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Abstract

A center-transversal line for two finite point setsRA is a line with the property that any
closed halfspace that contains it also contains at leasthareof each point set. It is known
that a center-transversal line always exists [14, 29], batltest known algorithm for finding
such a line takes roughly'? time. We propose an algorithm that finds a center-translersa
line in O(n'*¢k2(n)) worst-case time, for any > 0, wherer(n) is the maximum complexity
of a single level in an arrangement ofplanes inR3. With the current best upper bound
k(n) = O(n5/?) of [26], the running time ig(n%*<), for anye > 0. We also show that the
problem of deciding whether there is a center-transveirsaldarallel to a given direction can
be solved irD(n log n) expected time. Finally, we extend the concept of centerstrarsal line
to that of bichromatic depth of lines in space, and give aorigm that computes a deepest
line exactly in timeO(n'*¢x2(n)), and a linear-time approximation algorithm that computes,
for any specified > 0, a line whose depth is at lealst- § times the maximum depth.
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1 Introduction

Two classical notions in discrete geometry are the notidreeoter points and ham-sandwich cuts.
Given a setP of points inR¢, a pointg, not necessarily itP, is acenter pointwith respect taP if
any closed halfspace that containalso contains at leasP|/(d + 1) points of P. The existence of
center points is a consequence of Helly’s theorem [19]. GikEnite point setsP,, ..., P;_; in R?
with n points in total, gham-sandwich cu a hyperplané such that each of the open halfspaces
bounded byh contains at mostP;| /2 points of P;, for everyi = 0,1,...,d — 1. Dol'nikov [14],
and Zivaljevif: and Vrecica [29] proved the following theorekalled center-transversal theorem
which yields a generalization of center points and ham-safdcuts.

Theorem 1.1 (Center-Transversal Theorem)Givenk + 1 finite point setsP, Py, ..., P, in R,
forany0 < k < d — 1, there exists &-flat f such that any closed halfspace that contajnalso
contains at least—— | P;| points of P, for eachi = 0,1,..., k.

Observe that whek = 0, f is a center point, and whelh = d — 1, f is a ham-sandwich
cut. Therefore, the center-transversal theorem can beasean “interpolation” between these two
theorems. A weaker result wifl®;|/(d + 1) instead of|P;|/(d — k + 1) can easily be obtained by
considering thé:-flat passing through a center point of each of ihei = 0,1,... k.

In this paper we consider in detail the case- 3, £k = 1. Given two finite point set$, P, in
R3, we say that a liné is acenter-transversal linéor Py, P; if any closed half-space that contains
¢ also contains at leasP; | /3 points of P;, for i = 0, 1. The center-transversal theorem asserts that,
for any finite point setd%, P, in R?, there exists a center-transversal line. However, thenatig
proofs [14, 29] of this result are non-constructive and dblead to an algorithm for finding a
center-transversal line. The running time of the best knalgorithm for this problem [5] is rather
large (about'>—see below). We present a considerably more efficient algorfor finding such
a line, and consider several other related problems.

Related work. A more detailed review of center points, ham sandwich cuid ralated problems
can be found in Matousek [19]. Efficient algorithms are kndier computing a center point in
R? andR3 [12, 17, 20]. A center point ifR? can be found using linear programming wéhn<)
linear inequalities, and there exists a faster algorithue, i Clarkson et al. [11], for computing an
approximatecenter point in arbitrary dimensions; that is, a pairguch that any closed halfspace
containingg contains at leas®(n/d?) points of P. Efficient algorithms have also been developed
for constructing thecenter region namely, the set of all center points, R andR? [4, 7, 18].
The concept of center point leads to generalizations thag baen useful in robust statistics. The
halfspace deptialso called location depth, data depth) of a pgin¢lative to a data seP in R,
is the smallest number of data points in any closed halfspdimese boundary passes throughA
center point is a point with depth at leda#t|/(d + 1), and a halfspace median, oifekey pointis
a point with maximum halfspace depth. Chan [7], improvingmuprevious results, has obtained a
randomized) (n logn + n9~!) expected-time algorithm for computing a Tukey poinfifi

The problem that we consider can be relatechtdtivariate regression deptla generalization,
introduced by Bern and Eppstein [5], mdgression deptha quality measure for robust linear re-



gression defined by Rousseeuw and Hubert [16, 24, 25]. licpkat, Bern and Eppstein [5] give
a general-purpose algorithm, which can be easily modifiedeidl an algorithm that constructs a
center-transversal line iR3 in O(n'%*+¢) time, for anye > 0.

