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Abstract

A center-transversal line for two finite point sets inR
3 is a line with the property that any

closed halfspace that contains it also contains at least onethird of each point set. It is known
that a center-transversal line always exists [14, 29], but the best known algorithm for finding
such a line takes roughlyn12 time. We propose an algorithm that finds a center-transversal
line in O(n1+εκ2(n)) worst-case time, for anyε > 0, whereκ(n) is the maximum complexity
of a single level in an arrangement ofn planes inR

3. With the current best upper bound
κ(n) = O(n5/2) of [26], the running time isO(n6+ε), for anyε > 0. We also show that the
problem of deciding whether there is a center-transversal line parallel to a given direction can
be solved inO(n log n) expected time. Finally, we extend the concept of center-transversal line
to that of bichromatic depth of lines in space, and give an algorithm that computes a deepest
line exactly in timeO(n1+εκ2(n)), and a linear-time approximation algorithm that computes,
for any specifiedδ > 0, a line whose depth is at least1 − δ times the maximum depth.
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1 Introduction

Two classical notions in discrete geometry are the notions of center points and ham-sandwich cuts.
Given a setP of points inR

d, a pointq, not necessarily inP , is acenter pointwith respect toP if
any closed halfspace that containsq also contains at least|P |/(d + 1) points ofP . The existence of
center points is a consequence of Helly’s theorem [19]. Given d finite point setsP0, . . . , Pd−1 in R

d

with n points in total, aham-sandwich cutis a hyperplaneh such that each of the open halfspaces
bounded byh contains at most|Pi|/2 points ofPi, for everyi = 0, 1, . . . , d − 1. Dol’nikov [14],
andŽivaljević and Vrećica [29] proved the following theorem, calledcenter-transversal theorem,
which yields a generalization of center points and ham-sandwich cuts.

Theorem 1.1 (Center-Transversal Theorem)Givenk + 1 finite point setsP0, P1, . . . , Pk in R
d,

for any0 ≤ k ≤ d − 1, there exists ak-flat f such that any closed halfspace that containsf also
contains at least 1

d−k+1 |Pi| points ofPi, for eachi = 0, 1, . . . , k.

Observe that whenk = 0, f is a center point, and whenk = d − 1, f is a ham-sandwich
cut. Therefore, the center-transversal theorem can be seenas an “interpolation” between these two
theorems. A weaker result with|Pi|/(d + 1) instead of|Pi|/(d − k + 1) can easily be obtained by
considering thek-flat passing through a center point of each of thePi, i = 0, 1, . . . , k.

In this paper we consider in detail the cased = 3, k = 1. Given two finite point setsP0, P1 in
R

3, we say that a lineℓ is acenter-transversal linefor P0, P1 if any closed half-space that contains
ℓ also contains at least|Pi|/3 points ofPi, for i = 0, 1. The center-transversal theorem asserts that,
for any finite point setsP0, P1 in R

3, there exists a center-transversal line. However, the original
proofs [14, 29] of this result are non-constructive and do not lead to an algorithm for finding a
center-transversal line. The running time of the best knownalgorithm for this problem [5] is rather
large (aboutn12—see below). We present a considerably more efficient algorithm for finding such
a line, and consider several other related problems.

Related work. A more detailed review of center points, ham sandwich cuts, and related problems
can be found in Matoušek [19]. Efficient algorithms are known for computing a center point in
R

2 andR
3 [12, 17, 20]. A center point inRd can be found using linear programming withΘ(nd)

linear inequalities, and there exists a faster algorithm, due to Clarkson et al. [11], for computing an
approximatecenter point in arbitrary dimensions; that is, a pointq such that any closed halfspace
containingq contains at leastΩ(n/d2) points ofP . Efficient algorithms have also been developed
for constructing thecenter region, namely, the set of all center points, inR2 and R

3 [4, 7, 18].
The concept of center point leads to generalizations that have been useful in robust statistics. The
halfspace depth(also called location depth, data depth) of a pointq relative to a data setP in R

d,
is the smallest number of data points in any closed halfspacewhose boundary passes throughq. A
center point is a point with depth at least|P |/(d + 1), and a halfspace median, or aTukey point, is
a point with maximum halfspace depth. Chan [7], improving upon previous results, has obtained a
randomizedO(n log n + nd−1) expected-time algorithm for computing a Tukey point inR

d.
The problem that we consider can be related tomultivariate regression depth, a generalization,

introduced by Bern and Eppstein [5], ofregression depth, a quality measure for robust linear re-
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gression defined by Rousseeuw and Hubert [16, 24, 25]. In particular, Bern and Eppstein [5] give
a general-purpose algorithm, which can be easily modified toyield an algorithm that constructs a
center-transversal line inR3 in O(n12+ε) time, for anyε > 0.

Our contributions. Let P0, P1 be two finite point sets inR3 with a total ofn points.

• We present an algorithm that constructs a center-transversal line forP0 andP1 in O(n1+εκ2(n))
worst-case time, for anyε > 0, whereκ(n) is the maximum complexity of a single level in
an arrangement ofn planes inR

3. With the current best upper boundκ(n) = O(n5/2) of
[26], the running time isO(n6+ε), for anyε > 0. This is a considerable improvement over
the algorithm by Bern and Eppstein [5].1 This improvement is attained by analyzing the
problem structure carefully, by conducting the search for candidate center-transversal lines
in a controlled recursive manner, and by using (standard) range-searching data structures for
interacting lines with polyhedral terrains. See Section 2.

