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Abstract

We study the maximal number of triangulations that a planar set of n points can have,
and show that it is at most 30n. This new bound is achieved by a careful optimization of
the charging scheme of Sharir and Welzl (2006), which has led to the previous best upper
bound of 43n for the problem.

Moreover, this new bound is useful for bounding the number of other types of planar
(i.e., crossing-free) straight-line graphs on a given point set. Specifically, we derive new
upper bounds for the number of planar graphs (O∗ (239.4n)), spanning cycles (O∗(70.21n)),
spanning trees (160n), and cycle-free graphs (O∗(202.5n)).

1 Introduction

A planar graph is a graph that can be drawn on the plane in such a way that its edges intersect
only at their endpoints. A planar straight-line graph is an embedding of a planar graph in
the plane such that its edges are mapped into straight line segments. In this paper, we only
consider planar straight-line graphs, but refer to them as planar graphs for simplicity.

Given a set S of points in the plane, a triangulation of S is a maximal planar graph on S.
When S is of cardinality at least 5, and is in general position (no three points are collinear),
it has at least two different triangulations. Let tr(n) (tr(n)) denote the maximal (minimal)
number of triangulations for a planar point set of n points in general position. In this paper,
we study the asymptotic behavior of tr(n), and focus on its upper bound.

Previous work. Variants of this problem have been studied for over 250 years. The first
to consider such a variant was probably Euler, who studied the case of n points in convex
position. Euler produced a recursion for the number of triangulations of such sets and guessed
its solution, but could not prove its validity. In the 19th century, the problem was studied
independently by several mathematicians, which were able to produce some findings, including
a proof of Euler’s guessed solution. That is, the number of triangulations for the convex case is
Cn−2, where Cm := 1

m+1

(
2m
m

)
= Θ(m−3/24m) = Θ∗(4m), m ∈ N0, is the mth Catalan number1

(see [22, page 212] for a discussion).
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During the mid-20th century, Tutte studied several variants of this problem, which did
consider points in general position, but had other distinctions from the problem we study (see
[23], and [24, pages 114-120]). Avis was perhaps one of the first to ask whether the maximum
number of triangulations of n points in the plane is bounded by cn for some c > 0; see [4, page
9]. This fact was established in 1982 by Ajtai, Chvátal, Newborn, and Szemerédi [4], who show
that there are at most 1013n crossing-free graphs on n points—in particular, this bound holds
for triangulations.

Further developments have yielded progressively better upper bounds for the number of
triangulations2 [21, 7, 17], so far culminating in the previously mentioned 43n bound [20] in
2006. This compares to Ω∗(8.48n), the largest known number of triangulations for a set of n
points, derived by Aichholzer et al. [1].

The value of tr(n) has also been studied. In a companion paper [18], we derive the bound
tr(n) = Ω(2.43n) (which improves a previous bound by Aichholzer, Hurtado, and Noy [2]).
McCabe and Seidel [11] showed that when the convex hull has only O(1) vertices, there are
Ω(2.63n) triangulations.

Hurtado and Noy [9] presented a configuration of n points in general position and Θ∗(
√

12
n
) ≈

Θ∗(3.464n) triangulations, implying tr(n) ≈ O∗(3.464n).

Related problems. Besides the intrinsic interest in obtaining bounds on the number of
triangulations, they are useful for bounding the number of other kinds of planar graphs on a
given point set, exploiting the fact that any such graph is a subgraph of some triangulation.
We shortly review some of these bounds.

Let pg(n) denote the maximal number of planar graphs for a planar point set of cardinality
n in general position. A bound of pg(n) = o

(
tr(n) · 7.98n

)
is derived in [12], which, combined

with Sharir and Welzl’s bound of 43n on tr(n), yields pg(n) = o (43n · 7.98n) = o (343.14n),
which was the best upper bound discovered so far.

Let sc(n) denote the maximal number of crossing-free spanning cycles (sometimes referred
to as simple polygonizations) for a planar point set of cardinality n in general position. Buchin
et al. [6] showed that a single triangulation has O( 4

√
30

n
) ≈ O(2.3403n) spanning cycles as

subgraphs, which implies sc(n) = O(tr(n) · 2.3403n). By using Sharir and Welzl’s bound of
43n, we get sc(n) ≈ O(100.635n), which still falls short of the bound sc(n) ≈ O(86.81n), given
in [19] (which is derived in a diffeent manner from an upper bound on the maximal number of
crossing-free perfect matchings).

Let st(n) denote the maximal number of crossing-free spanning trees for a planar point set
of cardinality n in general position. Ribó [13] (see also [15]) showed that any planar straight-
line graph has at most

(
51

3

)n
spanning trees as subgraphs. By using Sharir and Welzl’s bound

of 43n, we get st(n) ≤ 43n ·
(
51

3

)n
=

(
2291

3

)n
, which was the best upper bound discovered so

far.
Let cf(n) denote the maximal number of cycle-free graphs (i.e., forests) for a planar point

set of cardinality n in general position. Such a graph can contain at most n − 1 edges, which

implies that a single triangulation of the point set contains O∗
((3n−6

n−1

))

= O∗ (6.75n) cycle-

free graphs. Since any cycle-free graph is contained in at least one triangulation, we have
cf(n) = O∗

(
6.75n · tr(n)

)
= O∗ (290.25n), using the bound of [20].

Finally, let cg(n) denote the maximal number of connected crossing-free graphs for a point
set of cardinality n in general position. It can be easily noticed that cg(n) = O(pg(n)).

2Interest was also motivated by the obviously related practical question (from geometric modeling [21]) of
how many bits it takes to encode a triangulation of a point set.
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Our results. In this paper, we further decrease the existing gap on tr(n) by establishing the
new upper bound tr(n) < 30n. By using the above relationships, we get improved bounds for
all five problems mentioned above (improving also upon bounds obtainable by the alternative
technique of [19], which is based on crossing-free matchings). Table 1 presents the previous
results and their new improvements.

Table 1: Summary of the new bounds.

An Upper Previous Improved

Bound on Bound Bound

tr(n) 43n [20] 30n

sc(n) O∗(86.81) [19] O∗(70.21n)

pg(n), cg(n) O∗ (343.14n) [12, 20] O∗ (239.4n)

st(n) 229.3
n

[20, 13] 160n

cf(n) O∗(290.25) [1] O∗(202.5n)

2 Degrees in Random Triangulations

This section, together with the following one, present the basic technique
we need in order to derive our bound on tr(n). These methods were used
in [20], to get the bound 43n, and therefore, most of these two sections will
repeat the analysis in [20]. The “heart” of this technique is perhaps its
charging scheme, which is somewhat similar to Heesch’s idea of discharging
(Entladung, [8]) employed by the proofs of the Four-Color-Theorem (see [5]
and [14]). In the next sections, we extend this technique in order to get an
upper bound of 30n. Moreover, we show that the technique, as presented,
cannot achieve a bound of o

((
2817

28

)n)
, although the true bound is probably

much smaller.

Figure 1:Assumptions and notations. We use the general position assumption
that no three points are collinear. When there are three (or more) points on
the same line, it is easily checked that slightly perturbing the middle point
can only increase the number of triangulations. In Section 1 we mentioned
that for each point set in general position there is an exponential number of
triangulations. Interestingly, when there are no restrictions on the number of
collinear points, there might be a constant number of triangulations. Figure
1 depicts a set of many points with a single triangulation. Therefore, this
assumption is essential for the bounds on tr(n), and does not involve any
loss of generality for upper bounding tr(n).

For a set S of n points in general position, let S+ denote a set of n + 3
points with a triangular convex hull (i.e., a convex hull of cardinality 3),
constructed by taking a triangle that contains S in its interior, and adding
the three vertices of the triangle to S. Notice that every triangulation of S
is contained in at least one triangulation of S+, and thus, an upper bound
on the number of triangulations of S+ is also an upper bound on the number
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of triangulations of S.
Figure 2:

e

a

d c

b

Notice that every face of any triangulation of S+ has exactly three edges
(including the outer face). Using Euler’s formula, we find that every triangu-
lation of S+ has exactly 3(n+3)−6 = 3n+3 edges and 2(n+3)−5 = 2n+1
inner faces.

We say that an edge in a triangulation is flippable, if its two incident
triangles form a convex quadrilateral Q. A flippable edge can be flipped, that
is, removed from the graph of the triangulation and replaced by the other
diagonal of Q. Figure 2 depicts a triangulation with exactly two flippable
edges — ae (that can be flipped into bd) and de (that can be flipped into
ac).

Degrees in triangulations. Let T +
(S) denote the set of all triangulations

of S
+
. For i ∈ N and a triangulation T ∈ T +

(S), we let vi = vi(T ) denote
the number of points in S (not S

+
) that have degree i in T . Obviously,

vi ∈ N0, v1 = v2 = 0, and
∑

i vi = n. Let d1, d2 and d3 be the degrees in
T of the three vertices of the bounding triangle, then

d1 + d2 + d3 +
∑

i i vi = 2(3n + 3) = 6n + 6. (1)

It is easily seen that for n ≥ 1, each of the three vertices of the bounding
triangle has degree ≥ 3, and thus, d1 + d2 + d3 ≥ 9. Hence, (1) implies

Figure 3:
∑

i i vi ≤ (6n + 6) − 9 = 6n − 3, if n ≥ 1. (2)

Figure 3 depicts a triangulation of nine points with v3 = 0. Since we can
easily generalize it to a triangulation of 3m points, for arbitrarily large values
of m, we cannot find a better lower bound than v3 ≥ 0.

For i ∈ N, i ≥ 3, let

v̂i = v̂i(S) := E(vi(T ))

for T uniformly at random in T +
(S). That is, v̂i(S) =

1

|T +(S)|
∑

T∈T +(S)

vi(T ).

Due to linearity of expectation, any linear identity or inequality in the vi’s
(such as (2)) will also be satisfied by the v̂i’s. However, as we will show,
the v̂i’s are more constrained than the vi’s. Some notes concerning these
expected degrees are given in [20]; they will be extended and improved in a
forthcoming companion paper [18]. In particular, there is a constant δ > 0
such that v̂3 ≥ δn if n > 0 and the point set is in general position; recall
Figure 1 to see that general position is indeed necessary here. Before we
establish this bound, let us relate it to the question about the number of
triangulations. For that, let tr

+
(S) := |T +

(S)| and tr
+
(n) := max|S|=n tr

+
(S).

Lemma 2.1. (i) Let δ > 0 be a real constant such that, for all n ∈ N,
v̂3 ≥ δn for any set of n points in general position. Then, for all n ∈ N0,

tr
+

(n) ≤
(

1

δ

)n

.
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(ii) Let δ1 > 0 be a real constant and n0 ∈ N such that, for all n, n0 ≤ n ∈ N,
v̂3 ≤ δ1 n for any set of n points in general position. Then for any set S of
n ∈ N points in general position, tr

+
(S) = Ω((1/δ1)

n).

Proof. (i) Let S be a set of n > 0 points that maximizes tr
+
(S) among all sets

of n points; without loss of generality, let S be in general position (a small
perturbation of a point set cannot decrease the number of triangulations).

Note that we can get some triangulations of S
+

by choosing a triangula-
tion of S

+ \ {q} for some q ∈ S, and then inserting q as a vertex of degree
3 in the unique face it lands in. In fact, a triangulation T ∈ T +

(S) can be
obtained in exactly v3(T ) ways in this manner (in particular, if v3(T ) = 0, T
cannot be obtained at all in this fashion). This is easily seen to imply that

∑

T∈T +(S) v3(T ) =
∑

q∈S tr
+
(S \ {q}) . (3)

The left hand side of this identity equals v̂3 · tr+(S), and its right hand side
is upper bounded by n · tr+(n − 1). Hence,

tr
+
(S) ≤ n

v̂3
· tr+(n − 1) ≤ 1

δ
· tr+(n − 1)

(since we assume that v̂3 ≥ δ n), and thus tr
+
(n) ≤ 1

δ · tr
+
(n−1) for all n ∈ N.

Since tr
+
(0) = 1, the lemma follows.

(ii) Along the same lines—omitted.

Figure 4:Recall that tr(n) ≤ tr
+
(n), as mentioned above. Therefore, our problem is

reduced to finding a large value of δ > 0 which satisfies v̂3 ≥ δ n for every
n-element point set in the plane. Our approach for this problem is explained
in Section 3, but first, we present an example for analyzing v̂3.

An example. Consider a point set S+ such that S lies on a convex arc
that shares its endpoints with an edge of the bounding triangle (as depicted
in Figure 4). Notice that each of the edges depicted in this figure must
be present in every triangulation of S+ (since no other edge can cross it).
Therefore, the number of triangulations of S+ equals to the number of tri-
angulations of the shaded area. Since this is a convex polygon with n + 2
vertices, it has Cn = Θ∗(4n) triangulations.

Figure 5:

v

For a point in S to have degree 3, its two adjacent vertices in the convex
polygon have to be connected to each other, which leaves an (n + 1)-gon to
be triangulated in Cn−1 ways (as depicted in Figure 5, where v has degree
3). Therefore, the probabilty that this point has degree 3 is exactly Cn−1

Cn

=
n+1

2(2n−1)) = 1
4 + O

(
1
n

)
, and thus, v̂3 = n

4 + O(1).

3 A Lower Bound on v̂3

The material in this and the following sections is largely borrowed from the
earlier paper [20], with the kind permission of Emo Welzl. It is presented
here for the sake of completion.

In this section we show how to get a lower bound on v̂3 by using a
charging scheme. The basic idea of our analysis is to have each vertex of any

5



triangulation of S charge to vertices of degree 3. If every vertex charges at
least 1 and each vertex of degree 3 is charged at most c, then we know that
v̂3 ≥ n

c , so that, by Lemma 2.1, tr
+
(n) ≤ cn. The actual charging scheme

is more involved, for several reasons. First, since there are triangulations
that have no degree 3 vertices, the charging has to go across triangulations.
Moreover, we will let vertices charge amounts different from 1 (even negative
charges will occur). However, on average, each vertex will charge at least 1.
The difficulty in the analysis will be to bound the maximum charge c to a
vertex of degree 3.

A simplified charging scheme. We consider the set S ×T +
(S) and call

its elements vints (vertex in triangulation). The degree of a vint (p, T ) is
the degree (number of neighbors) of p in T ; a vint of degree i is called an
i-vint. The overall number of vints is obviously n · tr+(S), and the number
of i-vints is v̂i · tr+(S). (Note that the three vertices of the enclosing triangle
do not participate in this definition.)

Figure 6:

u

We define a relation on the set of vints. If u and v are vints, then we
say that u → v if v can be obtained by flipping one edge incident to u in its
triangulation. That is, u and v are associated with the same point but in
different triangulations, and u has to be an (i + 1)-vint and v an i-vint, for
some i ≥ 3. We denote by →∗ the transitive reflexive closure of →, and if
u →∗ v, we say that u can be flipped down to v. Charges will go from vints
to 3-vints they can be flipped down to. For example, the 4-vint u depicted
in Figure 6 can be flipped down to the 3-vint v in Figure 7.

The support of a vint u is the number of 3-vints it can be flipped down
to, i.e.,

supp(u) :=
∣
∣{v | v is 3-vint with u →∗ v}

∣
∣ .

Figure 7:

v

Out of the four edges incident to the 4-vint u in Figure 6, only one is flip-
pable, and thus, u can only be flipped down to the 3-vint v in Figure 7, and
supp(u) = 1. The 4-vint u′ in Figure 8 can be flipped down both to v and
to the 3-vint v′ in Figure 9, and thus, supp(u′) = 2.

A natural charging scheme would let a vint u charge 1
supp(u) to each 3-

vint it can be flipped down to—in this way, it will charge a total of 1. In
the case depicted in Figures 6–9, v is charged 1 by u and 1

2 by u′, and v′ is
charged 1

2 by u′.
Let us gain some understanding of the notion of supp(u). Note that the

removal of an interior point p and its incident edges in a triangulation T
creates a star-shaped polygon (with respect to p). We call this the hole of

Figure 8:

u
′

the vint (p, T ). For a vint u = (p, T ), we can remove p and its incident edges
from T , triangulate the hole that was created, and reinsert p as a 3-vint in
the unique triangle it lands in. Notice that u flips down to a 3-vint v (and
charges it) if and only if v can be obtained as just described. Indeed, each
down-flip removes one edge incident to u and the flip cuts off a portion of
the hole, until the degree of u becomes 3 and then the removal of u gives
a triangulation of its original hole. The converse direction is established
similarly. Therefore, supp(u) equals the number of triangulations of the
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hole of u.

Lemma 3.1. For an i-vint u = (p, T ):

(i) 1 ≤ supp(u) ≤ Ci−2, where the upper bound is attained if and only if the
hole is convex.

(ii) For a vint u′, if u →∗ u′, then supp(u) ≥ supp(u′).

