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t(a) Using a duality transformation on pseudolines, established re
ently by Agarwal andSharir [4℄, we show that any graph G indu
ed by a set of verti
es of an arrangement of a �niteset of (x-monotone) pseudolines (referred to as a pseudoline graph) 
an be drawn in the planesu
h that its edges are `extendible pseudosegments' (in the terminology of [7℄; see below), andsu
h that two edges e1; e2 in G form a diamond (ea
h of the two 
orresponding verti
es liesabove one pseudoline in
ident to the other vertex and below the other pseudoline) if and onlyif their drawings in the plane 
ross ea
h other. Conversely, any graph G drawn in the planeso that its edges are extendible pseudosegments 
an be represented as a set of verti
es of somepseudoline arrangement, so that 
rossings in G are equivalent to diamonds in the arrangement.(b) This yields the following results: (i) A graph is a diamond-free pseudoline graph on a setof n pseudolines if and only if it is planar; hen
e, its size is at most 3n�6. (This fa
t was provedby Tamaki and Tokuyama [20℄, but our proof is mu
h simpler.) (ii) The size of a pseudolinegraph with no k edges forming pairwise diamonds, is O(n) for k = 3 and O(n logn) for k � 4(with the 
onstant of proportionality depending on k).(
) A thra
kle is a graph drawn in the plane with the property that every pair of edgeseither share an endpoint and do not otherwise meet, or 
ross ea
h other exa
tly on
e. In ourdual representation, we show that the size of a pseudoline graph, su
h that every pair of edges(de�ned by four distin
t pseudolines) form a diamond, is at most n. Our proof is an extensionof a proof of Perles given for the 
ase of straight-edge drawings.(d) An anti-diamond in an arrangement of pseudolines is a pair u; v of verti
es, none of whi
hlies in the double wedge en
losed between the two pseudolines in
ident to the other vertex. Weshow that the size of an anti-diamond-free graph on a set of n pseudolines is at most 2n � 2.This extends, to the 
ase of extendible pseudosegments (or dual pseudolines), earlier results ofKat
halski and Last [13℄ and Valtr [22℄, originally established only for straight-edge geometri
graphs. Our proof is mu
h simpler than these earlier proofs, and is similar to a more re
entproof of Valtr [23℄, given for the straight-edge 
ase.(e) Finally, as an appli
ation of the planarity of diamond-free pseudoline graphs, we provideyet another simple proof of the bound �(m2=3n2=3+m+n) on the number of in
iden
es betweenm points and n pseudolines, and on the 
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1 Introdu
tionLet � be a 
olle
tion of n pseudolines in the plane, whi
h we de�ne to be graphs of 
ontinuoustotally-de�ned fun
tions, ea
h pair of whi
h interse
t in exa
tly one point, and the 
urves 
ross ea
hother at that point. In what follows we assume general position of the pseudolines, meaning that nothree pseudolines pass through a 
ommon point, and that the x-
oordinates of any two interse
tionpoints of the pseudolines are distin
t. Let E be a subset of the verti
es of the arrangement A(�).E indu
es a graph G = (�; E) on � (in what follows, we refer to su
h a graph as a pseudolinegraph). For ea
h pair (
; 
0) of distin
t pseudolines in �, we denote by W (
; 
0) the double wedgeformed between 
 and 
0, that is, the (open) region 
onsisting of all points that lie above one ofthese pseudolines and below the other. We also denote by W 
(
; 
0) the 
omplementary (open)double wedge, 
onsisting of all points that lie either above both 
urves or below both 
urves.De�nition 1.1 We say that two edges (
; 
0) and (Æ; Æ0) of G form a diamond if the point 
 \ 
0is 
ontained in the double wedge W (Æ; Æ0), and the point Æ \ Æ0 is 
ontained in the double wedgeW (
; 
0).De�nition 1.2 We say that two edges (
; 
0) and (Æ; Æ0) of G form an anti-diamond if the point
 \ 
0 is not 
ontained in the double wedge W (Æ; Æ0), and the point Æ \ Æ0 is not 
ontained in thedouble wedge W (
; 
0); that is, 
 \ 
0 lies in W 
(Æ; Æ0) and Æ \ Æ0 lies in W 
(
; 
0).De�nition 1.3 (a) A 
olle
tion S of x-monotone bounded Jordan ar
s is 
alled a 
olle
tion ofpseudosegments if ea
h pair of ar
s of S interse
t in at most one point, where they 
ross ea
hother.(b) S is 
alled a 
olle
tion of extendible pseudosegments if there exists a set � of pseudolines, withj�j = jSj, su
h that ea
h s 2 S is 
ontained in a unique pseudoline of �.See [7℄ for more details 
on
erning extendible pseudosegments. Note that not every 
olle
tion ofpseudosegments is extendible, as shown by the simple example depi
ted in Figure 1.
Figure 1: Three pseudosegments that are not extendible.De�nition 1.4 (a) A drawing of a graph G = (�; E) in the plane is a mapping that maps ea
hvertex v 2 � to a point in the plane, and ea
h edge e = uv of E to a Jordan ar
 
