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Abstract

(a) Using a duality transformation on pseudolines, established recently by Agarwal and
Sharir [4], we show that any graph G induced by a set of vertices of an arrangement of a finite
set of (z-monotone) pseudolines (referred to as a pseudoline graph) can be drawn in the plane
such that its edges are ‘extendible pseudosegments’ (in the terminology of [7]; see below), and
such that two edges ej,es in G form a diamond (each of the two corresponding vertices lies
above one pseudoline incident to the other vertex and below the other pseudoline) if and only
if their drawings in the plane cross each other. Conversely, any graph G drawn in the plane
so that its edges are extendible pseudosegments can be represented as a set of vertices of some
pseudoline arrangement, so that crossings in G are equivalent to diamonds in the arrangement.

(b) This yields the following results: (i) A graph is a diamond-free pseudoline graph on a set
of n pseudolines if and only if it is planar; hence, its size is at most 3n —6. (This fact was proved
by Tamaki and Tokuyama [20], but our proof is much simpler.) (ii) The size of a pseudoline
graph with no k edges forming pairwise diamonds, is O(n) for kK = 3 and O(nlogn) for k > 4
(with the constant of proportionality depending on k).

(¢) A thrackle is a graph drawn in the plane with the property that every pair of edges
either share an endpoint and do not otherwise meet, or cross each other exactly once. In our
dual representation, we show that the size of a pseudoline graph, such that every pair of edges
(defined by four distinct pseudolines) form a diamond, is at most n. Our proof is an extension
of a proof of Perles given for the case of straight-edge drawings.

(d) An anti-diamond in an arrangement of pseudolines is a pair u, v of vertices, none of which
lies in the double wedge enclosed between the two pseudolines incident to the other vertex. We
show that the size of an anti-diamond-free graph on a set of n pseudolines is at most 2n — 2.
This extends, to the case of extendible pseudosegments (or dual pseudolines), earlier results of
Katchalski and Last [13] and Valtr [22], originally established only for straight-edge geometric
graphs. Our proof is much simpler than these earlier proofs, and is similar to a more recent
proof of Valtr [23], given for the straight-edge case.

(e) Finally, as an application of the planarity of diamond-free pseudoline graphs, we provide
yet another simple proof of the bound ©(m?/?n?/? +m+4n) on the number of incidences between
m points and n pseudolines, and on the complexity of m faces in an arrangement of n. pseudolines.
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1 Introduction

Let T be a collection of n pseudolines in the plane, which we define to be graphs of continuous
totally-defined functions, each pair of which intersect in exactly one point, and the curves cross each
other at that point. In what follows we assume general position of the pseudolines, meaning that no
three pseudolines pass through a common point, and that the z-coordinates of any two intersection
points of the pseudolines are distinct. Let E be a subset of the vertices of the arrangement A(T").
E induces a graph G = (I', E) on T" (in what follows, we refer to such a graph as a pseudoline
graph). For each pair (v,~") of distinct pseudolines in T, we denote by W (v,~) the double wedge
formed between v and 4/, that is, the (open) region consisting of all points that lie above one of
these pseudolines and below the other. We also denote by W¢(v,~') the complementary (open)
double wedge, consisting of all points that lie either above both curves or below both curves.

Definition 1.1 We say that two edges (v,7') and (6,8") of G form a diamond if the point v N~/
is contained in the double wedge W (8,8"), and the point 6 N &' is contained in the double wedge

W(v,7').

Definition 1.2 We say that two edges (v,v') and (8,8") of G form an anti-diamond if the point
v N+ is not contained in the double wedge W (0,0"), and the point 6 N &' is not contained in the
double wedge W (v,7'); that is, yN~' lies in W€(8,d") and 6 N lies in W(v,7').

Definition 1.3 (a) A collection S of xz-monotone bounded Jordan arcs is called a collection of
pseudosegments if each pair of arcs of S intersect in at most one point, where they cross each
other.

