is unbounded, the structure of Ks changes accordingly. We refer to Ks as an expandedtriangle (or a krepe).1Strictly speaking, we should form the sum of ! with �B0, the re
ection of B0 through the origin; ofcourse, we obtain the same set since B0 is symmetric.1



Introduction 2A face of F is a maximal connected closed portion of @F contained in a single triangular,cylindrical or spherical portion of some @Ks. An edge of F is a maximal connected portionof @F lying in the intersection of two distinct faces; the two faces may lie on the boundary ofthe same krepe or on the boundaries of di�erent kreplach. A vertex of F is the intersection ofthree distinct faces, not necessarily of distinct kreplach, that lies in @F . The combinatorialcomplexity of F , denoted by jFj, is the number of vertices, edges, and two-dimensional facesof @F .Set U = Ss2SKs. Each connected component of F is also a connected component ofR3 n U , but the latter may have some connected components that do not belong to F .These components represent placements at which the ball moves inside an obstacle withouttouching its boundary. jFj is thus upper bounded by jU j, and F can be computed by �rstconstructing U and then discarding the connected components of R3 nU that do not belongto F . The main problems we will be concerned with are thus to estimate the combinatorialcomplexity of U and to compute e�ciently its boundary @U .Besides this motion-planning application, the problem of bounding the complexity of Uis a precursor to the harder problem of obtaining a near-quadratic, or even just subcubic,bound on the complexity of the Euclidean Voronoi diagram of S. Indeed, if the radius of Bis r, then @U is the locus of all points whose Euclidean distance from their nearest trianglein S is exactly r. In this sense, @U is a cross-section of the Voronoi diagram of S.Previous results. Motivated by the motion-planning application, there has been muchwork on bounding the combinatorial complexity of the union of the Minkowski sums ofa geometric object (\robot") with a family of geometric objects (\obstacles"), or moregenerally, the complexity of the union of a set of geometric objects. See the book [23]and the survey paper [5] by the authors for a summary of known results on this topic.Boissonnat et al. [12] proved that the maximum complexity of the union of n axis-parallelhypercubes in Rd is �(ndd=2e); the bound improves to �(nbd=2c) if all hypercubes have thesame size. Aronov et al. [9] proved that the complexity of the union of n convex polyhedrain R3 with a total of s faces is O(n3 + ns logn). Aronov and Sharir [8] proved that thecomplexity of the union of the Minkowski sums of a convex polyhedron P with a collectionS of n pairwise-disjoint convex polyhedra in R3 is O(ns logn), where s is the total numberof faces of the polyhedra in the set fP �Q j Q 2 Sg. All these bounds are either optimal ornear optimal in the worst case. These recent results concern unions in higher dimensions,and extend the work on unions of objects in the plane. Among the two-dimensional results,we mention the early result of Kedem et al. [19] that shows that the complexity of the unionof n disks (or \pseudodisks") is O(n), and the results of Matou�sek et al. [21] and Efrat andSharir [17] that prove near-linear bounds on the complexity of the union of \fat" trianglesand general \fat" convex regions in the plane. See also [7, 16, 20]. In a sense, our resultsare extensions of the analysis of [19] to three dimensions.It is conjectured that Voronoi diagrams in three dimensions, under fairly general as-2



Introduction 3sumptions concerning the sites and the distance function, have near-quadratic complexity.A near-cubic bound on the complexity of such diagrams follows from the results on lowerenvelopes [22]. The maximum complexity of Voronoi diagrams of n point sites under theEuclidean distance is known to be �(n2) [15]. The same bound has recently been estab-lished for point sites under the L1 and L1 metrics, or under any simplicial distance function[12]. Near-quadratic bounds have also been recently established for the case of line sites andany polyhedral convex distance function [13], where the bound is O(n2�(n) log n), and forthe case of point sites and any polyhedral convex distance function [25], where the boundis O(n2 logn). In both cases the distance function is induced by a convex polytope witha constant number of facets. No example with a substantially super-quadratic complexity(i.e. 
(n2+c), for any �xed c > 0) is known. As noted above, any of these results also yieldsnear-quadratic bounds on the complexity of the corresponding union of the Minkowski sumsof the sites with the unit ball under the given distance function.Our results. If the conjecture on the complexity of the Voronoi diagram is true forthe case of triangle sites and Euclidean distance, then the complexity of U will be near-quadratic. Although a subcubic bound on the complexity of the Voronoi diagram stillremains elusive, we prove that the complexity of U is O(n2+"), for any " > 0. Usingthis bound, we also derive a near-quadratic algorithm for constructing the complement ofthe union U , and thereby obtain a motion-planning algorithm for a ball amid polyhedralobstacles.Our results extend and improve a previous initial attack on the problem by the authors[4], where we only managed to handle the cases in which S is a collection of lines or segmentsand to obtain a weaker bound of O(n5=2+"), for any " > 0. The new analysis borrows ideasfrom the previous paper, but has many new ingredients.The paper is organized as follows. In Section 2 we study the special case in which S is aset of lines, so U is the union of congruent cylinders (pipes). We extend the previous resultto segments in Section 3; here U is the union of cigars. In Section 4 we prove the main resultof the paper | a near-quadratic bound on the complexity of U for the case of pairwise-disjoint triangles, so U is the union of kreplach. In Section 5 we discuss two generalizationsof our results. The �rst result proves a near-quadratic bound on the complexity of the unionof convex objects of bounded curvature and of roughly the same size. The second resultproves a near-quadratic bound on the number of changes in the combinatorial structure ofa set of congruent disks in the plane, each moving with a �xed velocity. We also presenta near-quadratic algorithm for constructing U and F . We conclude the paper in Section 6with a few open problems.
3



The Case of Pipes 42 The Case of PipesPreliminaries and overview. We �rst solve the problem, in which S = fs1; : : : ; sng isa set of n lines in R3 . For i = 1; : : : ; n, let Ki = Ksi = si�B and ci = @Ki; Ki is an in�nitecylinder (or pipe) of radius 1. Set K = fK1; : : : ; Kng, U = Sni=1Ki, and C = fc1; : : : ; cng.Whenever there is no ambiguity, we will also refer to the ci's as cylinders; otherwise we willrefer to them as cylindrical surfaces. We assume that the lines in S are in general position,which means that every pair of lines is skew, that no two Ki's are tangent to each other,that no curve of intersection of the boundaries of any two Ki's is tangent to a third one,and that no four boundaries meet at a point. An argument based on random perturbation,similar to the one given in [22], shows that this assumption can be made with no loss ofgenerality. The main result of this section is the following.

Figure 2: Two arrangements of cylinders.Theorem 2.1 The combinatorial complexity of the union of n congruent cylinders in R3is O(n2+"), for any " > 0, where the constant of proportionality depends on ".For a subset R � C, let U(R) denote the union of cylinders bounded by the cylindricalsurfaces in R. Let V (R) denote the set of vertices of U(R), namely, intersection points oftriples of boundaries of cylindrical surfaces in R that lie on @U(R). By our general positionassumption, each vertex lies on exactly three cylindrical surfaces, and is thus incident upononly a constant number of edges and faces. The number of edges or 2-faces of @U thatare not incident upon any vertex is O(n2). Therefore the combinatorial complexity of U isO(n2 + jV (C)j). In the rest of this section we prove the following:Proposition 2.2 For any set C of n congruent cylinders in R3 and for any " > 0,jV (C)j = O(n2+"):Overview of the proof. The proof consists of several main steps, each presented ina separate subsection, and proceeds through a sequence of technical lemmas. To aid the4



The Case of Pipes 5reader in following the proof, we have written it from a certain point on in a \backward"manner: each step relies on a future key lemma and shows how Proposition 2.2 follows fromthe analysis so far and from that future lemma.In the �rst step, for technical reasons, we choose a subset of cylinders in K whose unionboundary contains at least half of the vertices of V . We also choose the orientation ofthe z-axis (by rotating the coordinate frame) carefully so that the acute angle between thez-axis and the axes of every chosen cylinder is at most cos�1(1=6).In the second step, we derive a recurrence relation to bound the number of vertices. Theoverhead term in the recurrence counts the number of vertices lying on cylinders whose axisdirections are \well separated" in a certain sense.In order to bound the overhead term, the third step introduces a key notion of \divergentpairs" of cylinders, relative to some direction u, where the angle between the axes of such apair is not much smaller than the angles that the axes form with u. We show the existenceof a direction u so that many vertices v 2 V have the following property: all three pairs ofthe cylinders that are incident upon v are divergent with respect to u.In the fourth step, we partition R3 into a carefully chosen in�nite grid of square prismswhose in�nite axes are in the direction u, and count the number of vertices within eachprism. We show that there are only O(1) prisms Q that can be crossed by a �xed pair a; bof divergent cylinders so that the projections of a \ Q and b \ Q on a line in direction uoverlap.In the �fth step we show that, within a prism Q, we can bound the number of verticesof U by regarding them as vertices of a \sandwich" region enclosed between an upperenvelope of a collection of portions of the given cylinders and a lower envelope of anothersuch collection. Using the results of [3] on the complexity of such a sandwich region, we geta near-quadratic bound for the number of vertices of U within a prism. We interpret thisbound as counting the number of pairs of cylinders that cross the same prism.Finally, in the sixth step, we sharpen the bound obtained in the �fth step so that itis proportional to the number of pairs of divergent cylinders that have \nearby" crossingswith Q, in the sense of step 4. Hence, when we sum these improved bounds over all prismswe still get an overall near-quadratic bound. This is accomplished (a) by improving thebound of [3], and (b) by using a divide-and-conquer method that e�ectively decomposes aprism into a tree of boxes and counts the number of vertices within each box separately.We now describe each step in detail.2.1 Choosing the z-directionLet S2 denote the unit sphere of directions in R3 . For each c 2 C, let nc 2 S2 denote a unitvector in the direction of the axis of c that points into the upper halfspace; if the axis of cis parallel to the xy-plane, we set nc to be any of the two unit vectors in the direction of5



The Case of Pipes 6the axis of c. There is a technical problem (e.g., in Lemma 2.7 below) with the de�nitionof the directions nc, for c 2 C, which depend on the choice of the z-direction. Informally,we may have a pair a; b of cylinders whose directions na, nb are almost antipodal. In theforegoing analysis we will treat this pair as having a large angle (close to �) between theiraxes, whereas the \real" angle between the axes is close to 0. We circumvent this problemby choosing a random point on S2 and by regarding it as the direction of the (+z)-axis.The following claim holds.Lemma 2.3 Let �0 be the acute angle satisfying cos�0 = 1=6. Let v be a vertex in V (C)incident upon three cylinders a; b; c 2 C. The probability that all three acute angles betweenthe z-direction and the axes of a; b; c are at most �0 is at least 1=2.Proof: Indeed, for the acute angle between the z-axis and the axis of, say, a to be greaterthan �0, the z-direction has to lie in the spherical band consisting of all directions atspherical distance at most �2 ��0 from the great circle orthogonal to the axis of a. The areaof this band is 4� cos �0. Hence the probability that at least one of the above three acuteangles is larger than �0 is at most 12� cos �04� = 12 : 2We thus obtain the following:Lemma 2.4 We can choose a subset C0 � C and a direction u0 2 S2 so that the axes ofall cylinders in C0 form acute angles of larger than �0 = cos�1(1=6) with u0 and jV (C0)j �jV (C)j=2.We rotate the coordinate system so that u0 becomes the (+z)-axis and remove from Call the cylinders whose axes have an acute angle at least �0 with the (+z)-axis. At leasthalf of the vertices of V (C) still show up in the new union. Abusing the notation slightly,we will use C to denote the set of remaining cylinders.Let S be the spherical cap consisting of all points in S2 that form an angle of at most�0 with the (+z)-axis; see Figure 3(a). We project S onto the horizontal plane h : z = 1using the central projection. The resulting projection is a disk D of radius tan�0 = p35centered at (0; 0; 1). For a point u 2 S2, we denote its projection on h by u�. For a cylindera, we refer to n�a as its direction image. For a vertex v 2 V (C), incident on three cylindersa; b; c 2 C, we associate with v the triple �v = fn�a;n�b ;n�cg. �v will be referred to as theset of direction images of v. 6



