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Introduction 

  Let S be a set of objects. 
    

Let p be a point contained in some object.  
    

Definition: p‘s weight is the number of objects 
that contain p. 
   

 
 
 
 
  P ‘s weight is 2. 

For example: 

S is a set of halfplanes. 

 

 
P 



Introduction 

 This chapter deals with p’s weight/depth 
estimation by counting the weight of p in a 

random sample of objects. 

 

The results in this chapter are not directly related 
to approximation algorithm.  
 
However, the insights and general approach are 
useful for later results presented in the book.  
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The at most k-level 

Let L be a set of n lines in the plane. 

Definition: A point p,       , is of level k, if 

there are k lines strictly below p.  
l L

p l




P 

P is of level 2 

l1 

l2 

l3 

l4 



Definition: The  k-level is the closure of the 
set of points of level k.  

The at most k-level 

P 

P is of level 1 hence it is in 1-level , 

but it is also in 2-level  

l1 

l2 

l3 

l4 

3-level 
2-level 
1-level 
0-level 



The number of vertices at the k-level  

The 0-level has at most n-1 vertices.  

The at most k-level 

0-level 

Each line might  

contribute  

at most one  

segment to  

the 0-level. 

An unbounded 

 convex polygon 

 



The number of vertices at the k-level  

The number of vertices at the k-level (k>0) is 
hard question!  

The at most k-level 

l1 

l2 

l3 

l4 
1-level 

Each line might  

contribute  more 

than one segment to  

the k-level,   

and the polygon 

defined by the k-level   

is no longer convex. 



Definition: The at most k-level is the closure of 
the set of points of at most level k; i.e. there 
are at most k lines below them.  

The at most k-level 

P 

The green and blue lines are 
the at most 1-level 

l1 

l2 

l3 

l4 

3-level 
2-level 
1-level 
0-level 



The number of vertices of the AT MOST k-level  

 

Theorem 1. The number of vertices of level 
at most k in an arrangement of n lines in 
the plane is O(nk).  

 

The at most k-level 



Theorem 1. O(nk) vertices of level at most k.  

Proof: Let Lk  be the set of vertices of level at 
most k.   
  

Let R be a random sample of L, where each line is 
picked with probability 1/k.  
In particular, E[|R|]=n/k.  

 

  

 

 

The at most k-level 

In R 
Not in R 



Theorem 1. O(nk) vertices of level at most k.  

Proof cont.: assume that a vertex p is of level 
0jk. Let Xp be an indicator that is 1 if p is in 
the 0-level of R, then 

 

  

 

 

The at most k-level 

In R 
Not in R 
0 level of R 

p 
P’ 

Xp=1 
Xp’=0 
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Theorem 1. O(nk) vertices of level at most k.  

Proof cont.:  

 
 

On the other hand  

 
 

Hence, 

 

 

  

The at most k-level 
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The crossing lemma 

Let G=(V(G),E(G)) be a graph with n vertices and m 
edges. 

 

Definition: A graph G is planar if it can be drawn in the 
plane so that none of its pair of edges are crossing. 

 

 

  

 

  

 

An example of a planar graph 



The crossing lemma 

Theorem 2.(Euler’s formula) For a connected 
planar graph G, one has f-m+n=2, where f,m 
and n are the number of faces, edges, and 
vertices in a planar drawing of G.  

 

 

  

 

  

 

4 faces in the above planer graph, so 

f1 
f2 

f3 

f4 

f-m+n=4-6+4=2 

Face of a planar  graph G is a region bounded by  

edges, including the outer, infinitely  large region. 



The crossing lemma 

Lemma 3. If G is a simple planar graph and n≥3 
then m3n-6. 

 

 

  

 

  

 

 

f1 
f2 

f3 

f4 



The crossing lemma 

Lemma 3. If G is a simple planar graph and n≥3 
then m3n-6. 

Proof: Assume first that the number of edges of a planar 
graph G be maximal. Hence, each face in G is a triangle. 
  

Notice, each edge in G is an edge in two such triangles. 
Therefore, 2m=3f. 
  

Using Euler’s formula,  
2=f-m+n=2/3m-m+n=-m/3+n. 
In conclusion, m=3n-6. 
 
Finally, if m is not maximal  
then m3n-6.             

 

f1 
f2 

f3 

f4 



The crossing lemma 

Lemma 3. If G is a simple planar graph and n≥3 
then m3n-6. 