Our contributions.  Let Py, P; be two finite point sets iiR® with a total ofn points.

e We present an algorithm that constructs a center-traraers for Py andP; in O(n' k2 (n))
worst-case time, for any > 0, wherex(n) is the maximum complexity of a single level in
an arrangement af planes inR3. With the current best upper boundn) = O(n®?) of
[26], the running time i€ (n%+¢), for anye > 0. This is a considerable improvement over
the algorithm by Bern and Eppstein [5].This improvement is attained by analyzing the
problem structure carefully, by conducting the search fordidate center-transversal lines
in a controlled recursive manner, and by using (standartje-@earching data structures for
interacting lines with polyhedral terrains. See Section 2.

e Using a simple relation between center-transversal lindscanter points in two dimensions,
we show how to decide i@ (n log n) time, for a given direction, whether there exists a center-
transversal line of, and P, with that direction. See Section 3.

e We introduce the notion of thbichromatic depthof a line ¢, with respect toF, and P,
extending similar earlier concepts. Specifically, it isthi@imum fraction sizey of the points
in either set that lie in a halfspace that contdirhat is, each halfspace containihgontains
at leastp| | points of Py and p|P;| points of P;. This concept generalizes that of center-
transversal line (which has bichromatic depth at l€gs). We show how to compute a
deepest line i (n'*¢xk2(n)) time, for anye > 0, and give a linear-time approximation
algorithm that computes, for ady> 0, a line whose depth is at ledst § times the maximum
depth. See Section 4.

2 Finding a Center-Transversal Line

We consider the problem of computing a center-transvensalih dual space, where the problem
is reformulated in terms of levels in arrangements of plaivgs generate a set of candidate lines
that is guaranteed to contain a center-transversal lineuaad data structure to determine which
of these candidate lines is a center transversal line. Rgplgity, we assume thal, U P; are in
general position in the sense that no four of them are coplana

Center-transversal lines in the dual. The widely usediuality transform maps a point in R¢
to a hyperplane* in R? and vice-versa, so that the incidence and above/belowiaeships are
preserved. There are many variants of duality [19]; we useftiiowing one: A pointa =
(a1,...,aq) € R?is mapped to the nonvertical hyperplasie: x4 = a1z + -+ + ag_124-1 —
aq, and a hyperplané : z; = o121 + -+ + ag_124-1 + a4 IS mapped to the poink* =

1We note though that an algorithm with running time ne#iis not hard to obtain.



(a1y...,aq-1,—ag), SO (a*)* = a. A point p lies below (resp., above, on) a hyperplainéf
the dual pointh* lies below (resp., above, on) the dual hyperplaie The pencil of hyperplanes
passing through a linein R?, for d > 3, maps to the set of points I&? lying on a line/*; we refer
to ¢* as the dual of. For a setd of objects, sed* = {a* | a € A}.

Let P be a set ofr points inR?, and letH = P* be the set of. non-vertical planes ifiR?
dual to the points inP. Thelevelof a pointp € R3, with respect taf, is the number of planes in
H that liebelowp. For0 < k < n, thek-level of H, denotedl(H) (or simply Ly, if the setH
is understood), is the closure of the set of all points on drithe planes ofH that are at levek.
Thek-level L, is apolyhedral terrain that is, ancy-monotone piecewise-linear continuous surface
formed by a subset of the faces of the arrangen#ii{ ). The combinatorial complexity of, is
the number of faces of all dimensionsdn. Letx(n) denote the maximum complexity of a level in
any arrangement of planes inR>. The best known upper bound fefn) is O(n?/2) [26], which
differs substantially from the best known lower boumttS2(v1eg™) [28]. See [3] for more details
on arrangements and levels.

If 7 is a plane inR3 so that each of the two halfspaces bounded lspntains at least points
of P, thenh* lies betweenl,(H) andL,_r(H). If £is a line inR? so that any halfspace con-
taining ¢ contains at leask points of P, then the entire dual liné* lies betweenl,(H) and
L,.—k(H). Hence, the problem of computing a center-transversalfone®, and P, reduces to
computing a line in the dual space that lies ab&e = Ly, (Hp),>1 = L, (Hi) and below
Yo = Lno—ko(HO)v Y3 = Ln1—k1 (Hl), whereH; = Pi*’ n; = |Pz|’ andk; = (TLZ/3-| fori = 0, 1.
We note that each of these four terrains can be computéxdifix(n)) time, for anye > 0 [2].