Proof. (i) This follows from the fact that a convex i-gon has Ci−2 triangu-
lations, which is the maximum for all i-gons. The support is at least 1 since

Figure 9:

v
′

each simple polygon has at least one triangulation.
(ii) If u → u′ then the hole of u′ is contained in the hole of u, with the
vertices of the former a subset of the vertices of the latter. Therefore, every
triangulation of the hole of u′ can be extended to at least one triangulation
of the hole of u.

Lemma 3.2. The number of i-vints (i ≥ 3) that charge a fixed 3-vint is at
most Ci−1 − Ci−2, and this bound is tight in the worst case.

The general outline of a proof of this lemma can be found in [16, Lemma 4].

Figure 10:

v

The actual charging scheme. By Lemma 3.2, the maximal number of
4-vints that can charge a certain 3-vint is C3 − C2 = 5 − 2 = 3, and the
maximal number of 5-vints is 14−5 = 9. Figure 10 depicts a 3-vint v that is
charged by three 4-vints and nine 5-vints, and moreover, each of these vints
has a support of 1 (i.e., charges 1 to v). Figures 11 and 12 depict two of
the 5-vints that charge v (and have a support of 1). This case can easily be
extended into a 3-vint charged 1 by Ci−1 −Ci−2 i-vints, for every 3 ≤ i ≤ j.
Such a 3-vint is charged at least

Figure 11:

u

3−vint
︷ ︸︸ ︷

(C2 − C1) +

4−vints
︷ ︸︸ ︷

(C3 − C2)+ · · · +
j−vints

︷ ︸︸ ︷

(Cj−1 − Cj−2) = Cj−1 − 1 = Θ∗(4j).

Therefore, in the simplified charging scheme there is no uniform upper bound
on the amount charged to individual 3-vints.

For that reason, we switch to a charging where

an i-vint u charges 7−i
supp(u)

to each 3-vint v with u →∗ v.

Figure 12:

u
′

Note that in this scheme, a 3-vint charges 4 to itself (which sounds like bad
news), but 7-vints do not charge at all, and all i-vints with i ≥ 8 charge
a negative amount, so that is good news for the 3-vints (which want to be
charged as little as possible).

The overall charge that an i-vint can make is 7− i, so the overall charge
accumulated for all vints associated with a triangulation T is exactly

∑

i(7 − i)vi(T ) =
∑

i 7vi(T ) − ∑

i i vi(T ) > 7n − 6n = n,

where we have used (2) for the inequality. Therefore, on average, each vint
gets to charge at least 1.
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For a 3-vint v and i ∈ N, let chi(v) be the number of i-vints that charge
v. For an initial upper bound, we can ignore the zero and negative chargings
and therefore consider only charges from vints of degree at most 6. Thus, a
3-vint cannot be charged more than

4 ch3(v) + 3 ch4(v) + 2 ch5(v) + ch6(v).

By Lemma 3.2, ch3(v) = 1, ch4(v) ≤ C3−C2 = 5−2 = 3, ch5(v) ≤ 14−5 = 9,
and ch6(v) ≤ 42−14 = 28. Therefore, a 3-vint cannot be charged more than

4 · 1 + 3 · 3 + 2 · 9 + 1 · 28 = 59,

which implies v̂3 ≥ n
59 . By Lemma 2.1, this gives an upper bound of 59n

for the number of triangulations of any set of n points. This bound was
established by Santos and Seidel [16], which we have derived now with ideas
similar to theirs but in a different setting.

4 First Improvements

Figure 13:

e

v

a

b
c

d

In the current section, we improve the bound v̂3 ≥ n
59 , presented in the

previous section, to the bound v̂3 ≥ n
43 , repeating the analysis of Sharir

and Welzl [20]. This improvement is achieved by considering vints with a
negative charge (i.e., vints of degree at least 8), and also by taking into
account the supports of the positively charging vints (both of which have
been ignored in the derivation of the Santos-Seidel bound). We observe that
when there is a large positive charge (from vints of degree at most 6), there
is also a large negative charge. For example, if indeed v is charged 28 from
the 6-vints, it is also charged less than -10164 from 18-vints (the analysis
below will clarify this statement).

Flip-trees. How do we find the vints that flip down to a given 3-vint
v = (pv, Tv)? Clearly, there is v itself. Consider a flippable edge e (in Tv)
that is not incident to pv but is part of a triangle incident to pv. Flipping
e yields a 4-vint u = (pv, Tu) that can be flipped down to v (by reversing
the preceding flip). Similarly, if in the triangulation Tu there is a flippable
edge that is not incident to pv but part of a triangle incident to pv, then we
can flip this edge to get a 5-vint that can be flipped down to v, etc. Figure

Figure 14:

vc b

d

e
f

g
j

a

h
i

13 depicts a 3-vint v, that, by flipping bc into dv, turns into a 4-vint that
can be flipped down to v (and by afterwards flipping bd into ev, turns into
a 5-vint that can be flipped down to v).

In order to represent this structure, we associate with a 3-vint v =
(pv, Tv) a flip-tree τ(v), defined as follows. The root of the tree is labeled
by the pair (tv, Nv), where tv is the hole of v (a triangle) and Nv is the set
of its three vertex points (the neighbors of pv in Tv). All other nodes of the
tree are associated with a pair (t, q), where t is a face of Tv and q is a point
incident to that face (note that tv from the root is not a face of Tv—it is
the union of the three faces incident to pv). While explaining the structure
of the flip-tree in the following paragraphs, we refer to an example depicted
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in Figures 14 and 15. These figures depict a 3-vint v and its flip-tree, and
the nodes of this flip-tree are labeled only by their vertex (and not by their
triangle).

(i) Every edge e of tv gives rise to a child if it can be flipped in Tv. If so,
this child is labeled by the triangle incident to e that is not incident to pv,
and by the point in this triangle which is not incident to e. Therefore, the
root has at most three children. In our example, the root has two children—
d (since bc is flippable) and h (since ab is flippable). Notice that ∆bcd is the

Figure 15:

h

v

ab

ah

bc
d

i
ce

f

g

cf

cd bd

je

triangle corresponding to d and ∆abh is the triangle corresponding to h.
(ii) Consider now a non-root node of the tree labeled by (t, q) and an

edge e of t incident to q. If e is a boundary edge, no child will be obtained
via e. Otherwise, let t′ be the other triangle incident to e. If t′ together with
the triangle formed by e and pv is a convex quadrilateral (where e can be
flipped), then this gives rise to a child of (t, q) labeled by (t′, q′) where q′ is
the vertex of t′ that is not incident to e. Therefore, a non-root node has at
most two children. In our example, the node corresponding to h has a single
child, since the quadrilateral vhia is convex, but the quadrilateral vbjh is
not.

Note that the union of all triangles of the nodes of any subtree of τ(v)
(containing the root) form a polygon that is star-shaped with respect to pv;
this follows easily by the inductive definition of τ(v). The triangles (in the
triangulation of v) form a triangulation of the polygon, and the subtree is
actually the dual tree of this triangulation. The shaded area in Figure 14
is the portion of the triangulation dual to the entire flip-tree of v. Also, an
edge in the flip-tree incident to two nodes that are dual to (i.e., labeled by)
the triangles ∆1,∆2 in Tv, can be regarded as dual to the edge in Tv incident
to both ∆1 and ∆2. If we retriangulate this polygon in Tv by connecting pv

to all vertices of the polygon, we get a vint that flips down to v. Moreover,
every vint u that flips down to v can be obtained in this way (by taking the
subtree dual to the hole of u). That is:

Lemma 4.1. The subtrees of τ(v) containing its root are in bijective corre-
spondence with the vints that flip down to v.

Rigid cores. In the above, we identified the vints that charge a 3-vint
v = (pv, Tv). The next step is to determine how much these vints charge to v.
This depends on the support of these vints (i.e., the number of triangulations
of their holes)—the smaller the support, the more v is charged. The following
analysis only discriminates between vints that have a support of 1, and all
other vints.

Consider an edge e of the flip-tree τ(v), and let us denote the two triangles
of Tv that are dual to the nodes adjacent to e as ∆1 and ∆2. e is dual to the
edge e′ of Tv, which is adjacent to both ∆1 and ∆2. If e′ cannot be flipped
in the union of these two triangles, then we say that e is a rigid edge (with
respect to τ(v)). Notice that if one of the two triangles corresponds to the
root of τ(v), e′ may be flippable in Tv but not in ∆1 ∪ ∆2. For an example,
we return to the case depicted in Figures 14 and 15, where the edge ab is
flippable in the triangulation, but not in ∆abc ∪ ∆abh. Figure 16 depicts
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(again) the flip-tree of v from Figure 14, with the distinction that the solid
lines represent rigid edges and the dashed lines represent non-rigid edges.

Figure 16:
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The rigid core, τ∗(v), of τ(v) is defined to be the maximal subtree of
τ(v) that includes the root and consists exclusively of rigid edges. τ∗(v) is
non-empty, since it always contains the root of τ(v). In Figure 16, the rigid
core consists of the edges dual to ab and ah, and of the nodes incident to
these edges.

Lemma 4.2. The subtrees of the rigid core τ∗(v) containing the root are
in bijective correspondence with the vints u that flip down to v and have a
support of 1.

Proof. Consider a vint u that flips down to v. We recall that supp(u) = 1
if and only if the hole of u has exactly one triangulation. Note that one
triangulation of this polygon can be obtained by taking the set of triangles
in the subtree corresponding to u.

• If all edges in this subtree are rigid, then none of the dual edges in the
triangulation can be flipped. That is, there is only one triangulation of the
hole, since the set of triangulations of a polygon is connected via edge-flips
(as shown by Hurtado et al. [10]).

• If any of the edges is not rigid, then its dual edge can be flipped, and so
obviously there are at least two triangulations.

Figure 17:We next analyze the contribution of a rigid core R to the charging of its
3-vint v. Each j-edge subtree of R (containing the root) corresponds to a (j+
3)-vint, and therefore, charges 7−(j+3) = 4−j. Let contr+(R) (contr−(R))
denote the sum of positive (negative) charges coming from subtrees of R.
That is, contr+(R) (resp., contr−(R)) is the sum of the charges coming from
subtrees with j ≤ 3 (resp., j ≥ 5) edges.

Given a tree, we let the level of an edge denote the level of the node
at its bottom (where the root is of level 0). Given a rigid core, we let λi,
i ∈ {1, 2, 3}, denote the number of level-i edges it contains. Moreover, we
denote the number of nodes at level 1 with two child-edges by ν2. There are
several restrictions on these parameters: λ1 ≤ 3, λ2 ≤ 2λ1, λ3 ≤ 2λ2, and
ν2 ≤ λ2/2. For example, for the rigid core depicted in Figure 17, we have
λ1 = 3, λ2 = 2, λ3 = 0, and ν2 = 1.
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We can express contr+(R) by using the above parameters:

4 ·
︷︸︸︷

1 +3 ·
︷︸︸︷

λ1 +2 · (
︷︸︸︷
(λ1

2

)
+

︷︸︸︷

λ2 )

+ 1 · (
︷︸︸︷
(λ1

3

)
+

︷ ︸︸ ︷

λ2(λ1 − 1) +
︷︸︸︷
ν2 +

︷︸︸︷

λ3 )

= 4 +
(
λ1

3

)
+ λ2

1 + 2λ1 + (λ1 + 1)λ2 + λ3 + ν2

=







20 + 4λ2 + λ3 + ν2 if λ1 = 3,
12 + 3λ2 + λ3 + ν2 if λ1 = 2, and
7 + 2λ2 + λ3 + ν2 if λ1 = 1.

(4)

For example, if R is a complete tree of height 3, then λ1 = 3, λ2 = 6, λ3 = 12,
and ν2 = 3. Therefore, contr+(R) = 20 + 4 · 6 + 12 + 3 = 59.

Lemma 4.3. Let R be a rigid core with m edges and without any level-4
edges, then

(i) contr+(R) ≤ 13 + 9m

2
.

(ii) contr−(R) ≤ min{0, 14 − 3m}.

Proof. (i) Note that ν2 ≤ λ2

2 and λ2 + λ3 = m − λ1. If λ1 = 3, then by
using (4) we get

contr+(R) ≤ 20+
9

2
λ2 +λ3 ≤ 20+

9

2
(λ2 +λ3) = 20+

9

2
(m−λ1) =

13 + 9m

2
.

In a similar manner, we get a bound of contr+(R) ≤ 10+7m
2 when λ1 = 2,

and a bound of contr+(R) ≤ 9+5m
2 when λ1 = 1. Obviously, these latter

bounds are dominated by the bound of λ1 = 3.
(ii) If m ≤ 4, then R does not contain any i-vints with i ≥ 8, and thus,

contr−(R) = 0. If m = 5, there is a single 8-vint that consists of the entire
rigid core, and thus, contr−(R) = 7− 8 = −1. Notice that the above bound
holds for both of these cases.

Figure 18:For m ≥ 6, the vint that consists of all the edges of the rigid core is an
(m+3)-vint that charges 7− (m+3) = 4−m < 0. By removing a single leaf
from the rigid core, we get an (m+2)-vint that charges 7−(m+2) = 5−m <
0. A rigid-core of size at least 6 that has no level-4 edges must have at least
two leaves, and therefore, contains at least two (m + 2)-vints. (Figure 18
depicts a rigid core with m = 6 and exactly two leaves.) By summing up
the above, we get contr−(R) ≤ (4 − m) + 2(5 − m) = 14 − 3m < 0, which
implies that the bound holds for this case too.

The maximal charge of a flip-tree. We are now ready to analyze how
much can a 3-vint v get charged by the vints of its flip-tree (which are the
only vints that charge it, as shown above).

11



First, for j ≥ 4, we ignore j-level edges of the flip-tree. Since such edges
cannot participate in 4-, 5-, or 6-vints, this can only increase the charge of
the flip-tree. Moreover, we assume that every 4-, 5-, or 6-vint that is not
entirely in the rigid core has a support of 2. Since such a vint has a support
of at least 2, this also can only increase the charge of the flip-tree. Finally, we
consider i-vints with i ≥ 8, only if they have a support of 1 (i.e., contained
in the rigid core). Since such vints with a larger support have a negative
charge, ignoring them can only increase the charge of the flip-tree.

We further simplify the analysis, by assuming that the flip-tree is com-
plete up to level 3 (i.e., the root has three child edges, and every level-1 or
level-2 node has two child edges). If an edge is missing in the flip-tree, we
can add it as a non-rigid edge. Since we only consider vints with a non-rigid
edge if they have a positive charge, this can only increase the charge of the
flip-tree.

By using all of the above assumptions, we notice that v cannot be charged
by more than (the second term represents the charge from vints not entirely
in the rigid core)

contr+(R) +
1

2
(59 − contr+(R)) + contr−(R)

=
59

2
+

contr+(R)

2
+ contr−(R)

≤ 118 + (13 + 9m)

4
+ contr−(R)

=
131 + 9m

4
+ contr−(R),

where R is the rigid core of the flip-tree, and m is the number of its edges. If
m ≤ 4, then contr−(R) = 0, and the expression is bounded by 131+36

4 = 413
4 .

If m ≥ 5, then the expression is bounded by

131 + 9m

4
+ (14 − 3m) =

187 − 3m

4
≤ 187 − 3 · 5

4
= 43.

Therefore, we get a bound of v̂3 ≥ n
43 for any set of n points. Figure 19

depicts a flip-tree that achieves this bound by using our pessimistic and sim-
plified analysis (as before, the solid lines represent rigid edges and the dashed
lines represent non-rigid edges). In this flip-tree, the rigid core generates a

Figure 19:3-vint (which is the root), three 4-vints, five 5-vints (out of the possible 9),
six 6-vints (out of possible 28), and one 8-vint. This implies that the charge
of this flip-tree (again, using our pessimistic form of analysis) is

4 · 1 + 3 · 3 + 2

(

5 +
4

2

)

+

(

6 +
22

2

)

− 1 · 1 = 43.

Can we do better? We now discuss possible improvements for the bound
presented above. There are some obvious places where the simplified analysis
presented above can potentially be improved — it considers vints with a
negative charge only if they are entirely in the rigid core, and it assumes
that every vint with a positive charge has a support of at most 2. For

12



example, we can improve the analysis by noticing that every vint with at
least two non-rigid edges has a support of at least 3.

The following sections present a more complex analysis that exploits
these issues, and shows that the maximum charge to a 3-vint is smaller than
30, thus yielding the bound of v̂3 > n

30 (and tr(n) < 30n). A natural question
Figure 20:

e

ab
ac bc

bpcpcd

c

v

b

p

d

a

would be how much further can we improve this bound. To answer this, we
consider the 3-vint v depicted in Figure 20 (together with the respective
flip-tree). This is exactly the flip-tree in Figure 19, after removing all of its
non-rigid edges, except for cd. For the charge coming from the rigid core, we
can repeat the above analysis, and get 4 ·1+3 ·3+2 ·5+1 ·6−1 ·1 = 28. The
non-rigid edge is present in one 5-vint, two 6-vints, three 8-vints, and one
9-vint. In the following sections, we explain how to analyze the supports of
such vints (i.e., count the number of triangulations of their holes). For now,
we only state that the 5-vint has a support of 3, both 6-vints have a support
of 4, two 8-vints have a support of 8, the third 8-vint has a support of 7,
and the 9-vint has a support of 12. (All of these statements can be verified
directly, though tediously, from Figure 20.) Therefore, v gets charged

28 + 2 · 1 · 1

3
+ 1 · 2 · 1

4
− 1

(

2 · 1

8
+ 1 · 1

7

)

− 2 · 1 · 1

12
= 28

17

28
.

