COMPUTATIONAL GEOMETRY - FINAL EXAM

Prof. Micha Sharir
Blavatnik School of Computer Science
Raymond and Beverly Sackler Faculty of Exact Sciences
Moed Bet, March 6, 2009

Abstract

Answer four of the following six problems. All problems have equal weight (25 percent). You may use up to two sheets (A4) only, of any written material. The exam is 3 hours long. You may assume general position of the input. Good luck!!

Problem 1

Let A and B be two sets of points in the plane, each consisting of n points. (a) Describe an efficient algorithm which finds, for each point of A, its nearest neighbor in B.
(b) Connect each point $a \in A$ to its nearest neighbor $N(a)$ in B by a straight segment. Show that these segments do not cross each other.
(c) True or false? (i) All these edges are Delaunay edges of $A \cup B$. (ii) At least one of these edges is a Delaunay edge of $A \cup B$.

Problem 2

Let A and B be two sets of points in three dimensions, each consisting of n points. Suppose that A and B are separated by the $x y$-plane; that is, all the points of A lie above the plane and all the points of B lie below it. We want to find the nearest pair of points $a \in A, b \in B$; that is

$$
d(a, b)=\min \{d(u, v) \mid u \in A, v \in B\} .
$$

(a) Show that there exist a pair of parallel supporting planes h_{a}, h_{b}, to A at a and to B at b, such that they separate A and B, and $a b$ is perpendicular to both of them. Show also that the distance between h_{a} and h_{b} is the largest between any pair of parallel supporting separating planes of A and B.
(b) Show that the problem of finding a and b can be expressed as a linear program with a convex objective function, and that it can be solved in $O(n)$ time.

Problem 3

Let P be a set of n points in the plane. Preprocess P into a data structure of quadratic size, so that, for any query point q we can report, in $O(\log n)$ time, the number of points of P at distance at most 1 from q. (Hint: Represent each point $p \in P$ by a disk of radius 1 centered at p.)

Problem 4

Let $P_{1}, P_{2}, \ldots, P_{10}$ be 10 sets of points in \mathbb{R}^{3}, each consisting of $n / 10$ points, so that all the points of P_{i} lie on a common vertical line ℓ_{i} (parallel to the z-axis), for $i=1, \ldots, 10$. For each i, the points of P_{i} are given in their vertical order along P_{i}. Let $P=\bigcup_{i=1}^{10} P_{i}$.
(a) Show that $\operatorname{Vor}(P)$ has linear complexity.
(b) Give a linear time algorithm for computing $\operatorname{Vor}(P)$.
(Hint: First consider each of the individual diagrams $\operatorname{Vor}\left(P_{i}\right)$, and then...)

Problem 5

Let e_{1}, \ldots, e_{n} be n line segments in the plane, and let r be a positive number. For each i, let K_{i} be the expansion of e_{i} by distance $r / 2$, i.e., the set of all points at distance at most $r / 2$ from e_{i}. What is the shape of each K_{i} ?

Use the K_{i} 's to give an efficient algorithm for determining whether there exist a pair of segments so that the distance between them is smaller than r.

Problem 6

Let e_{1}, \ldots, e_{n} be n line segments in the plane, all lying above the x-axis. Preprocess them into a data structure of quadratic size, so that, given any query ray ρ emanating from a point on the x-axis, we can count, in $O(\log n)$ time, the number of segments e_{i} that ρ intersects. (The ray ρ is specified by the pair (x, κ), where $(x, 0)$ is its origin and κ is its slope.)