Conclusion: The complete graph over 5 vertices 
K5 is not planar. 
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The crossing lemma 

Note, the bipartite complete graph with 3 
vertices on each side, K3,3 , is not a planar. 
 
 
 
 

 

Kuratowski Theorem: A graph is a planar if and 
only if it does not contain either K5 or K3,3 
induced inside it. 

 



The crossing lemma 

Definition: The crossing number of G, denoted by c(G), 
is the minimal number of edge crossings in any drawing 
of G in the plane. 
 
For example, for a planar graph G, c(G)=0, while for  
K5 , c(K5)=1. 

 

 

 

  

 

C(K5 )=1 



The crossing lemma 

Claim 4. Let G be a simple graph with n3, then                  
             c(G)m-3n+6. 

 

 

 

 

  

 

  

 

 



The crossing lemma 

Claim 4. Let G be a simple graph with n3, then  
  c(G)m-3n+6. 

Proof: If m-3n+60 then the claim holds trivially, since 
c(G)0.  

 

Else, by Lemma 3, G is not planar. Draw G such 
that there are c(G) edge crossing.  

 

Let H=(V(H),E(H)) be the graph induced by removing one 
edge from each edge crossing pair. Then, |E(H)|m-c(G). 
In addition, H is planar so  |E(H)|3|V(H)|-6=3n-6. 
 
In conclusion, 3n-6  m-c(G).                 

 

 



The crossing lemma 

Claim 5 (Crossing lemma). Let G be a 
simple graph. If m  6n then 
c(G)=(m3/n2). 

 
 
 
 

 



The crossing lemma 

Claim 5. Let G be a simple graph. If m  6n 
then c(G)=(m3/n2). 

Proof: Let D be a drawing of G in the plane that has c(G) 
crossings.  
 
Let U be a random set of vertices of V(G) where each 
vertex is picked with probability  p=6n/m. Note that, 
since m6n,  p satisfies 0<p≤1 as necessary. 
 
Denote by H=(U,E’) such that E’={(u,v)E(G) | u,vU}. 
 
 
 

 



The crossing lemma 

Claim 5. Let G be a simple graph. If m  6n 
then c(G)=(m3/n2). 

Proof cont.: Let Xv and  Xe be the number of vertices and 
edges in H. E[Xv] =np and E[Xe] =mp2 . 
  

Denote by Xc the number of crossing in DH . E[Xc] =c(G)p4 
 

By Claim 4,                                  .      Therefore, 
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The crossing lemma 
On the number of incidences 

Let P be a set of n distinct points in the plane. 

Let L be a set of m distinct lines in the plane. 
  

Denote by I(P,L) the number of pairs (p,l)PL such 
that pl. I(P,L) is the number of incidences between 
lines of L and points of P.  

  

 

 

 

  

 

I(P,L)=6 



The crossing lemma 
On the number of incidences 

Let                                        the maximal 
number of incidences between n points and m lines. 

 

Lemma 6. The maximal number of incidences 
between n points and m lines is                        
.   
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The crossing lemma 
On the number of incidences 

Lemma 6.                             .  

Proof: Let P and L be the set of n points and m lines, 
respectively, such that I(P,L)=I(n,m). 
   

Define a graph G as follows:              , and  (p,p’)E(G) iff  
p,p’ lie consecutively on some line of L.  Set e(G)=|E(G)| 
and v(G)=|V(G)|. 
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The crossing lemma 
On the number of incidences 

Lemma 6.                           .  

Proof cont.: Note,                                                               . 
By Lemma 5,  
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The crossing lemma 
On the number of incidences 

Let                                        the maximal 
number of incidences between n points and m lines. 

 

Lemma 7. The maximal number of incidences 
between n points and n lines is                 .   
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The crossing lemma 
On the number of incidences 

Lemma 7.                     .  

Proof:. Assume  that                     is an integer. 
 
Let                                                                  .  

Let                                                                  . 
 
Clearly                 . In addition, 
 
       
Hence, every line is incident to N points of P. 

Therefore,  
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The crossing lemma 
On the number of k-sets 

Let P be a set of n points in the plane such that no 
three points are collinear. 

  

Definition: A pair of points p,qP form a k-set if there 
are k points in the closed halfplane below the line 
line(p,q)  passing through p and q. 

  

 

 

 

  

 

p and q form a 4-set 

p 
q 



The crossing lemma 
On the number of k-sets 

Via duality, the number of k-sets is exactly the 
complexity of the k-level in the dual arrangement. 
 
  
      

 
A point p is below a line , if and only if p* is below 
*. So, every k-set in the original setting corresponds 
to a vertex on the (k-2)-level in the dual setting.   