The Case of Pipes 7hS DS2(a) (b) W1W2W3H1 H2 H3
Figure 3: (a) Set of relevant directions, and (b) their projection on h.2.2 Deriving the main recurrenceLet  (n) = max jV (C)j, where the maximum is taken over all sets C of n cylinders of radius1 whose axes make acute angles of at most �0 with the z-axis. Fix a constant integerparameter � > 2 whose value depends on " and will be speci�ed later. Partition the planeh into a collection W = fW1; : : : ; W�g of � horizontal strips by lines parallel to the x-axis,so that each strip contains direction images of at most n=� cylinders. For each pair of stripsWi;Wj 2W, let Cij denote the set of cylinders whose direction images lie in Wi [Wj. Byde�nition, jV (Cij)j �  (2n=�) for 1 � i < j � �:Next, we partition the plane into a collection H = fH1; : : : ; H�g of � vertical strips by linesparallel to the y-axis, so that each strip contains at most n=� direction images. For eachpair Hk;Hl 2 H, we also bound by  (2n=�) the number of vertices in the union of cylinderswhose direction images lie in Hk [ Hl. These 2��2� < �2 subproblems have accounted forall those vertices v of V (C) whose direction images �v lie in at most two horizontal or twovertical strips, and the number of these vertices is at most �2 (2n=�). We thus have tocount the number of vertices for which �v lies in three di�erent horizontal strips and inthree di�erent vertical strips.The strips inH andW divide the plane h into a setR = fR1; : : : ; R�2g of �2 rectangles.For a rectangle Ri 2 R let Ci be the set of cylinders whose direction images lie in Ri. For atriple i; j; k, let Vi;j;k = V (Ci; Cj ; Ck) � V (C) denote the set of vertices v of U(Ci[Cj[Ck) lyingon three cylinders a; b; c such that a 2 Ci, b 2 Cj , and c 2 Ck. Then  (C) =Pi�j�k jVi;j;kj.In view of the preceding discussion, it su�ces to bound Vi;j;k for each triple i 6= j 6= k forwhich the rectangles Ri; Rj ; Rk lie in di�erent horizontal and vertical strips, i.e., their x-and y-projections are pairwise disjoint. We will show below in Lemma 2.5 that for such atriple of rectangles jVi;j;kj = O(jCi [ Cj [ Ckj2 � n") = O(n2+"=�2), for any " > 0. Since thereare O(�6) such triples of rectangles, we obtain the following recurrence: (n) � �2 (2n=�) +O(n2+"�4):For any "0 > ", by choosing � = �("0) a su�ciently large constant, one can prove that7



The Case of Pipes 8the solution to the above recurrence is  (n) = O(n2+"0) (see e.g. [22]), thereby provingTheorem 2.1.2.3 Bounding jV1;2;3j and divergent pairsLet R1; R2; R3 be three rectangles in R whose x- and y-projections are pairwise disjoint;see Figure 4. Let C1; C2; C3 be the corresponding subsets of cylinders, as above. We want tobound the size of V1;2;3 = V (C1; C2; C3). We will prove the following:Lemma 2.5 Let R1; R2; R3 be three rectangles as de�ned above, and let " > 0 be an arbi-trarily small constant. Then jV1;2;3j = O(jC1 [ C2 [ C3j2 � n"):De�nition 2.6 We call a pair of cylinders a; b 2 C �-divergent with respect to a directionu (assumed to lie in S) if minfjn�au�j; jn�bu�jg � �jn�an�b j:Roughly speaking, two cylinders a and b being divergent with respect to a direction umeans that the slopes of the projections of the axes of a and b on a plane normal to u are not\very close" to each other. The signi�cance of divergent pairs is illustrated in Lemma 2.8.Lemma 2.7 There exist a direction u and three pairwise-disjoint subsets C01 � C1, C02 � C2,C03 � C3 so that(i) jV (C01; C02; C03)j � jV1;2;3j=2, and(ii) All pairs of cylinders in C01 �C02, C01 � C03, and C02 �C03 are p17-divergent relative to u.Proof: For i = 1; 2, let us assume that the x-projection of Ri lies to the left of the x-projection of Ri+1. We say that a point p separates Ri and Rj if its x-coordinate separatesthe x-projections of Ri and Rj , and its y-coordinate separates the y-projection of Ri andRj . There are two basic cases to consider (other cases can be reduced to them by reversingthe direction of the (+y)-axis).Case (a): The y-projection of Ri lies below that of Ri+1, for i = 1; 2. See Figure 4 (a).Let w 2 D be a point that separates R1 and R2, and let z 2 D be a point that separatesR2 and R3. The perpendicular bisector of w and z splits R2 into two sub-polygons (oneof which might be empty). Denote the one nearer to w by R02 and the one nearer to z byR002 . With no loss of generality, we may assume that at least half of the vertices in V1;2;3have one of their direction images in R02. We set C01 = C1; C03 = C3, and C02 to be the set of8



The Case of Pipes 9
mnR3mnzmnw mnzmnR1 mnR3mnR002mnR02 mnR002mnw mnR0mnR1 mnR02 mn ~R0mns

mn(a) mn(b)mndxmndyFigure 4: The two cases in the proof of Lemma 2.7: (a) The Ri's form a monotone sequence; (b)the Ri's do not form a monotone sequence.cylinders whose direction images lie in R02. By construction, jV (C01; C02; C03)j � jV1;2;3j=2. Wetake the direction u 2 S2 to be the pre-image of w, i.e., the intersection point of �!ow withS2. Property (ii) is proved as follows. Let a; b be cylinders such that n�a 2 R1 and n�b 2 R02.Then clearly jn�an�b j � maxfjn�awj; jn�bwjg;implying that (a; b) are 1-divergent with respect to u. An identical argument implies thatall pairs in C1�C3 are also 1-divergent. Let b; c be cylinders such that n�b 2 R02 and n�c 2 R3.Then jn�bn�c j > jn�bzj � jn�bwj;implying that (b; c) are also 1-divergent with respect to u. Hence the lemma holds for thiscase.Case (b): The y-projection of R2 lies above the y-projections of R1, which lies above they-projection of R3. See Figure 4(b). Let w 2 D be a point that separates R1 and R2,and let z 2 D be a point that separates R2 and R3. Let R0 be the axis-parallel rectanglewhose opposite vertices are w and z. Let dx and dy denote the lengths of the horizontaland vertical edges of R0, respectively. Assume, without loss of generality, that dx � dy. Ifdy > dx, then we reverse the roles of R1 and R2 in the following analysis. Let s denote thethird vertex of R0 whose x-coordinate is that of z and whose y-coordinate is that of w.The perpendicular bisector of w, which is parallel to the y-axis, and s splits R2 into twosub-rectangles (one of which might be empty). Denote the one nearer to w by R02 and theone nearer to s by R002 . Clearly, one of the two situations arise:Case (b.i) At least half of the vertices in V1;2;3 have a direction image in R02. In this case,we take V 0 to be this subset of vertices; the direction u is the pre-image of w. The set C01(resp. C02, C03) consists of those cylinders whose direction images lie in R1 (resp. in R02, R3).9



The Case of Pipes 10Property (i) is obvious. Arguing as in case (a), all pairs of cylinders in C1 � C2 are1-divergent. Let a; c be cylinders such that n�a 2 R1 and n�c 2 R3. Thenjn�an�c j > jn�azj � jn�awj;where the last inequality follows from the easy observation that the perpendicular bisectorof wz does not intersect R1, which in turn is a consequence of the assumption dx � dy.Hence, the pair (a; c) are 1-divergent with respect to u. Similarly, let b; c be cylinders suchthat n�b 2 R02 and n�c 2 R3. Then jn�bn�c j > jn�bsj � jn�bwj;implying that (b; c) are also 1-divergent. Hence, the lemma holds for this subcase too.Case (b.ii). At least half of the vertices have one of their direction images in R002 . In thiscase, we set C01 = C1; C03 = C3, and C02 to the set of cylinders whose direction images lie inR002 , and set u to be the pre-image of z. Again, property (i) is obvious. Arguing as above,all pairs of cylinders in C1 � C3 and in C02 � C3 are 1-divergent with respect to u. Let a; bbe cylinders such that n�a 2 R1 and n�b 2 R002 . Let ~R0 denote the re
ection of R0 about itsedge ws. Suppose �rst that n�b lies outside ~R0. Thenjn�an�b j > jn�bwj � jn�bsj:On the other hand, 2jn�bsj > jn�bsj+ jszj > jn�bzj;implying that (a; b) are 2-divergent with respect to u.Suppose next that n�b lies in ~R0. Let t denote the midpoint of the edge of ~R0 oppositeto ws. Then jn�an�b j > jn�bwj > dx=2:On the other hand, jn�bzj < jtzj =r4d2y + 14d2x � p172 dx:Hence, we have jn�bzj < p17jn�an�b j, implying that (a; b) are p17-divergent with respect tou. This completes the proof of the lemma. 2In view of Lemma 2.7, it su�ces to bound the size of V 0 = V (C01; C02; C03). Set C0 =C01 [ C02 [ C03. All the vertices of V 0 appear on the boundary of U(C0).
10



The Case of Pipes 11

Figure 5: A system of prisms in direction u.2.4 Subdivision into prisms and the importance of being divergentLet C0 be the set of cylinders as above, and let u be a direction such that all pairs of cylindersin C0 are p17-divergent with respect to u. We place in R3 a grid Q of in�nite square prismswhose axes are parallel to the direction u; see Figure 5. For simplicity of presentation, werotate the coordinate system to make u the positive z-direction. The prisms are thus ofthe form Qij = [ti; t(i + 1)] � [tj; t(j + 1)] � R, for i; j 2 Z, where t is a su�ciently smallconstant. We will bound the size of VQ = V 0 \Q for each Q 2 Q separately and then sumthese quantities. Let CQ � C0 be the set of cylinders in C0 that intersect Q. We call a pairof cylinders a; b 2 CQ near inside Q if the z-projections of a \Q and b\Q overlap. Let �Qbe the number of pairs of cylinders in CQ � CQ that are p17-divergent with respect to uand are near inside Q. We will show below in Lemma 2.15 that jVQj = O(�Q � n"), for any" > 0. Hence, jV 0j = XQ2Q jVQj = O(n" XQ2Q�Q): (2.1)Lemma 2.8 If a and b are a pair of �-divergent cylinders with respect to u (which isassumed to be the same as the z-axis), then (a; b) is near inside at most O(�2=t2) prisms ofQ.Proof: Suppose to the contrary that there are more than �2�2=t2 prisms with the propertyin the lemma, where � is a su�ciently large constant that will be speci�ed later. Then thereare two prisms, Q and Q0, whose vertical center lines are at distance d > (��=t) � t = ��apart and the pair (a; b) is near in both Q and Q0. Consequently, there exist four pointspa 2 a \Q, p0a 2 a \Q0, pb 2 b \Q, and p0b 2 b \Q0, such that pa and pb have the samez-coordinate, say 0, and p0a and p0b also have the same z-coordinate, say h > 0; see Figure 6.We �rst claim that the angle � = \(na;nb) is small. Indeed, draw two balls B, B0 ofradius r = 1 + tp2=2 about the intersection of the center line of Q with z = 0 and about11



The Case of Pipes 12the intersection of the center line of Q0 with z = h. Then the axes of a and b cross bothballs. Translate b so that its axis touches the axis of a at some point P 2 B, and so that itmoves laterally no more than 2r.
d