We thus have four terrainsg, X1, X9, X3, and we wish to compute a line that lies abayg >
and belowX,, ¥3. Note that such a line cannot bevertical, i.e., parallel to the:-axis. LetFE; be
the set of edges i&;, fori = 0,1,2,3, andE = |J>_, E;. Setm := |E| < 4x(n), and assume
thatm > n (or else the problem can be solved much faster than the timedoof our algorithm).
Let H = Hy U H,. Each edge ir; lies in the intersection line of a pair of planeskih We define
a “sidedness functionk : £ — {+1,—1}, wherex(e) = +1if e € Eg U E; andx(e) = —1 if
e € EsU Es5. LetV be the set of endpoints of edgesAn By the general-position assumption, each
point of V is incident upon at most three edgesff For an object (point, line, segmenk)in R3,
let A denote itszy-projection inR2.

Definition 2.1 Let ¢ be a nonvertical line ifR3, and lete be a nonvertical segment i&* so that
/ intersectsz. We say that lies above(resp.,below) e if the oriented line in the +z)-direction
that passes throughn é meetse before (resp., afteri. The line/ is in compliancewith an edge
e € E if (i) ¢ does not intersedt, or (i) ¢ does not lie below (resp., above)f x(e) = +1 (resp.,
x(e) = —1). We say that is in compliance with a subsét C F if it is in compliance with every
edge inR. In particular, we have:

Lemma 2.2 A nonvertical linel in R? lies aboveX,, ¥, and belowX,, X5 if and only if ¢ is in
compliance with¥.

The problem of computing a center-transversal line now geduo finding a line that is in
compliance withE. LetL be the set of all lines ifR3 that are not parallel to thgz-plane. We

3



restrict the search for a line that is in compliance witho lines inlL. This involves no loss of
generality: The lines iRR? parallel to theyz-plane have three degrees of freedom and a center-
transversal line among them, if there exists one, can bedfaising a much simpler (and more
efficient) algorithm. Alternatively, we can run our algbrit twice, exchanging the roles of the
andy-axes in the second run.

Overview of the algorithm. We show that, for each liné € I, there exists a “witness set” of
O(n) edges ofF, so that/ is in compliance with¥ if and only if it is in compliance with its witness
set. We then group the lines ininto equivalence classes so that all lines in the same ckass h
the same witness set. Using this reduction, we present antaiy that works in three stages. The
first stage, called théltering stage splits the problem int@ (m?/n?) subproblems, each aiming
to compute a line that is in compliance with some seD6f) edges. The second stageeaursive
candidate generation stageomputes, for each subproblem, a seO¢f3+¢) candidate lines, for
anye > 0, which is guaranteed to contain a line in compliance withctbreesponding subset if there
exists one. The final stage, therification stagechecks which of the candidate lines generated by
the previous step is in compliance wiih) and report the first such line that it encounters (which is
guaranteed to exist). We now describe each of these stejs4ih d

Witness sets and equivalence classeskFor a line/ € L and a subseR C E of edges, we define
the witness sebf ¢ for R, denoted byW (¢, R), as follows. Fori = 0,1,2,3, let R; C R be the
sequence of edges RN E; whosezy-projections intersedt, sorted by the order of the intersection
points alongl. For a plane: € Hy U H, let e};i,e;’i € R; be, respectively, the first and the last
edges in the-th sequence that lie oh, where only planes i, (resp.,H;) are considered for
i=0,2(resp.g = 1, 3). We set

W(l,R) = {e, e, | he H, 0<i<3}.

By definition,  intersects they-projection of every edge itV (¢, R). Note thai IV (¢, R)| = O(n).

Lemma 2.3 For a subsetk C F, aline/ € L is in compliance withR if and only if £ is in
compliance withV (¢, R).

The proof of the lemma follows from the simple observatioat i ¢ lies above (resp., below)
bothe;, ;, e . then it lies above (resp., below) all edgedinthat lie in.

We7defi’ne, for a subseR C E, an equivalence relation dn so that for any two lineg, ¢,
in the same equivalence clas§(¢;, R) = W ({2, R). This will discretize the search for a center-
transversal line. For this we need a few notations. For atjsia line¢ in R3, let o(¢) denote the
dual (inR2?) of &, i.e.,p(€) = £*. 2 For an edge = wv in E, let p(e) C R? be the double wedge
that is formed by the lineg(u) andy(v) and does not contain the line R? passing through their
intersection point and parallel to theaxis. By standard properties of the duality transforniRin
a line~ in R? intersects? if and only if v* € (e). Moreover if the pointsy}, v5 € R? lie in the
same (left or right) wedge af(e), then~,, v intersecte from thesame sidein the sense that the

2Note thatp(£) is not defined ifZ is parallel to theyz-plane. That is why we exclude these lines frim
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same endpoint o lies in each of the positive halfplanes boundedpyand~,, respectively (that
is, the halfplanes above these lines).