onne
ting theimages of u and v, su
h that no three ar
s are 
on
urrent at their relative interiors, and the relativeinterior of no ar
 is in
ident to a vertex.(b) If the images of the edges of E form a family of extendible pseudo-segments then we refer tothe drawing of G as an (x-monotone) generalized geometri
 graph.(The term geometri
 graphs is usually reserved to drawings of graphs where the edges are drawnas straight segments.)In this paper we prove the following results. 2



Duality between pseudoline graphs and generalized geometri
 graphs. The �rst mainresult of this paper establishes an equivalen
e between pseudoline graphs and geometri
 graphsdrawn in the plane so that their edges form a 
olle
tion of extendible pseudosegments.We �rst derive the following weaker result, whi
h has an easy and self-
ontained proof.Theorem 1.5 Let � and G be as above. Then there is a drawing of G in the plane su
h that twoedges e and e0 of G form a diamond if and only if their 
orresponding drawings 
ross ea
h other anodd number of times.After the original preparation of this paper, Agarwal and Sharir [4℄ established a duality trans-formation in arrangements of pseudolines, whi
h has several useful properties and other appli
a-tions. Using their te
hnique, we obtain the following stronger result:Theorem 1.6 (a) Let � and G be as above. Then there is a drawing of G in the plane, with theedges 
onstituting a family of extendible pseudosegments, su
h that, for any two edges e, e0 of G, eand e0 form a diamond if and only if their 
orresponding drawings 
ross ea
h other.(b) Conversely, for any graph G = (V;E) drawn in the plane with its edges 
onstituting a familyof extendible pseudosegments, there exists a family � of pseudolines and a 1-1 mapping ' from Vonto �, so that ea
h edge uv 2 E is mapped to the vertex '(u) \'(v) of A(�), su
h that two edgesin E 
ross ea
h other if and only if their images are two verti
es of A(�) that form a diamond.Appli
ations. As an immediate 
orollary of Theorem 1.6 (whi
h 
an also be derived from The-orem 1.5), we obtainTheorem 1.7 Let � and G be as above. If G is diamond-free then G is planar and thus jEj � 3n�6.Theorem 1.7 has been proven by Tamaki and Tokuyama [20℄, using a more involved argument.This was the underlying theorem that enabled them to extend Dey's improved bound of O(n4=3)on the 
omplexity of a single level in an arrangement of lines [9℄, to arrangements of pseudolines.Note that the planarity of G is obvious for the 
ase of lines: If we dualize the given lines intopoints, using the duality y = ax+ b 7! (a; b) and (
; d) 7! y = �
x+ d, presented in [11℄, and mapea
h edge (
; 
0) of G to the straight segment 
onne
ting the points dual to 
 and 
0, we obtain a
rossing-free drawing of G. Hen
e, Theorem 1.7 is a natural (though harder to derive) extension ofthis property to the 
ase of pseudolines.We note also that the 
onverse statement of Theorem 1.7 is trivial: Every planar graph 
anbe realized as a diamond-free pseudoline graph (in fa
t, in an arrangement of lines): We draw thegraph as a straight-edge graph (whi
h is always possible [12℄), and apply the inverse duality to theone just mentioned.In more generality, we 
an take any theorem that involves generalized geometri
 graphs (whoseedges are extendible pseudosegments), and that studies the 
rossing pattern of these edges, and`transport' it into the domain of pseudoline graphs. As an example of this, we have:Theorem 1.8 Let � and G be as above. (i) If G 
ontains no three edges whi
h form pairwisediamonds then G is quasi-planar (in the terminology of [1℄; see below), and thus its size is O(n).(ii) If G 
ontains no k edges whi
h form pairwise diamonds (for k � 4) then the size of G isO(n log n) (with the 
onstant of proportionality depending on k).In its appropriate reformulation in the 
ontext of generalized geometri
 graphs, Theorem 1.8(i)
orresponds to a result of Agarwal et al. [1℄ on quasi-planar graphs. A quasi-planar (respe
tively,3