(b) S is called a collection of extendible pseudosegments if there exists a set T of pseudolines, with
|T'| = |S|, such that each s € S is contained in a unique pseudoline of T".

See [7] for more details concerning extendible pseudosegments. Note that not every collection of
pseudosegments is extendible, as shown by the simple example depicted in Figure 1.

Figure 1: Three pseudosegments that are not extendible.

Definition 1.4 (a) A drawing of a graph G = (I', E) in the plane is a mapping that maps each
vertex v € T' to a point in the plane, and each edge e = uv of E to a Jordan arc connecting the
images of u and v, such that no three arcs are concurrent at their relative interiors, and the relative
interior of mo arc is incident to a vertex.

(b) If the images of the edges of E form a family of extendible pseudo-segments then we refer to
the drawing of G as an (x-monotone) generalized geometric graph.

(The term geometric graphs is usually reserved to drawings of graphs where the edges are drawn
as straight segments.)
In this paper we prove the following results.



Duality between pseudoline graphs and generalized geometric graphs. The first main
result of this paper establishes an equivalence between pseudoline graphs and geometric graphs
drawn in the plane so that their edges form a collection of extendible pseudosegments.

We first derive the following weaker result, which has an easy and self-contained proof.

Theorem 1.5 Let I' and G be as above. Then there is a drawing of G in the plane such that two
edges e and €' of G form a diamond if and only if their corresponding drawings cross each other an
odd number of times.

After the original preparation of this paper, Agarwal and Sharir [4] established a duality trans-
formation in arrangements of pseudolines, which has several useful properties and other applica-
tions. Using their technique, we obtain the following stronger result:

Theorem 1.6 (a) Let T’ and G be as above. Then there is a drawing of G in the plane, with the
edges constituting a family of extendible pseudosegments, such that, for any two edges e, €' of G, e
and €' form a diamond if and only if their corresponding drawings cross each other.

(b) Conversely, for any graph G = (V, E) drawn in the plane with its edges constituting a family
of extendible pseudosegments, there exists a family T of pseudolines and a 1-1 mapping ¢ from V
onto ', so that each edge uv € E is mapped to the vertex p(u) Np(v) of A(T'), such that two edges
in E cross each other if and only if their images are two vertices of A(T) that form a diamond.

Applications. As an immediate corollary of Theorem 1.6 (which can also be derived from The-
orem 1.5), we obtain

Theorem 1.7 Let T and G be as above. If G is diamond-free then G is planar and thus |E| < 3n—6.

Theorem 1.7 has been proven by Tamaki and Tokuyama [20], using a more involved argument.
This was the underlying theorem that enabled them to extend Dey’s improved bound of O(n*/?)
on the complexity of a single level in an arrangement of lines [9], to arrangements of pseudolines.
Note that the planarity of G is obvious for the case of lines: If we dualize the given lines into
points, using the duality y = ax + b — (a,b) and (¢,d) — y = —cz + d, presented in [11], and map
each edge (v,7') of G to the straight segment connecting the points dual to v and +', we obtain a
crossing-free drawing of G. Hence, Theorem 1.7 is a natural (though harder to derive) extension of
this property to the case of pseudolines.

We note also that the converse statement of Theorem 1.7 is trivial: Every planar graph can
be realized as a diamond-free pseudoline graph (in fact, in an arrangement of lines): We draw the
graph as a straight-edge graph (which is always possible [12]), and apply the inverse duality to the
one just mentioned.

In more generality, we can take any theorem that involves generalized geometric graphs (whose
edges are extendible pseudosegments), and that studies the crossing pattern of these edges, and
‘transport’ it into the domain of pseudoline graphs. As an example of this, we have:

Theorem 1.8 Let ' and G be as above. (i) If G contains no three edges which form pairwise
diamonds then G is quasi-planar (in the terminology of [1]; see below), and thus its size is O(n).
(11) If G contains no k edges which form pairwise diamonds (for k > 4) then the size of G is
O(nlogn) (with the constant of proportionality depending on k).