Let R C E be a fixed subset of edges, E; C V be the set of endpoints of the edges in
R, and letA(R) = {¢(v) | v € Vg} be the corresponding set of linesl¥. For each face in
the arrangementl(A(R)) of A(R), let R(f) denote the set of those edges R for which ¢(e)
containsf. For alinel € L, if f is the face containing(¢) then, by constructionR( f) is the set
of edges ofR whosezy-projections intersedt. By definition, W (¢, R) C R(f).

Definition 2.4 We call two lines?y, ¢> € 1L equivalent(with respect taR), denoted by; =g ¢, if
©(£1) andp(¢s) lie in the same face ofl (A(R)).

Lemma 2.5 Let R C FE be a set of edges, and lét, /5 € IL be two lines so that; = /5. Then
W1, R) = W(ls, R).

Proof: Let f be the face ofA(A(R)) that containsp(¢,) andy(¢2). SetR;(f) := R(f) N E; and
L; := A(Ri(f)) € A(R), fori = 0,1,2,3. Clearly,o(¢1),¢(¢2) lie in the same face ofl(L;).
Since the edges df; all belong to the same terrain, theiy-projections are pairwise disjoint. An
easy observation (due to [1]) shows tiaté, intersect thery-projections of the edges iR;(f) in
the same order. This immediately implies th&t(¢;, R) N E; = W ({2, R) N E;, from which the
lemma follows. O

In view of the preceding lemma, we define, for each fgaef A(R), W(R) C R to be the
common witness set for any line in the equivalence clasespanding tof.

The filtering stage. Given a setl of lines inR?, a triangleA,, and a parameter < r < |L|, a
(1/r)-cutting of (L, Ag) is a triangulatiorE of A so that each triangle & is crossed by at most
|L|/r lines of L. It is known that a1/r)-cutting consisting of)(r2) triangles, along with the set
of lines crossing each of its triangles, can be computed(i|r) time [8].

Let A = A(E). We setAo = R? andr = m/n, and compute &l /r)-cutting = of (A, Ag). For
each triangleA € =, let Aa be the set of lines af that cross; since= is a(1/r)-cutting, we have
|Aa| < m/r =n. LetEa C E be the set of edges= wv so that eitherp(u) € Aa orp(v) € Aa.
Since each vertex df is an endpoint of at most three edgesfwe have|Ea| < 3|Aa| < 3n.
ForeachA € =, let FA = {e € E\ Ea | A C p(e)}. We refer to the edges ifia asshortand to
the edges A aslong. Finally, letLa = {¢ € L | p(¢) € A}.

SinceA is contained in a face o1 (A(Fa)) (the arrangement of lines dual to thg-projections
of the endpoints of the edges i), Lemma 2.5 implies thall’ (¢, Fa) is the same for all lines
¢ € La; letWa denote this common witness set. Observe (A&t | = O(n).

If two trianglesA andA’ in = share an edge, thdih © Far C Ea U Ear. ThereforelVa can
be computed fromiVa: in O(|Ea| + |Ea/|) = O(n) time. Hence, by performing a traversal®f
we can computél/, for all trianglesA € =, in overall imeO(m?/n).

The next lemma follows from Lemmas 2.3 and 2.5.

Lemma 2.6 Forany A € =, alinef € L is in compliance with® if and only if¢ is in compliance
with EA U Wa.



Hence, for eaci\ € =, we have a subproblef\, Ea, Wa), in which we want to determine
whether there is a line ifa that is in compliance withEA U Wa (and thus withE). Since
Ua La = L, these subproblems together exhaust the overall problecoraputing a line inL
that is in compliance withE. There areO(m?/n?) such subproblems, and the total time spent in
generating them i® (m? /n).

The recursive candidate generation stage. Let (A, Ea, Wa) be one of the subproblems gener-
ated in the previous stage. We generate a set of “candidats’ that contains a line in compliance
with EA U Wh if there exists one. Let € LA be such a line. We move it around while keeping it
in the seflLao and in compliance witlA U Wa, until we reach a critical position dfat which one

of the following events occurs (for the following enumeoati recall that passing above, below, or
through an endpoint of an edgeli¥ix can occur only wherp(¢) reaches the boundary &f):

(EO) () is a vertex ofA;
(E1) ¢ passes through a pair of endpoints of edgek&in

(E2) ¢ passes through an endpoint of an edg& i »(¢) lies on an edge o\, and/ touches the
relative interior of an edge dia U Wa;

(E3) ¢ passes through an endpoint of an edg&inand touches the relative interior of two edges
of EA U Wa;

(E4) ¢(¢) lies on an edge of\, and/ touches the relative interior of three edgedf U W ;
(E5) ¢ touches the relative interior of four edgesiof U Wa.