• Using a simple relation between center-transversal lines and center points in two dimensions,
we show how to decide inO(n log n) time, for a given direction, whether there exists a center-
transversal line ofP0 andP1 with that direction. See Section 3.

• We introduce the notion of thebichromatic depthof a line ℓ, with respect toP0 and P1,
extending similar earlier concepts. Specifically, it is theminimum fraction sizeρ of the points
in either set that lie in a halfspace that containsℓ; that is, each halfspace containingℓ contains
at leastρ|P0| points ofP0 andρ|P1| points ofP1. This concept generalizes that of center-
transversal line (which has bichromatic depth at least1/3). We show how to compute a
deepest line inO(n1+εκ2(n)) time, for anyε > 0, and give a linear-time approximation
algorithm that computes, for anyδ > 0, a line whose depth is at least1−δ times the maximum
depth. See Section 4.

2 Finding a Center-Transversal Line

We consider the problem of computing a center-transversal line in dual space, where the problem
is reformulated in terms of levels in arrangements of planes. We generate a set of candidate lines
that is guaranteed to contain a center-transversal line anduse a data structure to determine which
of these candidate lines is a center transversal line. For simplicity, we assume thatP0 ∪ P1 are in
general position in the sense that no four of them are coplanar.

Center-transversal lines in the dual. The widely usedduality transform maps a pointp in R
d

to a hyperplanep∗ in R
d and vice-versa, so that the incidence and above/below relationships are

preserved. There are many variants of duality [19]; we use the following one: A pointa =
(a1, . . . , ad) ∈ R

d is mapped to the nonvertical hyperplanea∗ : xd = a1x1 + · · · + ad−1xd−1 −
ad, and a hyperplaneh : xd = α1x1 + · · · + αd−1xd−1 + αd is mapped to the pointh∗ =

1We note though that an algorithm with running time nearn8 is not hard to obtain.
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(α1, . . . , αd−1,−αd), so (a∗)∗ = a. A point p lies below (resp., above, on) a hyperplaneh if
the dual pointh∗ lies below (resp., above, on) the dual hyperplanep∗. Thepencil of hyperplanes
passing through a lineℓ in R

d, for d ≥ 3, maps to the set of points inRd lying on a lineℓ∗; we refer
to ℓ∗ as the dual ofℓ. For a setA of objects, setA∗ = {a∗ | a ∈ A}.

Let P be a set ofn points inR
3, and letH = P ∗ be the set ofn non-vertical planes inR3

dual to the points inP . The levelof a pointp ∈ R
3, with respect toH, is the number of planes in

H that liebelowp. For0 ≤ k < n, thek-level of H, denotedLk(H) (or simplyLk if the setH
is understood), is the closure of the set of all points on any of the planes ofH that are at levelk.
Thek-levelLk is apolyhedral terrain, that is, anxy-monotone piecewise-linear continuous surface
formed by a subset of the faces of the arrangementA(H). The combinatorial complexity ofLk is
the number of faces of all dimensions inLk. Letκ(n) denote the maximum complexity of a level in
any arrangement ofn planes inR

3. The best known upper bound forκ(n) is O(n5/2) [26], which
differs substantially from the best known lower boundn2eΩ(

√
log n) [28]. See [3] for more details

on arrangements and levels.
If h is a plane inR3 so that each of the two halfspaces bounded byh contains at leastk points

of P , thenh∗ lies betweenLk(H) andLn−k(H). If ℓ is a line inR
3 so that any halfspace con-

taining ℓ contains at leastk points of P , then the entire dual lineℓ∗ lies betweenLk(H) and
Ln−k(H). Hence, the problem of computing a center-transversal linefor P0 andP1 reduces to
computing a line in the dual space that lies aboveΣ0 = Lk0

(H0),Σ1 = Lk1
(H1) and below

Σ2 = Ln0−k0
(H0),Σ3 = Ln1−k1

(H1), whereHi = P ∗
i , ni = |Pi|, andki = ⌈ni/3⌉ for i = 0, 1.

We note that each of these four terrains can be computed inO(nεκ(n)) time, for anyε > 0 [2].
We thus have four terrainsΣ0,Σ1,Σ2,Σ3, and we wish to compute a line that lies aboveΣ0,Σ1

and belowΣ2,Σ3. Note that such a line cannot bez-vertical, i.e., parallel to thez-axis. LetEi be
the set of edges inΣi, for i = 0, 1, 2, 3, andE =

⋃3
i=0 Ei. Setm := |E| ≤ 4κ(n), and assume

thatm ≥ n (or else the problem can be solved much faster than the time bound of our algorithm).
Let H = H0 ∪ H1. Each edge inEi lies in the intersection line of a pair of planes inH. We define
a “sidedness function”χ : E → {+1,−1}, whereχ(e) = +1 if e ∈ E0 ∪ E1 andχ(e) = −1 if
e ∈ E2∪E3. LetV be the set of endpoints of edges inE. By the general-position assumption, each
point of V is incident upon at most three edges ofE. For an object (point, line, segment)∆ in R

3,
let ∆̃ denote itsxy-projection inR

2.