 
  

 

 

 

The k-set problem 
Point   p:  (a,b) 
line     :    y=cx+d 

The k-level problem 
 p*:  y=ax-b  line 
 *:   (c,-d)    point 

Via duality 

p 
q 

p* 

q* 
 

 

4-set vertex on 2-level 



The crossing lemma 
On the number of k-sets 

Let G=(P,E) be a graph that has an edge (p,q) if they 
form a k-set.  

Lemma 8 (Antipodality). Let (q,p) and (s,p) be two k-set 
edges of G, with q and s to the left of p. Then, there 
exists a point tP to the right of p such that (p,t) is 
a k-set, and line(p,t) lies between line(p,q) and 
line(p,s). 
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q 

s 
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The crossing lemma 
On the number of k-sets 

Lemma 8 (Antipodality). 

Proof: Let f() be the number of points below or on the 
line passing through p and having a slope . 
Set  
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The crossing lemma 
On the number of k-sets 

Lemma 8 (Antipodality). 

Proof cont.: Let q and s be the slope of the lines line(p,q) 
and line(s,p), respectively. Assume w.l.o.g. that q < s . 
 
Note that  
  

Let      be the  minimal  
               such that  
In particular,   
  

Hence,  there must be a point 
tP such that the slope of  
line(t,p) is .  Furthermore, t  
must be to the right of p.      
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The crossing lemma 
On the number of k-sets 

Lemma 9. Let p,qP such that q is of p’s left and (p,q) 
is k-set edge that has the largest slope among all such 
edges.  
     

Furthermore, assume that there are k-1 points of P to 
the right of p.  
  

Then, there exists a point sP, such that (p,s) is  
k-set edge and it has larger slope than (p,q).  

  

 

 

 

  

p 

q 

s 



The crossing lemma 
On the number of k-sets 

Lemma 9.  
Proof: Let  be the slope of line(p,q), then f()=k and 
f+()=k-1.  
   

Since there are k-1 points to the right of p, f-()k. 
   

Hence,  there must be a k-set, (p,s), that defines a line 
with a slope > .  
  

However, since (p,q)  
has the maximal slope to the  
left, s is necessarily a point to   
the right of p with slope >. 

  

 

 

p 

q 

k-1 

k 



Forming chain of edges in G 
Imagine, e=(q,p) is a k-set edge and that q is to the 
left of p. 
  

Rotate the line around p (counterclockwise) till a k-set 
edge e’=(p,s) is found where s is to the right of p. 
Walk from e to e’ and continue this way forming a 
chain of edges in G.  

 
 

 

 

 

 

The crossing lemma 
On the number of k-sets 

3-set p 

s 

q 

Note, 
each chain  
ended in one of  
the last k-1 points. 
     

No two chains  
are merged using  
the same edges. 



Lemma 10. The edges of G can be decomposed 
into k-1 convex chains C1, C2,…, Ck-1.  
Similarly, The edges of G can be decomposed 
into m=n-k+1 concave chains D1, D2,…, Dm.  

 

 

 

  

 

  

The crossing lemma 
On the number of k-sets 

3-set 
p 

s 

q 



The crossing lemma 
On the number of k-sets 

Lemma 10. E(G) can be decomposed into k-1 convex 
chains C1, C2,…, Ck-1. Similarly, it can be decomposed 
into m=n-k+1 concave chains D1, D2,…, Dm.  
  

Proof: The first part of the Lemma follows directly the 
process presented before.   
For the second part one may rotate the plane by 180. 
Each k-set is now an (n-k+2)-set. Hence, it can be 
decomposed into n-k+1 convex chains that can be 
interpreted as an n-k+1 concave chains in the original 
plane. 

 

 

 8-sets in the original plane 3-sets in the rotate plane 



The crossing lemma 
On the number of k-sets 

Lemma 11. The number of k-sets defined 
by a set of n points in the plane is 
O(nk1/3). 
 

 

 

 

  



The crossing lemma 
On the number of k-sets 

Lemma 11. The number of k-sets defined by a set of n 
points in the plane is O(nk1/3). 

Proof: Let G=(P,E) where E is the set of k-set edges. 
Then, |V(G)|=|P|=n and m=|E(G)| is the number of  
k-sets. 
 
By Lemma 10, crossing of  
edges of G is an intersection 
point of one convex chain of 
C1, C2,…, Ck-1 with a concave  
chain of D1, D2,…, Dn-k+1.  
 