Since (E0)—(E4) are defined by at most three edges0f) WA and there ar@(1) lines for
each such event (assuming general position), we generatitiahl lines of these types (th@(n?)
cost of producing these lines is subsumed by the cost of gténgrthe lines of type (E5)—see
below). We add all the resulting lines that belondtg to the candidate set. Hence, it suffices to
describe an algorithm for computing the set of candidateslihat satisfy (E5). Let(A, Ea, Wa)
denote this set. We compute a superset(@f, £, Wa) with a divide-and-conquer algorithm that
employsPlucker coordinate$22]. Our approach for generating candidate lines is vemilar to
that used by Pellegrini [21] (see also [23]).

Before describing the algorithm, we briefly review the reergation of lines in Plicker space.
An oriented line? in R? can be mapped to a point¢) € R, called thePliicker pointof ¢, that
lies on the so-called-dimensionalPluicker hypersurfacél, or to a hyperplanes(¢) in R, called
the Plucker hyperplanef £. (The actual Pliicker space is treal projective5-space, but since we
exclude lines parallel to thegz-plane, it is easy (though some care is needed) to embediiblke?|
structure into the real 5-dimensional space.) Abusing ttation a little, we user(e) andw(e) to
denote the Pliicker point and hyperplane, respectivelfhefine supporting an oriented segment
in R3.

We orient every line of. and every edge of in the (4x)-direction (this is well defined for
lines inLL, by definition, and for edges @, by the general position assumption). For two oriented
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lines /1, £ in R3, w(4;) lies abovew (¢5) (which is the same as(/») lying abovew(/;)) if and
only if the simplex spanned by a vectdy lying on ¢, with the same orientation, and by a veciir
lying on ¢, with the same orientation, is positively oriented. Thisdsiy seen to imply that, when
¢, and/, are non-vertical{; passes abov& if and only if either (i)7(¢;) lies aboveww(¢;) and/,
lies counterclockwise té,, or (i) 7(¢;) lies belowz (¢3) and/; lies clockwise toy; see [22] for
more details.

We now proceed to describe the construction of the set of [iié\, EA, Wa). We choose a
constant- and construct &1 /6r)-cuttingT” of (A(Ea ), A). As in the filtering stage, we define, for
eachr € T, E,; C Ea to be the set of short edgesinandF, C Ea to be the set of long edgesin
We havelE;| < 3|[A(Ea)|/6r < |EAl|/r. SetW, := F.UWx. DefinelL, = {{ € La | ¢(¢) € 7},
and note thatJ, ., L., = La. For eachr € T', we compute a set afandidatelinesC, C L., with
the property tha€(A, Ea, Wa) € U ¢ Cr.

Consider a triangle € T'. We want to construct a set of candidate liiesthat includes the
lines inlL.- of type (E5). Hence, it suffices to consider only the edfes) I in its construction.
The line/ is in compliance with an edgec W if 7(¢) lies in one specific halfspadé. bounded
by w(e). T'. depends on the functiog(e) and on the clockwise order éfandé (when oriented in
the positivez-direction). Sincer is a subset of a fixed wedge ofe), this clockwise order is the
same for all lineg € L.; hencel’, is the same halfspace for all lineslin. SetX := ﬂeeWT Te;
K is a convex polyhedron iR’ with O(n) facets, so its overall combinatorial complexityQgn?).

Let ¢ € LL; be a line that touches the relative interior of four edge&pfJ W, and letB(¢)
denote the set of these four edges. There are four casesdiegp®n how many edges oF the
line £ touches.

B(¢) C W.. Ifall edges ofB(¢) belong tolW- and/ is in compliance with&, UV, thenr(¢) € K.
Sincel touches four edges 67, it lies on an edge dK. Therefore, we find lines of this type
by intersecting each edge &f with the (quadratic) Plicker hypersurfatie and by adding
the (at most) two lines corresponding to the two intersegtioints to the candidate s@t, if
they belong td... The total time spent i©(n?).

|B(¢) N W,| = 3. For any line/ with this kind of contactsy(¢) lies on the intersection edge of
some 2-face of and the Pliicker hyperplane(e) for somee € E;. For each paie € E.
and2-face¢ of X, we compute the at most two intersection pointg of «w(e) N 11, and add
the corresponding lines to the candidate®gtif they belong tdL.. Since the polyhedrofi
hasO(n?) 2-faces, the total number of lines generated in this ca&&id|E.|) = O(n3/r),
and their construction take&3(n3/r) time.