This implies that even an optimal analysis of the flip-tree will not achieve a
better bound than 2817

28 . We believe that this is indeed the flip-tree with the
largest charge possible. However, recall that our technique gives a bound
for the worst-case 3-vint, when we actually need a bound for the average
3-vint. Therefore, it might be possible to achieve a much smaller bound
than 2817

28 , by using methods that consider the average charge to a 3-vint.
It seems likely that the actual value of tr(n) is much closer to the current
lower bound of 8.4853n than to our upper bound of < 30n.

5 Infrastructure for an Improved Analysis

The three remaining sections of this paper describe an improved analysis,
proving that a 3-vint always gets charged less than 30. This extended anal-
ysis proceeds by case analysis according to the possible RCs (rigid cores).
The current section presents some notations and rules which will be used
repeatedly in the analysis of charges of 3-vints. Section 6 provides more
advanced rules that are used to bound the supports of vints with negative
charges. Finally, Section 7 presents the analysis itself.

Figure 21:

c

a

b

Catalan numbers — extensions. The Catalan numbers were intro-
duced in Section 1, for counting triangulations of point sets in convex posi-
tion. We will also need the following extension of these numbers, for point
sets in “almost” convex position. Consider a simple polygon with n + 1
vertices in convex position, and an additional reflex vertex b, which blocks
the visibility between its two direct neighbors, a and c, and not between any
other pair of vertices (see Figure 21). The number of triangulations of this
polygon is equal to the number of triangulations of a convex set of n + 2
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points, which do not contain the edge ac (see Figure 22). This number is
easily seen to be Cn − Cn−1, and we denote it by C ′

n.
Figure 22:

c
a b

Consider a simple polygon with n vertices in convex position, and two
additional reflex vertices, which are not direct neighbors, so that, as above,
each of them only blocks the visibility between its two neighbors (as depicted
in Figure 23). Similarly to the previous case, the number of triangulations
of this polygon is equal to the number of triangulations of a convex set of
n+2 points, which do not contain the edge ac and the edge df . By using the
inclusion-exclusion principle, this number is easily seen to be Cn − 2Cn−1 +
Cn−2, and we denote it by C ′′

n.
We can further generalize this notation into a polygon with r ≤ n

2 reflex
vertices, with the above minimal-blocking property, when no two of these
vertices are neighbors. By using the inclusion-exclusion principle again, it
can be easily seen that the number of triangulations of such a polygon is

C
(r)
n =

∑r
i=0(−1)i

(
r
i

)
Cn−i.

Figure 23:
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f

The tr(·) function. This function is defined with respect to a simple star-
shaped polygon P , and its input is an internal chord of P . The value of the
function is the number of triangulations of P which contain the chord. For
example, when referring to the polygon in Figure 24, we have tr(bd) = C2 = 2
and tr(ad) = C ′

2 = 1. When we wish to refer to the number of triangulations
which contain more than one chord, we put a plus sign between the chords.
For example, using the same polygon, we have tr(bd + be) = 1.

We usually use this notation when each triangulation must contain ex-
actly one out of two specific chords, A and B. In such a case, the number

Figure 24:
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of triangulations of the polygon is tr(A) + tr(B). For example, the polygon
in Figure 24 has tr(ad) + tr(be) = 1 + 2 = 3 triangulations.

The vertex of an edge. This term is used with respect to a specific flip-
tree. Consider an edge H in the flip-tree, which is dual to an edge pq of the
triangulation. Let pqa and pqb be the triangles adjacent to the edge pq, so
that the node in the flip-tree dual to pqa is the parent of the node dual to
pqb. In this case, we say that b is the vertex of the edge H, or, equivalently,
of the edge pq. (Recall that b was used earlier to label the node dual to pqb.)
The vertices of a vint v are the vertices of the edges in the flip-tree of v, plus
the three vertices of the triangle containing the point of the vint.

Figure 25:

p

bc

cq bq

a

b

q

c o

v

For example, in Figure 25, q is the vertex of bc and p is the vertex of cq
(in the flip-tree of v).

Rule 1. Let D be a level-1 or level-2 edge which is part of the rigid core
(RC). Assume that D has two child-edges in the flip-tree, E and F , and that
they are not part of the RC. Flipping E or F might cause D to be flippable,
but it is not possible for both of them to have this property.

Explanation. For an example of the assumptions in the rule, see Figure
25. In this figure, v is the 3-vint, and bc, cq, and bq are dual to D, E, and F ,
respectively. In the flip-tree, a dashed line represents a non-rigid edge, and
a solid line represents a rigid edge. In the notation of the figure, assume,
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without loss of generality, that abq forms a right turn. Since o is to the right

of the line supporting
−→
bq (directed from b to q), abo is also a right turn. This

means that, after flipping bq, bc remains unflippable. �

We refer to Figure 25 again, and consider the 5-vint which uses bc and
bq. Such a 5-vint can have a support of at most 2, no matter where o is,
since o can never see a. We refer to such a 5-vint as a handicapped 5-vint. In
other words, it is a 5-vint which uses a rigid level-1 edge, and the level-2 edge
which cannot cause its parent to be flippable, no matter where its vertex is.
Rule 1 implies that each rigid level-1 edge with two non-rigid child-edges,
produces at least one handicapped 5-vint. Note that the level-2 edge of a
handicapped 5-vint may or may not be rigid.

Rule 2. Let D be a level-1 or level-2 edge which is part of the RC, so that
it has a non-rigid child E and a rigid child F . After flipping E, F remains
unflippable.

Figure 26:
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Explanation. Without loss of generality, we assume that D is a level-1
edge. For an example of the assumptions in the rule, see Figure 26. In the
figure, D, E, and F are dual to bc, cq, and bq, respectively. For F to be
rigid, o has to be to the left of the line supporting −→cq (it cannot be to the

right of the line supporting
−→
cb, or else it would not be visible from v). This

means that o is also to the left of the line supporting −→pq. This implies that
the quadrilateral pboq is non-convex, and that after flipping cq, bq remains
unflippable. The same argument implies that bq remains unflippable after
flipping any child edges of cq. The symmetric case, where the flippable edge
belongs to the handicapped 5-vint, is depicted in Figure 27. Notice that the
proof also remains valid if we replace E with one of its child edges. �

Figure 27:
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Rule 3. Consider a rigid core with at least four edges. Expanding it by
adding a level-3 edge H to the RC, cannot increase the charge (the entire
charge of the 3-vint, not only from rigid core edges).

Explanation. There is a single vint with a positive charge that uses H,
which is a 6-vint. Let m > 1 denote the support of this 6-vint in the
original configuration. If the 6-vint did not exist, we define m = ∞. In the
new layout, in which H becomes rigid, the charge gained from the 6-vint
increases by 1 − 1

m . There is at least one 8-vint which contains the 6-vint
and two additional RC edges. In the original triangulation, this 8-vint had
a support of at least m. In the new layout, the charge received from the
8-vint is −1, which means that it decreased by at least 1 − 1

m . Therefore,
adding H to the RC cannot increase the charge. �

6 Vint extensions

One of the techniques that are used in order to bound positive charges of
vints, is to extend them into vints with negative charge, such that this
charge neutralizes some (or all) of the positive charge (see, for example,
Rule 3 above). Typically, but not exclusively, we add RC edges to the vint,
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since they have a relatively small influence on the support of the vint. This
Figure 28:
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section presents additional rules which calibrate the effect of such extensions
on the total charge.

6.1 Non-visible terrains

Let v be a 3-vint whose vertex has a, b, and c as neighbors (see Figure 28).
The non-visible terrain of bc is defined as follows. Draw two half-lines from
the vertex a, one passing through b, and the other through c. The truncated
unbounded wedge bounded by these two half-lines and by the edge bc is
referred to as the visible terrain of bc; it is the darkly shaded area in Figure
28. The non-visible terrain of bc consists of two wedges, lightly shaded in
Figure 28, one bounded by the halflines that emanate from c, lie on the lines
−→ac, −→cv, and do not contain a, v, and the other bounded by the halflines that

emanate from b, lie on the lines
−→
ab,

−→
bv, and do not contain a, v. Consider

the subtree of the flip-tree of v, which is formed by taking the edge dual
to bc and its descendants. When talking about vertices in the non-visible

Figure 29:
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terrain of bc, we only refer to vertices of edges dual to edges in this subtree 3.
Any vertex in the non-visible terrain of bc cannot see any of the vertices in
the non-visible terrains of ab and ac (in the sense that the segment between
them is not fully contained in the hole of the respective vint; such a case
is depicted in Figure 29). We say that the vertex of an edge E is in its
non-visible terrain, if it is in the non-visible terrain of the level-1 ancestor of
E (which may be E itself). By definition, the vertex of an RC edge has to
be in its non-visible terrain.

Rule 4. Consider two (or three) vints without a common level-1 edge, and
assume that all of their vertices are in their non-visible terrains. We can
create a larger vint by appending the edges of these vints. The support of
this larger vint will be the product of the supports of the original vints.

Explanation. By the above definitions, vertices from different vints can-
not see each other, which implies the rule. �

Figure 30:
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For a typical application of this rule, consider a 5-vint with a rigid level-1
edge, a non-rigid level-2 edge, and a support of 2. The vertex of the level-2
edge must be in its non-visible terrain, for otherwise the 5-vint would have a
support of 3 (this is depicted in Figure 28, where the 5-vint has a support of 3
if and only if p is in its visible terrain.). See Figure 29 for an example, which
depicts such a 5-vint in each of the subtrees of the flip-tree. Appending
the edges of two such 5-vints results in a 7-vint with a support of four.
Appending the edges of three such 5-vints results in a 9-vint with a support
of eight. Additional RC edges can also be appended without increasing the
support.

The support of more complex vints can be bounded this way. For ex-
ample, building a vint using all the edges in Figure 30, results in a 10-vint

3Note that any such vertex must lie either in the visible or in the non-visible terrain of
bc.
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with a support of 12 (a 5-vints with a support of 2 in the subtree of ab; in
Figure 31:
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the subtree of bc, ce must be present, and when cd is present there are four
possible triangulations, giving a total support of 6).

Rule 5. Consider a 5-vint with a rigid level-1 edge, a level-2 edge, and a
support of at most 2. (a) At least one of the two 6-vints, which extend the 5-
vint with a level-3 edge, is entirely in its non-visible terrain (i.e., the vertices
of its three edges are in their non-visible terrain). (b) If the 5-vint, which
uses the same level-1 edge with a different level-2 edge (the sibling edge),
has a support of 3, both 6-vints (extending the first 5-vint) are entirely in
their non-visible terrain. (c) If the 5-vint is handicapped, the two 6-vints
are entirely in their non-visible terrain.

Explanation. In each of the cases (a)–(c), the vertices of the level-1 and
level-2 edges are in their non-visible terrain, as easily follows from the as-
sumptions. Thus, we only need to show that the vertices of the level-3 edges

Figure 32:
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are in their non-visible terrain. Consider first case (c) of a handicapped
5-vint, as depicted in Figure 31 (the 5-vint containing the edges bc and bp

is handicapped). Since p must be to the right of
−→
ab, the halfline which

emanates from b, lies on the line
−→
ab, and does not contain a, must be coun-

terclockwise to the ray from a through p. The vertices of the level-3 edges
of the 6-vints which extend the 5-vint (t and r in the figure), must be to the
right of the ray from a through p, since otherwise they will not be able to

see v. This implies that these vertices are to the right of
−→
ab, and thus, in

their non-visible terrain.
Consider a 5-vint with a support of 3, a rigid level-1 edge, and a level-2

edge A. The 5-vint which uses the sibling edge of A is either a handicapped
5-vint, or entirely in the RC (see Rule 1; the distinction is because we have
defined handicapped 5-vints only for non-RC vints). Such a 5-vint is depicted
in Figure 32 (the 5-vint which contains bc and bp). The analysis in the

Figure 33:
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preceding paragraph applies here as well, and implies the claim in (b).
Finally, consider case (a). Let q denote the vertex of the level-2 edge of

the 5-vint. It is easily checked that if the 5-vint has a support of at most
2, q cannot see a (see Figures 32 and 33), so q must be in its non-visible
terrain, and thus, at least one of the level-3 triangles with q as a vertex lies
in its non-visible terrain.

6.2 Non-visible subtrees

This subsection presents an additional application of non-visible terrains.
We do not present it as a rule, since it is a general method, and we will later
use several of its variants.

Consider a level-1 edge and one of its child edges, both belonging to the
RC. By construction, the vertices of these edges are in the same wedge of
their non-visible terrain. This case is depicted in Figure 34, where o, p, and
q are in their non-visible terrain wedge bounded by the ray from c through b
and the ray from v through b (the shaded wedge in the figure). These vertices
cannot see any of the vertices from the subtree of the flip-tree rooted at ab
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(such as the vertex d in Figure 34); we refer to this subtree as the non-visible
subtree of the vertices in the wedge. Each non-visible subtree can contain

Figure 34:
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up to five 6-vints, four of which use a level-3 edge, and one of which uses
two level-2 edges. The two RC edges assumed above do not participate in
any of these 6-vints, since they are in a different subtree. Using these two
edges, any of the five 6-vints can be extended into an 8-vint with the same
support. In Figure 34, bc and cp are two such RC edges, which can be used
to extend possible 6-vints in the subtree of ab.

Here are two additional applications of this observation:
(i) Consider a handicapped 5-vint. The vertices of the 5-vint are in the

same wedge, and hence have the same non-visible subtree. This time, each
6-vint from the non-visible subtree can be extended into an 8-vint with a
double support. In Figure 34, bc and bp create such a 5-vint, which can be
used to extend 6-vints in the subtree of ab. In this way, half of the charge
of these 6-vints is eliminated.

Figure 35:
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(ii) Consider a level-1 edge which has two child edges, all contained in
the RC. The vertices of the three edges must be in the same wedge. The
non-visible subtree of these vertices can contain up to two 5-vints; each can
be extended into an 8-vint with the same support, halving the charge of any
such 5-vint. Such a case is depicted in Figure 35, where the subtree of ab is
the non-visible subtree of bc, bp, and cp.

6.3 Non-rigid subtrees

Rule 6. Consider a level-1 edge, e, which is not part of the rigid core. We
refer to the subtree which is rooted at e as a non-rigid subtree. There are at
most five 6-vints in this subtree, and the overall charge from these 6-vints
and their extensions cannot exceed 2.

Explanation. Since the level-1 edge is not rigid, each of the 6-vints has
a support of at least 2, which implies a trivial bound of 5

2 on their overall
charge. To improve this bound to the one asserted in the rule, we distinguish
between the following cases:

• At most four of the 6-vints exist. Then the bound cannot exceed 1
2 ·4 = 2.

In the following cases we may therefore assume that all five 6-vints are
present, so the subtree is full up to level 3.

• All of the 6-vints have a support of 2. In this case, all the edges in the
Figure 36:
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non-rigid subtree must be rigid, except for the level-1 edge. In addition,
these edges must remain unflippable (in the hole of v) after the level-1
edge is flipped, since none of the vertices in the subtree, except d, can see
a; see Figure 36. This implies that the 10-vint which contains the entire
non-rigid subtree must also have a support of 2. The overall charge in this
case is lower than 1

2 (1 · 5 − 3 · 1) = 1.

• Exactly four 6-vints have a support of 2, and the fifth 6-vint uses a level-3
edge. Appending the edges of the first four 6-vints generates a 9-vint with
a support of 2. The charge in that case is at most 1

2(1 · 4− 2 · 1)+ 1
3 = 11

3 .
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• Exactly four 6-vints have a support of 2, and the fifth 6-vint uses two
level-2 edges. The fact that the support of the fifth 6-vint is at least 3
implies that at least one of the level-2 edges must be flippable (possibly
only after flipping the level-1 edge). Two of the other 6-vints also use this
level-2 edge, and thus have a support larger than 2. We thus conclude
that this case cannot occur.

• Exactly three 6-vints have a support of 2. For the same reason as in the
previous case, the two 6-vints with the higher support must contain a
level-3 edge. Appending the edges of the other three 6-vints generates an
8-vint with a support of 2. The charge is at most 1

2(1 ·3−1 ·1)+ 1
3 ·2 = 12

3 .

• There are at most two 6-vints with a support of 2. The charge is at most
1
2 · 2 + 1

3 · 3 = 2. �

We do not use the following rules in the analysis of λ1 = 0 and λ1 = 1, and
thus, it is possible to skip forward to the respective subsections of Section 7
before reading them.