Definition 2.1 Let ℓ be a nonvertical line inR3, and lete be a nonvertical segment inR3 so that
ℓ̃ intersects̃e. We say thatℓ lies above(resp.,below) e if the oriented line in the(+z)-direction
that passes through̃ℓ ∩ ẽ meetse before (resp., after)ℓ. The lineℓ is in compliancewith an edge
e ∈ E if (i) ℓ̃ does not intersect̃e, or (ii) ℓ does not lie below (resp., above)e if χ(e) = +1 (resp.,
χ(e) = −1). We say thatℓ is in compliance with a subsetR ⊆ E if it is in compliance with every
edge inR. In particular, we have:

Lemma 2.2 A nonvertical lineℓ in R
3 lies aboveΣ0,Σ1 and belowΣ2,Σ3 if and only if ℓ is in

compliance withE.

The problem of computing a center-transversal line now reduces to finding a line that is in
compliance withE. Let L be the set of all lines inR3 that are not parallel to theyz-plane. We
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restrict the search for a line that is in compliance withE to lines inL. This involves no loss of
generality: The lines inR3 parallel to theyz-plane have three degrees of freedom and a center-
transversal line among them, if there exists one, can be found using a much simpler (and more
efficient) algorithm. Alternatively, we can run our algorithm twice, exchanging the roles of thex-
andy-axes in the second run.

Overview of the algorithm. We show that, for each lineℓ ∈ L, there exists a “witness set” of
O(n) edges ofE, so thatℓ is in compliance withE if and only if it is in compliance with its witness
set. We then group the lines inL into equivalence classes so that all lines in the same class have
the same witness set. Using this reduction, we present an algorithm that works in three stages. The
first stage, called thefiltering stage, splits the problem intoO(m2/n2) subproblems, each aiming
to compute a line that is in compliance with some set ofO(n) edges. The second stage, arecursive
candidate generation stage, computes, for each subproblem, a set ofO(n3+ε) candidate lines, for
anyε > 0, which is guaranteed to contain a line in compliance with thecorresponding subset if there
exists one. The final stage, theverification stage, checks which of the candidate lines generated by
the previous step is in compliance withE, and report the first such line that it encounters (which is
guaranteed to exist). We now describe each of these steps in detail.

Witness sets and equivalence classes.For a lineℓ ∈ L and a subsetR ⊆ E of edges, we define
the witness setof ℓ for R, denoted byW (ℓ,R), as follows. Fori = 0, 1, 2, 3, let Ri ⊆ R be the
sequence of edges inR∩Ei whosexy-projections intersect̃ℓ, sorted by the order of the intersection
points alongℓ̃. For a planeh ∈ H0 ∪ H1, let e−h,i, e

+
h,i ∈ Ri be, respectively, the first and the last

edges in thei-th sequence that lie onh, where only planes inH0 (resp.,H1) are considered for
i = 0, 2 (resp.,i = 1, 3). We set

W (ℓ,R) = {e−h,i, e
+
h,i | h ∈ H, 0 ≤ i ≤ 3}.

By definition,ℓ̃ intersects thexy-projection of every edge inW (ℓ,R). Note that|W (ℓ,R)| = O(n).

Lemma 2.3 For a subsetR ⊆ E, a line ℓ ∈ L is in compliance withR if and only if ℓ is in
compliance withW (ℓ,R).

The proof of the lemma follows from the simple observation that if ℓ lies above (resp., below)
bothe−h,i, e

+
h,i then it lies above (resp., below) all edges inRi that lie inh.

We define, for a subsetR ⊆ E, an equivalence relation onL so that for any two linesℓ1, ℓ2

in the same equivalence class,W (ℓ1, R) = W (ℓ2, R). This will discretize the search for a center-
transversal line. For this we need a few notations. For a point or a lineξ in R

3, let ϕ(ξ) denote the
dual (inR

2) of ξ̃, i.e.,ϕ(ξ) = ξ̃∗. 2 For an edgee = uv in E, let ϕ(e) ⊆ R
2 be the double wedge

that is formed by the linesϕ(u) andϕ(v) and does not contain the line inR2 passing through their
intersection point and parallel to they-axis. By standard properties of the duality transform inR

2,
a lineγ in R

2 intersects̃e if and only if γ∗ ∈ ϕ(e). Moreover if the pointsγ∗
1 , γ∗

2 ∈ R
2 lie in the

same (left or right) wedge ofϕ(e), thenγ1, γ2 intersect̃e from thesame side, in the sense that the

2Note thatϕ(ℓ) is not defined ifℓ is parallel to theyz-plane. That is why we exclude these lines fromL.
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same endpoint of̃e lies in each of the positive halfplanes bounded byγ1 andγ2, respectively (that
is, the halfplanes above these lines).

Let R ⊆ E be a fixed subset of edges, letVR ⊆ V be the set of endpoints of the edges in
R, and letΛ(R) = {ϕ(v) | v ∈ VR} be the corresponding set of lines inR

2. For each facef in
the arrangementA(Λ(R)) of Λ(R), let R(f) denote the set of those edgese ∈ R for which ϕ(e)
containsf . For a lineℓ ∈ L, if f is the face containingϕ(ℓ) then, by construction,R(f) is the set
of edges ofR whosexy-projections intersect̃ℓ. By definition,W (ℓ,R) ⊆ R(f).

Definition 2.4 We call two linesℓ1, ℓ2 ∈ L equivalent(with respect toR), denoted byℓ1 ≡R ℓ2, if
ϕ(ℓ1) andϕ(ℓ2) lie in the same face ofA(Λ(R)).