Bpa p0a h p0bB0
pb

Figure 6: Illustration of Lemma 2.8.The distance between any point in B and any point in B0 is at leastpd2 + h2 � 2r � d� 2r > ��� 2r:We obtain a triangle PZR, where Z lies on the axis of a inside B0 and R lies on the axisof b at distance at most 3r from the center of B0. Hence we have jPZj � d� 2r � ��� 2rand jZRj � 4r. Hence, by the sine theorem,sin �jZRj = sin\PRZjPZj � 1jPZj ;or sin � � jZRjjPZj � 4rd� 2r � 4r��� 2rwhich can be made as small as we wish by choosing � large enough.Next we estimate jn�an�b j. Using the sine theorem once again, we havejn�an�b jsin � = jn�ajsin � ;where � is the angle opposite to n�a in the triangle formed by n�a and n�b . By the propertiesof D, we have jn�aj � 6 and �2 � �0 � � � �2 + �0. Hence sin � � cos �0 = 1=6. Thusjn�an�b j � 36 sin � � 144rd� 2r � 144r��� 2r :12



The Case of Pipes 13Since the pair (a; b) are �-divergent with respect to u, we have, without loss of generality,jn�au�j � �jn�an�b j � 144r�d� 2r � 144r���� 2r ;which again can be made arbitrarily small if � is su�ciently large. This is easily seen toimply that the angle 
 = \(na;u) is also small. Speci�cally, using the sine theorem yetanother time, we have sin
 = jn�au�j sin'jn�aj � jn�au�j � 144r�d� 2r ;where ' is the angle opposite to n�a in the triangle formed by n�a and u�; we use here thefact that jn�aj � 1.On the other hand, we have tan 
 = H=V , where H (resp. V ) is the horizontal (resp. ver-tical) distance between P and Z. We have H � �� � 2r and V � h + 2r, so that, forsu�ciently small 
 (that is, for su�ciently large �),2 sin 
 > tan 
 � ��� 2rh+ 2r :Note that since 
 is small, h must be large, in fact much larger than ��, say.Combining the last two inequalities, we obtain��� 2rh+ 2r � 288r�d� 2r � 288r�h� 2r ;which is a contradiction if � is su�ciently large. 2Hence, a pair of cylinders in C0 that are p17-divergent with respect to u are near insideonly O(1) prisms. Putting Lemmas 2.7 and 2.8 together and using (2.1), we obtain thatjV1;2;3j � 2jV 0j = O(n") � Xa;b2C0 # prisms in which (a; b) is a near pair = O(jC0j2 � n"):This completes the proof of Lemma 2.5.2.5 A weaker bound on jVQjLet Q = Qij be one of the prisms in Q, and put, as above, VQ = V 0\Q. The next stretchesof the analysis culminate in Lemma 2.15, which shows that jVQj = O(�Q � n"), where �Q is,as above, the number of pairs of cylinders in C0�C0 that are p17-divergent with respect tou and are near in Q. (Recall that we rotated the coordinate axis so that the orientation ofthe (+z)-axis is u.) This is achieved in two stages. First, in this subsection, we establish a13



The Case of Pipes 14weaker bound on jVQj that does not exploit the nearness and divergence of cylinders. Thenwe sharpen the analysis to obtain the above improved bound.The main idea in this subsection is to reduce the analysis to the problem of estimatingthe complexity of a region enclosed between a lower envelope of a collection of surfaces andan upper envelope of another collection, and then to apply the results of [3] that yield anear-quadratic bound on the complexity of such a region.Let M be a su�ciently large constant, whose value will be chosen below. We partitioneach of the cylindrical surfaces in C into M canonical strips (parallel to the axis of thecylinder), each having an angular span of 2�=M (in the cylindrical coordinate frame inducedby the cylinder). We say that a direction � is a good direction for a strip � if the followingtwo conditions hold.(C1) \(�;u) � �=M , and(C2) each line tangent to (the relative interior of) � forms an angle of at least �=M with�. ��a �b�cu
Figure 7: A vertex of the union incident upon three strips �a; �b, and �c, along with a good direction�. We say that � 2 S2 is a good direction for a vertex v incident upon three canonical strips�a; �b, and �c if it is a good direction for all three strips; see Figure 7. Recalling that u is thepositive z-direction, it is easily checked that the set B� of bad directions for a �xed strip � ,contained in a cylindrical surface c 2 C, is the union B1 [B2, where we have:� B1 is the union of the two caps about the north and south poles of S2 of openingangles �=M . The area of B1 is 4�(1 � cos(�=M)).� Let n1 and n2 be the normals to the planes tangent to c at the two lines delimitingthe boundary of � . By construction, the angle between n1 and n2 is at most 2�=M .The (thinner) spherical double wedge de�ned by the two great circles normal to n1and n2 is the set of directions of the lines tangent to � . B2 is the set of all pointson S2 that lie at spherical distance at most �=M from this double wedge. Thus B2is contained in a spherical band consisting of all points lying at spherical distance at14



The Case of Pipes 15most 2�=M from a great circle on S2 (namely, from the circle \bisecting" the doublewedge). The area of B2 is 4� sin(2�=M).

Figure 8: The set of bad directions for a vertex is contained in the union of two caps and threespherical bands.It follows that the area of B� is at most4��1� cos �M + sin 2�M � :This implies that the set of good directions for v contains the complement of the union oftwo caps with opening angles �=M and of three \great bands," as above, each of width4�=M (see Figure 8). Hence, the area of this set is at least4� �1� �1� cos �M �� 3 sin 2�M � :By choosingM su�ciently large, the area of the set of good directions can be made close tothe area of the entire sphere. Moreover, it is easy to verify that this set contains a sphericalcap of some constant opening angle, say, �, if M is su�ciently large (see Figure 8).Let Z be a set of O(1=�2) points on S2, with the property that any cap on S2 of openingangle � contains at least one of these points. For each � 2 Z and a prism Q, we de�neVQ(�) to be the subset of all vertices in VQ for which � is a good direction. The precedinganalysis implies that each vertex of V has at least one good direction in Z.Lemma 2.9 Suppose the horizontal side-length t of a prism Q is less than p2 sin2(�=M).Let � 2 Z, and let v be any vertex in VQ, incident upon strips �a; �b; �c, for which � is agood direction. Then any line parallel to � intersects �a in at most one point. Moreover, ifwe go from any point w 2 �a\Q inside the cylinder a bounded by �a in the direction parallelto �, we reach @Q before exiting a. Similar properties hold for �b and �c.15



The Case of Pipes 16Proof: If �a were not monotone in the above sense, it would have to contain a point vso that a line parallel to � is tangent to �a at v, which is impossible by the de�nition ofa good direction. As to the second assertion, let w be a point in �a \ Q, and let w0 bethe other intersection between @a and the line passing through w and parallel to �. It iseasily veri�ed that jww0j is minimized (relative to the constraints on good directions) whenww0 is orthogonal to the axis of a and forms an angle �=M with the tangent plane to a atw. In this case jww0j = 2 sin �M . On the other hand, since ww0 forms an angle of at least�=M with the z-direction (that is, with u), it follows that the horizontal distance betweenw and w0 is at least jww0j sin �M � 2 sin2 �M . If t, the horizontal side length of prisms in Q,is chosen such that t < p2 sin2(�=M), then w0 does not lie in Q, which completes the proofof the lemma. 2Remark 2.10(i) The second part of the lemma crucially uses the fact that the cylinders are in�nitelylong. Otherwise we may exit a (through its base) before leaving the prism Q. Seealso Remark 2.16 below.(ii) The proof also uses the fact that the radius of the cylinder is 1. It, however, works aslong as one can argue that the length of the segment ww0 is bounded from below by aconstant. For example, the lemma holds even if the radii of the cylinders are di�erentbut vary between � and 1, where � < 1 is a constant; or if each cylinder is obtainedby sweeping a smooth convex disk of diameter 1 and of bounded curvature normal toa line in R3 .For a prism Q 2 Q and a direction � 2 Z, let TQ(�) denote the set of canonical strips �that cross Q and contain at least one vertex in VQ(�). In particular, � is a good direction forany � 2 TQ(�). Let nQ(�) = jTQ(�)j. We clip each strip in TQ(�) within Q. We partitionTQ(�) into two subsets T+Q (�) and T�Q (�) as follows. A (clipped) strip � contained in acylinder c belongs to T+Q (�) (resp. T�Q (�)) if for any point w 2 � , the point w + �� lies inthe exterior (resp. interior) of c for su�ciently small positive values of �. We de�ne the�-upper envelope of T+Q (�) to be the set of points w on the strips in T+Q (�) so that a rayfrom w in the (+�)-direction does not intersect any other clipped strip in T+Q (�). Similarly,we de�ne the �-lower envelope of T�Q (�).Let � be a strip in T+Q (�). Lemma 2.9 implies that any line parallel to � that passesthrough a point in � \ Q meets the interior of the cylinder c in an interval whose otherendpoint lies outside Q; the same property applies when � 2 T�Q (�). Let v be a vertex inVQ(�). The preceding analysis implies that v is a vertex of the region RQ enclosed betweenthe �-upper envelope of the surfaces in T+Q (�) and the �-lower envelope of the surfaces inT�Q (�). By the result of Agarwal et al. [3], the number of vertices in RQ is O(nQ(�)2+"), forany " > 0, with the constant of proportionality depending on ". Repeating this step for all16



The Case of Pipes 17directions � 2 Z, we obtain the following result.Lemma 2.11 Let Q be a prism, and let CQ be any set of cylinders intersecting Q. Thenthe number of vertices of the union of (the interiors of the cylinders in) CQ lying inside Qis O(jCQj2+"), for any " > 0.In what follows we will need the following stronger version of the above lemma.Lemma 2.12 Let Q be a prism, let AQ be any set of a cylinders intersecting Q, and letBQ be a subset of AQ of size b. Then the number of vertices of the union of (the interiorsof the cylinders in) AQ that lie inside Q and that are incident upon at least two surfaces ofBQ is O(a � b1+"), for any " > 0.Proof: Partition AQ into � = da=be subsets A1; : : : ; A� , each of size at most b. Each vertexof the union of A that lies in Q and is incident upon two surfaces of BQ is a vertex of theunion of BQ[Ai, for some 1 � i � �. By Lemma 2.11, the number of vertices in the union ofBQ [Ai is O(b2+"). Hence, the total number of such vertices is O((a=b) � b2+") = O(ab1+"),for any " > 0. 2Remark 2.13 The technique used in the proof of the above lemma applies to the generalsetup in Agarwal et al. [3], which yields the following enhancement of the analysis of thatpaper: Let F and G be two sets of n bivariate functions, satisfying the assumptions statedin [3], letM be the \sandwich" region lying between the upper envelope of F and the lowerenvelope of G, and let H � F [ G be a subset of size m. Then the number of vertices ofM that are incident upon the graphs of at least two functions in H is O(nm1+"), for any" > 0.2.6 A stronger bound on jVQjOne might interpret Lemma 2.11 as bounding the size of VQ by O(~�Q �n"), where ~�Q is thenumber of pairs of cylinders in C0 that both intersect Q. Unfortunately, ~�Q is too large,and PQ ~�Q may be in�nite. There are two \weaknesses" in using ~�Q: it does not takeinto account divergence and nearness of pairs of cylinders. Both properties are essential forour analysis, as suggested by Lemma 2.8. The purpose of this subsection is to obtain animproved bound on jVQj using these properties. This is achieved by combining Lemma 2.12with a recursive divide-and-conquer analysis that allows us to consider only near (anddivergent) pairs of cylinders. Recall that we are assuming u to be the z-axis.For a cylinder a 2 CQ, let Za denote the z-projection of a\Q. Set ZQ = fZa j a 2 CQg.At each recursive step we have a box � = [ti; t(i + 1)] � [tj; t(j + 1)] � [z1; z2], for somez1; z2 2 R (a \slice" of Q). Let C� � CQ be the set of cylinders that intersect �. A17