In its appropriate reformulation in the context of generalized geometric graphs, Theorem 1.8(i)
corresponds to a result of Agarwal et al. [1] on quasi-planar graphs. A quasi-planar (respectively,



k-quasi-planar) graph is a graph that can be drawn in the plane such that no three (respectively,
k) of its edges are pairwise crossing. It was shown in [1] that the size of a quasi-planar graph is
O(n). This result was extended by Valtr [21] to the case k£ > 4 and our Theorem 1.8(ii) is a similar
interpretation of Valtr’s bound in the context of pseudoline graphs. Our reformulations are valid,
for both parts of the theorem, since both the results of [1, 22] hold for graphs whose edges are
extendible pseudosegments.

Definition 1.9 A thrackle is a drawing of a graph in the plane so that every pair of edges either
have a common endpoint and are otherwise disjoint, or else they intersect in exactly one point
where they cross each other.

The notion of a thrackle is due to Conway, who conjectured that the number of edges in a
thrackle is at most the number of vertices. Two recent papers [16] and [6] obtain linear bounds for
the size of a general thrackle, but with constants of proportionality that are greater than 1. The
conjecture is known to hold for straight-edge thrackles [17], and, in Section 5, we extend the result,
and the proof, to the case of graphs whose edges are extendible pseudosegments. That is, we show:

Theorem 1.10 Let I' and G be as above. If every pair of edges connecting four distinct vertices
(that is, curves of T') in G form a diamond, then the size of G is at most n.

Pseudoline graphs without anti-diamonds. We now turn to study pseudoline graphs that
do not have any anti-diamond. We show:

Theorem 1.11 Let I' and G be as above. If G is anti-diamond-free then |E| < 2n — 2.

Theorem 1.11 is an extension, to the case of pseudolines, of a (dual version of a) theorem of
Katchalski and Last [13], refined by Valtr [22]. The theorem states that a straight-edge graph on
n points in the plane, which does not have any pair of parallel edges, has at most 2n — 2 edges.
A pair of segments e, ¢’ is said to be parallel if the line containing e does not cross €’ and the line
containing €’ does not cross e. (For straight edges, this is equivalent to the condition that e and €’
are in convex position.) The dual version of a pair of parallel edges is a pair of vertices in a line
arrangement that form an anti-diamond. Hence, Theorem 1.11 is indeed an extension of the result
of [13, 22] to the case of pseudolines. The proof, for the case of straight-edge graphs, has been
recently simplified by Valtr [23]. Our proof, obained independently, can be viewed as an extension
of this new proof to the case of pseudolines.

Note that Theorem 1.11 is not directly obtainable from [13, 22, 23], (a) because Theorem 1.6
does not cater to anti-diamonds, and (b) because the analysis of [13, 22, 23] only applies to straight-
edge graphs.

Incidences and many faces in pseudoline arrangements. Finally, as an application of The-
orem 1.7, we provide yet another simple proof of the following well-known result:

Theorem 1.12 (a) The mazimum number of incidences between m distinct points and n distinct
pseudolines is ©(m?/*n?/® 4 m +n).

(b) The mazimum number of edges bounding m distinct faces in an arrangement of n pseudolines
is ©(m23n?/3 4 n).



The proof is in some sense ‘dual’ to the proofs based on Székely’s technique [10, 19].
The proof of Theorem 1.12(b) can be extended to yield the following result, recently obtained
in [2], where it has been proved using the dual approach, based on Székely’s technique.

Theorem 1.13 The mazimum number of edges bounding m distinct faces in an arrangement of n
extendible pseudo-segments is ©((m + n)?/3n?/3 + n).