Lemma 2.5 Let R ⊆ E be a set of edges, and letℓ1, ℓ2 ∈ L be two lines so thatℓ1 ≡R ℓ2. Then
W (ℓ1, R) = W (ℓ2, R).

Proof: Let f be the face ofA(Λ(R)) that containsϕ(ℓ1) andϕ(ℓ2). SetRi(f) := R(f) ∩ Ei and
Li := Λ(Ri(f)) ⊆ Λ(R), for i = 0, 1, 2, 3. Clearly,ϕ(ℓ1), ϕ(ℓ2) lie in the same face ofA(Li).
Since the edges ofEi all belong to the same terrain, theirxy-projections are pairwise disjoint. An
easy observation (due to [1]) shows thatℓ̃1, ℓ̃2 intersect thexy-projections of the edges inRi(f) in
the same order. This immediately implies thatW (ℓ1, R) ∩ Ei = W (ℓ2, R) ∩ Ei, from which the
lemma follows. 2

In view of the preceding lemma, we define, for each facef of A(R), Wf (R) ⊆ R to be the
common witness set for any line in the equivalence class corresponding tof .

The filtering stage. Given a setL of lines inR
2, a triangle∆0, and a parameter1 ≤ r ≤ |L|, a

(1/r)-cutting of (L,∆0) is a triangulationΞ of ∆0 so that each triangle ofΞ is crossed by at most
|L|/r lines ofL. It is known that a(1/r)-cutting consisting ofO(r2) triangles, along with the set
of lines crossing each of its triangles, can be computed inO(|L|r) time [8].

Let Λ = Λ(E). We set∆0 = R
2 andr = m/n, and compute a(1/r)-cuttingΞ of (Λ,∆0). For

each triangle∆ ∈ Ξ, letΛ∆ be the set of lines ofΛ that cross∆; sinceΞ is a(1/r)-cutting, we have
|Λ∆| ≤ m/r = n. LetE∆ ⊆ E be the set of edgese = uv so that eitherϕ(u) ∈ Λ∆ or ϕ(v) ∈ Λ∆.
Since each vertex ofV is an endpoint of at most three edges ofE, we have|E∆| ≤ 3|Λ∆| ≤ 3n.
For each∆ ∈ Ξ, let F∆ = {e ∈ E \ E∆ | ∆ ⊆ ϕ(e)}. We refer to the edges inE∆ asshortand to
the edges inF∆ aslong. Finally, letL∆ = {ℓ ∈ L | ϕ(ℓ) ∈ ∆}.

Since∆ is contained in a face ofA(Λ(F∆)) (the arrangement of lines dual to thexy-projections
of the endpoints of the edges inF∆), Lemma 2.5 implies thatW (ℓ, F∆) is the same for all lines
ℓ ∈ L∆; let W∆ denote this common witness set. Observe that|W∆| = O(n).

If two triangles∆ and∆′ in Ξ share an edge, thenF∆ ⊕ F∆′ ⊆ E∆ ∪ E∆′ . ThereforeW∆ can
be computed fromW∆′ in O(|E∆| + |E∆′ |) = O(n) time. Hence, by performing a traversal ofΞ,
we can computeW∆ for all triangles∆ ∈ Ξ, in overall timeO(m2/n).

The next lemma follows from Lemmas 2.3 and 2.5.

Lemma 2.6 For any∆ ∈ Ξ, a lineℓ ∈ L∆ is in compliance withE if and only ifℓ is in compliance
with E∆ ∪ W∆.
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Hence, for each∆ ∈ Ξ, we have a subproblem(∆, E∆,W∆), in which we want to determine
whether there is a line inL∆ that is in compliance withE∆ ∪ W∆ (and thus withE). Since
⋃

∆ L∆ = L, these subproblems together exhaust the overall problem ofcomputing a line inL
that is in compliance withE. There areO(m2/n2) such subproblems, and the total time spent in
generating them isO(m2/n).

The recursive candidate generation stage. Let (∆, E∆,W∆) be one of the subproblems gener-
ated in the previous stage. We generate a set of “candidate” lines that contains a line in compliance
with E∆ ∪ W∆ if there exists one. Letℓ ∈ L∆ be such a line. We move it around while keeping it
in the setL∆ and in compliance withE∆ ∪W∆, until we reach a critical position ofℓ at which one
of the following events occurs (for the following enumeration, recall that passing above, below, or
through an endpoint of an edge inW∆ can occur only whenϕ(ℓ) reaches the boundary of∆):

(E0) ϕ(ℓ) is a vertex of∆;

(E1) ℓ passes through a pair of endpoints of edges inE∆;

(E2) ℓ passes through an endpoint of an edge inE∆, ϕ(ℓ) lies on an edge of∆, andℓ touches the
relative interior of an edge ofE∆ ∪ W∆;

(E3) ℓ passes through an endpoint of an edge inE∆ and touches the relative interior of two edges
of E∆ ∪ W∆;

(E4) ϕ(ℓ) lies on an edge of∆, andℓ touches the relative interior of three edges ofE∆ ∪ W∆;

(E5) ℓ touches the relative interior of four edges ofE∆ ∪ W∆.