k-quasi-planar) graph is a graph that 
an be drawn in the plane su
h that no three (respe
tively,k) of its edges are pairwise 
rossing. It was shown in [1℄ that the size of a quasi-planar graph isO(n). This result was extended by Valtr [21℄ to the 
ase k � 4 and our Theorem 1.8(ii) is a similarinterpretation of Valtr's bound in the 
ontext of pseudoline graphs. Our reformulations are valid,for both parts of the theorem, sin
e both the results of [1, 22℄ hold for graphs whose edges areextendible pseudosegments.De�nition 1.9 A thra
kle is a drawing of a graph in the plane so that every pair of edges eitherhave a 
ommon endpoint and are otherwise disjoint, or else they interse
t in exa
tly one pointwhere they 
ross ea
h other.The notion of a thra
kle is due to Conway, who 
onje
tured that the number of edges in athra
kle is at most the number of verti
es. Two re
ent papers [16℄ and [6℄ obtain linear bounds forthe size of a general thra
kle, but with 
onstants of proportionality that are greater than 1. The
onje
ture is known to hold for straight-edge thra
kles [17℄, and, in Se
tion 5, we extend the result,and the proof, to the 
ase of graphs whose edges are extendible pseudosegments. That is, we show:Theorem 1.10 Let � and G be as above. If every pair of edges 
onne
ting four distin
t verti
es(that is, 
urves of �) in G form a diamond, then the size of G is at most n.Pseudoline graphs without anti-diamonds. We now turn to study pseudoline graphs thatdo not have any anti-diamond. We show:Theorem 1.11 Let � and G be as above. If G is anti-diamond-free then jEj � 2n� 2.Theorem 1.11 is an extension, to the 
ase of pseudolines, of a (dual version of a) theorem ofKat
halski and Last [13℄, re�ned by Valtr [22℄. The theorem states that a straight-edge graph onn points in the plane, whi
h does not have any pair of parallel edges, has at most 2n � 2 edges.A pair of segments e; e0 is said to be parallel if the line 
ontaining e does not 
ross e0 and the line
ontaining e0 does not 
ross e. (For straight edges, this is equivalent to the 
ondition that e and e0are in 
onvex position.) The dual version of a pair of parallel edges is a pair of verti
es in a linearrangement that form an anti-diamond. Hen
e, Theorem 1.11 is indeed an extension of the resultof [13, 22℄ to the 
ase of pseudolines. The proof, for the 
ase of straight-edge graphs, has beenre
ently simpli�ed by Valtr [23℄. Our proof, obained independently, 
an be viewed as an extensionof this new proof to the 
ase of pseudolines.Note that Theorem 1.11 is not dire
tly obtainable from [13, 22, 23℄, (a) be
ause Theorem 1.6does not 
ater to anti-diamonds, and (b) be
ause the analysis of [13, 22, 23℄ only applies to straight-edge graphs.In
iden
es and many fa
es in pseudoline arrangements. Finally, as an appli
ation of The-orem 1.7, we provide yet another simple proof of the following well-known result:Theorem 1.12 (a) The maximum number of in
iden
es between m distin
t points and n distin
tpseudolines is �(m2=3n2=3 +m+ n).(b) The maximum number of edges bounding m distin
t fa
es in an arrangement of n pseudolinesis �(m2=3n2=3 + n). 4



The proof is in some sense `dual' to the proofs based on Sz�ekely's te
hnique [10, 19℄.The proof of Theorem 1.12(b) 
an be extended to yield the following result, re
ently obtainedin [2℄, where it has been proved using the dual approa
h, based on Sz�ekely's te
hnique.Theorem 1.13 The maximum number of edges bounding m distin
t fa
es in an arrangement of nextendible pseudo-segments is �((m+ n)2=3n2=3 + n).2 Drawing Pseudoline GraphsIn this se
tion we prove Theorems 1.5 and 1.6. Both proofs use the same drawing rule for realizingpseudoline graphs as geometri
 graphs. The di�eren
e is that the stronger properties of Theorem 1.6follow from the more sophisti
ated ma
hinery of point-pseudoline duality, developed in [4℄. On theother hand, the proof of Theorem 1.5 is simple and self-
ontained.Proof of Theorem 1.5: Let ` be a verti
al line su
h that all verti
es of the arrangement A(�) lieto the right of `. Enumerate the pseudolines of � as 
1; : : : ; 
n, ordered in in
reasing y-
oordinatesof the interse
tion points pi = ` \ 
i. We 
onstru
t a drawing of G in the plane, using the setP = fp1; : : : ; png as the set of verti
es.For ea
h edge (
i; 
j) 2 E, we 
onne
t the points pi and pj by a y-monotone 
urve ei;j a