2 Drawing Pseudoline Graphs

In this section we prove Theorems 1.5 and 1.6. Both proofs use the same drawing rule for realizing
pseudoline graphs as geometric graphs. The difference is that the stronger properties of Theorem 1.6
follow from the more sophisticated machinery of point-pseudoline duality, developed in [4]. On the
other hand, the proof of Theorem 1.5 is simple and self-contained.

Proof of Theorem 1.5: Let ¢ be a vertical line such that all vertices of the arrangement A(T") lie
to the right of £. Enumerate the pseudolines of I" as vy, ..., v,, ordered in increasing y-coordinates
of the intersection points p; = £ N ;. We construct a drawing of GG in the plane, using the set
P ={p1,...,pn} as the set of vertices.

For each edge (7v;,7;) € E, we connect the points p; and p; by a y-monotone curve e; j according
to the following rules. Assume, without loss of generality, that i > j. If i = j+ 1 (so that p; and p;
are consecutive intersection points along ¢) then e; ; is just the straight segment p;p; (contained in
¢). Otherwise, e; j is drawn very close to ¢, and generally proceeds upwards (from p; to p;) parallel
to £ either slightly to its left or slightly to its right. In the vicinity of an intermediate point py, the
edge either continues parallel to ¢, or converges to py (if k = i), or switches to the other side of ¢,
crossing it before pr. The decision on which side of p; the edge should pass is made according to
the following

Drawing rule: If the pseudoline v, passes above the apex of W (v;,v;) then e; ; passes
to the left of py, otherwise e; ; passes to the right of py.

This drawing rule is a variant of a rule recently proposed in [3] for drawing, and proving the
planarity, of another kind of graphs related to arrangements of pseudocircles or pseudo-parabolas.
Note that this rule does not uniquely define the drawing.

We need the following technical lemma:

Lemma 2.1 Let z1 < x9 < x3 < x4 be four real numbers. (i) Let e1,4 and ez 3 be two x-monotone
Jordan arcs with endpoints at (x1,0), (x4,0) and (x2,0), (z3,0), respectively, so that ey 4 does not
pass through (x2,0) or through (x3,0). Then ei 4 and ea3 cross an odd number of times if and only
if e1,4 passes around the points (x2,0) and (x3,0) on different sides. See Figure 2(a).

(i) Let e13 and exs be two x-monotone Jordan arcs with endpoints at (z1,0), (x3,0) and
(z2,0), (x4,0), respectively, so that e; 3 does not pass through (z2,0) and ez 4 does not pass through
(23,0). Then ei 3 and ez 4 cross an odd number of times if and only if e1 3 passes below (z2,0) and
ea,4 passes below (x3,0), or ey 3 passes above (z2,0) and ez 4 passes above (x3,0). See Figure 2(b).

Proof: In case (i), let f; and fy be the two real (partially defined) continuous functions whose
graphs are e; 4 and ez 3, respectively. Similarly, for case (ii), let fi and f2 be the functions whose
graphs are e; 3 and es 4, respectively.

Consider the function g = fi — fo over the interval [z2,x3]. By the mean-value theorem, g(x2)
and g(x3) have different signs if and only if g vanishes an odd number of times over this interval.
This completes the proof of the Lemma. O
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Figure 2: Two instances where a pair of drawn edges have an odd number of crossings. (a) The
nested case. (b) The interleaving case.

Let e; = ez, €2 = €, be the drawings of two distinct edges in GG that do not share a vertex.
We consider two possible cases:

Case (i): The intervals pyp, and p,p, (on the line ) are nested. That is, their endpoints are
ordered, say, as p;,ps, Py, Pw in y-increasing order along the line /. By Lemma 2.1, e; and ey cross
an odd number of times if and only if e passes around the points p, and p, on different sides. On
the other hand, it is easily checked that the drawing rule implies that e; and e; form a diamond
in G if and only if ey passes around the points p, and p, on different sides. Hence, in this case we
have that e; and e form a diamond if and only if they cross an odd number of times. See Figure 3
for an illustration.