Since (E0)–(E4) are defined by at most three edges ofE∆ ∪ W∆ and there areO(1) lines for
each such event (assuming general position), we generate all critical lines of these types (theO(n3)
cost of producing these lines is subsumed by the cost of generating the lines of type (E5)—see
below). We add all the resulting lines that belong toL∆ to the candidate set. Hence, it suffices to
describe an algorithm for computing the set of candidate lines that satisfy (E5). LetC(∆, E∆,W∆)
denote this set. We compute a superset ofC(∆, E∆,W∆) with a divide-and-conquer algorithm that
employsPlücker coordinates[22]. Our approach for generating candidate lines is very similar to
that used by Pellegrini [21] (see also [23]).

Before describing the algorithm, we briefly review the representation of lines in Plücker space.
An oriented lineℓ in R

3 can be mapped to a pointπ(ℓ) ∈ R
5, called thePlücker pointof ℓ, that

lies on the so-called4-dimensionalPlücker hypersurfaceΠ, or to a hyperplane̟ (ℓ) in R
5, called

thePlücker hyperplaneof ℓ. (The actual Plücker space is thereal projective5-space, but since we
exclude lines parallel to theyz-plane, it is easy (though some care is needed) to embed the Plücker
structure into the real 5-dimensional space.) Abusing the notation a little, we useπ(e) and̟(e) to
denote the Plücker point and hyperplane, respectively, ofthe line supporting an oriented segmente
in R

3.
We orient every line ofL and every edge ofE in the (+x)-direction (this is well defined for

lines inL, by definition, and for edges ofE, by the general position assumption). For two oriented

6



lines ℓ1, ℓ2 in R
3, π(ℓ1) lies above̟ (ℓ2) (which is the same asπ(ℓ2) lying above̟(ℓ1)) if and

only if the simplex spanned by a vector~u1 lying onℓ1 with the same orientation, and by a vector~u2

lying on ℓ2 with the same orientation, is positively oriented. This is easily seen to imply that, when
ℓ1 andℓ2 are non-vertical,ℓ1 passes aboveℓ2 if and only if either (i)π(ℓ1) lies above̟ (ℓ2) andℓ̃1

lies counterclockwise tõℓ2, or (ii) π(ℓ1) lies below̟(ℓ2) and ℓ̃1 lies clockwise toℓ̃2; see [22] for
more details.

We now proceed to describe the construction of the set of lines C(∆, E∆,W∆). We choose a
constantr and construct a(1/6r)-cuttingT of (Λ(E∆),∆). As in the filtering stage, we define, for
eachτ ∈ T , Eτ ⊆ E∆ to be the set of short edges inτ , andFτ ⊆ E∆ to be the set of long edges inτ .
We have|Eτ | ≤ 3|Λ(E∆)|/6r ≤ |E∆|/r. SetWτ := Fτ ∪W∆. DefineLτ = {ℓ ∈ L∆ | ϕ(ℓ) ∈ τ},
and note that

⋃

τ∈T Lτ = L∆. For eachτ ∈ T , we compute a set ofcandidatelinesCτ ⊂ Lτ , with
the property thatC(∆, E∆,W∆) ⊆

⋃

τ∈T Cτ .
Consider a triangleτ ∈ T . We want to construct a set of candidate linesCτ that includes the

lines inLτ of type (E5). Hence, it suffices to consider only the edgesEτ ∪ Wτ in its construction.
The lineℓ is in compliance with an edgee ∈ Wτ if π(ℓ) lies in one specific halfspaceΓe bounded
by ̟(e). Γe depends on the functionχ(e) and on the clockwise order of̃ℓ andẽ (when oriented in
the positivex-direction). Sinceτ is a subset of a fixed wedge ofϕ(e), this clockwise order is the
same for all linesℓ ∈ Lτ ; henceΓe is the same halfspace for all lines inLτ . SetK :=

⋂

e∈Wτ

Γe;
K is a convex polyhedron inR5 with O(n) facets, so its overall combinatorial complexity isO(n2).

Let ℓ ∈ Lτ be a line that touches the relative interior of four edges ofEτ ∪ Wτ , and letB(ℓ)
denote the set of these four edges. There are four cases, depending on how many edges ofWτ the
line ℓ touches.

B(ℓ) ⊆ Wτ . If all edges ofB(ℓ) belong toWτ andℓ is in compliance withEτ∪Wτ , thenπ(ℓ) ∈ K.
Sinceℓ touches four edges ofWτ , it lies on an edge ofK. Therefore, we find lines of this type
by intersecting each edge ofK with the (quadratic) Plücker hypersurfaceΠ, and by adding
the (at most) two lines corresponding to the two intersection points to the candidate setCτ , if
they belong toLτ . The total time spent isO(n2).

|B(ℓ) ∩ Wτ | = 3. For any lineℓ with this kind of contacts,π(ℓ) lies on the intersection edge of
some 2-face ofK and the Plücker hyperplane̟(e) for somee ∈ Eτ . For each paire ∈ Eτ

and2-faceφ of K, we compute the at most two intersection points ofφ ∩ ̟(e) ∩ Π, and add
the corresponding lines to the candidate setCτ , if they belong toLτ . Since the polyhedronK
hasO(n2) 2-faces, the total number of lines generated in this case isO(n2|Eτ |) = O(n3/r),
and their construction takesO(n3/r) time.