ordingto the following rules. Assume, without loss of generality, that i > j. If i = j+1 (so that pi and pjare 
onse
utive interse
tion points along `) then ei;j is just the straight segment pipj (
ontained in`). Otherwise, ei:j is drawn very 
lose to `, and generally pro
eeds upwards (from pj to pi) parallelto ` either slightly to its left or slightly to its right. In the vi
inity of an intermediate point pk, theedge either 
ontinues parallel to `, or 
onverges to pk (if k = i), or swit
hes to the other side of `,
rossing it before pk. The de
ision on whi
h side of pk the edge should pass is made a

ording tothe followingDrawing rule: If the pseudoline 
k passes above the apex of W (
i; 
j) then ei;j passesto the left of pk, otherwise ei;j passes to the right of pk.This drawing rule is a variant of a rule re
ently proposed in [3℄ for drawing, and proving theplanarity, of another kind of graphs related to arrangements of pseudo
ir
les or pseudo-parabolas.Note that this rule does not uniquely de�ne the drawing.We need the following te
hni
al lemma:Lemma 2.1 Let x1 < x2 < x3 < x4 be four real numbers. (i) Let e1;4 and e2;3 be two x-monotoneJordan ar
s with endpoints at (x1; 0); (x4; 0) and (x2; 0); (x3; 0), respe
tively, so that e1;4 does notpass through (x2; 0) or through (x3; 0). Then e1;4 and e2;3 
ross an odd number of times if and onlyif e1;4 passes around the points (x2; 0) and (x3; 0) on di�erent sides. See Figure 2(a).(ii) Let e1;3 and e2;4 be two x-monotone Jordan ar
s with endpoints at (x1; 0); (x3; 0) and(x2; 0); (x4; 0), respe
tively, so that e1;3 does not pass through (x2; 0) and e2;4 does not pass through(x3; 0). Then e1;3 and e2;4 
ross an odd number of times if and only if e1;3 passes below (x2; 0) ande2;4 passes below (x3; 0), or e1;3 passes above (x2; 0) and e2;4 passes above (x3; 0). See Figure 2(b).Proof: In 
ase (i), let f1 and f2 be the two real (partially de�ned) 
ontinuous fun
tions whosegraphs are e1;4 and e2;3, respe
tively. Similarly, for 
ase (ii), let f1 and f2 be the fun
tions whosegraphs are e1;3 and e2;4, respe
tively.Consider the fun
tion g = f1 � f2 over the interval [x2; x3℄. By the mean-value theorem, g(x2)and g(x3) have di�erent signs if and only if g vanishes an odd number of times over this interval.This 
ompletes the proof of the Lemma. 25