Case (ii): The intervals p,p, and p.p,, ‘interleave’, so that the y-order of the endpoints of e;
and ey is, say, pg, p., Py, Pw, Or a symmetrically similar order. By Lemma 2.1, e; and ey cross an
odd number of times if and only if e; passes around the point p, on the same side that es passes
around the point py. On the other hand, the drawing rule for e; and ey easily implies that e; and
es form a diamond if and only if e; passes around the point p, on the same side that es passes
around the point p,. See Figure 4 for an illustration.

It is also easily checked that, in the case where the intervals p,p, and p,p, are disjoint, the
edges e; and ey do not form a diamond, nor can their drawings intersect each other. This completes
the proof of the theorem. O

Proof of Theorem 1.6: The drawing rule used in the proof of Theorem 1.5 is in fact a special
case of the duality transform between points and (z-monotone) pseudolines, as obtained recently
by Agarwal and Sharir [4]. Specifically, we apply this result to I" and to the set G of the given
vertices of A(T). The duality of [4] maps the points of G to a set G* of z-monotone pseudolines,
and maps the pseudolines of T" to a set T'* of points, so that a point v € G lies on (resp., above,
below) a curve v € I if and only if the dual pseudoline v* passes through (resp., above, below) the
dual point v*. Finally, in the transformation of [4], the points of I'* are arranged along the z-axis
in the same order as that of the intercepts of these curves with the vertical line ¢ defined above.

We apply this transformation to I' and G. In addition, for each vertex v € G, incident to two
pseudolines 71,72 € I', we trim the dual pseudoline v* to its portion between the points 77, v5.

This yields a plane drawing of the graph G, whose edges form a collection of extendible pseudo-
segments. The drawing has the following main property:

Lemma 2.2 Let v =1 Ny and w = v3 N y4 be two vertices in G, defined by four distinct curves.
Then v and w form a diamond if and only if the corresponding edges of the drawing cross each
other.



Proof: The proof is an easy consequence of the proof of Theorem 1.5 given above. In fact, it
suffices to show that the duality transformation of [4] obeys the drawing rule used in the above
proof, with an appropriate rotation of the plane by 90 degrees. So let «;,7;,y € I such that -
passes above (resp., below) v;Nv;, and such that v, meets the vertical line £ at a point between ~; N¢
and ;N /. Our drawing rule then requires that the edge p;p; pass to the left (resp., to the right) of
pr- On the other hand, the duality transform, preserving the above/below relationship, makes the
edge 7;y; pass below (resp., above) ;. Hence the two rules coincide, after an appropriate rotation
of the plane, and the lemma is now an easy consequence of the preceding analysis. O

Lemma 2.2 thus implies Theorem 1.6(a). To prove the converse part (b), let G = (V, E) be a
graph drawn in the plane so that its edges form a collection of extendible pseudo-segments, and let
A denote the family of pseudolines containing the edges of E. Apply the point-pseudoline duality
transform of [4] to V and A. We obtain a family V* of pseudolines and a set A* of points, so that
the incidence and the above/below relations between V' and A are both preserved. It is now routine
to verify, as in the case of point-line duality, that two edges uiv; and uovs of E cross each other if
and only if the corresponding vertices uj N v}, us Nv; of A(V*) form a diamond. This completes
the proof of Theorem 1.6. O

The immediate implications of these results, namely Theorems 1.7 and 1.8, follow as well, as
discussed in the introduction.

Pw
Yz
Py
€2
Yy
Pz
D= Yo

Figure 3: A diamond, and the resulting crossing in the case that the segments p,p, and p.p,, are
nested.
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Figure 4: A diamond, and the resulting crossing in the case that the segments p,p, and p.p,, are
interleaved.

3 Yet Another Proof for Incidences and Many Faces in Pseudoline
Arrangements

In this section we provide yet another proof of the well-known (worst-case tight) bounds given in
Theorem 1.12.