|B(¢) " W,| = 2. Letey,es € E; be the two edges that belong B(¢). The Plucker subspace
F of lines (inL) that touche; ande, is a 3-dimensional flat ifR%, and7(¢) € F N X.
SinceF N X is a convex 3-polyhedron wit®(n) facets, it only hag)(n) edges. We form,
as above, the intersections of each edgé’of X with the Plucker surfacél, and add the
(at most two) resulting lines to our candidate 6egt if they belong tol... The total num-
ber of lines generated in this cased$|E, |*n) = O(n?/r?), and their computation takes
O(|E;|*nlogn) = O((n3/r?)logn) time, where the costliest step is the construction, re-
peated)(|E,|?) times, of convex 3-polyhedra, each defined by at masequalities.
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|B(¢) N W,| < 1. We partition W, (arbitrarily) intou = O(r) subsetsivV, ... W™ so that
|WT(i)| < n/r for eachi. We recursively compute the set of candidate lifés, £, WT(i)),
for1 < i < wandforr € T. We thus recursively solv®(r) subproblems, all of whose
outputs are added to our candidate Get Clearly, all lines of this type (and perhaps more)
are found by this recursive procedure.

The correctness of the procedure is fairly straightforwaret 7'(n) denote the maximum time
needed to computg) . C-, which is a superset &(A, Ex, Wa), when|Ea|, [Wa| < n. For
eachr € T, we spendO(n? + n/r + (n3/r?)logn) time plus the time needed to solv#(r)
recursive calls where the size of each of the two sets of edgasmostn/r. Since the cutting”
consists ofD(r?) triangles, we obtain the following recurrence.

T(n) = O(r3)T(n/r) + O(n*r? + nr 4+ ndlogn).

The solution of this recurrence §(n) = O(n3*¢), for anye > 0 (for which we need to choose
sufficiently large, as a function @). The size of2(A, Ex, Wa) is also bounded by this quantity.

Repeating this procedure for tiig(m?/n?) subproblems generated by the filtering stage, we
construct, inO(m?n!*¢) overall time, a candidate s€tof O(m?n'*¢) lines.

The verification stage. To complete the algorithm, we test which of the line€iis in compliance
with £. Using the data structure described in [10], we can prepsdaO(m?*¢) time, eachk;
into a data structure of siz@(m?>*¢) so that we can determine {(log n) time whether a liné € LL
passes above or below the terralp or, equivalently, whethefis in compliance with®;. Querying
each line inC with this data structure for everd;, we can determine, iD(m?*e + m?n'*e) =
O(m?n!*¢) time, which of the lines inC are in compliance withE. Since a center-transversal
line always exists, it belongs 1, by construction, and will be found by this procedure. Pagitti
everything together, and recalling that < 4x(n), wherex(n) is the maximum complexity of a
level in an arrangement of planes inR?, we obtain the following main result of the paper. For the
concrete time bound, we use the currently best known uppetda(n) = O(n°/?) of [26].

Theorem 2.7 A center-transversal line for two sef), P; with a total ofn points inR? can be
constructed irO(n'*¢x2(n)) time, for anyz > 0. This time bound i®(n%*¢), for anye > 0.

Remarks. (1) It is strongly believed that(n) = O(n?*¢), for anye > 0, in which case our
algorithm take€) (n°*¢), for anye > 0.

(2) The only place where we use the general-position assomph Py and P; is in bounding the
size of Ea (or E;). If we define the weight of a line(v) € A(E) to be the number of edges of
E incident uporw and computaveighted(1/r)-cuttings [9], the same bound on the sizef{ (or
FE.) can be obtained.

Terrains with many coplanar faces. Pellegrini [21] and Halperin and Sharir [15] have shown
that the complexity of the envelope of lines above a terrdinomplexity k is O(k3*¢), for any
¢ > 0. The complexity of this envelope corresponds to the numbénes that are tangent to the



terrain while lying above it. In our scenario, we have takéveatage of the fact that the faces of our
terrains are contained in few planes. It is not clear how tig phis hypothesis into the techniques
used in [15, 21]. However, using the ideas of witness setdlamfiltering stage as we have done,
we directly obtain the following result, which may be of ipgmdent interest.

Theorem 2.8 Let X be a terrain of complexity in R3, all of whose facets lie on different planes.
Then the complexity of the envelope of lines that pass abos® (n!*<k?), for anys > 0.

3 Center-Transversal Line in a Given Direction

In this section we present a randomized algorithm for dagidivhether there exists a center-
transversal line ofy and P; in a given direction, say, the-direction. LetP, (resp.,P;) be the
xy-projection of Py (resp.,P;). A center-transversal line dfy and P, exists in thez-direction if
and only if the intersection of the center regionsifand P, is nonempty. Since each of these
center regions can be computedin log? n) randomized expected time [7] and their intersection
can be computed in linear time, we can compute a centervieesa line in thez-direction, if it
exists, inO(n log? n) expected time. Here we improve the expected running tingg(iolog ).