(a) (b)x1 x2 x3 x4 x1 x2 x3 x4
Figure 2: Two instan
es where a pair of drawn edges have an odd number of 
rossings. (a) Thenested 
ase. (b) The interleaving 
ase.Let e1 = ex;y, e2 = ez;w be the drawings of two distin
t edges in G that do not share a vertex.We 
onsider two possible 
ases:Case (i): The intervals pxpy and pzpw (on the line `) are nested. That is, their endpoints areordered, say, as pz; px; py; pw in y-in
reasing order along the line `. By Lemma 2.1, e1 and e2 
rossan odd number of times if and only if e2 passes around the points px and py on di�erent sides. Onthe other hand, it is easily 
he
ked that the drawing rule implies that e1 and e2 form a diamondin G if and only if e2 passes around the points px and py on di�erent sides. Hen
e, in this 
ase wehave that e1 and e2 form a diamond if and only if they 
ross an odd number of times. See Figure 3for an illustration.Case (ii): The intervals pxpy and pzpw `interleave', so that the y-order of the endpoints of e1and e2 is, say, px; pz; py; pw, or a symmetri
ally similar order. By Lemma 2.1, e1 and e2 
ross anodd number of times if and only if e1 passes around the point pz on the same side that e2 passesaround the point py. On the other hand, the drawing rule for e1 and e2 easily implies that e1 ande2 form a diamond if and only if e1 passes around the point pz on the same side that e2 passesaround the point py. See Figure 4 for an illustration.It is also easily 
he
ked that, in the 
ase where the intervals pxpy and pzpw are disjoint, theedges e1 and e2 do not form a diamond, nor 
an their drawings interse
t ea
h other. This 
ompletesthe proof of the theorem. 2Proof of Theorem 1.6: The drawing rule used in the proof of Theorem 1.5 is in fa
t a spe
ial
ase of the duality transform between points and (x-monotone) pseudolines, as obtained re
entlyby Agarwal and Sharir [4℄. Spe
i�
ally, we apply this result to � and to the set G of the givenverti
es of A(�). The duality of [4℄ maps the points of G to a set G� of x-monotone pseudolines,and maps the pseudolines of � to a set �� of points, so that a point v 2 G lies on (resp., above,below) a 
urve 
 2 � if and only if the dual pseudoline v� passes through (resp., above, below) thedual point 
�. Finally, in the transformation of [4℄, the points of �� are arranged along the x-axisin the same order as that of the inter
epts of these 
urves with the verti
al line ` de�ned above.We apply this transformation to � and G. In addition, for ea
h vertex v 2 G, in
ident to twopseudolines 
1; 
2 2 �, we trim the dual pseudoline v� to its portion between the points 
�1 , 
�2 .This yields a plane drawing of the graph G, whose edges form a 
olle
tion of extendible pseudo-segments. The drawing has the following main property:Lemma 2.2 Let v = 
1 \ 
2 and w = 
3 \ 
4 be two verti
es in G, de�ned by four distin
t 
urves.Then v and w form a diamond if and only if the 
orresponding edges of the drawing 
ross ea
hother. 6



Proof: The proof is an easy 
onsequen
e of the proof of Theorem 1.5 given above. In fa
t, itsuÆ
es to show that the duality transformation of [4℄ obeys the drawing rule used in the aboveproof, with an appropriate rotation of the plane by 90 degrees. So let 
i; 
j ; 
k 2 � su
h that 
kpasses above (resp., below) 
i\
j, and su
h that 
k meets the verti
al line ` at a point between 
i\`and 
j \ `. Our drawing rule then requires that the edge pipj pass to the left (resp., to the right) ofpk. On the other hand, the duality transform, preserving the above/below relationship, makes theedge 
�i 
�j pass below (resp., above) 
�k. Hen
e the two rules 
oin
ide, after an appropriate rotationof the plane, and the lemma is now an easy 
onsequen
e of the pre
eding analysis. 2Lemma 2.2 thus implies Theorem 1.6(a). To prove the 
onverse part (b), let G = (V;E) be agraph drawn in the plane so that its edges form a 
olle
tion of extendible pseudo-segments, and let� denote the family of pseudolines 
ontaining the edges of E. Apply the point-pseudoline dualitytransform of [4℄ to V and �. We obtain a family V � of pseudolines and a set �� of points, so thatthe in
iden
e and the above/below relations between V and � are both preserved. It is now routineto verify, as in the 
ase of point-line duality, that two edges u1v1 and u2v2 of E 
ross ea
h other ifand only if the 
orresponding verti
es u�1 \ v�1 , u�2 \ v�2 of A(V �) form a diamond. This 
ompletesthe proof of Theorem 1.6. 2The immediate impli
ations of these results, namely Theorems 1.7 and 1.8, follow as well, asdis
ussed in the introdu
tion.
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Figure 3: A diamond, and the resulting 
rossing in the 
ase that the segments pxpy and pzpw arenested.
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Figure 4: A diamond, and the resulting 
rossing in the 
ase that the segments pxpy and pzpw areinterleaved.3 Yet Another Proof for In
iden
es and Many Fa
es in PseudolineArrangementsIn this se
tion we provide yet another proof of the well-known (worst-
ase tight) bounds given inTheorem 1.12.We will prove only part (b) of the theorem; part (a) 
an then be obtained by a simple andknown redu
tion (see, e.g., [8℄); alternatively, it 
an be obtained by a straightforward modi�
ationof the proof of (b), given below.Let � be the given 
olle
tion of n pseudolines, and let f1; : : : ; fm be the m given fa
es of thearrangement A(�). Let E denote the set of all verti
es of these fa
es, ex
luding the leftmost andrightmost vertex, if any, of ea
h fa
e. Sin
e every bounded fa
e has at least one vertex that isnot leftmost or rightmost, and sin
e the number of unbounded fa
es is O(n), it follows that thequantity that we wish to bound is O(jEj + n). Theorem 1.6 and the 
rossing lemma of [5, 14℄imply that if jEj � 4n then the graph G(�; E) has 
(jEj3=n2) diamonds. Indeed, after applyingTheorem 1.6, we obtain a drawing of G as a generalized geometri
 graph, in whi
h edge-
rossings
orrespond to diamonds in G, and the 
laim then follows dire
tly from the 
rossing lemma. Let(p; p0) be a diamond, where p is a vertex of some fa
e f and p0 is a vertex of another fa
e f 0. (Itis easily veri�ed that if p and p0 bound the same fa
e then they 
annot form a diamond.) Then,using the Levy Enlargement Lemma [15℄, there exists a 
urve 
0 that passes through p and p0, su
hthat � [ f
0g is still a family of pseudolines. In this 
ase 
0 must be 
ontained in the two doublewedges of p and p0, and thus it avoids the interiors of f and of f 0; that is, 
0 is a `
ommon tangent'of f and f 0. As in the 
ase of lines, it is easy to show that a pair of fa
es 
an have at most four
ommon tangents of this kind. Hen
e, the number of diamonds in G 
annot ex
eed 2m2. Puttingeverything together, we obtain jEj = O(m2=3n2=3 + n). 2Remark: This proof is, in a sense, dual to that of Sz�ekely [19℄ for in
iden
es, or to its extensionby Dey and Pa
h [10℄ for many fa
es. These former proofs inter
hange the roles of points and(pseudo)lines: they apply the 
rossing lemma to a di�erent graph, whose verti
es are the points8