We will prove only part (b) of the theorem; part (a) can then be obtained by a simple and
known reduction (see, e.g., [8]); alternatively, it can be obtained by a straightforward modification
of the proof of (b), given below.

Let I" be the given collection of n pseudolines, and let fi,..., f;, be the m given faces of the
arrangement A(I'). Let E denote the set of all vertices of these faces, excluding the leftmost and
rightmost vertex, if any, of each face. Since every bounded face has at least one vertex that is
not leftmost or rightmost, and since the number of unbounded faces is O(n), it follows that the
quantity that we wish to bound is O(|E| + n). Theorem 1.6 and the crossing lemma of [5, 14]
imply that if |[E| > 4n then the graph G(T, E) has Q(|E|*/n?) diamonds. Indeed, after applying
Theorem 1.6, we obtain a drawing of GG as a generalized geometric graph, in which edge-crossings
correspond to diamonds in G, and the claim then follows directly from the crossing lemma. Let
(p,p') be a diamond, where p is a vertex of some face f and p’ is a vertex of another face f'. (It
is easily verified that if p and p’ bound the same face then they cannot form a diamond.) Then,
using the Levy Enlargement Lemma [15], there exists a curve g that passes through p and p’, such
that I' U {70} is still a family of pseudolines. In this case vy must be contained in the two double
wedges of p and p/, and thus it avoids the interiors of f and of f'; that is, 79 is a ‘common tangent’
of f and f’. As in the case of lines, it is easy to show that a pair of faces can have at most four
common tangents of this kind. Hence, the number of diamonds in G' cannot exceed 2m?. Putting
everything together, we obtain |E| = O(m?/*n?/3 +n). O
Remark: This proof is, in a sense, dual to that of Székely [19] for incidences, or to its extension
by Dey and Pach [10] for many faces. These former proofs interchange the roles of points and
(pseudo)lines: they apply the crossing lemma to a different graph, whose vertices are the points



involved in the incidences or marking points, one in each of the given faces.

The proof of Theorem 1.13 is proved in a similar manner. The main difference is that the
given faces need not be x-monotone, because their boundaries may contain endpoints of the given
pseudo-segments. In this case two vertices of the same face may form a diamond, and the number
of diamonds formed between two distinct faces may be arbitrarily large. To overcome this issue,
we partition, as in [2], any such face into z-monotone subfaces, by vertical segments erected from
endpoints of the pseudo-segments. The number of new subfaces is O(m + n), and any pair of them
can induce only O(1) diamonds, which can be argued exactly as in the case of pseudolines. The
preceding arguments then yield the asserted bound.

4 Graphs in Pseudoline Arrangements without Anti-Diamonds

So far, the paper has dealt exclusively with the existence or nonexistence of diamonds in graphs in
pseudoline arrangements. We now turn to graphs in pseudoline arrangements that do not contain
any anti-diamond. Recall that the notion of an anti-diamond is an extension, to the case of
pseudolines, of (the dual version of) a pair of edges in (straight-edge) geometric graphs that are in
convex position (so-called ‘parallel’ edges). Using Theorem 1.6 (and the analysis in its proof), one
obtains a transformation that maps an anti-diamond-free pseudoline graph (I', G) to a generalized
geometric graph, whose edges form a collection of extendible pseudo-segments, with the property
that, for any pair e, ¢’ of its edges, defined by four distinct vertices, either the pseudoline containing
e crosses €’ or the pseudoline containing €’ crosses e.

We present a much shorter and simpler proof of Theorem 1.11 than those of [13, 22], that applies
directly in the original pseudoline arrangement, and is similar in spirit to the recent simplified proof
of Valtr [23] for the case of straight-edge geometric graphs.

Figure 5: A subsequence ---a---b--- of A to the left of p,; and the resulting anti-diamond.