The Case of Pipes 18cylinder a 2 C� is called long in � if a intersects both the top and bottom faces of � (i.e.,[z1; z2] � Za), otherwise it is called short in �. Let L�; S� � C� denote the sets of longand short cylinders in �, respectively. Let E� be the set of those endpoints of intervalsin ZQ which lie in the open interval (z1; z2). By the general position assumption and byshifting slightly the grid of prisms, we may assume that all endpoints in E� are distinct.We have jS�j � jE�j � 2jS�j. Let V (L�; S�) � VQ denote the subset of vertices of VQ thatlie in � and that are incident upon at least two (short) cylinders of S�. Initially, � = Q,LQ = ;, SQ = CQ, V (LQ; SQ) = VQ. The recursive process will bound the sizes of thesubsets V (L�; S�).If S� = ;, jV (L�; S�)j = 0. Otherwise, we partition � into two subprisms �1;�2by a horizontal plane so that the relative interior of the z-projections of each of the twosubprisms contains at most half of the endpoints of E�. Set L1 = L�1 ; L2 = L�2 ; S1 = S�1 ,and S2 = S�2 . For i = 1; 2, let S0i � Li be the set of cylinders that are long in �i but shortin �. Note that Si [S0i is the set of all cylinders of S� that meet �i. Let v 2 V (L�; S�) bea vertex lying in �1. If v is incident upon at least two cylinders of S1, then v 2 V (L1; S1).Otherwise, it is incident upon at most one cylinder of S1, at most one cylinder of L1nS01, andat least one cylinder of S01. Let V 01 denote the set of such vertices; V 02 is de�ned analogouslyfor �2. It su�ces to bound the sizes of V 01 ; V 02 . We de�ne �� � E� � C� to be a set ofpairs as follows. A pair (p; b) 2 ��, where p is an endpoint of an interval Za 2 ZQ, if thecylinders a and b satisfy the following conditions: (i) a; b 2 C�, (ii) they are p17-divergentrelative to u, and (iii) they are near in Q. Set �� = j��j. Since each p17-divergent pairof cylinders that is near inside Q contributes at most two pairs to �Q, we have �Q � 2�Q,where �Q is, as above, the number of p17-divergent pairs in CQ that are near in Q.Lemma 2.14 jV 01 j+ jV 02 j = O(�� � n").Proof: Let v 2 V 01 be a vertex lying on the boundary of three cylinders a; b; c. By de�nition,up to a permutation of fa; b; cg, we have a 2 L1, b 2 S01, and c 2 S1[S01. On the other hand,by de�nition of VQ, some permutation of fa; b; cg appears in C01 � C02 � C03 (where C01, C02,and C03 are as in Lemma 2.7). For speci�city, we will bound the size of V (X1;X2;X3)\ V 01 ,where X1 = L1 \ C01, X2 = S01 \ C02, and X3 = (S1 [ S01) \ C03. The other vertices of V 01 canbe counted in a similar manner.Suppose, without loss of generality, that jX1j � jX2j � jX3j. Then, applying Lemma 2.12with AQ = X1 [ X2 [ X3 and BQ = X2 [ X3, we obtain that the number of vertices ofV (X1;X2;X3) that lie in �1 is at most O(n"jX1j � jX2j). Hence, in general, the numberof such vertices is at most O(n" �Pi 6=j jXijjXj j). Let a 2 Xi; b 2 Xj , for i 6= j. Then,by Lemma 2.7, (a; b) is p17-divergent pair. We will charge (a; b) to a pair in ��. Byexamining all possible combinations, it su�ces to consider only two cases: (i) a 2 L1 n S01and b 2 S01 [ S1; (ii) a 2 S01 and b 2 S01 [ S1. In case (i), one of the endpoints p of Zb liesin (z1; z2) and p 2 Za (since a is long in �), so (a; b) is a p17-divergent pair that is nearin Q. In case (ii), since a is long in �1, Za \ Zb 6= ;. Moreover, a and b are both short18



The Case of Cigars 19in �, so at least one of the endpoints, say p, of Za \ Zb lies in (z1; z2). If p is an endpointof Za, then (p; b) 2 ��; otherwise, (p; a) 2 ��. Hence, in both cases (a; b) can be chargedto a unique pair of ��, thereby implying that Pi 6=j jXijjXj j = O(��). This completes theproof of Lemma 2.14. 2Let '(m;�) = max jV (L�; S�)j, where the maximum is taken over all pairs L�; S� suchthat jE�j = m and �� = �. Then we obtain the following recurrence:'(m;�) = ( 0 if � = 0;'(m=2; �1) + '(m=2; �2) +O(�n") if � > 0:Since E�1 \E�2 = ;, �1 + �2 � �. The solution to the above recurrence is'(m;�) = O(� logm � n") = O(� � n"0)for any "0 > ". Hence, we obtain the following.Lemma 2.15 Let Q be a prism in Q. If there are �Q pairs of cylinders in CQ that arep17-divergent with respect to u and are near inside Q, then jVQj = O(�Q � n"), for any" > 0.This completes the proof of Theorem 2.1.Remark 2.16(i) The only place where we need the fact that the cylinders are in�nitely long is inLemma 2.9. The rest of the proof works for bounded cylinders as well. However, ifwe take a set of n bounded cylinders, each of radius 1 and of su�ciently small height,the complexity of their union can be 
(n3).(ii) The current proof does not extend to cylinders with di�erent radii because, as notedin Remark 2.10, Lemma 2.9 uses the fact that the radius of each of the cylinders is1. However, the above proof, combined with the limited 
exibility of Lemma 2.9 (asnoted in Remark 2.10) gives an O(n2+") bound on the complexity of the union of ncylinders if the ratio of the largest to the smallest radii is bounded by a constant. Seealso Section 5.3 The Case of CigarsWe now extend Theorem 2.1 to the case of segments. Let S = fs1; : : : ; sng now denote aset of n segments in R3 . For each i, put Ki = Ksi ; each Ki is referred to as a cigar. Let ci19



The Case of Cigars 20denote the cylindrical portion of @Ki, and let �+i , ��i denote the two hemispherical portionsof @Ki; the whole boundary is thus ci [�+i [ ��i . Let K = fK1; : : : ;Kng and U = Sni=1Ki.Let C = fc1; : : : ; cng denote the collection of the @Ki's, let � = f�+1 ; ��1 ; : : : ; �+n ; ��n gdenote the collection of the corresponding hemispherical portions, and let B denote the setof 2n balls whose boundaries contain the hemispheres in �.

Figure 9: The union of cigars, the Minkowski sums of line segments and a ball.Again let V denote the set of vertices of U , namely, intersection points of triples ofboundaries of regions in K that lie on @U . We assume general position of the segments inS, which now means that every pair of them is skew, that no two Ki's are tangent to eachother, that no curve of intersection of the boundaries of any two Ki's is tangent to a thirdone, that no triple intersection of the boundaries of the Ki's lie on any circle separatingthe cylindrical and spherical portions of one of them, and that no four boundaries meetat a point. Each vertex of V is an intersection point of three cylindrical surfaces, of twocylindrical surfaces and one spherical surface, of a cylindrical surface and two sphericalsurfaces, or of three spherical surfaces. We denote these vertices mnemonically as ccc-, ccs-,css-, and sss-vertices, respectively. We denote the corresponding subsets of V as Vccc, Vccs,Vcss, and Vsss. We will bound each of them separately.
(a) (b) (c) (d)Figure 10: Di�erent types of vertices: (a) ccc-vertex, (b) ccs-vertex, (c) css-vertex, and (d) sss-vertex. 20



The Case of Cigars 213.1 Handling easy casesAny sss-vertex v of the union is also a vertex of the union of the 2n balls in B. It is wellknown that the complexity of the union of m balls in R3 is O(m2) (this follows triviallyfrom [19]), so the number of sss-vertices of U is O(n2).Lemma 3.1 The number of css-vertices of U is O(n2+"), for any " > 0.Proof: We place in R3 the same grid Q of in�nite square prisms, as in the previous section,whose axes are parallel to the z-axis. That is,Q = f[ti; t(i+ 1)] � [tj; t(j + 1)]� R j i; j 2 Zg;where t is a su�ciently small constant, as above. For Q 2 Q, let CQ � C, �Q � � be the setof cylindrical and spherical surfaces that intersect Q. Put mQ = j�Qj and nQ = jCQj. LetM be the same constant as in Section 2. We partition each of the cylindrical surfaces in CQintoM canonical strips as before, and we cover each sphere in �Q by O(M2) spherical caps,each of opening angles at most �=M , so that no point lies in more than a constant numberof caps. We de�ne a good direction for a spherical cap in the same manner as we did fora strip (see (C1) and (C2) in Section 2.5). The set of bad directions for such a sphericalcap � is again the union of B1 [ B2, where B1 is the same as earlier, and B2 is de�ned asfollows. Let �� be the great circle on S2 parallel to the tangent plane of the cap � at itscenter. We de�ne B2 to be the spherical band consisting of all points at spherical distanceat most 2�=M from �� .Following the same argument as in Section 2.5, we can again choose a set Z of O(1)directions so that at least one direction in Z is good for every vertex of VQ = Vcss \Q. Itis now easy to check that both Lemmas 2.9 and 2.11 continue to hold in the extended case.That is, we can decompose the set of cylindrical strips and spherical caps into u = O(1) pairsof subsets (A1; B1); : : : ; (Au; Bu), where each Ai; Bi is a subset of strips and/or caps, so thateach vertex of VQ appears in the sandwich region lying between the upper envelope of Aiand the lower envelope of Bi, for some i � u. This implies that jVQj = O((mQ + nQ)2+").However, we want to count the number of css-vertices. The argument in the proof ofLemma 2.12 implies that the number of css-vertices in Q is O(m1+"Q (mQ+ nQ)). Summingover all prisms, the total number of css-vertices is PQO(m1+"Q (mQ + nQ)). Since eachhemisphere in � intersects O(1=t2) = O(1) prisms, the total number of css-vertices isO(m1+"(m+ n)) = O(n2+"), as claimed. 2It thus su�ces to bound the number of ccc- and ccs-vertices of U . Using the sameargument as in Lemma 2.3, we can again prove that we can choose a subset C0 � C and adirection �0 so that the axes of cylinders in C0 form an acute angle of at most �0 = cos�1(1=6)with �0 and the number of ccc- and ccs-vertices in the union of C0 [ � is at least half ofthe number of such vertices in U . We rotate the coordinate system so that �0 becomes the21



The Case of Cigars 22(+z)-axis and remove from C all the cylinders whose axes have an acute angle larger than �0with the (+z)-axis. When such a cylinder Ci is removed, we retain the two correspondingballs �+i ; ��i . We will use C to denote the remaining set of cylindrical surfaces.As mentioned in Remark 2.16, only Lemma 2.9 uses the fact that the cylinders in C areunbounded. Nevertheless, the lemma still holds because of the half-balls attached at theendpoints of the segments in S. In other words, a line parallel to a good direction, as inthe proof of Lemma 2.9, will exit the whole cigar after exiting Q. Hence, the number ofccc-vertices in U is O(n2+"), for any " > 0.3.2 Bounding the number of ccs-verticesWe next prove that the number of ccs-vertices is also O(n2+"). The proof is very similarto the one described in the previous section, but is considerably simpler, so we will mainlyfocus on the modi�cations needed to make the proof work for this case.Let C be a set of n bounded cylinders of unit radius and � a set of m unit-radius spheressuch that the axes of C make an acute angle of at most �0 with the z-axis and the unitspheres centered at the endpoints of the axis of any cylinder in C are contained in �. LetV = V (C;�) denote the set of ccs-vertices on the boundary of the union of C [ �. Set�(n;m) = max jV (C;�)j, where the maximum is taken over all sets of n bounded cylindersand over all sets of m spheres that satisfy the axes and containment conditions. We willderive a recurrence for �(n;m) similar to the one in the previous section.Fix a constant integer parameter � > 2, whose value depends on " and will be speci�edlater. Partition the plane h into a collection W = fW1; : : : ; W�g of � horizontal stripsby lines parallel to the x-axis so that each strip contains direction images of at most n=�cylinders. For each strip Wi 2W, let Ci denote the set of cylinders whose direction imageslie in Wi. By construction, jV (Ci;�)j � �(n=�;m). Next, we partition the plane into acollection H = fH1; : : : ; H�g of � vertical strips by lines parallel to the y-axis, so that eachstrip contains at most n=� direction images. For each strip Hk 2 H, we also bound by�(n=�;m) the number of ccs-vertices v so that the direction images of the two cylindricalsurfaces containing v lie in Hk. These 2� subproblems account for all those vertices v ofV (C;�) that lie on two cylinders whose direction images lie in at most one horizontal orone vertical strip. Let R be the set of �2 rectangles induced by H and W. For a rectangleRi 2 R, let Ci be the set of cylinders whose direction images lie in Ri. For a pair i 6= j,let Vi;j = V (Ci; Cj ;�) � V (C;�) denote the set of vertices v of U(Ci [ Cj [ �) lying on twocylinders a; b such that a 2 Ci and b 2 Cj .Lemma 3.2 Let R1; R2 be two rectangles in R whose x- and y-projections are disjoint,then jV1;2j = O((n=�)1+"m).Before proving this lemma, let us bound the number of the ccs-vertices in U using the22