6.4 Eliminating 6-vints with two level-2 edges

Rule 7. Consider a 6-vint with a rigid level-1 edge and two non-rigid level-2
edges. Assume that there are at least three additional RC edges, not involved
in the 6-vint, which are not level-3 edges. Using these edges, it is possible
to extend the 6-vint into at least two 8-vints, which neutralize its positive
charge.
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Explanation. See Figure 37 for an example of such a 6-vint (the additional
RC edges are not shown). We use the notation depicted in the figure and
consider the handicapped 5-vint which uses the edge bp. By construction,
the two vertices of this 5-vint (p and q) are in their non-visible terrain. If
the vertex o of the other level-2 edge cannot see a, then it is also in its
non-visible terrain. In this case, adding two extra RC edges cannot increase
the support of the 6-vint, since vertices in their non-visible terrains cannot
see vertices of RC edges from other subtrees. Hence, each extended 8-vint
has the same support as the original 6-vint, and thus fully neutralizes the
charge of the 6-vint. We may therefore ignore this case, and assume that o
sees a (as depicted in Figure 37).

In order to show that the 8-vints can neutralize the charge of the 6-vint,
we need to count the triangulations of the hole of the 6-vint, and of the holes
of the potential 8-vints. We first claim that in any of these triangulations,
exactly one of the edges bc and ao must be present. This is obvious for the
6-vint, since ao is the only chord of its hole which crosses bc, so when bc is
absent, ao must be present. For an 8-vint, its hole is obtained by appending
two triangles through the edges ab and/or ac. When considering an 8-vint
which extends the 6-vint, we refer to the additional RC edges as the added
edges. Since o is the only vertex of the 6-vint which is in its visible terrain,
it is the only vertex that might be able to see vertices of the added edges.
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Hence, the only chords of the hole of such an 8-vint which can cross bc are
incident to o. Moreover, if any such chord, other than ao, is part of the
triangulation, then it is obtained after flipping one of the edges ab and ac,
and the first time such a flip occurs, ao must be present in the triangulation,
and remain in it thereafter. Moreover, in a triangulation of the hole of an
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8-vint, an added edge is flippable only if both of its vertices are connected
to o. This implies that when bc is present, no added edge is flippable; that
is, the 6-vint and the 8-vints have the same number of triangulations which
contain bc.

It remains to count the triangulations which contain ao. Notice that
when ao is present, bo must also be present. We distinguish between the
following cases:

(i) o cannot see q, as depicted in Figure 38. In this case, bp must be
present, which implies that each triangulation can be uniquely determined
by the set of vertices of added edges which are connected to o. The 6-vint has
only one triangulation, which corresponds to the empty set. After adding
two RC edges, there can be at most 22 = 4 such sets, including the empty
one. This implies that the support of an 8-vint can be higher than that of
the 6-vint by at most 3. Since o can see a, the 6-vint has a support of at
least tr(bp) = C ′

3 = 3, which means that two 8-vints are always sufficient to
neutralize its charge.

(ii) o can see q, as depicted in Figure 37. In this case, when bc is present
there are five triangulations, both for the hole of the 6-vint and for any hole
of an 8-vint (the number of triangulations of the convex pentagon bcopq).
In order to count triangulations which contain ao, we use the same method
as in the previous case. This time, since the quadrilateral obqp has two
triangulations, each subset of vertices of added edges corresponds to two
triangulations. The 6-vint has only the empty set, so its support is 5+1 ·2 =
7. An 8-vint can have, as above, at most four such subsets, and thus, a
support of at most 5 + 4 · 2 = 13. Thus, two 8-vints are always sufficient to
neutralize the charge of the 6-vint. �

6.5 Reducing the charge of 6-vints with a level-3 edge

Rule 8. Consider a 6-vint with a level-3 edge and a rigid level-1 edge.
Assume that there are at least three RC edges which do not participate in

Figure 39:
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the 6-vint and are not level-3 edges. Using these edges, the 6-vint can be
extended into at least two 8-vints and one 9-vint. The overall charge of the
6-vint and its extensions cannot exceed 1

1400 .

Explanation. Establishing this rule is the most complex part of the anal-
ysis, and in fact, in what follows, we also provide a more general analysis of
how one can reduce the charge of a 6-vint of the form described in the rule,
using extensions of the vint into vints with negative charge, even when there
are only two RC edges that can be exploited. When encountering a reference
to this section in the analysis of an RC, it is best to refer to Table 2, which
presents bounds for the support of 8-vints which extend the possible 6-vints.
The table also presents improved bounds for standard 8-vints, which are 8-
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vints that extend the 6-vint using an additional level-1 edge and one of its
child edges (as opposed to extensions that use two additional level-1 edges,
or descendant edges of the level-1 edge of the 6-vint). Such a case is depicted

Figure 40:
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in Figure 39, where the shaded area represents the hole of the 6-vint, the
8-vint created using ac and ad is a standard 8-vint, and the 8-vint created
using ab and ac is not.

Table 2: The results of Section 6.5

Case Support Support Support of
of 6-vint of 8-vint standard 8-vint

Level-2 edge is rigid ≤ 3 same as 6-vint -
Level-2 edge is rigid 4 ≤ 7 -
q and o cannot see a any same as 6-vint -

only o can see a 4 ≤ 7 ≤ 6
only o can see a 6 ≤ 9 ≤ 8
only o can see a 7 ≤ 13 ≤ 11
only q can see a 3 ≤ 8 -
only q can see a 4 ≤ 7 -
only q can see a 5 ≤ 13 -
only q can see a 6 ≤ 9 -
only q can see a 7 ≤ 13 -
q and o can see a 9 ≤ 25 ≤ 20
q and o can see a 6 ≤ 20 ≤ 15
q and o can see a 4 ≤ 14 ≤ 11

In the analysis (and in the table), we refer to Figures 41–57. In these
figures, v is the vertex of the 3-vint and bc is the rigid level-1 edge of the

6-vint, whose vertex p lies to the right of
−→
ab. The 6-vint has two additional

vertices q and o. Unless otherwise stated, q is the vertex of the level-2 edge,
and o is the vertex of the level-3 edge. If the level-2 edge of the 6-vint is
bp (as depicted in Figure 40), all the vertices of the 6-vint are in their non-
visible terrain, and adding RC edges will not increase the support of the
vint (see Section 6.1). If there are three additional RC edges, as prescribed
in the rule, we can form at least two 8-vints and one 9-vint which extend
the 6-vint and (more than) neutralize its charge. If only two RC edges are
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present, we can neutralize its charge by the resulting 8-vint extension. We
may therefore ignore this case and assume that the level-2 edge is always cp.

Assume that bp is one of the additional RC edges. By Rule 2, appending
bp (and any of its descendants) to the 6-vint cannot increase its support. This
implies that replacing bp with other RC edges can only increase the support
of the 9-vint and two 8-vints. That is, it suffices to consider the cases where
all the additional RC edges are in the subtrees of ab or of ac. In particular,
if three RC edges are added, they induce at least one standard extending
8-vint. We may therefore assume that bp is not one of the additional RC
edges. For the rest of the analysis, we distinguish between five possible cases:
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1. The level-2 edge is rigid. An example of this case is depicted in
Figure 41. If o (the vertex of the level-3 edge) is in its non-visible terrain,

Figure 42:
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all of the vertices of the 6-vint are in their non-visible terrains, and thus,
adding RC edges will not increase its support. We may therefore assume
that o is in its visible terrain (as in the figure), which also implies that the
6-vint has a support of 4 (see also the argument below).

In every triangulation of the hole of the 6-vint or of an extension 8-vint,
exactly one of the edges bc and ao must exist (this is explained in the proof of
Rule 7). If bc exists, there are exacly C ′

3 = 3 triangulations (of the 6-vint).
If ao exists, bo and op must also exist, and only o can see the vertices of
the added RC edges. Each triangulation which contains ao can be uniquely
determined by its set of vertices of added edges which are connected to o (a
similar argument can be found in Rule 7). This implies that the support of
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an extension 8-vint is 3 plus the number of these sets. Adding two RC edges
yields at most 2 · 2 = 4 sets, and thus, each 8-vint has a support of at most
7. Since we have at least two 8-vints which extend the 6-vint, they always
(more than) neutralize its charge.

In the following cases, the level-2 edge is assumed not to be rigid.

2. Both q and o cannot see a. An example of this case is depicted
in Figure 42. Since all the vertices of the 6-vint are in their non-visible
terrains, the addition of RC edges cannot increase its support, so even a
single extension 8-vint will neutralize the charge.

3. Only o can see a. Examples of this case are depicted in Figures 43–45.
Since we assume that the level-2 edge is not rigid, q can see b. o can also see
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b and c, since in order not to see one of them, o has to be in its non-visible
terrain, which implies that it cannot see a either. Since q is in its non-visible
terrain, it cannot see any of the vertices of the added RC edges. Let x be a
binary variable, which is 1 if and only if o can see p (see Figure 45 for a case
where x = 0). Similarly, let y be a binary variable, which is 1 if and only if
x = 1 and bq does not cross ao (y = 1 in Figure 43 and 0 in Figures 44 and
45).

Notice that exactly one of the edges bc and ao must exist in any tri-
angulation of the hole of the 6-vint or of any extension 8-vint. The 6-vint

Figure 45:
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has 3 + 2x triangulations which contain bc (it has either C3 = 5 or C ′
3 = 3

triangulations), and 1 + y triangulations which contain ao (as can be easily
checked; see Figures 43, 44, and 45). That is, the 6-vint has 4+2x+y triangu-
lations. An extension 8-vint has the same number of triangulations when bc
is present (recall that we only consider extensions through ab or ac). When
ao is present, bo must also be present, and the quadrilateral oqpb has x + 1
triangulations (or, as in Figure 44, it might not be present at all in these tri-
angulations). Once again, we count the number of possible sets of vertices of
added edges which are connected to o. This time, each set represents y+1 tri-
angulations (which contain ao). The support of the 8-vint is therefore 3+2x,
plus the number of sets multiplied by y+1. Adding two RC edges can create
at most four possible sets, which implies that an 8-vint has a support of at
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most (3+2x)+4(y+1) = 7+2x+4y. For a standard 8-vint, there are at most
three sets, and thus, the support is at most (3+2x)+3(y +1) = 6+2x+3y.
From the above, we conclude that two 8-vints always neutralize the charge
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of the 6-vint, since 1
4+2x+y = 2

8+4x+2y ≤ 2
8+2x+4y < 2

7+2x+4y (by definition,
x ≥ y).

A case with x = y = 1 is depicted in Figure 46, where the 6-vint has a
support of 7 (5 when bc is present, and 2 when ao is present) and the 8-vint
has a support of 13 (5 when bc is present, and 2 · 4 = 8 when ao is present).

4. Only q can see a. Examples of this case are depicted in Figures 47–51.
o can “hide” from a on one of the sides of its non-visible terrain (such as in
Figures 47–49), or behind q (such as in Figures 50–51). As in previous cases,
we notice that in each triangulation either aq or bc must exist. We divide
the rest of the analysis into the following subcases:
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(i) o is in its non-visible terrain, as depicted in Figures 47, 48, and
49. In this case, q is the only vertex which might be able to see vertices
of added edges. For an extension vint, consider the set of the vertices of
the added edges which are connected to q in a specific triangulation. We
can bound the number of triangulations of the extension vint, which do
not contain a triangulation of the 6-vint, by counting the number of the
possible different non-empty sets of this kind (as in the explanation of Rule
7). Since the simple quadrilateral qopb (which may not exist, as in Figure
47) might have two triangulations (as in the case of Figure 48), each set
might correspond to two such triangulations (but not more than two). Let
x denote the support of the 6-vint; the support of an extension vint is at
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most x plus twice the number of non-empty sets (of q-connected vertices of
the added RC edges). An 8-vint which extends the 6-vint with two level-1
edges, has at most three such sets. A standard 8-vint has at most two such
sets. A 9-vint has at most five such sets (which is tight when there are two
additional level-1 RC edges and one additional level-2 RC edge). That is,
the absolute value of the overall negative charge from the three extension
vints is at least 1

x+4 + 1
x+6 + 2

x+10 .

We notice that the inequality 1
x < 1

x+4 + 2
x+6 < 1

x+4 + 1
x+6 + 2

x+10 holds
for every x ≥ 3 (the second inequality holds for every positive value of x).
A 6-vint such as in Figure 47 has a support of tr(bc)+ tr(aq) = 5+1 = 6. A
6-vint such as in Figure 48 has a support of tr(bc)+ tr(aq) = 5+2 = 7. A 6-
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vint such as in Figure 49 has a support of tr(bc) + tr(aq) = 3 + 1 = 4. Since
these cases exhaust all possibilities, we always have x ≥ 4, which implies
that a 9-vint and two 8-vints always (more than) neutralize the charge of
the 6-vint.

(ii) o is the vertex of cq and is to the right of −→aq, as depicted in
Figure 50. Since o is hiding behind q, it also cannot see b and p. Hence,
the edge cq must be present in every triangulation of the hole of the 6-vint,
and thus, the 6-vint has a support of C ′

3 = 3. For the larger vints, when
bc is present, there are two triangulations; when aq is present, the number
depends on the added edges (however, for any set of added edges, bq must
be present in the resulting triangulations; recall that we assume that bp is
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not an added edge):

• Without additional edges, each of the portions of the hole of the vint to
the right of aq and to its left has a single triangulation (which implies a
single triangulation of the 6-vint when aq is present).

Figure 50:
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• Adding ab results in at most two triangulations of the portion to the right
of aq. Adding a child of ab raises it up to three triangulations, and adding
both children of ab raises it up to five. This follows by noticing that each
triangulation is uniquely determined by the set of vertices of added edges
which are connected to q. In the latter case, for example, we have one
triangulation when ab is present; otherwise, qe must be present (where, as
in the figure, e is the vertex of ab), and we have at most C2C2 = 4 ways
to complete the triangulation.

• Adding ac results in at most C ′
3 = 3 triangulations of the portion to the

left of aq. Adding a child of ac raises it up to C ′′
4 = 6. Adding both

children of ac cannot cause this number to exceed C ′′
5 = 19 (this time, the

analysis is not tight, since we allow several forbidden chords, such as the
one connecting a to the new lower left vertex).

Table 3: Possible supports of extension vints in case (ii) (Figure 50)

8-vints 9-vints

Right of aq Left of aq Support Right of aq Left of aq Support

1 6 8 1 < 19 < 21
2 3 8 2 6 14
3 1 5 3 3 11

5 1 7

The above analysis is summarized in Table 3, which presents the maximal
supports for the various extension vints (in the i-th row of the table, i − 1
RC edges of the extension vint are added to the right of aq and the rest
are added to its left). Notice that the support of each vint is the number of
triangulations of its right portion times the number of its left portion, plus
2. We notice that an 8-vint has a support of at most 8, and a 9-vint has a
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support of at most 20. Two 8-vints and a 9-vint generate a negative charge
of at least 2 · 1

8 + 2
20 > 1

3 , so they neutralize the charge of the 6-vint.

(iii) o is the vertex of pq and is to the left of −→aq, as depicted
in Figure 51. o must be able to see b, since otherwise it will not be able
to see v. It can easily be checked that each of the holes of the 6-vint and
of the extension vints has three triangulations which contain bc (again, by
assumption, there are no added edges through bp). When aq is present in
the hole of the 6-vint, there are C ′′

3 = 2 triangulations of the portion to its
right and one of the portion to its left. This implies that the support of the
6-vint is 3 + 2 · 1 = 5. We consider the number of triangulations of the holes
of the larger vints, when aq is present:
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• Without any additional edges, the portion of the hole of the vint to the
left of aq has a single triangulation, and the portion to its right has two
triangulations (as in the case of the 6-vint).

• Adding ac results in C2 = 2 triangulations of the portion to the left of aq.
Adding a child of ac increases it up to C ′

3 = 3. Adding both children of ac
increases it up to 5 (as in a preceding case, recalling that each triangulation
is uniquely determined by the set of vertices which are connected to q).

• Adding ab results in at most tr(eo)+ tr(bq) = 1+C2C2 = 5 triangulations
to the right of aq. Adding a child of ab increases it up to tr(pq + bq) +
tr(bo) = C ′

3 + C ′′
4 = 9. Adding both children of ab cannot cause it to

exceed tr(pq)+ tr(bo) = (tr(ab)+ tr(eq))+ tr(bo) = (1+C2C2)+C ′′
5 = 24

(the analysis is not tight for the case where bo is present, since we admit
some of the forbidden chords).