|B(ℓ) ∩ Wτ | = 2. Let e1, e2 ∈ Eτ be the two edges that belong toB(ℓ). The Plücker subspace
F of lines (in L) that touche1 and e2 is a 3-dimensional flat inR5, andπ(ℓ) ∈ F ∩ K.
SinceF ∩ K is a convex 3-polyhedron withO(n) facets, it only hasO(n) edges. We form,
as above, the intersections of each edge ofF ∩ K with the Plücker surfaceΠ, and add the
(at most two) resulting lines to our candidate setCτ , if they belong toLτ . The total num-
ber of lines generated in this case isO(|Eτ |

2n) = O(n3/r2), and their computation takes
O(|Eτ |

2n log n) = O((n3/r2) log n) time, where the costliest step is the construction, re-
peatedO(|Eτ |

2) times, of convex 3-polyhedra, each defined by at mostn inequalities.
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|B(ℓ) ∩ Wτ | ≤ 1. We partitionWτ (arbitrarily) into u = O(r) subsetsW (1)
τ , . . . ,W

(u)
τ so that

|W
(i)
τ | ≤ n/r for eachi. We recursively compute the set of candidate linesC(τ,Eτ ,W

(i)
τ ),

for 1 ≤ i ≤ u and forτ ∈ T . We thus recursively solveO(r) subproblems, all of whose
outputs are added to our candidate setCτ . Clearly, all lines of this type (and perhaps more)
are found by this recursive procedure.

The correctness of the procedure is fairly straightforward. Let T (n) denote the maximum time
needed to compute

⋃

τ∈T Cτ , which is a superset ofC(∆, E∆,W∆), when|E∆|, |W∆| ≤ n. For
eachτ ∈ T , we spendO(n2 + n3/r + (n3/r2) log n) time plus the time needed to solveO(r)
recursive calls where the size of each of the two sets of edgesis at mostn/r. Since the cuttingT
consists ofO(r2) triangles, we obtain the following recurrence.

T (n) = O(r3)T (n/r) + O(n2r2 + n3r + n3 log n).

The solution of this recurrence isT (n) = O(n3+ε), for anyε > 0 (for which we need to chooser
sufficiently large, as a function ofε). The size ofC(∆, E∆,W∆) is also bounded by this quantity.

Repeating this procedure for theO(m2/n2) subproblems generated by the filtering stage, we
construct, inO(m2n1+ε) overall time, a candidate setC of O(m2n1+ε) lines.

The verification stage. To complete the algorithm, we test which of the lines inC is in compliance
with E. Using the data structure described in [10], we can preprocess, inO(m2+ε) time, eachEi

into a data structure of sizeO(m2+ε) so that we can determine inO(log n) time whether a lineℓ ∈ L

passes above or below the terrainΣi, or, equivalently, whetherℓ is in compliance withEi. Querying
each line inC with this data structure for everyEi, we can determine, inO(m2+ε + m2n1+ε) =
O(m2n1+ε) time, which of the lines inC are in compliance withE. Since a center-transversal
line always exists, it belongs toC, by construction, and will be found by this procedure. Putting
everything together, and recalling thatm ≤ 4κ(n), whereκ(n) is the maximum complexity of a
level in an arrangement ofn planes inR3, we obtain the following main result of the paper. For the
concrete time bound, we use the currently best known upper boundκ(n) = O(n5/2) of [26].

Theorem 2.7 A center-transversal line for two setsP0, P1 with a total ofn points inR
3 can be

constructed inO(n1+εκ2(n)) time, for anyε > 0. This time bound isO(n6+ε), for anyε > 0.

Remarks. (1) It is strongly believed thatκ(n) = O(n2+ε), for any ε > 0, in which case our
algorithm takesO(n5+ε), for anyε > 0.
(2) The only place where we use the general-position assumption onP0 andP1 is in bounding the
size ofE∆ (or Eτ ). If we define the weight of a lineϕ(v) ∈ Λ(E) to be the number of edges of
E incident uponv and computeweighted(1/r)-cuttings [9], the same bound on the size ofE∆ (or
Eτ ) can be obtained.

Terrains with many coplanar faces. Pellegrini [21] and Halperin and Sharir [15] have shown
that the complexity of the envelope of lines above a terrain of complexity k is O(k3+ε), for any
ε > 0. The complexity of this envelope corresponds to the number of lines that are tangent to the
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terrain while lying above it. In our scenario, we have taken advantage of the fact that the faces of our
terrains are contained in few planes. It is not clear how to plug this hypothesis into the techniques
used in [15, 21]. However, using the ideas of witness sets andthe filtering stage as we have done,
we directly obtain the following result, which may be of independent interest.

Theorem 2.8 LetΣ be a terrain of complexityk in R
3, all of whose facets lie onn different planes.

Then the complexity of the envelope of lines that pass aboveΣ is O(n1+εk2), for anyε > 0.

3 Center-Transversal Line in a Given Direction

In this section we present a randomized algorithm for deciding whether there exists a center-
transversal line ofP0 andP1 in a given direction, say, thez-direction. LetP̃0 (resp.,P̃1) be the
xy-projection ofP0 (resp.,P1). A center-transversal line ofP0 andP1 exists in thez-direction if
and only if the intersection of the center regions ofP̃0 and P̃1 is nonempty. Since each of these
center regions can be computed inO(n log2 n) randomized expected time [7] and their intersection
can be computed in linear time, we can compute a center-transversal line in thez-direction, if it
exists, inO(n log2 n) expected time. Here we improve the expected running time toO(n log n).