The Case of Cigars 23lemma. Since there are O(�4) such pairs of rectangles, we obtain the following recurrence:�(n;m) � 2� � �(n=�;m) +O(n1+"�3m):For any "0 > ", by choosing � = �("0) a su�ciently large constant, one can prove that thesolution to the above recurrence is �(n;m) = O(n1+"0m) (see e.g. [22]). This implies thatthe number of ccs-vertices in U is O(n2+").We now prove Lemma 3.2. Let w 2 h be a point whose x and y-coordinates separate,respectively, the x-ranges and the y-ranges of R1 and R2, and let u be the pre-image of w.Then, arguing as in Case (i) of the proof of Lemma 2.7, it follows that all pairs of cylindersin C1 � C2 are 1-divergent with respect to u.In order to bound the size of V (C1; C2;�), we place in R3 the grid Q of in�nite squareprisms, as de�ned above. We will bound the size of VQ = V (C1; C2;�) \Q for each Q 2 Qseparately and then sum these quantities over all prisms Q. Let Q 2 Q be �xed, and letC(1)Q � C1, C(2)Q � C2, be the subsets of these sets of cylinders that intersectQ, and let �Q � �be the set of spheres that intersect Q; set nQ = jC(1)Q [ C(2)Q j and mQ = j�Qj. Let �Q be thenumber of pairs of cylinders in C(1)Q �C(2)Q that are near insideQ, where nearness is de�ned asin Section 2 (all these pairs are also 1-divergent with respect to u). The proof of Lemma 2.11implies that jVQj = O((nQ+mQ)2+") for any " > 0. Since we are counting only the numberof ccs-vertices, Lemma 2.12 imples that jVQj = O(n1+"Q (nQ+mQ)). Finally, using the samerecursive argument as in Section 2.6, we can show that jVQj = O((�Q + nQmQ) � n"Q), forany " > 0. Hence, jV1;2j � XQ2Q jVQj =XQ O((�Q + nQmQ) � n"Q):By Lemma 2.8,PQ �Q = O((n=�)2+"). Since a sphere in � intersects only O(t2) = O(1)prisms, we have PQmQ = O(m). Finally, m � n � n=�, therefore jV1;2j = O((n=�)1+"m).This completes the proof of Lemma 3.2.Putting everything together we conclude the following.Theorem 3.3 Let S be a set of n segments in R3 and let B be a ball. The complexity ofthe union of the Minkowski sums of B and the segments in S is O(n2+"), for any " > 0.A result by Clarkson and Shor [14] implies the following corollary which will be usefulin the analysis of the next section.Corollary 3.4 Let S be a set of n segments in R3 and let B be a ball. Set K = fs � B js 2 Sg. The number of vertices of the arrangement of K that lie in the interior of at mostk regions of K is O(n2+"k1�"). 23



The Case of Kreplach 244 The Case of KreplachArmed with the bound in Theorem 3.3, we now turn to the general case in which S consistsof n pairwise disjoint triangles. For each s 2 S, let Ks = s�B0. Let K = fKs j s 2 Sg andU = Ss2SKs. We also de�ne K(0) = fKe j e is an edge of a triangle in Sg. Let T denotethe set of triangular faces of the kreplach in K, let C be the set of cylindrical surfaces ofcigars in Ke, and let B be the set of balls bounding the spherical surfaces of Ke. A pointlying in k regions of K lies in at most 3k regions of K(0). Let A(K) (resp. A(K(0))) be thearrangement de�ned by the boundary surfaces of the regions of K (resp. K(0)), and de�nethe level of a point p in R3 in either arrangement to be the number of regions Ks of thearrangement that contain p in their interior. The closure of the complement of U is the setof points of level 0 in A(K). The main result of this section is the following.Theorem 4.1 Let S be a set of n pairwise disjoint triangles in R3 , and let B be a ball.The combinatorial complexity of the union of the Minkowski sums of B with the trianglesof S is O(n2+"), for any " > 0.As in the previous sections, it su�ces to bound the number of vertices of U . Moreover, wecan assume general position of the triangles in S, which now means that no pair of trianglesin S are parallel or intersect; that no two edges of distinct triangles in S are parallel orcoplanar; that no two Ki's are tangent to each other; that no curve of intersection of theboundaries of any two Ki's is tangent to a third one; that no triple intersection of theboundaries of the Ki's lie on any circle or segment separating the triangular, cylindricaland spherical portions of one of them; and that no four boundaries meet at a point. Usinga standard argument based on a slight perturbation of the triangles (as in [23]), one canshow that this assumption involves no loss of generality.4.1 Preliminaries and overviewWe use the shorthand notation of referring to a triangular, cylindrical, or spherical surfaceas a t-surface, c-surface, and s-surface, respectively. We also use the notation n-surface torefer to a (\non-triangle") surface that is either a cylinder or a sphere. As in the precedingsection, we call a vertex of A(K) an xyz-vertex, for x; y; z 2 ft; c; s; ng, if it is incident uponan x-surface, a y-surface, and a z-surface.Our analysis relies crucially on the following two lemmas. The �rst lemma, known asthe pseudo-sphere property, is an extension of a two-dimensional result by Kedem et al. [19].Lemma 4.2 (Pseudo-sphere property) Let A1, A2 be two disjoint compact, convexbodies in R3 , and let B be another compact, convex body with nonempty interior. LetK1 = A1 � B, K2 = A2 � B be the Minkowski sums of A1 and A2 with B. Then theintersection @K1 \ @K2 is connected. 24



The Case of Kreplach 25This lemma was originally proved by J�anos Pach in early 1980s. Since his proof wasnever published, we sketch the proof for the special case in which A1 and A2 are trianglesand B is a ball in the appendix (i.e., K1 and K2 are kreplach). Recently another proof, forthe polyhedral case, is given by Asano et al. [?].Next, we prove a simple property of kreplach that will be used repeatedly in our analysis.We note that this is the only place where the disjointness of the triangles of S is used inthe analysis.Lemma 4.3 Let s be a triangle in S, and let a; a0 be the two triangular portions of @Ks.Let t be another triangle in S, and let 
 be an arc along @Kt that is contained in Ks andconnects a point v 2 a to a point v0 2 a0. Then 
 must intersect a cylinder or a sphereinduced by an edge or a vertex of s; in other words, the distance of 
 from @s is smallerthan 1. (See Figure 11.)

Figure 11: Illustration to Lemma 4.3: (a) Triangles s and t and the image � of 
 on t; (b) Kt andthe path 
 lying on @Kt; (c) the cylindrical and spherical surfaces corresponding to the edges andvertices of s and the intersection of 
 with a cylindrical surface of Ks.Proof: (We are indebted to Boris Aronov for the following simpli�cation of an earlier morecomplicated proof.) Suppose to the contrary that this is not the case. For simplicity, assumethat s lies in the xy-plane, and that a; a0 lie in the planes z = 1 and z = �1, respectively.For each point u 2 
, let  (u) denote the point in t closest to u (obviously, ku� (u)k = 1).It is easily seen that  is continuous. Let � = f (u) j u 2 
g � t denote the (connected)image of 
; see Figure 11(a). Put w =  (v) and w0 =  (v0). Clearly, w lies in the halfspacez � 0 and w0 in the halfspace z � 0. Since w;w0 2 � and � is connected, � must intersectthe plane z = 0. Hence, there exists u 2 
 such that p =  (u) 2 t \ fz = 0g. Since s andt are disjoint, p =2 s. Let q be the vertical projection of u on the plane z = 0. If q 62 s, i.e.,u does not lie vertically above s, then u lies inside Ke, for one of the edges e 2 s, whichimplies that the path 
[v; u] intersects @Ke, as claimed. So assume that q 2 int(s). Thenpq must cross the boundary of s at some point b. Since juqj < 1 and jupj = 1, it followsthat jubj < 1, which establishes the lemma. 2Remark 4.4 The above proof relies on the fact that s is planar, but it does not use the25



The Case of Kreplach 26fact that s is polygonal. The proof works as long as S is a family of pairwise-disjoint convexplanar objects, e.g., a family of pairwise-disjoint disks.We derive a recurrence similar to the ones used in the analysis of the complexity oflower envelopes and other substructures in arrangements (see, e.g., [23] for details), but weuse a simple enhancement of it, as follows. Let � denote the (constant) maximum possiblenumber of intersections between any three boundary surfaces of regions in K. For threetriangles a; b; c 2 S, let v be a vertex incident upon the boundaries of three regions Ka,Kb, Kc. Let N denote the network formed by the vertices and edges (i.e., 1-skeleton) ofKabc = Ka \Kb \Kc. By Lemma 4.2, Kedem et al. [19], which we will refer to as the thatany pair of boundaries @Ka and @Kb intersect in a connected curve, which implies that Nis connected. Let m � � be the number of vertices in N . Let Nv be the set of vertices in N ,including v, that do not lie in the interior of any krepe and that can be reached from v alongthe edges of N without intersecting any other krepe. We de�ne the index of v, denotedind(v), to be m� jNvj. ind(v) = m is equivalent to v 62 @U ; ind(v) = m� 1 is equivalentto v 2 @U but each of the three edges of Kabc adjacent to v is intersected by at least oneother region; ind(v) = 0 is equivalent to the entire network N not being intersected by anyother krepe. For 0 < j < m, we call a vertex v of index j a frontier vertex if an edge ofN adjacent to v crosses the boundary of a krepe; by de�nition, if v is a vertex of index0 < j < m, then Nv contains at least one frontier vertex. If we remove some of the trianglesfrom S, excluding the three whose expansion boundaries are incident upon v, the index ofv can only decrease or remain unchanged. Note that the notion of an index used here isdi�erent from the one used in the previous works (as presented in [23]).Let F (j)(S) denote the number of vertices of A of index at most j that lie on @U , andlet F (j)(n) = maxjSj=nF (j)(S):Let F (S) = F (��1)(S) denote the overall number of vertices of @U ; setF (n) = maxjSj=nF (S):We now derive the recurrence for F (j)(n), for j > 0. For j = 0 we need a special analysisof the structure of the sets Kabc, which lies at the heart of our proof.We choose some threshold parameter � = �j that we will �x later. Let v be a vertex ofindex j > 0, lying on the boundaries of Ka, Kb, and Kc. If v is not a frontier vertex, wecharge v to a frontier vertex of Nv; each frontier vertex is charged at most � times. If v is afrontier vertex, then let e be an edge of Kabc adjacent to v that is crossed by the boundaryof another krepe Kd. If e is crossed by at least � other boundary surfaces, we charge v(and the non-frontier vertices charged to v) to the �rst � vertices of A encountered along e.These vertices are at level at most � in A(K) and each can be charged this way only O(1)times. Hence, applying the Clarkson-Shor probabilistic analysis technique [14] and arguing26