involved in the in
iden
es or marking points, one in ea
h of the given fa
es.The proof of Theorem 1.13 is proved in a similar manner. The main di�eren
e is that thegiven fa
es need not be x-monotone, be
ause their boundaries may 
ontain endpoints of the givenpseudo-segments. In this 
ase two verti
es of the same fa
e may form a diamond, and the numberof diamonds formed between two distin
t fa
es may be arbitrarily large. To over
ome this issue,we partition, as in [2℄, any su
h fa
e into x-monotone subfa
es, by verti
al segments ere
ted fromendpoints of the pseudo-segments. The number of new subfa
es is O(m+n), and any pair of them
an indu
e only O(1) diamonds, whi
h 
an be argued exa
tly as in the 
ase of pseudolines. Thepre
eding arguments then yield the asserted bound.4 Graphs in Pseudoline Arrangements without Anti-DiamondsSo far, the paper has dealt ex
lusively with the existen
e or nonexisten
e of diamonds in graphs inpseudoline arrangements. We now turn to graphs in pseudoline arrangements that do not 
ontainany anti-diamond. Re
all that the notion of an anti-diamond is an extension, to the 
ase ofpseudolines, of (the dual version of) a pair of edges in (straight-edge) geometri
 graphs that are in
onvex position (so-
alled `parallel' edges). Using Theorem 1.6 (and the analysis in its proof), oneobtains a transformation that maps an anti-diamond-free pseudoline graph (�; G) to a generalizedgeometri
 graph, whose edges form a 
olle
tion of extendible pseudo-segments, with the propertythat, for any pair e; e0 of its edges, de�ned by four distin
t verti
es, either the pseudoline 
ontaininge 
rosses e0 or the pseudoline 
ontaining e0 
rosses e.We present a mu
h shorter and simpler proof of Theorem 1.11 than those of [13, 22℄, that appliesdire
tly in the original pseudoline arrangement, and is similar in spirit to the re
ent simpli�ed proofof Valtr [23℄ for the 
ase of straight-edge geometri
 graphs.

a
b
a0

b0
pa;b

Figure 5: A subsequen
e � � � a � � � b � � � of A to the left of pa;b and the resulting anti-diamond.Proof of Theorem 1.11: We 
onstru
t two sequen
es A and B whose elements belong to �, asfollows. We sort the interse
tion points of the pseudolines of � that 
orrespond to the edges of Gin in
reasing x-order, and denote the sorted sequen
e by P = hp1; : : : ; pmi. For ea
h element pi of9