Proof of Theorem 1.11: We construct two sequences A and B whose elements belong to T', as
follows. We sort the intersection points of the pseudolines of I' that correspond to the edges of G
in increasing x-order, and denote the sorted sequence by P = (p1,...,pn). For each element p; of



P, let y; and 7/ be the two pseudolines forming (meeting at) p;, so that ~; lies below 7/ to the left
of p; (and lies above 4/ to the right). Then the i-th element of A is v; and the i-th element of B is

V-

Lemma 4.1 The concatenated cyclic sequence C = A||B does not contain a subcycle of alternating
symbols of the form a---b---a---b, for a #b.

Proof: Assume to the contrary that C' does contain such a subcycle. Consider the point p,j of
intersection of the curves a and b. There are two cases to consider:

Case (i): a lies below b to the left of p,;. We claim that there is no subsequence a---b in A to
the left of py, (that is, involving elements whose associated intersection points have x-coordinates
smaller than that of p, ;). Indeed, if such a subsequence exists, then there are curves o’ and b in
[ such that (a,a’) and (b,b') are edges in G, a’ is above a to the left of p = aNd’, b’ is above b
to the left of ¢ = bN ¥, and p lies to the left of ¢q. It is easily seen that in such a case the two
edges (a,a’), (b,V') form an anti-diamond in G (see Figure 5), contrary to assumption. Symmetric
arguments show that there is no subsequence b---a of A to the right of p,;, no subsequence b---a
of B to the left of p,};, and no subsequence a---b of B to the right of pg .

These arguments imply that A cannot contain a subsequence a---b-- - a, for otherwise A would
have to contain either a---b to the left of p,p, or b---a to the right of p,p, both of which are
impossible. Similarly, B cannot contain a subsequence b---a---b, for that would imply that B
would have to contain either b---a to the left of p,j or a---b to the right of p,;, both of which
are impossible.

Hence, if the concatenated sequence C' contains an a---b---a---b then, since A cannot contain
an a---b---a and B cannot contain a b---a---b, the only case to consider is that A contains an
a---b, where b is (necessarily) to the right of p, 3, and B contains an a - - - b, where a is (necessarily)
to the left of p, 5. In that case, the two intersection points that correspond to the element b of A and
to the element a of B in the above subsequence form an anti-diamond (see Figure 6), contradicting
our assumption that G is anti-diamond free.

Case (ii): b lies below a to the left of p, ;. There are three subcases to consider.

In the first subcase, A contains an a---b---a and B contains b. Reversing the roles of a, b in
the analysis of Case (i), we conclude that A does not contain b---a to the left of p,p, and a---b to
its right. Hence, there is an intersection point of G' labeled a in A to the left of p,;, and another
such point labeled @ in A to the right of p, . It is easily verified that the edge (intersection point)
e of G labeled by b in B and that edge labeled by a in A that lies on the side of p,; opposite to e
form an anti-diamond (see Figure 7), a contradiction that rules out this subcase.

A symmetric argument excludes the case where A contains a single a and B contains b---a-- - b.

The third possible case is that A contains an a---b and B also contains an a---b. But again
the first a (that belongs to A) must be to the left of p, ; and the second b (that belongs to B) must
be to the right of p,; and in that case those two are labels of edges that form an anti-diamond; see
Figure 8 for an illustration. This completes the proof of the lemma. O

Suppose to the contrary that the number of edges of G is at least 2n — 1. A run in C is a
maximal contiguous subsequence of identically labeled elements. If we replace each run by a single
element, the resulting sequence C* is a Davenport-Schinzel cycle of order 2 on n symbols, as follows
from Lemma 4.1. Hence, the length of C* is at most 2n — 2 [18].