The Case of Kreplach 27as in earlier proofs (see [23]), the number of vertices v at level at most � is O(�2F (n=�)).Otherwise, if we remove the at most � triangles whose expansion boundaries meet e, (butretain a, b and c), then the index of v decreases by at least 1. Hence, applying again theClarkson-Shor technique, the number of vertices v of this kind is O(�3F (j�1)(n=�)).We thus obtain the following recurrences, for j = 1; : : : ; �� 1.F (j)(n) = O��2jF � n�j�+ �3jF (j�1)� n�j�� : (4.1)We next derive a recurrence for F (0)(n).Lemma 4.5 Let F (tnn)(n) be the maximum number of tnn-vertices of index 0 on the union,maximized over all sets of n pairwise-disjoint triangles. Then, for any parameters �0, �0,and " > 0, we have:F (0)(n) = O(�3�"0 n2+") +O��20F � n�0�+ �30F (tnn)� n�0�� ;F (tnn)(n) = O(�3�"0 n2+") +O��20F � n�0�� : (4.2)Following an argument similar to the one in [22], one can show that the combinedsolution of the recurrences (4.1) and (4.2) satis�es F (n) = O(n2+"), for any " > 0. In theremainder of the section we prove the above lemma.4.2 Bounding F (0)(n)Let v be a vertex of index 0 lying on three kreplach Ka;Kb;Kc. Then all vertices of Kabc lieon @U and none of the edges of Kabc meets any other kreplach. We refer to such a vertex vas a free vertex and to such a Kabc as a free triple intersection. We charge all free vertices ofKabc to some speci�c representative vertex on Kabc and count the number of representativevertices. This counting is done in several stages, depending on the type of representativevertices. The overall analysis will lead to the recurrences (4.2).Handling easy cases. The de�nition of a free triple intersection Kabc only implies thatits edges do not intersect the other kreplach, but it still allows the 2-faces of Kabc to meetother regions. If a 2-face f of Kabc lying, say, on @Ka intersects another krepe Kd butno edge of Kabc intersects Kd, then a whole connected component 
 of the intersectioncurve @Ka \ @Kd lies entirely in f . Lemma 4.2 implies @Ka \ @Kd is connected, therefore
 = @Ka \ @Kd. We charge f to 
. Hence, the number of free triple intersections thatintersect other kreplach is only O(n2). We can thus assume that the entire Kabc does notintersect any krepe. (It is easily seen that no Kd can be fully contained in the interior of27



The Case of Kreplach 28Kabc.) If any of the edges of Kabc has a transition point, namely, a point on a seam of at-, c- or s-surface of a krepe, then we can charge Kabc to that transition point. Since thereare only O(n2) transition points, the number of such free triple intersections is also O(n2).This also implies that there are O(n2) free triple intersections Kabc that contain ttt-vertices.Indeed, let v be a ttt-vertex incident upon three triangular faces of Kabc. Since v is theonly intersection point of the corresponding three triangles, at least one of the edges of Kabcadjacent to v contains a transition point, thereby implying that there are O(n2) such tripleintersections.Next, if Kabc has an nnn-vertex v (a vertex that does not lie on any displaced triangle),we choose v as its representative vertex; v is also a vertex of the union of K(0). By Theo-rem 3.3, the number of such vertices is O(n2+"), for any " > 0. Suppose next that Kabc hasa tss-vertex. Let a0 be a triangular face of Ka. Since every tss-vertex of U lying on a0 is avertex of the union of a set of at most 3n disks, within the plane containing a0, the numberof such vertices is O(n) [19]. Hence, there are O(n2+") free triple intersections that containan nnn- or a tss-vertex.In view of the above discussion, we can thus assume that each vertex of Kabc lies onat least one triangular face, that Kabc has no ttt- or tss-vertex, that Kabc is disjoint fromany other krepe, and that none of the edges of Kabc contain a transition point. Then allvertices of Kabc are tcn- or ttn-vertices. We call such triple intersections interesting. Wecall a vertex interesting if it is a vertex of an interesting triple intersection.The rest of the proof, which bounds the number of interesting free triple intersections,consists of two parts. The �rst part bounds the number of interesting triple intersectionsthat contain at least one tcn-vertex. We show that the number of interesting tcs-vertices isproportional to the number of certain degree-two faces, called bubbles, in the arrangementof K and K(0). Following an approach similar to the one used in [17], we obtain a recurrencethat bounds the number of these bubbles. The same recurrence can be derived to boundthe number of interesting tcc-vertices. The second part of the proof bounds the number ofinteresting triple intersections that contain only ttn-vertices. Roughly speaking, we choosea parameter � and charge each ttn-vertex either to � ttn-vertices of level at most � or toone tcn-vertex of level at most �.4.3 Bounding the number of interesting tcn-verticesWe will derive a recurrence for the number of interesting tcs-vertices. Let v be a tcs-vertexlying on some Kabc. Suppose v lies on the t-surface of the triangle a, and let e and p be theoriginal edge (say of b) and vertex (of c) whose expanded cylinder and ball, respectively,contain v on their boundaries. We replace b by e and c by p and consider the tripleintersection Kaep. This set is contained in Kabc but is otherwise free of intersections withany other region Kd (because Kabc avoids all these regions). We call v a regular tcs-vertex ifall vertices of Kaep lie on one of the triangular faces a0 of Ka and on the cylindrical surfaceof Ke. Otherwise, it is called irregular. 28



The Case of Kreplach 29Lemma 4.6 There are O(n2+") irregular vertices on interesting triple intersections.Proof: If an interesting Kaep contains an irregular vertex, then it contains an nnn-vertex,one of the edges ofKaep contains a transition point, or the vertices ofKaep lie on two distincttriangular faces of one of the kreplach. By the previous discussion, there are O(n2+") tripleintersections of the �rst two types.Suppose there exist two vertices of Kaep that lie on two distinct triangular faces of Ka.Since 
 = @Ke \ @Kp is connected (as already noted, this is a consequence of Lemma 4.2,but can also be veri�ed explicitly), it follows that there is a portion of 
 that lies on @Kaepand connects between two points that lie in the two displaced copies of a. By Lemma 4.3,this portion of 
 must intersect one of the expanded edges Ke0 of a, at a ccs- or css-vertexthat lies on the union of K(0). The number of such vertices is O(n2+"). Hence, there areO(n2+") irregular vertices. 2It thus su�ces to bound the number of regular tcs-vertices.a0@Ke @KpFigure 12: An example of a regular tcs-vertex.Bounding the number of regular tcs-vertices. Let v be a regular vertex on Kaep, i.e.,all vertices of Kaep lie on a displaced copy a0 of a, the cylindrical surface Ce of Ke, and thesphere @Kp. As we follow the boundary of R = a0 \ Ce \ @Kp from v, we encounter onlythose vertices at which the intersection ellipse of a0 and the cylindrical surface Ce crossesthe intersection circle of a0 and @Kp, implying that R has either 2 or 4 vertices. Since allvertices of Kaep lie on a0, it follows that Kaep has only 2 or 4 vertices. Let us �rst considerthe case in whichKaep has exactly 4 vertices, all lying on the triangle a0. We consider @Kaepas a spherical map, and apply to it Euler's formula, as follows. The map has V = 4 verticesand each vertex is of degree 3. Moreover, as is easily seen, each face of the map has evendegree, namely either 2 or 4. Suppose there are E edges, F2 faces of degree 2 and F4 facesof degree 4. Since each vertex has degree 3, we have E = 6. Then Euler's formula yieldsV + F2 + F4 = E + 2 or F2 + F4 = 4:We also have 2E = 2F2 + 4F4, or F2 + 2F4 = 6, thereby implying that F2 = F4 = 2. Itis easily veri�ed that Ka contributes to @Kaep one face of degree 4 (on a0), that anothersurface contributes another face of degree 4, and that the third surface contributes two faces29



The Case of Kreplach 30of degree 2. See Figure 12. On the other hand, if V = 2, then E = 3, and F2 + F4 = 3.Moreover, 2F2 + 4F4 = 6, which implies that F4 = 0 and F2 = 3. That is, each of a0, Ke,and Kp contributes a 2-face to Kaep.Lemma 4.7 For any parameter � � 1, there are O(�2F (n=�) + �3�"n2+") regular tcs-vertices v on free interesting Kaep's, such that(i) either Kaep has two vertices, or(ii) Kaep has four vertices and its two degree-2 faces lie on @Ke.Proof: As de�ned earlier, let C be the set of cylindrical surfaces of the @Ke's, where eis an edge of a triangle in S. We bound the number of desired vertices that lie on eachsurface C 2 C and sum these bounds up over all surfaces in C. Assume that the axis of Cis parallel to the z-axis. Let KC = fKa \C j a 2 Sg and K(0)C = fKg \C j Kg 2 K(0)g. LetA = A(KC), A(0) = A(K(0)C ), UC = SKC , and U (0)C = SK(0)C . Clearly, U (0)C � UC . Let �Cdenote the combinatorial complexity of U (0)C . By Theorem 3.3, we have PC �C = O(n2+"),where the sum ranges over all surfaces in C. The level of a point q 2 C with respect to A(resp. A(0)) is the number of regions in KC (resp. K(0)C ) that contain q in their interior. Theclosure of the complement of UC (resp. U (0)C ) is the set of points at level 0 with respect toA (resp. A(0)).

Figure 13: Bubbles of A and quasi-regular vertices on C.The intersection of C with a triangular face a0 of Ka, for a 2 S, is an elliptic arc. Anypair C\a0, C\b0 of these elliptic arcs intersect in at most two points because a0\b0 is a linesegment and it intersects C in at most two points. Moreover, any generator line on C, aline parallel to its axis, intersects any of these elliptic arcs in at most one point, which is theintersection of the generator with the respective displaced triangle. Finally, an endpoint ofany elliptic arc is a transition point that lies on the boundary of the corresponding displacedtriangle a0. Let v be a regular tcs-vertex of one of the degree-2 faces induced on C by Kaep(i.e., a vertex of Kaep). Note that v lies on an elliptic arc 
 (a portion of the intersection30



The Case of Kreplach 31of a0 with C) and on a portion of a sphere-cylinder intersection curve �. Since Kaep is free,by de�nition, the degree-2 faces of @Kaep on C appear as faces (which we will refer to asbubbles) of the arrangement A. Moreover, 
 and � appear in a �xed vertical order alongC outside these bubbles (i.e., any generator that crosses both curves crosses them in thesame order); see Figure 13. We call the bubble upward if the elliptic arc 
 is the top edgeof the bubble; otherwise we call it downward. If 
 and � form upward bubbles, then � liesabove 
 outside these bubbles. We will bound the number of upward bubbles that do notlie inside any region of KC . By reversing the direction, we will obtain a similar bound onthe number of downward \free" bubbles. Together, this will yield a bound on the overallnumber of desired vertices.Let � be a parameter. Let Q(�)C denote the closure of the points on C whose level is atmost � with respect to K(0)C . We take the �-extremal points w (in the cylindrical coordinatesystem attached to C) of every edge of A(0) that lies inside Q(�)C and draw through w amaximal vertical segment contained in Q(�)C and crossing at most � arcs of A(0) on eitherside of w. The edges of A(0) and these segments decompose Q(�)C into \pseudo-trapezoidal"cells, and we denote the collection of these cells by V. Using the Clarkson-Shor analysistechnique, the total number of vertices of A(0) within Q(�)C , summed over all cylindersC, is O(�3(n=�)2+") = O(�1�"n2+"). Hence the total number of cells and edges in thedecompositions V, summed over all cylinders C, is O(�2�"n2+"), for any " > 0.Note that the new vertical segments may split some of the \bubbles" into two faces,but the number of such bubbles, summed over all cylinders, is only O(�2�"n2+") since eachvertical segment splits at most � bubbles. We will thus count only those upward bubbleswhose both vertices lie on the same edge of a cell of V.For each edge � in V whose level is 0 with respect to K(0)C , we count the number ofupward bubbles formed by � that were not split by the vertical segments and sum thisquantity over all such edges. Let E� be the set of elliptic arcs that form upward bubbleswith �; set m� = jE�j. Each arc in E� intersects � in either two or four points and all theseintersection points are the vertices of the bubbles; otherwise the corresponding bubble isnot a face of a regular triple intersection. If m� � �, the number of upward bubbles thatlie on � is at most 2�. We charge them to �. The total number of such bubbles charged toarcs of V, summed over all cylinders C, is O(�3�"n2+").Suppose next that m� > �. Let 
 be an elliptic arc that forms a bubble f with �. LetvL; vR be the left and right vertices of f . First assume that 
 intersects � at two points. Wewill trace 
 from vL (resp. vR) leftward (resp. rightward) until we reach a point wL (resp.wR) for which one of the following conditions holds:(C.1) we have reached an endpoint of 
;(C.2) we have encountered � vertices of A;(C.3) we have reached a point that lies below an endpoint of �.31