P , let 
i and 
0i be the two pseudolines forming (meeting at) pi, so that 
i lies below 
0i to the leftof pi (and lies above 
0i to the right). Then the i-th element of A is 
i and the i-th element of B is
0i.Lemma 4.1 The 
on
atenated 
y
li
 sequen
e C = AkB does not 
ontain a sub
y
le of alternatingsymbols of the form a � � � b � � � a � � � b, for a 6= b.Proof: Assume to the 
ontrary that C does 
ontain su
h a sub
y
le. Consider the point pa;b ofinterse
tion of the 
urves a and b. There are two 
ases to 
onsider:Case (i): a lies below b to the left of pa;b. We 
laim that there is no subsequen
e a � � � b in A tothe left of pab (that is, involving elements whose asso
iated interse
tion points have x-
oordinatessmaller than that of pa;b). Indeed, if su
h a subsequen
e exists, then there are 
urves a0 and b0 in� su
h that (a; a0) and (b; b0) are edges in G, a0 is above a to the left of p = a \ a0, b0 is above bto the left of q = b \ b0, and p lies to the left of q. It is easily seen that in su
h a 
ase the twoedges (a; a0), (b; b0) form an anti-diamond in G (see Figure 5), 
ontrary to assumption. Symmetri
arguments show that there is no subsequen
e b � � � a of A to the right of pa;b, no subsequen
e b � � � aof B to the left of pa;b, and no subsequen
e a � � � b of B to the right of pa;b.These arguments imply that A 
annot 
ontain a subsequen
e a � � � b � � � a, for otherwise A wouldhave to 
ontain either a � � � b to the left of pa;b, or b � � � a to the right of pa;b, both of whi
h areimpossible. Similarly, B 
annot 
ontain a subsequen
e b � � � a � � � b, for that would imply that Bwould have to 
ontain either b � � � a to the left of pa;b or a � � � b to the right of pa;b, both of whi
hare impossible.Hen
e, if the 
on
atenated sequen
e C 
ontains an a � � � b � � � a � � � b then, sin
e A 
annot 
ontainan a � � � b � � � a and B 
annot 
ontain a b � � � a � � � b, the only 
ase to 
onsider is that A 
ontains ana � � � b, where b is (ne
essarily) to the right of pa;b, and B 
ontains an a � � � b, where a is (ne
essarily)to the left of pa;b. In that 
ase, the two interse
tion points that 
orrespond to the element b of A andto the element a of B in the above subsequen
e form an anti-diamond (see Figure 6), 
ontradi
tingour assumption that G is anti-diamond free.Case (ii): b lies below a to the left of pa;b. There are three sub
ases to 
onsider.In the �rst sub
ase, A 
ontains an a � � � b � � � a and B 
ontains b. Reversing the roles of a; b inthe analysis of Case (i), we 
on
lude that A does not 
ontain b � � � a to the left of pa;b, and a � � � b toits right. Hen
e, there is an interse
tion point of G labeled a in A to the left of pa;b, and anothersu
h point labeled a in A to the right of pa;b. It is easily veri�ed that the edge (interse
tion point)e of G labeled by b in B and that edge labeled by a in A that lies on the side of pa;b opposite to eform an anti-diamond (see Figure 7), a 
ontradi
tion that rules out this sub
ase.A symmetri
 argument ex
ludes the 
ase where A 
ontains a single a and B 
ontains b � � � a � � � b.The third possible 
ase is that A 
ontains an a � � � b and B also 
ontains an a � � � b. But againthe �rst a (that belongs to A) must be to the left of pa;b and the se
ond b (that belongs to B) mustbe to the right of pa;b and in that 
ase those two are labels of edges that form an anti-diamond; seeFigure 8 for an illustration. This 
ompletes the proof of the lemma. 2Suppose to the 
ontrary that the number of edges of G is at least 2n � 1. A run in C is amaximal 
ontiguous subsequen
e of identi
ally labeled elements. If we repla
e ea
h run by a singleelement, the resulting sequen
e C� is a Davenport-S
hinzel 
y
le of order 2 on n symbols, as followsfrom Lemma 4.1. Hen
e, the length of C� is at most 2n� 2 [18℄.Note that it is impossible to have an index 1 � i � 2n � 2 su
h that the i-th element of A isequal to the (i+ 1)-st element of A and the i-th element of B is equal to the (i+ 1)-st element ofB. Indeed, if these elements are a and b, respe
tively, then we obtain two verti
es of A(�) (the one10