Note that it is impossible to have an index 1 < ¢ < 2n — 2 such that the i-th element of A is
equal to the (i 4+ 1)-st element of A and the i-th element of B is equal to the (i + 1)-st element of
B. Indeed, if these elements are a and b, respectively, then we obtain two vertices of A(T") (the one

10



Figure 7: The anti-diamond arising in the first subcase of Case (ii).

encoded by the i-th elements of A and B and the one encoded by the (i + 1)-st elements) that are
incident to both a and b, which is impossible. In other words, for each i = 1,..., |G| —1, a new run
must begin either after the i-th element of A or after the i-th element of B (or after both). Since
the number of runs is at most 2n — 2 and the number of indices is, by assumption, at least 2n — 2,
it follows that the number of runs and the number of indices must both be ezactly 2n — 2, and that
ezactly one run starts after each index, either in A or in B, and this exhausts all runs.

However, this means that the last element of A must be equal to the first element of B (we
have run out of runs to start there a new run at this place in the concatenated C), and, similarly,
the last element of B must be equal to the first element of A. This however is impossible, because
it means that the leftmost vertex and the rightmost vertex in G are both incident to the same pair
of pseudolines. This contradiction shows that the size of G is at most 2n — 2, and thus completes
the proof of Theorem 1.11. O
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Figure 8: The anti-diamond arising in the third subcase of Case (ii).

5 Pseudolines and Thrackles

Let G be a thrackle with n vertices, whose edges are extendible pseudo-segments. We transform G,
using the pseudoline duality, to an intersection graph in an arrangement of a set I' of n pseudolines.
The edge set of G is mapped to a subset E of vertices of A(T"), with the property that every pair
of vertices of F, not sharing a common pseudoline, form a diamond.

Theorem 5.1 |E| < n.

Proof: The proof is an extension, to the case of pseudoline graphs (or, rather, generalized geometric
graphs drawn with extendible pseudo-segments), of the beautiful and simple proof of Perles, as
reviewed, e.g., in [17].

Fix a pseudoline v € I' and consider the vertices in £ N~y. We say that v € EN~ is a right-turn
(resp., left-turn) vertex with respect to v if, to the left of v, v lies above (resp., below) the other
pseudoline incident to v.

If v contains three vertices vy,vq,v3 € E, appearing in this left-to-right order along ~, such
that v; and v are right-turn vertices and vs is a left-turn vertex, then all vertices of E must lie
on v, because the intersection of the three (open) double wegdes of vy, v9,v3 is empty, as is easily
checked. In this case |E| < n — 1 and the theorem follows. A similar argument holds when v; and
vg are left-turn and vy is a right-turn vertex.

Hence we may assume that, for each v € T', the left-turn vertices of E N+ are separated from
the right-turn vertices of £ N~ along 7.

For each v € T, we delete one vertex of £ N+, as follows. If £ N~ consists only of left-turn
vertices, or only of right-turn vertices, we delete the rightmost vertex of £ N ~. Otherwise, these
two groups of vertices are separated along v, and we delete the rightmost vertex of the left group.

We claim that after all these deletions, E is empty. To see this, suppose to the contrary that
there remains a vertex v € E, incident to two pseudolines v;,7v2 € I', such that v, lies below v, to
the left of v. Clearly, v is a left-turn vertex with respect to 71, and a right-turn vertex with respect
to Y2.

The deletion rule implies that, initially, £ N ~; contained either a left-turn vertex v; that lies
to the left of v, or a right-turn vertex v, that lies to the right of v. Similarly, F N 2 contained
either a right-turn vertex v, that lies to the left of v, or a left-turn vertex v3 that lies to the right
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of v. It is now easy to check (see Figure 9) that, in each of the four possible cases, the respective
pair of vertices, (vi,vy), (vi,v5), (v ,vy), or (v],v5), do not form a diamond, a contradiction
that shows that, after the deletions, E is empty. Since we delete at most one vertex from each

pseudoline, it follows that |E| <n. O

Figure 9: A vertex v remaining after the deletions implies the existence of a pair of vertices that
do not form a diamond.
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