Fori = 0,1, let H; be the set of lines dual t&;, and, for an integek, let Ly (H;) (resp.,
Uk (H;)) be the set of points whose level#t( H;) is at mostk (resp., at least;| — k). In the dual
setting, the problem of computing a center-transversalitirthez-direction reduces to determining
whether there exists a line in the dual plane that lies aliqyéH,)ULy, (H1) and belowlly, (Ho)U
U, (H1), wherek; = [|FP;|/3] fori =0, 1.

Let L be the set of all lines ifR2. Suppose we have a (possibly infinite) sedf points inR?,
in which each point is colored red or blue. We wish to compute

w(S) = min slope(?)

s.t. 2 lies above the red points &f
and/ lies below the blue points of ()

As argued by Chan [7], this is an instance of linear programymiBy settingS = L (Hp) U
L (Hp) UUg(Ho) UUg(H1), where the points of;,(Hy) U L, (H;) are colored red and the points
of Ux(Hp) U Ui (H;) are colored blue, we can reduce our problem to an instanch.oA(though
the setS is infinite in our case, it suffices to consider the verticesLgfH;) and U (H;), for
i = 0, 1. However we cannot afford to compute the vertices of theldemeplicitly if we are aiming
for an O(nlogn)-time algorithm, as the best known upper bound on the coriiplek a level in
A(H;) is O(n*/3) [13], and a lower bound of - 22(v1°e™) exists [28]. We use Chan’s randomized
technique for solving LP-type problems in which the coristeaare defined implicitly by a set of
input objects, and which satisfy certain properties (searha 3.1 below).

Given a sefH of constraints and a totally ordered 3$&t, a weight functionw : 22 — W is
calledLP-typeof dimension at most if the following three conditions are satisfied for every seto
H C H and each constrairit € H:

e There exists a subsét of size at most, called abasisof H, so thatv(H) = w(B).
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o w(HU{h}) > w(H).
e Let F C H such thatw(F) = w(H). Thenw(H U {h}) > w(H) < w(F U{h}) > w(F).

Since linear programming, with being the corresponding linear objective function, is an LP
type problem of dimensiod + 1, (1) is an LP-type problem. See [27] for more details. The
following lemma is the main result behind Chan'’s technique.

Lemma 3.1 (Chan [7]) Letw : 2 — W be an LP-type function of constant dimensihrand let
a < 1 ands be fixed constants. Suppoge P — 2 is a function that maps inputs from some set
P to sets of constraints with the following properties:

(C1) ForinputsPy,..., P; € P of constant size, a basis fgi(P;) U --- U f(P;) can be computed
in constant time.

(C2) For any inputP € P and any basis3 C f(P), we can decide iD(D(n)) time whetherB
satisfiesf (P), i.e.,w(f(P)) = w(B).

(C3) For any inputP € P, we can construct, i®(D(n)) time, inputsP,, ..., Ps; € P each of size
atmost[an|, sothatf(P) = f(P)U--- U f(Ps).

Then we can compute a basis f6(P) in O(D(n)) expected time, assuming th&X(n)/n° is
monotonically increasing.

This lemma is a multidimensional version of an earlier téghe that Chan proposed in [6]; he used
this technique to compute the Tukey depth of a point set. A gight (straightforward) variant
of this algorithm can be used to solve our problem. For the sdlcompleteness, we sketch the
algorithm here.

We formulate the problem in a slightly more general framéw@ivenG, C H;, fori = 0,1,
a triangler, and integersy, a1, bg, b1, let

f(Go, G1,7,a9,a1, by, bl) =7N (Lao (Go) U }:’a1 (Gl) U ubO(Go) U ubl (Gl)) 2)

The points ofL = (L4,(Go) U L4, (G1)) N 7 are colored red, and the points Gf = (U, (Go) U
Uy, (G1)) N 7 are colored blue. We wish to computé f (Go, G1, 7, ao, a1, bo, b)), as defined in
Q).

We show that (2) satisfies (C1)—(C3). Condition (C1) is #iliecause we can solve the problem
explicitly in O(1) time for constant-size inputs, by constructing the fuleagement of the input
lines.

As for (C2), let? be the line defined by a basi$. We need to determine whethéties above
L and belowU. We describe how to determine whetlfdies abovelL. Let 7" be the portion of-
lying above/, then/ lies aboveL if and only if 7™ N L = §; the latter holds if and only if none of
the edges of * intersectsL. Lete be an edge of *. We compute the intersection pointseofvith
the lines inGy U G; and sort them along. By computing the level of an endpoint ewith respect
to Gy andG; and then traversing the list of the intersection points, aedaetermine in linear time
whetherL intersects:. Hence (C2) holds witlD(n) = O(nlogn).