Table 4: Possible supports of extension vints in case (iii) (Figure 51)

8-vints 9-vints

Right of aq Left of aq Support Right of aq Left of aq Support

9 1 12 < 24 1 < 27
5 2 13 9 2 21
2 3 9 5 3 18

2 5 13

The above analysis is summarized in Table 4, which presents the maximal
supports for the various extension vints (with the same convention of display
of the rows). The support of each vint is the number of triangulations of its
right portion times the number of its left portion, plus 3. We notice that an
8-vint has a support of at most 13, and a 9-vint has a support of at most 26.
Two 8-vints and a 9-vint generate a negative charge of at least 2· 1

13 + 2
26 > 1

5 ,
neutralizing the charge of the 6-vint.
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5. Both q and o can see a. Examples of this case are depicted in Figures
52–57. Here we change the notation used in the preceding cases, and take q
and o to be such that the clockwise order of the vertices on the boundary of
the hole of the 6-vint is a, c, o, q, p, b. In the vertex group {a,b,c,p}, only p
and a cannot see each other. Any additional visibility restrictions between
the vertices of the 6-vint, have to involve either o or q. If o can see p, it
can also see b (since it is required to see a). Moreover, only the vertex of
the level-3 edge of the 6-vint (which is either o or q) might have visibility
restrictions. This implies that there are only four possible cases: (i) o and q
are unrestricted, and the 6-vint has a support of C ′

4 = 9 (see Figure 52). (ii)
q is the level-3 vertex and it cannot see c (it always sees p since it precedes p
in the order along the hole); the 6-vint has a support of C ′′

4 = 6 (see Figure
55). (iii) o is the level-3 vertex and it cannot see p (but can see b); the 6-vint
has a support of C ′′

4 = 6 (see Figure 56). (iv) o cannot see p and b, and the
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6-vint has a support of tr(ao) + tr(cq) = 1 + C ′
3 = 4 (see Figure 57). We

analyze each of these subcases separately:

(i) o and q are unrestricted (see Figure 52, which depicts one of the
two forms of such an “almost convex” 6-vint; the analysis does not depend
on the specific shape of the vint). Clearly, if a triangulation of the hole of
the 6-vint (or of an extension vint) does not include bc, it must include either
ao or aq (or both). Hence, the number of triangulations of the 6-vint (or
of an extension vint) is tr(bc) + tr(ao) + tr(aq) − tr(ao + aq). Notice that
tr(bc) = 5, both for the 6-vint and for any extension vint. We thus need to
count the number of triangulations of two left portions — the portion to the
left of ao and the portion to the left of aq (which contains the chord ao in
some of its triangulations). Similarly, we need to count the triangulations of
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two respective right portions. In the following analysis, all of the results are
upper bounds:

• When there are no added edges, there is a single triangulation to the left
of ao, a single triangulation to the right of aq, C2 = 2 triangulations to
the left of aq, and C ′

3 = 3 triangulations to the right of ao. We can use
these results to verify that the support of the 6-vint is tr(bc) + tr(ao) +
tr(aq) − tr(ao + aq) = 5 + 1 · 3 + 2 · 1 − 1 · 1 = 9.

• After the addition of ab (as depicted in Figure 53), there are C2 = 2
triangulations to the right of aq (bq must be present), and tr(op + bo) +
tr(bq) = C2 + C3 = 7 to the right of ao. Adding a child edge of ab, results
in C ′

3 = 3 triangulations to the right of aq (again, bq must be present),
and tr(op + bo) + tr(bq) = C ′

3 + C ′
4 = 12 to the right of ao. Adding

both child edges of ab results in 5 triangulations to the right of aq (each
triangulation is uniquely defined by the set of vertices of added edges which
are connected to q), and tr(op + bo) + tr(bq) = 5 + [(tr(bq + eq) + tr(bq +
eo)−tr(bq+eo+eq))+tr(bq+ab)] = 5+[(C3C2+C2C3−C2C2)+C2] = 23
triangulations to the right of ao.
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• After the addition of ac (as depicted in Figure 54), there are C2 = 2
triangulations to the left of ao and C3 = 5 triangulations to the left of aq.
Adding a child of ac results in C ′

3 = 3 to the left of ao, and C ′
4 = 9 to

the left of aq. Adding both child edges of ac results in 5 triangulations to
the left of ao (each triangulation is uniquely defined by the set of vertices
of added edges which are connected to o), and [tr(do) + tr(dq) − tr(do +
dq)] + tr(ac) = [C2C3 + C3C2 −C2C2] + C2 = 18 triangulations to the left
of aq.

The above analysis is summarized in Table 5, which presents the maximal
supports for the various extension vints (each row in the table is indexed by
the numbers of RC edges added through ab and of RC edges added through
ac).The support of each vint is given by the expression tr(bc) + tr(aq) +
tr(ao) − tr(aq + ao); by using the column names of Table 5, and recalling
that tr(bc) = 5, the support can be written as 5 + AB + CD − AD.

Using the table, we notice that an 8-vint has a support of at most 25,
and a 9-vint has a support of at most 38. Moreover, at most one extension
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8-vint has a support of at most 25 (it is the 8-vint with three level-1 edges),
and the other 8-vints have a support of at most 20. The absolute value of the

Figure 55:
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overall charge of two 8-vints and a 9-vint is at least 1
20 + 1

25 + 2
38 = 271

1900 > 1
9 ,

neutralizing the charge of the 6-vint.

Table 5: Upper bounds on the supports of the extension vints of a 6-vint
with a support of 9.

A B C D

ab/ac Type Right Left Right Left Support
edges of aq of aq of ao of ao

2/0 8-vint 3 2 12 1 20
1/1 8-vint 2 5 7 2 25
0/2 8-vint 1 9 3 3 20
3/0 9-vint 5 2 23 1 33
2/1 9-vint 3 5 12 2 38
1/2 9-vint 2 9 7 3 38
0/3 9-vint 1 18 3 5 33

(ii)/(iii) The 6-vint has a support of 6, which implies that either o
or q blocks the visibility between its two neighbors, as depicted in Figures
55 and 56. We determine how many triangulations are lost in an 8-vint
(or a 9-vint) when taking the previous case and adding such a restriction.
This is exactly the number of triangulations which contain the forbidden
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chord, which is also the number of triangulations after removing either o or
q (without loss of generality, consider case (ii), where o is removed). There
are C2 = 2 such triangulations when bc is present.

When aq is present, each triangulation holds a unique set of vertices of
added edges which are connected to q; when there are at least two added
edges, there are at least three such sets, and thus, there are tr(bc)+ tr(aq) ≥
2 + 3 = 5 triangulations. Notice that even if some of these triangulations
do not exist (since q cannot see a vertex of an added edge), they were still
counted in the analysis of case (i). This implies that the absolute value of
the overall charge of two 8-vints and a 9-vint is more than 1

20−5 + 1
25−5 +

2
38−5 = 39

220 > 1
6 , neutralizing the charge of the 6-vint (a slightly higher

charge is easily achieved using a separate analysis for each of the various
extension vints. However, this simpler and weaker analysis is sufficient for
our purpose).

(iv) The 6-vint has a support of 4, as depicted in Figure 57. As in
the previous case, we determine the number of triangulations of the 8-vints
and 9-vints (from the first case), which use at least one of the forbidden
chords. This time, these are the triangulations which contain bo, and an
additional triangulation which contains op but not bo (both cp and bc must
be present in this case). When bc is present, there are C2 = 2 triangulations
which contain bo.

When ao is present, each set of vertices of added edges which are con-
nected to o corresponds to two triangulations (since the quadrilateral bpqo
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has two triangulations). In an 8-vint with three level-1 edges, there are at
most four such sets, and in a standard 8-vint there are three. In a 9-vint
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with three level-1 edges there are at most six such sets and in a 9-vint with
two level-1 edges there are five. The absolute value of the overall charge of
two 8-vints and a 9-vint is at least 1

20−9 + 1
25−11 +min( 2

38−15 , 2
33−13 ) = 883

3542 >
1
4 − 1

1400 , leaving the 6-vint with a charge smaller than 1
1400 (note that this is

the only case where we do not manage to completely neutralize the charge
of the 6-vint). �

7 The analysis

In the previous sections, we reviewed a variety of rules and methods for
analyzing the charge of a 3-vint. In this section, we apply these rules to
show that the charge of a 3-vint is always smaller than 30. This is achieved
using a rather long case analysis, according to the possible rigid cores, which
are grouped into subsections according to the number λ1 of their level-1
edges.

In order to bound the charge from any RC, with any non-rigid extensions,
we first assume that its flip-tree is complete, up to level-3, and that each vint
with a positive charge, which is not entirely in the RC, has a support of 2.
This usually leads to a larger bound on the total charge (see the earlier
version of the paper, [20]). To lower this bound, we remove edges from
the flip-tree, by arguing that their presence can only lower the charge (for
example, if they participate in 8-vints with a low support). Similarly, we
argue that the worst-case charge is obtained when some vints have a higher
support, either because a lower support would give a lower total charge, or
by showing that it is impossible for them to have a low support.

7.1 Analysis of λ1 = 0

In this case, there are no edges in the rigid core; this implies that there are
no vints with a support of 1, except for the 3-vint itself. There are three
5-vints and twelve 6-vints which contain two level-1 edges. All of these vints
have a support of at least 3. The total charge is therefore at most

4 · 1 + 3 · 1

2
· 3 + 2

(
1

2
· 6 +

1

3
· 3

)

+ 1

(
1

2
· 16 +

1

3
· 12

)

= 28
1

2
.

7.2 Analysis of λ1 = 1

This subsection analyzes the rigid cores with λ1 = 1. We first analyze
the basic RCs depicted in Figures 58, 60, and 61, and then deal with any
other RC with λ1 = 1, obtained by adding RC edges to one of the basic
RCs. Any of these extension RCs is analyzed using a bound proved for the
corresponding basic RC, and considering the changes in that bound caused
by the rigidity of the new edges. In these flip-tree figures, the solid lines
represent RC edges, and the dashed lines represent non-RC edges, which
might, or might not be present in the flip-tree.
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RC 1a, as depicted in Figure 58.
As already mentioned, here and later, we begin by assuming that the flip-tree

Figure 58:
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is complete. This involves no loss of generality as long as we only consider
vints with positive charges. We will drop this assumption and analyze the
situation more carefully when we need to use vints with negative charges.

• There are two non-rigid subtrees (as defined in Rule 6; in the figure, these
are the subtrees of A and B). Each of those can contain five 6-vints. By
Rule 6, the charge from these ten 6-vints cannot exceed 2 · 2 = 4.

• The 6-vint which contains C and A has two non-adjacent flippable edges,
which implies a support of at least 4. There are four 6-vints of this sort,

Figure 59:

b

bcab

c

v

a

with a total charge of at most 4 · 1
4 = 1.

• The 5-vint which contains both A and B has a support of at least 3
(as depicted in Figure 59). This also applies to the five 6-vints which
extend this 5-vint. The overall charge from the above vints is at most
2 · 1

3 · 1 + 1 · 1
3 · 5 = 21

3 .

In the above, we analyzed the supports of nineteen 6-vints. Since no 6-vint
is fully contained in the RC, we assume that each of the other nine 6-vints
has a support of 2. Using similar considerations for the other 5-vints and
4-vints, we conclude that the total charge cannot exceed

4 · 1 + 3

(

1 · 1 +
1

2
· 2

)

+ 2 · 1

2
· 8 + 1 · 1

2
· 9 + 4 + 1 + 2

1

3
= 29

5

6
.

RC 1b, as depicted in Figure 60.

• As in RC 1a, there are five 6-vints and one 5-vint which contain both A
and B. Each of those vints has a support of at least 3, and their overall

Figure 60:

RC 1b

B
Z

D Y

A

charge is, as above, at most 21
3 .

• Similarly to RC 1a, the 6-vints which contain D and either A or B, have
a support of at least 4. The charge from the two 6-vints cannot exceed
2 · 1

4 = 1
2 .

• In the non-visible subtree of Z and Y (rooted at either A or B), five 6-
vints can be extended (using Z and Y ) into 8-vints with the same support
(see Section 6.2). We can ignore each of these 6-vints.

So far, we have accounted for twelve 6-vints, and one 5-vint. There is only
one rigid 5-vint and no rigid 6-vints; so each of the other vints has a support
of at least 2. We conclude that the total charge is at most
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RC 1c, as depicted in Figure 61.

• Assume, without loss of generality, that the non-visible subtree of Z, Y ,
and X is the subtree of A (see Section 6.2). Using these RC edges, each
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of the five 6-vints lying entirely in the non-visible subtree can be extended
into (more than) an 8-vint with the same support, neutralizing its charge.
Similarly, each of the two 5-vints lying entirely in the non-visible subtree
can be extended into an 8-vint with the same support, halving its charge.
This implies that the overall charge from these seven vints is at most
2 · 1

2 · 1
2 · 2 = 1.

• As in the two preceding cases, there are five 6-vints and one 5-vint which
contain both A and B. Each of those vints has a support of at least 3,
and their overall charge is, as above, at most 21

3 .
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• Consider the 5-vint using B and Z. If this 5-vint has a support of 3,
the four 6-vints extending it with either X, Y , or a child of B, also have
a support of at least 3. This implies that, in this case, the charge is
decreased by at least (1

2 − 1
3 )(2 ·1+1 ·4) = 1. If the 5-vint has a support of

2, the vertex of B cannot see the vertex of Z (see Figure 62, where p is the
vertex of Z and d is the vertex of B). Notice that any point that cannot
be seen by p, cannot be seen neither by o nor by q, which are the vertices
of X and Y , respectively (the line of sight of o is shaded, and the line of
sight of p is bounded by the dashed lines). This implies that o and q also
cannot see d. This, combined with the fact that the non-visible subtree of
Z is the subtree of A, imply that we can use X and Y to extend the 6-vint
using A, B, and Z, into an 8-vint with the same support. We can also
use Z and X (or Y ) to extend the two 6-vints using A, B, and a child of
B, into an 8-vint with the same support. Since each of these three 6-vints
has a support of at least 3, the charge decreases by at least 1

3 · 3 = 1. We
conclude that in either case the charge goes down by at least 1.

The first two steps have taken care of ten 6-vints and three 5-vints. Using
the default assumption that each of the remaining vints has a support of at
least 2, with the exception of one 4-vint, two 5-vints, and one 6-vint which
are rigid, and exploiting the charge reduction obtained in the first step, the
overall charge is at most
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Extensions of the previous cases. The only possible extension to the
above RCs is the inclusion of additional level-3 RC edges (in cases RC 1b
and RC 1c). Consider the addition of a single level-3 edge, H, either to
RC 1b or to RC 1c (without loss of generality, as a child edge of Y ), as
depicted in Figure 63. There is only a single vint with a positive charge that
uses H, which is a 6-vint previously considered as having a support of 2 (in
the analysis of the bounds for these RCs). This increases the bound on the
charge by 1

2 . In both cases, assume first that the edge C exists, and consider
the 6-vint which contains C. By Rule 2, this 6-vint can be extended into
an 8-vint with the same support, using H and its parent (as depicted in
Figure 64, where the 6-vint is shaded). This 6-vint, and the 6-vint obtained
by replacing C with its sibling edge (assuming that it exists), each added a
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charge of 1
2 to the original total charge, which is now neutralized. Hence,

the bound on the overall charge changes by 1
2(1 · 1 − 1 · 2) = −1

2 , implying
that adding H to the RC can only lower the bound. If C or D (or both) do
not exist, the overall charge decreases by at least 1

2 (since we assumed each
of the corresponding 6-vint has a support of at least 2; note that neither
of these 6-vints participated in the special cases of charge reduction). This
neutralizes the increase in the charge caused by H.
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We now consider the addition of two level-3 RC edges. The subtree of
the rigid level-1 edge can hold four 6-vints with a level-3 edge. Two of these
6-vints are entirely in the RC, which increases the bound on the charge by
at most 1

2 · 2 = 1 (as in the previous paragraph, the bound on the charge of
each 6-vint increases from 1

2 to 1). For each of the two other 6-vints, either
it is not present in the flip tree, or it can be extended into an 8-vint with the
same support, as in the previous paragraph. In either case, the bound on
the charge of the 6-vint decreases from 1

2 to 0. This implies that the change
in the charge cannot exceed 1

2(1 · 2 − 1 · 2) = 0.
In RC 1b, no more than two level-3 RC edges can be added. In RC

1c, after adding two such edges there are five RC edges, and by Rule 3,
additional level-3 RC edges cannot increase the charge.

7.3 Analysis of λ1 = 3

This subsection analyzes the rigid cores with λ1 = 3. We first analyze the
basic RCs depicted in Figures 65, 72, 79, and 81, and then deal with any
other RC with λ1 = 3, obtained by adding RC edges to one of the basic
RCs. Any of these extension RCs is analyzed using a bound proved for the
corresponding basic RC, and considering the changes in that bound caused
by the rigidity of the new edges. In these flip-tree figures, the solid lines
represent RC edges, and the dashed lines represent non-RC edges, which
might, or might not be present in the flip-tree.