For i = 0, 1, let Hi be the set of lines dual tõPi, and, for an integerk, let Lk(Hi) (resp.,
Uk(Hi)) be the set of points whose level inA(Hi) is at mostk (resp., at least|Hi| − k). In the dual
setting, the problem of computing a center-transversal line in thez-direction reduces to determining
whether there exists a line in the dual plane that lies aboveLk0

(H0)∪Lk1
(H1) and belowUk0

(H0)∪
Uk1

(H1), whereki = ⌈|Pi|/3⌉ for i = 0, 1.
Let L be the set of all lines inR2. Suppose we have a (possibly infinite) setS of points inR

2,
in which each point is colored red or blue. We wish to compute

ω(S) := min
ℓ∈L

slope(ℓ)

s.t. ℓ lies above the red points ofS

andℓ lies below the blue points ofS (1)

As argued by Chan [7], this is an instance of linear programming. By settingS = Lk(H0) ∪
Lk(H1)∪Uk(H0)∪Uk(H1), where the points ofLk(H0)∪Lk(H1) are colored red and the points
of Uk(H0) ∪ Uk(H1) are colored blue, we can reduce our problem to an instance of (1). Although
the setS is infinite in our case, it suffices to consider the vertices ofLk(Hi) and Uk(Hi), for
i = 0, 1. However we cannot afford to compute the vertices of the levels explicitly if we are aiming
for anO(n log n)-time algorithm, as the best known upper bound on the complexity of a level in
A(Hi) is O(n4/3) [13], and a lower bound ofn · 2Ω(

√
log n) exists [28]. We use Chan’s randomized

technique for solving LP-type problems in which the constraints are defined implicitly by a set of
input objects, and which satisfy certain properties (see Lemma 3.1 below).

Given a setH of constraints and a totally ordered setW , a weight functionω : 2H → W is
calledLP-typeof dimension at mostd if the following three conditions are satisfied for every subset
H ⊆ H and each constrainth ∈ H:

• There exists a subsetB of size at mostd, called abasisof H, so thatω(H) = ω(B).
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• ω(H ∪ {h}) ≥ ω(H).

• Let F ⊆ H such thatω(F ) = ω(H). Thenω(H ∪ {h}) > ω(H) ⇔ ω(F ∪ {h}) > ω(F ).

Since linear programming, withω being the corresponding linear objective function, is an LP-
type problem of dimensiond + 1, (1) is an LP-type problem. See [27] for more details. The
following lemma is the main result behind Chan’s technique.

Lemma 3.1 (Chan [7]) Let ω : 2H → W be an LP-type function of constant dimensiond, and let
α < 1 ands be fixed constants. Supposef : P → 2H is a function that maps inputs from some set
P to sets of constraints with the following properties:

(C1) For inputsP1, . . . , Pd ∈ P of constant size, a basis forf(P1) ∪ · · · ∪ f(Pd) can be computed
in constant time.

(C2) For any inputP ∈ P and any basisB ⊆ f(P ), we can decide inO(D(n)) time whetherB
satisfiesf(P ), i.e.,ω(f(P )) = ω(B).

(C3) For any inputP ∈ P, we can construct, inO(D(n)) time, inputsP1, . . . , Ps ∈ P each of size
at most⌈αn⌉, so thatf(P ) = f(P1) ∪ · · · ∪ f(Ps).

Then we can compute a basis forf(P ) in O(D(n)) expected time, assuming thatD(n)/nε is
monotonically increasing.

This lemma is a multidimensional version of an earlier technique that Chan proposed in [6]; he used
this technique to compute the Tukey depth of a point set. A very slight (straightforward) variant
of this algorithm can be used to solve our problem. For the sake of completeness, we sketch the
algorithm here.

We formulate the problem in a slightly more general framework. GivenGi ⊆ Hi, for i = 0, 1,
a triangleτ , and integersa0, a1, b0, b1, let

f(G0, G1, τ, a0, a1, b0, b1) = τ ∩ (La0
(G0) ∪ La1

(G1) ∪ Ub0(G0) ∪ Ub1(G1)). (2)

The points ofL = (La0
(G0) ∪ La1

(G1)) ∩ τ are colored red, and the points ofU = (Ub0(G0) ∪
Ub1(G1)) ∩ τ are colored blue. We wish to computeω(f(G0, G1, τ, a0, a1, b0, b1)), as defined in
(1).

We show that (2) satisfies (C1)–(C3). Condition (C1) is trivial because we can solve the problem
explicitly in O(1) time for constant-size inputs, by constructing the full arrangement of the input
lines.

As for (C2), letℓ be the line defined by a basisB. We need to determine whetherℓ lies above
L and belowU . We describe how to determine whetherℓ lies aboveL. Let τ+ be the portion ofτ
lying aboveℓ, thenℓ lies aboveL if and only if τ+ ∩ L = ∅; the latter holds if and only if none of
the edges ofτ+ intersectsL. Let e be an edge ofτ+. We compute the intersection points ofe with
the lines inG0 ∪G1 and sort them alonge. By computing the level of an endpoint ofe with respect
to G0 andG1 and then traversing the list of the intersection points, we can determine in linear time
whetherL intersectse. Hence (C2) holds withD(n) = O(n log n).
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As for (C3), we choose a constantr and compute in linear-time a(1/r)-cutting Ξ of G0 ∪ G1

of sizeO(r2) within τ [9]. For a triangle∆ ∈ Ξ, let G∆
i ⊆ Gi be the set of lines that intersect∆.