The Case of Kreplach 32vL vR wRwL v0

w0L��0Figure 14: Tracing an elliptic arc 
.By construction, 
[wL; vL] and 
[vR; wR] lie below �.Claim 4.8 The relative interiors of the traced arcs 
[wL; vL] and 
[vR; wR] do not containa vertex of an upward bubble.Proof: Let w0L be the point on � lying vertically above wL, and let �L be the region boundedby the arcs �[w0L; vL]; 
[wL; vL] and the vertical segment wLw0L (e.g., the left shaded regionin Figure 14). Similarly we de�ne the region �R lying between 
[vR; wR] and �. Supposethe relative interior of 
[wL; vL] contains a vertex v0 2 �0 \ 
 of an upward bubble formedby some curve �0 and 
. We assume that v0 is the rightmost such vertex. We claim that theright endpoint of �0 lies in �L. First, we observe that the bubble � containing v0 lies to theleft of v0. Indeed, if v0 were the left vertex of �, then the right vertex of � would have tolie to the right of vL because 
(v0; vL) does not contain the veretx of any upward bubble.But then � contains the arc �[vL; vR], implying that � is not a face of A, a contradiction.Hence v0 is the right vertex of �. Since � lies to the left of v0, the arc �0 lies above 
 to theright of v0. All intersection points of 
 and �0 are vertices of the upward bubbles formed bythem, so �0 cannot intersect 
[v0; vL]. Since � is an edge of V, �0 does not intersect �. Thisimplies that the right endpoint of �0 has to lie in the region �L, as claimed above.Let � be the rightmost endpoint of an arc in K(0)C that lies inside �L, and let �0 2 � be thepoint lying vertically above �. Any arc of K(0)C intersecting the segment ��0 has to intersect
[wL; vL] because it can neither intersect � nor end inside �L. Since 
[wL; vL] contains atmost � vertices of A, the vertical segment ��0 intersects at most � arcs of K(0)C . But thenthe vertical segment erected through � would have to intersect �, thereby implying that �0is the left endpoint of �, a contradiction. Hence, v0 does not exist. The same argumentapplie to �R. 2Actually, the preceding argument shows that no arc in K(0)C (or in KC) has an endpointinside �L or �R.If wL or wR is an endpoint of the elliptic arc 
, we charge f to 
. Since no other upwardbubble can be charged to the same endpoint of 
, each elliptic arc is charged at most twice.Hence, the total number of such bubbles over all cylindrical surfaces in C is O(n2). If the32



The Case of Kreplach 33traced portion of 
 (i.e., 
[wL; vL][ 
[vR; wR]) contains � vertices of A, we charge f to � ofthese vertices whose levels are at most �. Each such intersection point is charged by O(1)upward bubbles, over all cylinders C.If we are not able to charge f to an endpoint of 
 or to the vertices of A, then wL liesbelow the left endpoint of � and wR lies below the right endpoint of �. Since �L and �Rdo not contain the endpoints of any elliptic arc 
0 2 E� and 
0 does not intersect 
[vL; vR],
0 has to intersect the traced portion of 
. Repeating this argument for all arcs of E� andrecalling that we have assumed m� > m, we conclude that the traced portion of 
 containsat least � vertices of A, a contradiction. Hence, we are always able to charge an upwardbubble.Next, if 
 and � form two upward bubbles (as in Figure 13), then let v1 = vL; v2; v3; v4 =vR be the four intersection points of � and 
, sorted from left to right. We trace 
 fromvL and vR as earlier and stop as soon as one of conditions (C1){(C3) holds. In addition,we also trace 
 from v2 rightward until we either collect � vertices of A or we reach v3.If 
[v2; v3] contains less than � vertices of A, the above argument implies that the regionformed by 
[v2; v3] and �[v2; v3] does not contain the endpoints of any arc in E�. Hence,even in this case each arc of E� intersects the traced portion of 
 and we can charge bothupward bubbles to � vertices of A whose levels are at most �.Repeating the same argument for downward bubbles and summing over all arcs � oflevel 0 in V and over all cylinders C, we conclude that the number of quasi-regular verticesincident upon upward or downward bubbles formed by those edges of V (of level 0) for whichm� > � is O(n2+F��(n)=�), where F��(n) is the number of vertices of level at most � in anarrangement of n kreplach. By a result of Clarkson and Shor [14], F��(n) = O(�3F (n=�)).Adding the number of bubbles that lie on edges � of V for which m� � �, we conclude thatthe total number of bubbles is O(�2F (n=�) + �3�"n2+"): This completes the proof of thelemma. 2Next, the case in which the degree-2 faces of Kaep lie on the sphere @Kp can be handledin a similar manner. We take @Kp and draw on it the arrangements A, formed by itsintersections with the regions Ks 2 K, and A(0), formed by its intersection with the regionsKe 2 K(0). The degree-2 faces of a regular triple intersection Kaep appear as two faces ofA. We draw a (�; �)-coordinate system of longitudes and latitudes on @Kp and regard thelongitudes of @Kp as the generator lines. If a circular arc 
 is not �-monotone, then we split 
at the points that are tangent to longitudes. We now proceed exactly as in the previous case.A similar argument shows that the number of overall regular tcs-vertices that lie on freeinterestingKaep's in which the two degree-2 faces lie on @Kp is also O(�2F (n=�)+�3�"n2+"):We leave it to the reader to verify the details.To conclude, we have shown the following.Lemma 4.9 The number of free triple intersections Kabc that contain a regular tcs-vertex33



The Case of Kreplach 34is at most O��3�"n2+" + �2F �n��� : (4.3)Bounding the number of tcc-vertices. Next suppose that Kabc has no tss-vertex andno tcs-vertex but has a tcc-vertex v. The analysis of this case is very similar to that ofa tcs-vertex, with the following modi�cation. In full analogy, we consider the intersectionKaee0 , where e and e0 are edges of b and c, respectively, on whose expanded cylinders vlies. We may assume that Kaee0 does not have a tcs-vertex, tss-vertex, nnn-vertex, or atransition point on any intersection curve because then we can apply the same analysis asabove to conclude that (4.3) bounds the number of such free triple intersections. We de�ne
 = a0 \ @Ke, � = a0 \ @Ke0 , and R = a0 \ Ke \ Ke0 . Arguing as above, the precedingassumptions imply that all vertices of Kaee0 lie on E \ E0, where E and E0 are the ellipticintersection curves of a0 with the cylindrical portions of @Ke and @Ke0 , respectively; inparticular, there are only 2 or 4 such vertices. The rest of the analysis proceeds exactlyas above, and implies that the overall number of free triple intersections Kabc of the abovetype is bounded by the bound in (4.3).4.4 Bounding the number of ttn-verticesWe now bound the number of interesting triple intersections that contain only ttn-vertices.Let Kabc be such a triple intersection. The preceding analysis implies that all vertices ofKabc lie on a single displaced copy a0 of a and on a single displaced copy b0 of b. But thenall vertices lie on the line segment a0 \ b0, and the convexity of Kabc implies that it has onlytwo vertices v, v0.
Cv v0a0Figure 15: An example of a ttn-vertex.Let us �rst assume that one of them, say v, is a ttc-vertex, lying on the cylindricalportion C of @Ke, for some edge e of c. Since we assume the edges of Kabc not to containany transition point, the edges adjacent to v and lying on Ke lie fully in C. Therefore v0also lies on C and @Kabc has three (free) edges, one of which is the straight segment vv0and the other two are elliptic arcs contained in a0 \ C and b0 \ C, respectively. We willonly study this case; the case in which v is a tts-vertex is treated in essentially the same34



The Case of Kreplach 35manner, replacing C by an appropriate sphere and the elliptic arcs by circular arcs alongthat sphere.As in the proof of Lemma 4.7, we assume that the axis of C is vertical, and we formtwo arrangements on C. Let KC ;K(0)C ;A;A(0); UC ; U (0)C , and �C be the same as de�nedin that proof; recall that A;A(0) are the arrangements of KC and K(0)C , respectively. LetE be the set of at most 2n elliptic arcs in KC , formed by the intersection of C with thetriangular faces of kreplach in K. We take the complement of U (0)C within C and decomposeit into pseudo-trapezoidal cells, by extending a vertical segment from each vertex or �-extreme point on @U (0)C until it hits this boundary again. The total number of cells, overall cylindrical surfaces in C, is O(n2+"). Let V denote the resulting vertical decomposition.Fix a cell � of this vertical decomposition, and consider the set E� � E of all elliptic arcsthat cross � and that contain at least one ttc-vertex; set m� = jE� j. Any ttc-vertex v thatlies in � is an intersection of two elliptic arcs in E� . Since each endpoint of an elliptic arclies on the boundary of a region in K(0)C , none of the arcs in E� can have an endpoint inside� . Let E 2 E� be an elliptic arc and let ` be a generator line on C that intersects E. If wefollow ` from E \ ` (recall that there is a unique such point) into the region Ka boundedby E and apply Lemma 4.3, we conclude that we will meet some cylindrical surface in C orsome sphere in B before exiting Ka, and therefore we will exit � before exiting Ka. Let E+�(resp. E�� ) be the set of elliptic arcs E 2 E� so that a ray emanating from a point on thearc (within �) in the (+z)-direction (resp. (�z)-direction) enters the corresponding Ka.
mnwAmnwBmnB

mnA mnvBmn�mnvA
Figure 16: Counting the number of arcs in E� .It follows that any ttc-vertex v under consideration is a vertex of the region lying betweenthe lower envelope of E+� and the upper envelope of E�� . Since any pair of arcs in E� intersectin at most two points, it follows that the complexity of this sandwich region, and thus alsothe number of ttc-vertices under consideration within � , is O(m� ). It thus su�ces to boundthe value of PC2CP�2V m� .We �x a threshold parameter � > 0. The overall number of ttc-vertices under consid-eration that lie in cells � with m� � �, over all cylinders C, is O(�n2+"), so assume thatm� > �. 35



The Case of Kreplach 36Since each arc E 2 E� intersects the boundary of � , let wE be any such intersectionpoint; see Figure 16. If the level of wE with respect to A is at most �, we charge E towE . There are at most � such intersection points lying on each of the vertical edges of� . Summed over all cells in VC and over all cylindrical surfaces in C, the number of suchintersection points is O(�n2+"). If wE lies on the top or bottom boundary of � , wE is atcc- or a tcs-vertex of A. Using the Clarkson-Shor analysis technique, we conclude thatthe number of tcc- or tcs-vertices at level at most � in A, summed over all cells � 2 U (0)Cand over all cylindrical surfaces C, is O(�3F (tnn)(n=�)), where F (tnn)(m) is the maximumpossible number of free tnn-vertices on the boundary of the union of the expansions Ks, fors in a set of at most m pairwise-disjoint triangles.Next, suppose that the level of wE with respect to A is greater than �. This meansthat as we walk from a free ttc-vertex vE on E within � to wE along E, we visit at least� vertices of A, each of which has level at most �. We charge E to these � vertices of A.Since each such vertex is charged only O(1) times in this manner (because we only want tocount m� ), the total number of such elliptic arcs E is O(�2F (n=�)).We have thus proved that the number of ttc-vertices that appear on interesting freetriple intersections is O��n2+" + �3F (tnn) �n��+ �2F �n���: (4.4)A similar analysis proves the same bound on the number of tts-vertices that appear oninteresting free triple intersections. We thus conclude the following.Lemma 4.10 For any parameter � > 1 and any " > 0,O��n2+" + �3F (tnn)�n��+ �2F �n���ttn-vertices appear on free interesting triple intersections.Wrapping up. Putting Lemmas 4.6, 4.7, and 4.10 together, we obtain the followingrecurrence, which is the same as in (4.2).F (0)(n) = O��3�"n2+" + �2F �n��+ �3F (tnn) �n��� (4.5)F (tnn)(n) = O��3�"n2+" + �2F �n���: (4.6)As argued above, this completes the proof of Theorem 4.1.
36