Figure 65:
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RC 3a, as depicted in Figure 65.
There are at most three 6-vints that use two level-2 edges, such as the one
using X, A, and B. Each such 6-vint can be extended into an 8-vint by
adding the two additional RC edges. The possible charges from such vints
were analyzed in Section 6.4 (notice, though, that we cannot use Rule 7
from this section, since we do not have three additional RC edges). If the
6-vint has a support of at most 3, the 8-vint has the same support. If the
6-vint has a support of either 4 or 7, the 8-vint has a support of at most 7 or
13, respectively. In both cases, the combined charge from both vints cannot
exceed 3

28 .
We first ignore every vint that is not entirely in the RC, except for the

three 6-vints that were just considered. The charge from the remaining vints
cannot exceed

4 · 1 + 3 · 3 + 2 · 3 + 1 · 1 +
3

28
· 3 = 20

9

28
.

We next analyze the possible charges coming from the ignored vints. First,
there are six 5-vints that consist of a rigid level-1 edge and a level-2 edge
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(such as the one using X and A). By Rule 1, three out of these six 5-vints
are handicapped (if they are present in the flip-tree), and the other three

Figure 66:
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can have a support of either 2 or 3. Moreover, each of the six 5-vints can be
extended into two 6-vints by adding a level-3 edge (such as the one using X,
B, and C), and into two more 6-vints by adding an additional level-1 edge
(such as the one using X, A, and Y ). Each 5-vint can be extended into a
fifth 6-vint by an additional level-2 edge, but we already considered these
6-vints. We consider the possible cases for a 5-vint and its extensions, and
bound the combined charge in each case:

• A handicapped 5-vint (as depicted in Figure 66, where the hole of the
5-vint is shaded). Each of the two 6-vints that extend the 5-vint with a
level-3 edge is entirely in its non-visible terrain. Therefore, by adding the
two additional RC edges to such a 6-vint, we generate an 8-vint with the
same support, neutralizing the charge of the 6-vint. The charge from the
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5-vint and the two remaining 6-vints is at most 2 · 1
2 · 1 + 1 · 1

2 · 2 = 2.

• A 5-vint which is not handicapped, but has a support of 2 (as depicted in
Figure 67, where the 5-vint is shaded). As in the previous case, each of the
two 6-vints that extend the 5-vint with a level-3 edge (such as the 6-vint
using de) can be extended into an 8-vint, by using the two additional RC
edges. If the vertex of the level-3 edge of the 6-vint cannot see a (such as
the vertex g in figure 67), the 6-vint is entirely in its non-visible terrain,
and thus, the 8-vint has the same support as the 6-vint. Otherwise, by
Table 2 in Section 6.5 (the part where only o — f in Figure 67 — can
see a), the 6-vint has a support of either 4, 6, or 7, and the 8-vint has a
support of at most 7, 9 or 13, respectively. Therefore, the overall charge
from such a 6-vint and its extending 8-vint cannot exceed 1

4 − 1
7 = 3

28 .
We conclude that the charge from the such a 5-vint and its four extension
6-vints is at most 2 · 1

2 · 1 + 1 · 1
2 · 2 + 3

28 · 2 = 2 3
14 .
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• A 5-vint with a support of 3 (as depicted in Figure 68, where the 5-vint is
shaded). Once again, each of the two 6-vints that extend the 5-vint with
a level-3 edge (such as the one using de) can be extended into an 8-vint,
by using the two additional RC edges. The possible charges from such
vints are listed in Table 2 in Section 6.5 (since the vertex of the level-2
edge can see a, we need to consider the part where only q can see a, and
the part where both o and q can see a). We notice that there is only a
single case which generates a charge of more than 1

5 — when the 6-vint
and the 8-vint have supports of 3 and 8, respectively. We conclude that
the charge from the such a 5-vint and its four extension 6-vints is at most
2 · 1

3 · 1 + 1 · 1
3 · 2 +

(
1
3 − 1

8

)
· 2 = 13

4 .

So far we have accounted for all possible 5-vints and 6-vints. The overall
charge depends on how many 5-vints with a level-2 edge are actually present
(and what are their supports):

• There are at most four 5-vints. By Rule 1, at least one of these 5-vints
is handicapped. Therefore, the charge cannot exceed (the second term
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represents the handicapped 5-vint, and the third term represents the most
pessimistic bound for the three other 5-vints)

Figure 69:
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• There are five 5-vints, and at least two of them have a support of 3.
There are at least two handicapped 5-vints, and by appending their edges
together with the third RC edge, we form an 8-vint (as depicted in Figure
69, where one handicapped 5-vint consists of ab and ad, and the other
one consists of bc and bp). All the vertices of this 8-vint are in their non-
visible terrains, and thus, its support is the product of the supports of the
5-vints, which is 2 · 2 = 4 (see Rule 4). Therefore, the total charge cannot
exceed (the second term represents two 5-vints with a support of 3, the
third term represents two handicapped 5-vints, the fourth term represents
the remaining 5-vint, and the last term represents the 8-vint described
above)
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• There are five 5-vints, and at least four of them have a support of 2 (notice
that this is the complement of the previous case for five 5-vints). We can
use pairs of such 5-vints (from different subtrees) in order to create 8-vints
such as the one described in the previous case. (For this, we only need
to assume that the supports of each of the corresponding 5-vints is 2.)
This time, there are at least four such 8-vints, each with a support of 4.
Therefore, the total charge cannot exceed (the second term represents two
handicapped 5-vints, the third term represents the three other 5-vints,
and the last term represents the four 8-vints described above)

20
9

28
+ 2 · 2 + 2

3

14
· 3 − 1

4
· 4 = 29

27

28
.

• There are six 5-vints, and exactly three of them have a support of 2. These
three 5-vints must be the handicapped 5-vints, and we can use the non-
visible subtree method with each of them (see Section 6.2). There are six
6-vints with a level-3 edge that were not yet ignored (those that extend
a 5-vint with a support of 3), and we considered the charge generated
by each of those as at most 1

3 − 1
8 = 5

24 (in the case of “A 5-vint with a
support of 3”). Each non-visible subtree of a handicapped 5-vint contains
two such 6-vints, and thus, by appending each of the 6-vints with the edges
of the respective handicapped 5-vint, we generate an 8-vint with a double
support (as depicted in Figure 70, where the 6-vint is shaded and the
handicapped 5-vint consists of ac and cd). For simplicity, we will assume
that each such 8-vint halves the net previous charge of its corresponding
6-vint, including the other extension 8-vint considered above, even though
it actually gives a higher negative charge (for example, when the 6-vint
has a support of 3, the charge should be

(
1
3 − 1

8

)
− 1

3 · 1
2 = 1

24 and not
(

1
3 − 1

8

)
· 1

2 = 5
48 ). Each of the three hadicapped 5-vints extends two such

6-vints, with an overall negative charge of at least 5
24 · 1

2 ·6 = 5
8 (notice that
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such a 6-vint can be in at most two non-visible subtrees, which implies
that the overall charge from a 6-vint and its extensions is non-negative).
As in the previous cases, we can generate an 8-vint with a support of 4

Figure 71:
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from each pair of handicapped 5-vints. This time, there are three such
8-vints. Similarly, by appending the edges of all three handicapped 5-
vints, we get a 9-vint with a support of 2 · 2 · 2 = 8 (as depicted in Figure
71). The total charge cannot exceed (the second term represents three
handicapped 5-vints, the third term represents the three other 5-vints,
the fourth term represents the negative charge from the three non-visible
subtrees, the fifth term represents the three 8-vints described above, and
the last term represents the 9-vint)
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• There are six 5-vints, and at least four of them have a support of 2. We
wish to show that the bound in this case cannot exceed the bound in the
previous case. This is done by showing that in the previous case, changing
the support of another 5-vint into 2 can only lower the overall charge.
Such a change increases the bound on the charge of the 5-vint and its
extensions by (2 3

14 −13
4 ) = 13

28 . Moreover, there might be a decrease in the
negative charge attained from the use of non-visible subtrees (described
in the previous case). Specifically, there are two 6-vints that extend the 5-
vint with a level-3 edge, and each of them could be a 6-vint with a support
of 3 contained in the non-visible subtree of at most two handicapped 5-
vints. After the change, each such 6-vint generates a charge of at most
3
28 , instead of at most 5

24 . Since we assume that an 8-vint extending such
a 6-vint neutralizes half of its charge, the negative charge from (at most)
four 8-vints decreases by 1

2 ·
(

5
24 − 3

28

)
· 4 = 17

84 . Nevertheless, we also get
vints which decrease the total charge. That is, we can use the changed
5-vint to create additional extension vints, such as those described in the
previous cases. We can create at least two new 8-vints with a support of

Figure 72:
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4 and one 9-vint with a support of 8. The above implies that the change
can increase the total charge by at most 13

28 + 17
84 − 2 · 1

4 − 2
8 = − 1

12 . We
conclude that changing the support of more 5-vints into 2 cannot increase
the total charge.

RC 3b, as depicted in Figure 72.

• Each of the ten 6-vints that consist of a rigid level-1 edge, a non-rigid
level-2 edge, and a level-3 edge meets the conditions of Rule 8. By the
rule, the overall charge of these ten 6-vints cannot exceed 10 · 1

1400 = 1
140 .

• Each of the two 6-vints which use two non-rigid level-2 edges meets the
conditions of Rule 7. By the rule, these 6-vints can be ignored.

• Each of the two 6-vints using X, W , and a level-3 edge can be extended
into an 8-vint, by using Y and Z. By Table 2 of Section 6.5 (the part
where the level-2 edge is rigid), if the 6-vint has a support of at most 3,
the 8-vint has the same support, and if it has a support of 4, the 8-vint
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has a support of at most 7. Therefore, the overall charge from these two
6-vints and their two extending 8-vints is at most 2(1

4 − 1
7) = 3

14 .
Figure 73:
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We first ignore every vint not entirely in the RC, except for the fourteen
6-vints that were just considered, and the 6-vint that consists of X, W , and
B. The charge from the remaining vints cannot exceed

4 · 1 + 3 · 3 + 2 · 4 + 1
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The possible additional charges come from the five 5-vints which use a rigid
level-1 edge and a non-rigid level-2 edge, and from the ten 6-vints that extend
such a 5-vint using an additional level-1 edge. At least two of these five 5-
vints must be handicapped, and each of the other three can have a support
of either 2 or 3. We analyze the possible charges from such 5-vints and their
extension vints according to the following cases:

• A 5-vint with a support of 2 (including the handicapped 5-vints). By
appending additional RC edges to the 5-vint, we can generate two 6-vints
and an 8-vint4. Since all of the vertices of the 5-vint are in their non-
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visible terrain, adding additional RC edges cannot increase the support.
Thus, all of the above vints have a support of 2. The overall charge of
these vints is 1

2(2 · 1 + 1 · 2 − 1 · 1) = 11
2 .

• A 5-vint with a support of 3 that does not use X (as depicted in Figure
73, where the 5-vint is shaded). By appending additional RC edges, the
5-vint can be extended into two 6-vints, each with a support of either
3 or 4 (as depicted in Figure 73 and in Figure 74, respectively; in both
figures, the 5-vint is shaded), and into one 8-vint with a support that can
be bounded in terms of the supports of the 6-vints, as followd. (See Figure
75, where the 5-vint is shaded and ac represents X.) For each of these
three extension vints, every triangulation of its hole must contain either
aq or bc (in the notation of the figures), and tr(bc) = C2 = 2. Let i be a
binary variable, which is 1 if and only if q can see d (in the notation of
Figure 75). (Notice that when i = 0, q cannot see f either.) Let j be a
binary variable, which is 1 if and only if q can see e. The support of the
6-vint that uses X is tr(aq) + tr(bc) = (1 + i) + 2 = 3 + i, and similarly,
the support of the second 6-vint is 3 + j. We can bound the support of
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the 8-vint by the expression tr(bc) + tr(aq) = 2 + (1 + j) · (1 + 2i) (where
tr(aq) is the maximal number of triangulations of the portion to the right
of aq, times the maximal number of triangulations of the portion to its
left). Table 6 lists the possible cases for the supports of these vints. (The
first term in the charge represents the charge of the 5-vint, which is always
2 · 1

3 .) By examining the four possible cases, we conclude that the overall
charge of these four vints cannot exceed 1 1

20 .

• A 5-vint with a support of 3 that contains X (as depicted in Figure 76,
where the 5-vint is shaded, bc represents X, and cp represents B). By

4Note that the extension 6-vints used here, and in the following cases, are indeed those
not considered above. In the case of the 5-vint which uses X and B, the extension 6-vints
are those using Y or Z, but not W
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using the same analysis as in the previous case, we notice that the 6-vints
have the same possible supports, and that the 8-vint has a smaller bound
on its support — tr(bc) + tr(aq) = 2 + (1 + j) · (1 + i) (since, by Rule 2,
adding W cannot increase its charge). In this case, as is easily verified,
the charge from the four vints cannot exceed 1.
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Table 6: Possible charges from a 5-vint with a support of 3 and its extensions.
The first 6-vint is the one containing X.

i/j 6-vint Second Max support Overall
using X 6-vint of 8-vint charge

0/0 3 3 3 2
3 + 2 · 1

3 − 1
3 = 1

0/1 3 4 4 2
3 + 1

3 + 1
4 − 1

4 = 1
1/0 4 3 5 2

3 + 1
4 + 1

3 − 1
5 = 1 1

20
1/1 4 4 8 2

3 + 2 · 1
4 − 1

8 = 1 1
24

We divide the rest of the analysis according to the number of such 5-vints
that are present in the flip-tree and their supports:

• At least two 5-vints are not present in the flip-tree. The charge is at most

24
101

140
+ 1

1

2
· 3 = 29

31

140
.

• A single 5-vint is not present in the flip-tree, and at most two 5-vints
have a support of 2. The charge is at most (the third term represents two
5-vints with a support of 3, and the second term represents the other two
5-vints)

24
101

140
+ 1

1

2
· 2 + 1

1

20
· 2 = 29

23

28
.
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• A single 5-vint is not present in the flip-tree, and at least three 5-vints
have a support of 2. We consider the previous case and show that changing
the support of another 5-vint into 2 cannot increase the total charge. The
bound on the charge of the changed 5-vint increases by 11

2 − 1 1
20 = 9

20 .
By appending the edges of the changed 5-vint with the edges of another
5-vint which has a support of 2 (and without a common level-1 edge), and
with the additional RC edges, we form a 9-vint (as depicted in Figure 77,
where bc represents X, the first 5-vint consists of bc and bp, and the second
5-vint consists of ab and ae). By Rule 4, the support of this 9-vint is the
product of the supports of the two 5-vints, which is 2 · 2 = 4. Therefore,
the change in the total charge is at most 9

20 − 2
4 = − 1

20 , which implies that
giving a support of 2 to more 5-vints can only decrease the total charge.
In conclusion, when a single 5-vint is missing, the charge cannot exceed
2923

28 .

• All five 5-vints are present, and only the two handicapped 5-vints have
a support of 2. By appending the edges of the two handicapped 5-vints
together with additional RC edges, we form an 8-vint and a 9-vint. As
in the previous case, by Rule 4, both vints have a support of 2 · 2 = 4.
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The non-visible subtree of each of the handicapped 5-vints must contain
a 5-vint with a support of 3. Appending the edges of a handicapped 5-
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vint together with the edges of the corresponding 5-vint with a support of
3, and with the rest of the RC, forms a 9-vint (as depicted in Figure 78,
where the handicapped 5-vint consists of ab and be, and the corresponding
5-vint with a support of 3 consists of bc and cp). If we ignore the edges
of the handicapped 5-vint, we get a 7-vint with a support of at most
tr(bc) + tr(aq) = 2 + 3 = 5. Since e and o cannot see any vertices outside
of the convex quadrilateral aboe, adding the edges of the handicapped 5-
vint doubles the support of the 7-vint, to at most 5 ·2 = 10. There are two
such 9-vints, since there are two handicapped 5-vints. Therefore, the total
charge cannot exceed (the second term represents the two handicapped 5-
vints, the third term represents the other three 5-vints, the fourth term
represents the 8-vint and the 9-vint which have a support of 4, and the
last term represents the two 9-vints that have a support of 10)

24
101

140
+ 1

1

2
· 2 + 1

1

20
· 3 − 1

4
(2 · 1 + 1 · 1) − 2

10
· 2 = 29

101

140
.

• All five 5-vints are present in the flip-tree, and there are at least three
5-vints with a support of 2. As before, we consider the previous case and
change the support of another 5-vint into 2. The bound on the charge
of the 5-vint and its extensions increases by at most 11

2 − 1 = 1
2 . By

appending the edges of the changed 5-vint together with the edges of
a handicapped 5-vint that does not share a common level-1 edge with it,
and with additional RC edges, we can create one additional 8-vint and one
additional 9-vint, both with a support of 4 (as described in the previous
case; notice that if the changed 5-vint is the one using X, we can use each
of the handicapped 5-vints, and thus, have two 8-vints and two 9-vints).
However, we might have already considered this 9-vint in the previous
case as having a negative charge of at least 2

10 = 1
5 . Therefore, the bound

increases by at most 1
2− 1

4 (2·1+1·1)+ 1
5 = − 1

20 (the second term represents
the additional 8-vint and 9-vint with a support of 4, and the third term
represents the previous charge of the 9-vint). In conclusion, changing the
supports of more 5-vints into 2 can only decrease the charge.