 

 

 

 

 

 

 

 

 

Crossing between a convex chain  

and a concave chain 



The crossing lemma 
On the number of k-sets 

Lemma 11. The number of k-sets defined by a set of n 
points in the plane is O(nk1/3). 

Proof cont: Therefore, there are at most 2(k-1)(n-k+1) 
crossing in G.  
  

By the crossing lemma, if m6n then c(G)  a(m3/n2).   
Hence, m3/n2 =O(nk) which implies that m=O(nk1/3). 
Otherwise, m<6n,  
m=O(n) .   
 

 

 

 

  

 

 

 

 

 

 

 

Crossing between a convex chain  

and a concave chain 
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A general bound for at most k-weight 
 

Let S be a set of objects. 

For a subset RS, let (R) be the set of regions 

defined by R. 

Let = (S) be the set of all possible region defined 

by S. 
 

 

 

  

 



A general bound for at most k-weight 
 

For example: 

 The set of objects, S, is a set of lines in the plane. 
Each line defines a closed halfplane below it.  

 For every subset of lines R, the set of regions (R) 

is the set of vertices in the polygon produced by the 
intersection of halfplanes defined by R. 

is the set of all the  

vertices defined by pair of  
intersecting lines in S. 
 

 

 

In R 
In  S\R 
 

In (R) 

In  



A general bound for at most k-weight 
 

For every region  we associate two sets, first 

Definition: The defining set of , denoted by D(), is 
the subset of S defining the region .  
  

Assume |D()|d for  a small constant d, which is the 
combinatorial dimension. 
  
In the example,  
for every vertex ,  
D(), is the set of  
the pair of lines that  
form .  

 

 

D() 
 

 



A general bound for at most k-weight 
 

Next, we associate for every region  : 

Definition: The conflicting set of , denoted by K(), is 
the set of objects of S such that if any object of 

K() is in R then  (R).  
  

In the example, for every vertex , K() contains all the 
lines below .   

 

 

  

 

  

K() 
 

 



A general bound for at most k-weight 
 

Definition: The weight of , is w()=|K()|.  
 
  

In the example, for every vertex , the weight of  , 
w(),  is the number of  lines below , namely, the level of 
.   

 

 

  

 

  

 

K() 
 

w()=|K()|=1 

 



A general bound for at most k-weight 
 

Axioms.  Let S, (R) , D() and K() be such that 

for any subset RS, the set (R) satisfies the 
following axioms: 
 

1) For any  (R) one has D()R and K()R=. 

2) If D()R  and K()R= then  (R)  
 

 

 

  

 



A general bound for at most k-weight 
 

Let k be the set of regions with weight at most k. 
 

For a random sample R of size r from S, we denote 

  
 

Theorem 12. Let S be a set of objects, with 
combinatorial dimension of d, and let k be a 
parameter. Let R be a random sample of S created by 
picking each element of S with probability 1/k. Then, 
for some parameter c we have 
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Theorem 12.                             .    

Proof: Let R be a random sample of S, where each 
object is picked with probability 1/k.  
 
Assume that the weight of  is j, where 0jk.  
By the axioms,  is in the 0-weight of the sample 
R  iff  (R).  

 

  

 

 

A general bound for at most k-weight 
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Theorem 12.                             .  

Proof cont.: Let X be an indicator that gets 1 iff  
is in the 0-weight of R iff  (R), then 

 

The sample of size |R| has equal probability of 
being picked to be R. Hence,                               
Hence, 
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Lemma 13. Let f0() be a monotone increasing function 
which is well behaved; namely,there exists a constant 
c, such that f0(xr)c f0(r), for any r and 1x2 . Let 
Y be the number of heads in n coin flips where 
probability for head is 1/k. Then,  
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Lemma 13. Let f0() be a monotone increasing function 
which is well behaved, and YBin(n,1/k). Then,  
                                              . 

Proof: Notice that E[Y]=n/k, and  

by Chernoff’s Inequality,  
  

 
In addition,  
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Lemma 13. Let f0() be a monotone increasing function 
which is well behaved, and YBin(n,1/k). Then,  
                                              . 

Proof cont.: In conclusion, 
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A conclusion: 

Theorem 14. Let S be a set of n objects, with 
combinatorial dimension of d, and let k be a 
parameter. Assume that the number of regions formed 
by a set of m objects is bounded by a well behaved 
function f0(m). Then  

  
In particular, if                            be the maximum 
number of regions  of weight at most k that can be 
defined by any set of n objects, then   
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