10



As for (C3), we choose a constanand compute in linear-time @ /r)-cutting = of Gp U Gy
of sizeO(r?) within 7 [9]. For a triangleA € =, let GZ-A C G be the set of lines that intersefit
Leta? (resp.,b2) be the number of lines af; that lie below (resp., above). Then

f(G()aGlaT? a07a17b07b1) = U f(G07G17A7a07a17b07b1)
A€E
= U f(GOA,GlA,A,CLQ—CLOA,al—CLlA,bo—bA,bl—blA).
A€E

Since|G5 U G| < |G U Gy|/r, condition (C3) is satisfied.
Hence, we can compute a basisddifly, H1, R?, kg, k1, ko, k1) in randomized expected(n log n)
time. Putting everything together, we conclude the folluyvi

Theorem 3.2 Given two finite point setBy, P; in R? with a total ofn points and a direction:, we
can compute a center-transversal line f@y, P; in directionu, or decide that no such line exists, in
O(nlogn) expected time.

4 Variations

Bichromatically deepest line. The algorithm that we have presented in Section 2 can bededen
so that, for any given number € [0, 1], it finds a line/ with the property that any closed halfspace
containing? also contains at leastv|P;|| points of P, for : = 0, 1, or determines that no such line
exists. The running time remaiig(n'*x2(n)), for anye > 0.

We define thébichromatic depthof a line £ with respect taP,, P, as follows:

|P(]ﬁh| |Plﬁh|}
b G 0717
TR e

DEPTH(¢; Py, P1) = mhln{

where the minimum is taken over all closed halfspdcesntainingl. Equivalently, DEPTH(¢; Py, Py) >
a means that any closed halfspace containirgso contains at leagiy|P;|] points of P;, for

i = 0,1. Aline ¢, is abichromatically deepest ling it has maximum bichromatic depth. The
center-transversal theorem (Theorem 1.1) implies thatthkvays exists a line of depth at least
1/3. By conducting a binary search and using the extended vediithe algorithm of Section 2,
we can easily find a line with maximum depth. We thus obtairfeHewing.

Theorem 4.1 Given two finite point set®,, P; in R? with a total ofn points, we can compute a
bichromatically deepest line fafy, P, in O(n!™x%(n)) time, for anys > 0.

Computing an almost-deepest line. We next observe that, for any fixéd> 0, we can compute
in linear time a line/ whose bichromatic depth with respect®y, P, is at leastl — § times the
maximum depth of a line. Am-approximationof a point setP (with respect to closed halfspace
ranges) is a subset C P such that, for any closed halfspakeve have

ANKl |PAR
— ég
Al 1P|
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As is well known [9], for any fixedt, ane-approximation of size) (6% log %) can be computed
deterministically inO(n) time.

We fixe = % and compute for eacR; anc-approximation subsed; C P; as above. We then
compute a bichromatic deepest liag for Ao and A; in O(1) time and returr/ 4. We now argue
that/ 4 is an almost-deepest line. Observe that for anydine have (wheré ranges over all closed
halfspaces containing

DEPTH(¢; Py, P1) = m}jn 111(1]1%{]]3Z Nh|/|P|} > mhin I{l(l)ri{‘Al Nh|/|A;|} —€

DEPTH((; Ap, A1) — ¢,

and similarly
DEPTH(¢; Py, Py) < DEPTH(¢; Ag, A1) + €.

Let ¢,,+ be a bichromatically deepest line 0¥, P;. Since DEPTH({opt; Po, Pr) > % we have
DEPTH({4; Py, P1) > DEPTH(L4; A, A1) — € > DEPTH({opt; Ag, A1) — €

> DEPTH(opt; Po, P1) — = > (1 — 6)DEPTH(Lopt; Po, P1).

Wl ™

We thus conclude the following.

Theorem 4.2 For a fixed parameted > 0, and two finite point set&,, P, C R3 with a total ofn
points, we can compute i@(n) time a line/ whose bichromatic depth is at least- § times the
maximum bichromatic depth.

5 Conclusions

The efficiency of our algorithm in Section 2 depends on thestvoase complexity:(n) of a k-
level in an arrangement of planes in three dimensions. The currently best known baynd =
O(n®/?) of [26] is probably not tight, and reducing it would have dirénpact on the running time
bound of our algorithm. Also, it is not clear that our appiohest exploits the geometric structure
of the problem in 3-space. For example, the analysis of @e&igives a simple reduction of the
problem to the problem of finding a direction in which the patjons ofP; and P, have a common
center point. Can we find an efficient characterization otit@l” directions of this kind, and then
test each of them efficiently? Finally, can our algorithm iéd into a constructive proof of the
existence of a center-transversal line?
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