Figure 79:
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RC 3c, as depicted in Figure 79.

• There are five 5-vints, six 6-vints, and one 8-vint entirely in the RC. The
overall charge of the vints entirely in the RC is 4·1+3·3+2·5+1·6−1·1 = 28.

• Each of the twelve 6-vints that use a level-3 edge meets the conditions
of Rule 8. By the rule, the overall charge of these twelve 6-vints cannot
exceed 12 · 1

1400 < 1
100 .

• Each of the two 6-vints that use two non-rigid level-2 edges meets the
conditions of Rule 7. By the rule, these two 6-vints can be ignored.

• Consider a 5-vint with a non-rigid level-2 edge and a support of 2. We
already considered the two 6-vints that extend it with a level-3 edge and
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the 6-vint that extends it with an additional level-2 edge. By appending
additional RC edges, the 5-vint can be extended into two additional 6-
vints, three 8-vints and one 9-vint, all with a support of 2 (since the
vertices of the 5-vint are in their non-visible terrain). The overall charge
from the above vints is 1

2(2 · 1 + 1 · 2 − 1 · 3 − 2 · 1) = −1
2 . Therefore, the

existence of a level-2 edge, which takes part in a 5-vint with a support of
2, can only decrease the total charge. By Rule 1, there can be at most
two 5-vints with a level-2 edge and a support of 3, since the other two are
handicapped 5-vints.
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• We still need to consider two possible 5-vints with a support of 3, and four
6-vints which extend them with an additional level-1 edge. One of these
two 5-vints is in the non-visible subtree of X, W , and U (as depicted in
Figure 80, where X, W , and U correspond to bc, be, and ce, respectively,
and the 5-vint is shaded). By using additional RC edges, we can extended
the 5-vint into two 6-vints with a support of at least 3 (by adding either
bc or ac), one 8-vint with a support of exactly 3 (by adding bc, be, and
ce), two 8-vints with a support of at most tr(ab) + tr(cf) = 2 + 2 = 4 (by
adding ac, bc, and a child-edge of bc), and one 9-vint with a support of
at most 4 (by adding the entire RC). The overall charge from these seven
vints is at most 2

3 + 1
3 · 2− 1

3 − 1
4 · 2− 2

4 = 0 (the terms represent the vints
in the order they were described above). We conclude that this 5-vint and
its extensions cannot increase the total charge.

• We are left with a single 5-vint with a support of 3, and with the two 6-
vints which extend it with an additional level-1 edge. Since these 6-vints
also have a support of at least 3, the overall charge of these three vints
cannot exceed 1

3 (2 · 1 + 1 · 2) = 11
3 .

Hence, the total charge cannot exceed (the first term represents the vints
that are entirely in the RC, the second term represents the twelve 6-vints
with a level-3 edge, and the last term represents the only additional 5-vint
that can generate positive charge with its extensions)

28 +
1

100
+ 1

1

3
= 29

103

300
.
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RC 3d, as depicted in Figure 81.

• There are five 5-vints, five 6-vints, and one 8-vint entirely in the RC. The
overall charge of the vints entirely in the RC is 4·1+3·3+2·5+1·5−1·1 = 27.

• Each of the twelve 6-vints that use a level-3 edge meets the conditions
of Rule 8. By the rule, the overall charge of these twelve 6-vints cannot
exceed 12 · 1

1400 < 1
100 .

• The 6-vint using two non-rigid level-2 edges meets the conditions of Rule
7. By the rule, this 6-vint can be ignored.

• Consider a 5-vint using Z and a non-rigid level-2 edge (such as the one
using Z and B), and assume that it has a support of 2. The vertices of such
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a 5-vint are in their non-visible terrain, and thus, appending additional
RC edges cannot increase its charge. By appending additional RC edges,
we get two 6-vints (by appending either X or Y ), two 8-vints, and a 9-vint,
all with a support of 2. There are three more vints that extend the 5-vint
and may have a positive charge (the two 6-vints that extend the 5-vint
with a level-3 edge, and the 6-vint that extends it with an additional level-
2 edge), but we already considered them above. Thus, when the level-2
edge of such a 5-vint is present in the flip-tree, the bound on the charge
can increase by at most 2

2 · 1 + 1
2 · 2 − 1

2 · 2 − 2
2 · 1 = 0. We may therefore

ignore the level-2 edge of the handicapped 5-vint in the subtree of Z, and
assume that the other 5-vint in that subtree has a support of 3.

• Consider the 5-vint which contains Z and has a support of 3. Out of
the five 6-vints that extend it, we already considered the two 6-vints that
extend the 5-vint with a level-3 edge and the 6-vint which extends the
5-vint with an additional level-2 edge. The overall charge from the 5-vint
and the two remaining 6-vints cannot exceed 1

3 (2 · 1 + 1 · 2) = 11
3 .

• Consider a 5-vint using either X or Y and a non-rigid level-2 edge (such
as the one using Y and A), and assume that it has a support of 2. The
vertices of such a 5-vint are in their non-visible terrain, and thus, ap-
pending additional RC edges cannot increase its charge. By appending
additional RC edges, we get three 6-vints (by appending either X, Z, or
U), three 8-vints, and a 9-vint, all with a support of 2. There are two
more vints that extend the 5-vint and may have a positive charge (the
two 6-vints that extend the 5-vint with a level-3 edge), but we already
considered them above. Thus, when the level-2 edge of such a 5-vint is
present in the flip-tree, the bound on the charge can increase by at most
2
2 · 1 + 1

2 · 3 − 1
2 · 3 − 2

2 · 1 = 0. We may therefore assume that these two
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5-vints have a support of 3.

• Consider a 5-vint which contains either X or Y , a non-rigid level-2 edge,
and has a support of 3 (as depicted in Figure 82, where ac represents Z
and the 5-vint is shaded). Using RC edges, the 5-vint can be extended,
as in the preceding case, into three additional 6-vints, three 8-vints, and
one 9-vint. For each of these vints, every triangulation of its hole must
contain either bc or aq, and tr(bc) = 2. There are two more vints that
extend the 5-vint and might have a positive charge (the two 6-vints that
extend the 5-vint with a level-3 edge), but they were already considered
above. The 6-vint that extends the 5-vint with a rigid level-2 edge must
have a support of 3, and we ignore it for now. Let i be a binary variable,
which is 1 if and only if q can see d (in the notation of the figure); notice
that when i = 0, q cannot see f either. Let j be a binary variable, which
is 1 if and only if q can see e. The 6-vint using ab has a support of
tr(bc) + tr(aq) = 2 + (1 + i) = 3 + i, and similarly, the 6-vint using ac
has a support of 3 + j. As in RC 3b, we use the supports of the 6-vints
to bound the supports of the larger vints. The support of the 8-vint not
using ad is at most tr(bc)+ tr(aq) = 2+(1+ j) · (1+ i) (since tr(aq) is the
number of triangulation of the portion to the left of aq times the number
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of triangulations of the portion to its right). Similarly, the support of the
8-vint not using bp is 2 + (1 + j) · (1 + 2i), the support of the 8-vint not
using ac is at most 2+1 · (1+2i), and the support of the 9-vint is at most
2 + (1 + j) · (1 + 2i). Table 7 lists the possible cases of the overall charge
of these six extension vints. Using the table, we notice that this charge
cannot exceed − 29

120 , and thus, the overall charge from such a 5-vint and
its seven extending vints (including the previously ignored 6-vint, with a
support of 3) is at most 2

3 + 1
3 − 29

120 = 91
120 .

Table 7: The overall charge of six extension vints of a 5-vint using either X
or Y and a non-rigid level-2 edge.

i/j 6-vint 6-vint first second third 9-vint Charge
using using 8-vint 8-vint 8-vint
ab ac

0/0 3 3 3 3 3 3 1
3 + 1

3 − 1
3 − 1

3 − 1
3 − 2

3 = −1
0/1 3 4 4 4 3 4 1

3 + 1
4 − 1

4 − 1
4 − 1

3 − 2
4 = −3

4
1/0 4 3 4 5 5 5 1

4 + 1
3 − 1

4 − 1
5 − 1

5 − 2
5 = − 7

15
1/1 4 4 6 8 5 8 1

4 + 1
4 − 1

6 − 1
8 − 1

5 − 2
8 = − 29

120

Hence, the total charge cannot exceed (the second term represents the 5-vint
using Z, the third term represents the two other 5-vints that have a support
of 3, and the last term represents the twelve 6-vints that use a level-3 edge)

27 + 1
1

3
+

91

120
· 2 +

1

100
= 29

43

50
.

Extensions of the previous cases. We start by considering additional
level-3 RC edges. We cannot add any level-3 RC edges to RC 3a, since it
does not have a level-2 RC edge. Each other RC with λ1 = 3 has at least four
RC edges, and thus, by Rule 3, adding a level-3 RC edge cannot increase the
bound on its charge. Therefore, we only need to consider additional level-2
RC edges. Adding a level-2 edge to RC3a results in RC 3b, and adding
a level-2 edge to RC 3b results in RC 3c or RC 3d. Hence, it suffices to
consider such extensions only of these two latter RCs.
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Consider an RC with a size of at least 5 (such as RC 3c, RC 3d, or an
extension thereof), and assume that its total charge is bounded by m. We
now show that adding a level-2 edge to the RC cannot increase the bound
beyond m, if the sibling of the added edge is an RC edge. An example of such
a case is depicted in Figure 83, where the changed edge is A. The change can
increase the bound on the total charge by reducing the support of one 5-vint
(using Y and A), two 6-vints that extend the 5-vint with a level-3 edge,
two 6-vints that extend the 5-vint with an additional level-1 edge (either
X or Z), and one 6-vint that extends the 5-vint with an additional level-2
edge (U). The charge from the two 6-vints that use a level-3 edge remains
bounded by Rule 8. (Notice that we have indeed used Rule 8 to bound the
charge of these vints while analyzing the basic RCs, so the charge does not
change.) Let s be the support of the 5-vint before the change. Since after
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the change the 5-vint has a support of 1, the positive charge gained from the
5-vint by the change is 2

(
1 − 1

s

)
. There is at least one 9-vint that consists

of the edges of the 5-vint and additional RC edges. Before the change, this
9-vint had a support of at least s, and afterwards, it has a support of 1.
The change in the charge of the 9-vint is at least 2

(
1 − 1

s

)
, neutralizing the

change in the charge of the 5-vint. (A similar case is described in Rule 3.)
Similarly, there are at least three 8-vints which consist of the edges of the

Figure 84:
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5-vint and additional RC edges, and the change in their charges neutralizes
the change in the charges of the other three 6-vints. We conclude that the
change did not increase the bound on the total charge.

Let RC 3e be the RC created by taking RC 3d and adding a child of Z to
the RC (as depicted in Figure 84, where the changed edge is T ). Similarly
to the previous paragraph, we show that the bound on the total charge of
RC 3d applies also to RC 3e. Once again, we need to neutralize the positive
charge generated by the reduction in the supports of one 5-vint (using Z and
T ) and the five 6-vints that extend it. The charge of the two 6-vints using a
level-3 edge is still bounded by Rule 8. The charge of the 6-vint using Z and
two level-2 edges can still be ignored by Rule 7. Finally, as in the previous
paragraph, the change in the charge of the 5-vint and of the two 6-vints that
extend it with an additional level-1 edge (either X or Y ) is neutralized by

Figure 85:
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the change in the charge of the 9-vint (using all the edges in Figure 84) and
of the two 8-vints (removing either U or W from the 9-vint).

With all these observations, we can prove a bound of at most 2943
50 on

any extension RC with λ1 = 3 and with at least two level-2 edges, by taking
either RC 3d or RC 3e and using the above claim (that the addition of a
level-2 RC edge with an already rigid sibling cannot increase the bound).
For example, to show this bound on the RC in Figure 85, we start from RC
3e and add two level-2 edges to the RC, each with an already rigid sibling.
We have already argued that the bound 2943

50 holds for RC 3e, and the above
claim implies that adding the two level-2 edges cannot increase the bound.

7.4 Analysis of λ1 = 2

This subsection analyzes the rigid cores with λ1 = 2. We first analyze the
Figure 86:
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basic RCs depicted in Figures 96, 103, 113, 120, and 125, and then deal with
any other RC with λ1 = 2, obtained by adding RC edges to one of the basic
RCs. Any of these extension RCs is analyzed using a bound proved for the
corresponding basic RC, and considering the changes in that bound caused
by the rigidity of the new edges. In these flip-tree figures, the solid lines
represent RC edges, and the dashed lines represent non-RC edges, which
might, or might not be present in the flip-tree.

Before analyzing the basic RCs, we present two methods for analyzing
RCs with λ1 = 2. In these methods, we assume that there are three level-1
edges in the flip-tree, so there is exactly one non-rigid subtree (as defined in
Rule 6). In order to refer to specific subcases of these methods them while
analyzing RCs, some of the following paragraphs are labeled with letters.
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Method 1. Assume that there are two 5-vints in the non-rigid subtree. In
order for any of these 5-vints to have a support of 2, its level-2 edge must
be rigid, so the vertex of the level-2 edge can see only its direct neighbors
(along the boundry of the hole). In Figure 86, o and q are such vertices; in
what follows, we focus on o, the vertex of bp. In order not to see a, o must

Figure 87:
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“hide” either to the right of the line supporting
−→
ab, or to the left of the line

supporting −→ap (the figure depicts the second situation). Similarly, in order

not to see c, o must hide either to the left of the line supporting
−→
bc, or to the

left of the line supporting −→cp. However, the former of the last two cases is
impossible, since in this case o would not see v. This leaves two cases, which
we refer to as a type I 5-vint and a type II 5-vint, respectively. In a type I

vint, o is to the right of the line supporting
−→
ab and to the left of the line

supporting −→cp. In a type II vint, o is to the left of the line supporting −→ap, in
which case it is also to the left of the line supporting −→cp. In Figure 86, the
5-vint which contains o is a type II vint, and the 5-vint which contains q is a
type I vint (with the roles of c and b flipped in the definition). It cannot be
the case that both 5-vints are of type II, since this would cause their level-2
triangles to overlap near p. We emphasize that these definitions only pertain
to 5-vints with a support of 2 in the non-rigid subtree.

(A) In order to analyze a type I 5-vint (such as the shaded 5-vint in
Figure 87), we use a similar argument to the one in Rule 7. Consider a vint,
s, which is created by adding RC edges to the 5-vint (such as the ones in the
figure). As in Rule 7, a triangulation of the hole of s must contain exactly
one of the edges bc, ap. It is easily checked that the hole of s has a single
triangulation that contains bc. Since o is in its non-visible terrain, when ap
is present, only p might be able to see vertices of added edges (along chords
of the corresponding hole). This implies that every triangulation of the hole
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which contains ap is uniquely determined by the subset of vertices of the
added edges that are connected to p. The support of s is two plus the number
of these non-empty subsets (one additional triangulation that contains bc and
another that corresponds to the empty subset). For example, if there are
two added edges, as depicted in Figure 87, there are two subsets with one
vertex, and one subset with two vertices; the corresponding triangulations
are depicted in Figure 88. This implies that the support of such a 7-vint is
at most 2 + 3 = 5. Although we have no use for a 7-vint, the support of
larger vints can be analyzed by using this method.

(B) For each type I 5-vint, there might be two 6-vints which extend it
with a level-3 edge. In one of these 6-vints, the vertex of the level-3 edge
must be in its non-visible terrain; this is similar to the case of a handicapped
5-vint, which is why we refer to it as a handicapped 6-vint. We refer to the
second 6-vint which extends a type I 5-vint with a level-3 edge as the sibling
of the handicapped 6-vint. In Figure 89, the 6-vint using the edge cq is a
handicapped 6-vint, and the 6-vint using pq is its sibling (the vertex of the
level-3 edge of the sibling may or may not see a). Consider the vints that
can be created by the addition of RC edges to a handicapped 6-vint. Since
p remains the only vertex in its visible terrain, we can analyze the supports
of such vints in a manner similar to the analysis in the previous paragraph.
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(C) If r, the level-3 vertex of the handicapped 6-vint, cannot see p, the
handicapped 6-vint can be analyzed in the same way as the 5-vint. For
example, consider the addition of two level-1 RC edges, as in the preceding
example involving the 5-vint. In this case, there are still three non-empty
subsets of vertices connected to q, which implies that the resulting 8-vint
has a support of at most 3 plus the support of the 6-vint. If r can see p,
the quadrilateral pqrc must be convex and have two triangulations; thus,
each subset of vertices connected to p in a triangulation corresponds to two
additional triangulations. Notice that in this case the 6-vint has a support
of at least 3.