Let a∆
i (resp.,b∆

i ) be the number of lines ofGi that lie below (resp., above)∆. Then

f(G0, G1, τ, a0, a1, b0, b1) =
⋃

∆∈Ξ

f(G0, G1,∆, a0, a1, b0, b1)

=
⋃

∆∈Ξ

f(G∆
0 , G∆

1 ,∆, a0 − a∆
0 , a1 − a∆

1 , b0 − b∆
0 , b1 − b∆

1 ).

Since|G∆
0 ∪ G∆

1 | ≤ |G0 ∪ G1|/r, condition (C3) is satisfied.
Hence, we can compute a basis forω(H0,H1, R

2, k0, k1, k0, k1) in randomized expectedO(n log n)
time. Putting everything together, we conclude the following.

Theorem 3.2 Given two finite point setsP0, P1 in R
3 with a total ofn points and a directionu, we

can compute a center-transversal line forP0, P1 in directionu, or decide that no such line exists, in
O(n log n) expected time.

4 Variations

Bichromatically deepest line. The algorithm that we have presented in Section 2 can be extended
so that, for any given numberα ∈ [0, 1], it finds a lineℓ with the property that any closed halfspace
containingℓ also contains at least⌈α|Pi|⌉ points ofPi, for i = 0, 1, or determines that no such line
exists. The running time remainsO(n1+εκ2(n)), for anyε > 0.

We define thebichromatic depthof a lineℓ with respect toP0, P1 as follows:

DEPTH(ℓ;P0, P1) = min
h

{

|P0 ∩ h|

|P0|
,
|P1 ∩ h|

|P1|

}

∈ [0, 1],

where the minimum is taken over all closed halfspacesh containingℓ. Equivalently, DEPTH(ℓ;P0, P1) ≥
α means that any closed halfspace containingℓ also contains at least⌈α|Pi|⌉ points of Pi, for
i = 0, 1. A line ℓ0 is a bichromatically deepest lineif it has maximum bichromatic depth. The
center-transversal theorem (Theorem 1.1) implies that there always exists a line of depth at least
1/3. By conducting a binary search and using the extended version of the algorithm of Section 2,
we can easily find a line with maximum depth. We thus obtain thefollowing.

Theorem 4.1 Given two finite point setsP0, P1 in R
3 with a total ofn points, we can compute a

bichromatically deepest line forP0, P1 in O(n1+εκ2(n)) time, for anyε > 0.

Computing an almost-deepest line. We next observe that, for any fixedδ > 0, we can compute
in linear time a lineℓ whose bichromatic depth with respect toP0, P1 is at least1 − δ times the
maximum depth of a line. Anε-approximationof a point setP (with respect to closed halfspace
ranges) is a subsetA ⊆ P such that, for any closed halfspaceh we have

∣

∣

∣

∣

|A ∩ h|

|A|
−

|P ∩ h|

|P |

∣

∣

∣

∣

≤ ε.
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As is well known [9], for any fixedε, an ε-approximation of sizeO
(

1
ε2 log 1

ε

)

can be computed
deterministically inO(n) time.

We fix ε = δ
6 , and compute for eachPi anε-approximation subsetAi ⊂ Pi as above. We then

compute a bichromatic deepest lineℓA for A0 andA1 in O(1) time and returnℓA. We now argue
thatℓA is an almost-deepest line. Observe that for any lineℓ we have (whereh ranges over all closed
halfspaces containingℓ)

DEPTH(ℓ;P0, P1) = min
h

min
i=0,1

{|Pi ∩ h|/|Pi|} ≥ min
h

min
i=0,1

{|Ai ∩ h|/|Ai|} − ε

= DEPTH(ℓ;A0, A1) − ε,

and similarly
DEPTH(ℓ;P0, P1) ≤ DEPTH(ℓ;A0, A1) + ε.

Let ℓopt be a bichromatically deepest line forP0, P1. Since DEPTH(ℓopt;P0, P1) ≥
1
3 , we have

DEPTH(ℓA;P0, P1) ≥ DEPTH(ℓA;A0, A1) − ε ≥ DEPTH(ℓopt;A0, A1) − ε

≥ DEPTH(ℓopt;P0, P1) −
δ

3
≥ (1 − δ)DEPTH(ℓopt;P0, P1).

We thus conclude the following.

Theorem 4.2 For a fixed parameterδ > 0, and two finite point setsP0, P1 ⊂ R
3 with a total ofn

points, we can compute inO(n) time a lineℓ whose bichromatic depth is at least1 − δ times the
maximum bichromatic depth.

5 Conclusions

The efficiency of our algorithm in Section 2 depends on the worst-case complexityκ(n) of a k-
level in an arrangement ofn planes in three dimensions. The currently best known boundκ(n) =
O(n5/2) of [26] is probably not tight, and reducing it would have direct impact on the running time
bound of our algorithm. Also, it is not clear that our approach best exploits the geometric structure
of the problem in 3-space. For example, the analysis of Section 3 gives a simple reduction of the
problem to the problem of finding a direction in which the projections ofP0 andP1 have a common
center point. Can we find an efficient characterization of “critical” directions of this kind, and then
test each of them efficiently? Finally, can our algorithm be turned into a constructive proof of the
existence of a center-transversal line?
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