Extensions 375 ExtensionsIn this section we extend Theorem 2.1 to prove a near-quadratic bound on the complexityof the union of objects with bounded curvature in R3 and on the number of changes in theunion of moving congruent disks in the plane. We also discuss algorithms for computingthe union of cylinders.5.1 Objects with bounded curvatureLet K = fK1; : : : ;Kng be a collection of n compact convex objects in R3 satisfying thefollowing properties:(i) The objects in K have constant description complexity, meaning that each object is asemialgebraic set de�ned by a constant number of polynomial equalities and inequal-ities of constant maximum degree.(ii) The objects in K are of roughly the same size, meaning that the ratio between thediameters of any pair of objects is at most some �xed constant �.(iii) The objects in K are C2-continuous and the mean curvature of any object at all pointsis at most some �xed constant �.In this case we have the following;Theorem 5.1 The complexity of the union of a collection K as above is O(n2+"), for any" > 0, where the constant of proportionality depends on ", �, �, and on the maximumalgebraic complexity of an object in K.Proof (Sketch): Let us assume that the diameter of each object Ki is between 1 and �.Let V be the set of vertices on the union of K. Choose a su�ciently small constant � whosevalue will be speci�ed later. We partition R3 into a grid C of cubes, each of size � (seeFigure 17), i.e.,C = f[i�; (i + 1)�] � [j�; (j + 1)�] � [k�; (k + 1)�] j i; j; k 2 Zg:For each cube C 2 C, let KC � K be the set of objects that intersect C. Each Ki intersectsO(�3=�3) cubes of C, so PC KC = O(n). It is easily seen that only O(n2) vertices appearon the boundary of any cube in C, therefore it su�ces to bound the number of vertices thatlie in the interior of a cube.Fix a cube C 2 C. Let VC � V be the set of vertices that lie in the interior of C. Let�C = f�1; : : : ; �ug, where u = O(n), be the set of connected components of (@Ki) \C, fori = 1; : : : ; n; each �i is a two-dimensional surface patch lying in the interior of C. Every37



Extensions 38

Figure 17: Partitioning R3 into a grid of cubes.vertex of VC lies on three surface patches. Since each �i is C2-continuous and its curvature isbounded by �, the normals of �i vary continuously and their directions lie inside a sphericalcap of S2 of radius c��, for some constant c > 0.We say that a direction � 2 S2 is good for �i if each tangent line to �i makes an angleof at least ��� with �, for some constant � > 0; � is bad for a vertex v 2 VC if it is bad forany of the three surfaces containing v. Since the normals of �i lie inside a spherical cap ofradius c��, the bad directions for �i lie inside a spherical band consisting of all points inS2 that lie within distance (� + c)�� from a great circle. Hence, if we choose � such that�� � 1, then we can show, as in Section 2.5, that there exists a set Z � S2 of O(1) pointswith the property that for any vertex v 2 VC , there exists a direction � 2 Z that is goodfor v.Let w;w0 be two points on @Ki. Since Ki is convex and its mean curvature is at most�, it follows that the sphere Bw of radius 1=� and tangent to Ki at w from the insideis contained in Ki. If the direction ��!ww0 is good for �i, then ��!ww0 makes an angle of atleast ��� with any line tangent to Bw at w. Since w0 does not in the interior of Bw,jww0j � (2=�) sin(���=2) � ��=2, assuming that � is a su�ciently small. If jww0j > p3�,then both w and w0 cannot lie in the same cube of C. By choosing � > 2p3 we can guaranteethat for any point w 2 C \Ki, the other intersection of the ray in a good direction fromw does not lie in C. Now, following the same argument as in Section 2.5, one can reducethe problem of bounding jVC j to that of counting the number of vertices in the region lyingbetween the �-upper and the �-lower envelopes of two respective subsets of �C , summedover all � 2 Z. Hence, jVC j = O(n2+"). This completes the proof of the theorem. 2Remark 5.2 We can relax condition (iii) on C2-continuity. What we really need is thateach object in K intersects O(1) cubes of C and that, for each pair C 2 C;Ki 2 K, thenormals of C \ Ki lie in a su�ciently small cap of S2. For example, we can obtain aquadratic bound on the union of convex polytopes that satisfy these two conditions.38



Extensions 395.2 Union of moving disksLet D = fD1; : : : ;Dng be a set of n unit-radius disks in the plane, each moving with a �xedvelocity. That is, the position of the center ci of Di is a linear function ci(t) = ai + tbi ofthe time t, for some pair ai;bi 2 R2 . Let U(t) = SiDi(t) denote the union D at time t.We want to bound the number of changes in the combinatorial structure of U(t) as t variesfrom �1 to +1.
Figure 18: The space-time tracing of a set of moving disks.For each 1 � i � n, let Ki denote the slanted cylinderKi = f(x; t) j x 2 R2 and d(x; ci(t)) � 1g:(See Figure 18.) The intersection of Ki with a plane normal to the axis of Ki, i.e., nor-mal to the line (ai + tbi; t) is an ellipse Ei whose major and minor semi-axes are 1 and1=p1 + kbik2, respectively. Set U = Sni=1Ki. U(t) is the cross-section of U at the planez = t. The number of changes in the combinatorial structure of U(t) is proportional to thecombinatorial complexity of U .Note that U(t) is the cross-section of the Euclidean Voronoi diagram of the point setfci(t) j 1 � i � ng in the sense discussed in the introduction. Hence, the number of changesin U(t) bounds the number of changes in the combinatorial structure of a cross-section ofthe Voronoi diagram as the points move. The best known bound on the number of changesin the entire Voronoi diagram of a set of n points, each moving with �xed velocity, is near-cubic [6, 18, 23]. De Berg et al. [11] showed that if each Ki is a convex polygonal pseudo-disk(i.e., each Ki is a convex polygon such that the boundaries of any pair always intersect inat most two points) moving with a �xed velocity, then the number of changes in their unionis O(n2�(n)).Without loss of generality, we can assume that the speed of all disks is at most 1. Thenthe minor semi-axis of each ellipse Ei is at least 1=p2, and therefore the diameter andcurvature of Ei are at most 2. By Remark 2.10, we can extend the proof of Theorem 2.1to show that the combinatorial complexity of U is O(n2+"). Hence, we can conclude thefollowing. 39



Conclusion 40Theorem 5.3 Let D be a set of n congruent disks in the plane, each moving with a �xedvelocity. Then the number of combinatorial changes in their union is O(n2+"), for any" > 0.5.3 Computing the unionLet S be a set of n triangles in R3 with pairwise-disjoint interiors, and let B be a ball. Thevertices, edges, and two-dimensional faces of the union of fs�B j s 2 Sg can be computedusing the randomized incremental algorithm described by Agarwal et al. [1]. Basically, foreach krepe Ki, their algorithm will compute the vertices, edges, and faces of U that lieon @Ki, by a straightforward incremental construction that inserts all the other Kj's in arandom order. Omitting all the details, which can be found in [1] (see also [2]), we concludethe following.Theorem 5.4 Let S be a set of n triangles in R3 with pairwise-disjoint interiors, and letB be a ball. The boundary of the union of the Minkowski sums fs � B j s 2 Sg, can becomputed in randomized expected O(n2+") time, for any " > 0.As mentioned in the introduction, once the boundary @U is available, we can alsocompute the boundary of the free con�guration space F of B. We can then add arti�cialedges and vertices into F so that all connected components of the boundary of any connectedcomponent of F are connected. This can be done, using, for example, the technique bySifrony and Sharir [24]. This step adds O(n) additional vertices and edges. Then, givenany two free placements Z1; Z2 of B, we can compute in O(n) time, the placements W1;W2that lie on @U immediately below (in the z-direction) Z1 and Z2, respectively; here we areassuming that all connected components of F are bounded. By locating W1 and W2 in theappropriate faces of @F , we can then determine whether Z1 and Z2 lie in the same connectedcomponent of F . That is, we can determine in O(n) time whether B can be moved from Z1to Z2 without intersecting any obstacle. If Z1 and Z2 lie in the same connected component,we can also compute a path from Z1 to Z2 that lies within F . We do not know whether sucha motion-planning query can be answered more e�ciently, e.g., in polylogarithmic time.6 ConclusionIn this paper we proved near-optimal (i.e., near-quadratic) bounds on the complexity of thefree con�guration space F of a ball moving amid a set of polyhedral obstacles in R3 . Weconclude by mentioning a few open combinatorial problems in this area. In each case, thebest known bound is cubic, and we conjecture the right bound to be near-quadratic.(i) What is the complexity of the Euclidean Voronoi diagram of a set of pairwise-disjointpolyhedral sites in R3? Even the case of line sites is still open.40
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References 43Appendix: Proof of Lemma 4.2We prove the lemma for the special case in which A1 and A2 are triangles and B is a ball.Let us assume that neither A1 nor A2 is parallel to the xy-plane and that they are in generalposition as described in the beginning of Section 4.Pick arbitrary points p1 and p2 in the relative interior of triangles A1 and A2, respec-tively, and choose a point q 2 int(B). For a parameter t 2 [0; 1], putA1(t) = tA1 + (1� t)p1; A2(t) = tA2 + (1� t)p2; B(t) = tB + (1� t)q;and K1(t) = A1(t)�B(t); K2(t) = A2(t)�B(t):We vary t from 0 to 1, and watch for topological changes in C(t) = @K1(t) \ @K2(t).Initially, C(t) = C(0) is empty. C(t) changes continuously as we vary t, so the number ofconnected components of C(t) can change only when K1(t) and K2(t) are tangent to eachother at some point. If this happens, then either a component of C(t) is a singleton point(when a new component has just appeared or an old component is about to vanish), or acomponent of C(t) is not a simple closed curve (when two components of C(t) are about tosplit or have just merged). It can be checked that if a component of C(t) is not a singleton,then it is a simple closed curve. Therefore a connected component of C(t) cannot split, ortwo components cannot merge. Hence, only a new component may appear or an existingcomponent may disappear, as t varies.Since C(0) is empty, let t0 be the minimum value of t at which C(t) becomes a singleton.As is easily checked, K1(t0) and K2(t0) lie on the opposite sides of the plane supportingthem at C(t0), and thus they have disjoint interiors. For any t > t0, the interiors of K1(t)and K2(t) intersect. Suppose C(t0), for t0 > t0, has a new singleton component, call thispoint w. Let � be the common tangent plane to K1(t0) and K2(t0) at w. Without loss ofgenerality, assume that � is parallel to the xy-plane. Since the interiors of K1(t0) and K2(t0)intersect, both of them lie on the same side of �, say below �. Then we can write w asw = t0a1 + (1� t0)p1 + t0b+ (1� t0)q;where a1 (resp. b) is the unique point on A1 (resp. B) with the maximum z-coordinate,and also as w = t0a2 + (1� t0)p2 + t0b+ (1� t0)q;where a2 is the unique point on A2 with the maximum z-coordinate. We thus obtaint0a1 + (1� t0)p1 = t0a2 + (1� t0)p2:This however is impossible since t0a1 + (1� t0)p1 lies in A1 and t0a2 + (1� t0)p2 lies in A2,and they are disjoint. This contradiction completes the proof of the lemma.43