a
b pa;b

Figure 6: The anti-diamond arising in the se
ond part of Case (i).
pa;ba

bFigure 7: The anti-diamond arising in the �rst sub
ase of Case (ii).en
oded by the i-th elements of A and B and the one en
oded by the (i+ 1)-st elements) that arein
ident to both a and b, whi
h is impossible. In other words, for ea
h i = 1; : : : ; jGj� 1, a new runmust begin either after the i-th element of A or after the i-th element of B (or after both). Sin
ethe number of runs is at most 2n� 2 and the number of indi
es is, by assumption, at least 2n� 2,it follows that the number of runs and the number of indi
es must both be exa
tly 2n� 2, and thatexa
tly one run starts after ea
h index, either in A or in B, and this exhausts all runs.However, this means that the last element of A must be equal to the �rst element of B (wehave run out of runs to start there a new run at this pla
e in the 
on
atenated C), and, similarly,the last element of B must be equal to the �rst element of A. This however is impossible, be
auseit means that the leftmost vertex and the rightmost vertex in G are both in
ident to the same pairof pseudolines. This 
ontradi
tion shows that the size of G is at most 2n� 2, and thus 
ompletesthe proof of Theorem 1.11. 2
11



pa;ba
bFigure 8: The anti-diamond arising in the third sub
ase of Case (ii).5 Pseudolines and Thra
klesLet G be a thra
kle with n verti
es, whose edges are extendible pseudo-segments. We transform G,using the pseudoline duality, to an interse
tion graph in an arrangement of a set � of n pseudolines.The edge set of G is mapped to a subset E of verti
es of A(�), with the property that every pairof verti
es of E, not sharing a 
ommon pseudoline, form a diamond.Theorem 5.1 jEj � n.Proof: The proof is an extension, to the 
ase of pseudoline graphs (or, rather, generalized geometri
graphs drawn with extendible pseudo-segments), of the beautiful and simple proof of Perles, asreviewed, e.g., in [17℄.Fix a pseudoline 
 2 � and 
onsider the verti
es in E \
. We say that v 2 E \
 is a right-turn(resp., left-turn) vertex with respe
t to 
 if, to the left of v, 
 lies above (resp., below) the otherpseudoline in
ident to v.If 
 
ontains three verti
es v1; v2; v3 2 E, appearing in this left-to-right order along 
, su
hthat v1 and v3 are right-turn verti
es and v2 is a left-turn vertex, then all verti
es of E must lieon 
, be
ause the interse
tion of the three (open) double wegdes of v1; v2; v3 is empty, as is easily
he
ked. In this 
ase jEj � n� 1 and the theorem follows. A similar argument holds when v1 andv3 are left-turn and v2 is a right-turn vertex.Hen
e we may assume that, for ea
h 
 2 �, the left-turn verti
es of E \ 
 are separated fromthe right-turn verti
es of E \ 
 along 
.For ea
h 
 2 �, we delete one vertex of E \ 
, as follows. If E \ 
 
onsists only of left-turnverti
es, or only of right-turn verti
es, we delete the rightmost vertex of E \ 
. Otherwise, thesetwo groups of verti
es are separated along 
, and we delete the rightmost vertex of the left group.We 
laim that after all these deletions, E is empty. To see this, suppose to the 
ontrary thatthere remains a vertex v 2 E, in
ident to two pseudolines 
1; 
2 2 �, su
h that 
1 lies below 
2 tothe left of v. Clearly, v is a left-turn vertex with respe
t to 
1, and a right-turn vertex with respe
tto 
2.The deletion rule implies that, initially, E \ 
1 
ontained either a left-turn vertex v�1 that liesto the left of v, or a right-turn vertex v+1 that lies to the right of v. Similarly, E \ 
2 
ontainedeither a right-turn vertex v�2 that lies to the left of v, or a left-turn vertex v+2 that lies to the right12



of v. It is now easy to 
he
k (see Figure 9) that, in ea
h of the four possible 
ases, the respe
tivepair of verti
es, (v�1 ; v�2 ), (v+1 ; v�2 ), (v�1 ; v+2 ), or (v+1 ; v+2 ), do not form a diamond, a 
ontradi
tionthat shows that, after the deletions, E is empty. Sin
e we delete at most one vertex from ea
hpseudoline, it follows that jEj � n. 2

1

2 v 
1


2 v
v v
1 
1


2
2 v+2

v+1
v+1

v�2v�1 v�2
v�1 v+2Figure 9: A vertex v remaining after the deletions implies the existen
e of a pair of verti
es thatdo not form a diamond.A
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