Figure 89:
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(D) When there are three added edges (none of them a level-3 edge),
the handicapped 6-vint can be extended into two 8-vints and one 9-vint. By
examining the possible cases (r can see p and b, r can see only p, and r
cannot see both p and b; at most three non-empty subsets for an 8-vint, and
at most four for a 9-vint), it is easily seen that these vints always neutralize
the charge of the 6-vint.

(E) Consider a sibling of a handicapped 6-vint, such as the one using
t in Figure 89. If t is in its visible terrain, the 6-vint has a support of
tr(cp) + tr(ta) = C2C2 + C ′

2C
′
2 = 5. This implies that if the 6-vint has a

support of at most 4, the vertex of its level-3 edge must be in its non-visible
terrain, and thus, it can be analyzed in the same way as the handicapped
6-vint. As in the previous case, if the sibling 6-vint has a support of 2 (such
as the one depicted in Figure 89), each subset of added vertices connected to
p corresponds to one triangulation. If the 6-vint has a higher support (albeit
still smaller than 5), the quadrilateral ptqc must be convex, and thus, each
subset corresponds to at most two triangulations.

Method 2. This method applies to 5-vints with a rigid level-1 edge, a
non-rigid level-1 edge, and a support of 2, so that the non-rigid edge is not
in the non-visible subtree of the rigid edge. Such a case is depicted in Figure
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90, where the non-rigid edge is bc, the rigid edge is ac, and the 5-vint is
shaded. Note that in this case the non-visible subtree of ac is rooted at ab,
and vice versa.

(A) Using the notations in the figure, we observe that for the 5-vint to

have a support of 2, p has to be either to the left of the line supporting
−→
dc,

or to the right of the line supporting
−→
da. Assume, without loss of generality,

that the latter occurs (as will follow, it will not matter that the two cases
are not symmetric, since we will only use the fact that p cannot see d).
By construction, p cannot see ad (or cd in the other situation) or any of its
descendants. If cd is rigid, then its vertex is to the right of the line supporting−→
da, and p cannot see that vertex either. This implies that p cannot see the
vertices of the RC edges in the subtree of ac (for our purposes, we do not
need to consider level-3 RC edges, although this is also the case for them).

(B) After establishing which vertices of RC edges p cannot see, we now
consider the level-2 vertices of handicapped 5-vints (which might be present
both in the subtree of ab and in the subtree of ac). If p can see the vertex
of exactly one rigid level-1 edge (such as in Figure 90, where it can only
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see e), it cannot see the level-2 vertex of the handicapped 5-vint using the
Figure 91:
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other rigid level-1 edge (the vertex of ad in the figure). If p cannot see both
vertices of the rigid level-1 edges (such as in Figure 91), it still cannot see
the level-2 vertex of at least one handicapped 5-vint (again, the vertex of ad
in the figure). This can be easily proved using an analysis similar to the one
in the previous paragraph.

(C) The edge bc can have two child-edges; the vertex of one of those

must be to the right of the line supporting
−→
bp (q in Figure 90). This vertex

cannot see d, which implies that the above analysis for p also applies to it.
Moreover, it also applies to the vertices of the child-edges of this level-2 edge,
if they exist. Using the edges of these vertices, it is possible to form a 5-vint
(acpqb in Figure 90) and up to two 6-vints. Hence, extending these vints
with RC edges from the subtree of ac cannot increase their support.

A detailed example. Since the use of the two methods is not trivial, we
present a detailed analysis that uses both of them. Consider the flip-tree
depicted in Figure 92, where the non-rigid subtree is the subtree of A and
there are three RC edges — X, Y , and Z (in order to keep this example

Figure 92:
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simple, we ignore the third level-1 edge). We start with the naive approach
of giving every (4-, 5-, or 6-) vint not entirely in the RC a support of 2.
This implies that the total charge of the depicted flip-tree cannot exceed
4 · 1 + 3

(
1 · 1 + 1

2 · 1
)

+ 2
(
1 · 2 + 1

2 · 3
)

+ 1
(
1 · 1 + 1

2 · 9
)

= 21.
We continue the analysis depending on whether the vertex of X does

or does not see the vertex of A. In the former case, after flipping A, X
becomes flippable (such a case is depicted in Figure 90, where A and X
are bc and ab, respectively), which implies that the 5-vint and four 6-vints
which contain these two edges have a support of at least 3 (instead of a
support of at least 2). This lowers the bound on the charge by at least
(

1
2 − 1

3

)
(2 · 1 + 1 · 4) = 1. In the latter case (see Figure 90, with A = bc and

X = ac), we can use Method 2(A,C)) to extend a 5-vint and two 6-vints
from the non-rigid subtree. The method states that extending these vints
with RC edges cannot increase their support, and thus, each 6-vint can be
extended into an 8-vint which neutralizes its charge . (More precisely, a 6-
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vint with a support of s can be extended into two 8-vints and a 9-vint, which
have an overall charge of 1

s (1·1−1·2−2·1) = −3
s ; however, the overall charge

could be only 0 if we assume that the level-3 edge of the 6-vint is not present
in the flip-tree. Thus, the overall charge from the 6-vint and its extensions
is at most 0.) The 5-vint can be extended into an 8-vint which halves its
charge. In this case, we lose a charge of at least 2 · 1

2 · 1
2 + 1 · 1

2 · 2 = 11
2 . We

conclude that the charge is decreased by at least 1 in either case.
Our next observation is that either at least one of the two 5-vints in

the non-rigid subtree has a support of at least 3, or there are two 5-vints
with a support of 2, and then a Type I 5-vint must exist. In the former
case, a 5-vint and the four 6-vints which extend it have a support of at
least 3 (instead of a support at least 2), which lowers the charge by at least
(

1
2 − 1

3

)
(2 · 1+ 1 · 4) = 1. In the latter case, we can use Method 1 to analyze

the extensions of the Type I 5-vint, its handicapped 6-vint, and its sibling
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(such a case is depicted in Figure 93, where the 5-vint is shaded and the
subtree of ab has three RC edges). According to Method 1(B,C,D), three
RC edges suffice to neutralize the charge of the handicapped 6-vint; this
also applies to the sibling of this 6-vint, unless it has a support of 5 (Method
1(E)). The Type I 5-vint can be extended into an 8-vint with a support
of at most 6 (there are four non-empty subsets of vertices of added edges
connected to p). These extensions imply that the charge is lowered by at
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least 1
6 +

(
1
2 − 1

5

)
+ 1

2 = 29
30 . We conclude that the charge is decreased by at

least 29
30 in either case.

Variants of this example will show up while analyzing RCs with λ1 = 2.

Combining the two methods. Intuitively, we would like to continue
the above example with the conclusion that the total charge cannot exceed
21 − 1 − 29

30 = 19 1
30 . However, for this statement to be valid, we need to

verify that the two methods can be combined without clashing with each
other (i.e., multiply counting the same reduction in charge).

The first problem with combining the methods is that they both attempt
to increase the bound on the support of the same 6-vint (from a bound of
at least 2 to a bound of at least 3; in Figure 92, a 6-vint of this kind is the
one using X, A, and the level-2 edge of a Type I 5-vint). To prevent this
problem, we ignore this 6-vint in the application of one of the methods. In
the above example, it is better to ignore this 6-vint in the paragraph using
Method 1, which lowers the decrease in the charge in its first case from 1
down to 5

6 .
The second, more complex problem, is that both methods might refer

to the same 5-vint in the non-rigid subtree; Method 1 might extend it if
it is a Type I 5-vint, while Method 2 might extend it for different reasons.
Fortunately, this can be avoided, and to explain this we refer to Figures 94
and 95. Figure 94 illustrates the case where a single 5-vint can be analyzed
by Method 2 (the one using bc and ac), and Figure 95 illustrates the case
where there are two such 5-vints (the additional 5-vint is the one using bc and
ab). The following analysis is identical for both cases, but it may be easier

Figure 95:
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to follow it when we keep both of them in mind. As before, we assume,
as depicted in the figures, that the 5-vint in the non-rigid subtree which
might be analyzed by Method 2 is the one using the level-2 edge bp. In
the following paragraph, we prove that the 5-vint using the level-2 edge cp
can always be analyzed according to Method 1 (when it has a support of 2,
even if it is a Type II 5-vint). This solves the second conflict between the
methods, since it implies that we can apply each method to a different 5-vint
of the non-rigid subtree.

If the 5-vint using cp is a Type I vint, then, by definition, it can be
analyzed by Method 1. We are left with the case of a Type II vint, as
depicted in Figures 94 and 95. In order not to see a, the vertex o of cp has
to be to the right of the line supporting −→ap (the dashed line in the figures).
This implies that o cannot see any vertices of the subtree of ab. Moreover,
since the 5-vint using bc and ac can be analyzed using Method 2, d must
be to the right of the line supporting −→ap. This implies that o cannot see d;
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the same applies to the vertices of the child edges of ac, if they are rigid.
We conclude that o cannot see the vertex of any RC edge, which is exactly
the requirement for using the analysis of Method 1(A). The same analysis
applies to one of the child vertices of o (s in the illustration), and also for
the other, if the 6-vint which contains it has a support of at most 4 (r in
the illustration; this follows from the same reasoning as given in Method
1(B,C,E). This makes the two 6-vints, which extend the 5-vint with a
level-3 edge, behave just as the handicapped 6-vint and its sibling.

We conclude that in order to combine the two methods without clashing,
we only need to ignore a specific 6-vint in the method of our choise. When
two 5-vints are analyzed according to method 2, we need to ignore two such
6-vints.

Figure 96:
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RC 2a, as depicted in Figure 96 (the RC only consists of two level-1 edges).
We first ignore edges that are not in the RC and not in the non-rigid

subtree (as defined in Rule 6). The remaining edges are those depicted in
Figure 96 (although some of the non-RC edges might not be present). By
applying a naive analysis, which gives a support of 2 to each vint not entirely
in the RC, we get a charge of at most

4 · 1 + 3

(

2 +
1

2

)

+ 2

(

1 +
1

2
· 4

)

+ 1 · 1

2
· 10 = 22

1

2
.

We observe that either at least one of the 5-vints of the non-rigid subtree has
a support of 3, or a Type I 5-vint must exist (or one of the 5-vints does not
exist, see below). In the former case, a 5-vint and three of the 6-vints which
extend it have a support of at least 3 (we do not count the two additional
6-vints, using either Y or Z, in order not to clash with Method 2); the charge
is therefore reduced by at least

(
1
2 − 1

3

)
(2 · 1 + 1 · 3) = 5

6 . In the latter case,
the handicapped 6-vint can be extended into an 8-vint with a support that
can be bounded by Method 1(B,C). Figure 97 depicts the resulting 8-vint,
where the hole of the 6-vint is shaded. There are three non-empty subsets of
vertices connected to p (as defined in Method 1(A)) . This implies that if the

Figure 97:
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6-vint has a support of 2, the 8-vint has a support of at most 2+3 = 5, and if
the 6-vint has a support of m > 2, the 8-vint has a support of at most m+6
(we multiply the number of subsets of p-connected edges by 2). As is easily
verified, the smallest decrease in the charge, i.e., 1

5 , occurs when the 6-vint
has a support of 2. The same analysis remains valid for the sibling 6-vint,
unless it has a support of 5 (see Method 1(E); again, a sibling 6-vint with a
support of 2 generates the smallest decrease in the charge). The reduction
in the charge in this case is therefore at least 1

5 + 1
5 = 2

5 (obtained from two
8-vints with a support of at most 5). In the third case, where a level-2 edge
in the non-rigid subtree is missing, the 5-vint and its three extending 6-vints
are missing, which obviously gives a lower charge than the case where each
of them has a support of 3. We conclude that in either case the total charge
goes down by at least 2

5 .
We next observe that either at least one 5-vint, with a rigid level-1 edge

(Y or Z) and a non-rigid level-1 edge (A), has a support of 3, or (recalling
Figure 95, which better captures this situation than Figure 90) we can use
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Method 2 to extend vints from the non-rigid subtree (by using the RC edges).
Figure 98:
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In the former case, the support of one 5-vint and the three 6-vints which
extend it is at least 3, which lowers the bound by at least

(
1
2 − 1

3

)
(2·1+1·3) =

5
6 . In the latter case, we can extend two 6-vints from the non-rigid subtree
(both obtained from the same 5-vint by adding a level-3 edge) into 8-vints
with the same support by adding the two RC edges. This follows since the
vertices of these 6-vints, as considered in Method 2(C), cannot see vertices
of RC edges (again, refer to Figure 95); the charge is therefore reduced by
at least 2 · 1

2 = 1. We conclude that in either case the bound on the total
charge goes further down by at least 5

6 .
Hence, so far the total charge is at most

22
1

2
− 2

5
− 5

6
= 21

4

15
.
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So far, we have ignored the portion of the flip-tree below the RC edges Y
and Z, but now we bring it into play (as depicted in Figure 98). There might
be additional charges from the four 5-vints with a rigid level-1 edge and a
level-2 edge, and from their extensions into eighteen 6-vints (in all possible
ways). Recall that, in this case, the four level-2 edges are assumed not to
be rigid (see Figure 96). The two 6-vints which use two level-2 edges must
therefore have a support of at least 3 (since both of the level-2 edges are
flippable); the support of each of the other sixteen 6-vints depends on the
support of its 5-vint:

• A 5-vint with a support of 2 and its four other extensions into 6-vints
generate a charge of at most 2 · 1

2 · 1 + 1
(

1
2 · 3 + 1

4 · 1
)

= 23
4 (the 6-vint

extending the 5-vint with A has a support of at least 4, since it contains
two non-adjacent flippable edges).

• A 5-vint with a support of 3 and its four other extensions into 6-vints
generate a charge of at most 2 · 1

3 · 1 + 1
(

1
3 · 3 + 1

5 · 1
)

= 113
15 (similarly to

the previous case, the 6-vint extending the 5-vint with A has a support of
at least 5).

The above implies that when at least one of these four 5-vints is missing,
the total charge cannot exceed 21 4

15 + 3 · 23
4 + 1

3 · 1 = 2917
20 (the third term

represents the single 6-vint which consists of a rigid level-1 edge and two
level-2 edges; the second term represents the maximal charge from the other
previously ignored vints that are present in this case). We may therefore
assume that all four 5-vints are present, which implies that there are two
handicapped 5-vints among them (see Section 5). We can use these 5-vints
to modify the above use of Method 2, and raise the negative charge attained
by it from 5

6 up to 1, as follows (see Method 2(B)).
Consider the two 5-vints, which use a rigid level-1 edge and a non-rigid

level-1 edge. We already noticed that when both 5-vints have a support of
2, we gain a negative charge of at least 1 (when we used Method 2 earlier in
the analysis of this RC).

If both 5-vints have a support of 3, there are five 6-vints which we previ-
ously considered to have a support of at least 2, and now have a support of at
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least 3 (Namely, we have two 6-vints using A, Y , and a child of A, two using
Figure 100:
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A, Z, and a child of A, and one using A, Y , and Z. However, we ignore one
of the 6-vints using Y , A, and a child of A, in order not to clash with Method
1. Note that there are four additional 6-vints which extend these 5-vints,
but they were already considered as having a higher support). Therefore, in
this case, the charge goes down by at least

(
1
2 − 1

3

)
(2 · 2 + 1 · 4) = 11

3 .
When exactly one 5-vint has a support of 2, we can use the edges of a

handicapped 5-vint to extend two 6-vints from the non-rigid subtree (those
considered in the first case, where the two 5-vints have a support of 2) into
8-vints with a double support (such an 8-vint is depicted in Figure 99, where
the 6-vint is shaded and the handicapped 5-vint is the one using ac and ad);
this raises the negative charge of this case up to 1

4 ·2+
(

1
2 − 1

3

)
(2·1+1·2) = 11

6
(the second term represents the change in the bound on the supports of the
5-vint and of two other 6-vints which extend it).

In either case, we lose an additional charge of at least 1, which implies
that the total charge (not including the previously ignored vints) is at most

22
1

2
− 2

5
− 1 = 21

1

10
.

Moreover, a 6-vint which extends a handicapped 5-vint with a level-3 edge
can be extended into an 8-vint with a double support, using the edges of
the other handicapped 5-vint (since all of these edges are in their non-visible
terrain). An example of such an 8-vint is depicted in Figure 100, where the
6-vint is shaded and the other handicapped 5-vint is the one using ac and
ad. We will use this observation repeatedly in what follows.

The rest of the analysis is divided according to the supports of the two
non-handicapped 5-vints which consist of a rigid level-1 edge and a level-2
edge:

• Both 5-vints have support of 3. As explained above, each of the four 6-vints
which extend a handicapped 5-vint with a level-3 edge, can be extended
into an 8-vint with a double support. There exists an additional 8-vint,
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consisting of the edges of the two 5-vints that have a support of 3, and of
a level-2 edge of one of the handicapped 5-vints. This 8-vint has a support
of at most C6 = 132 (which is the maximal support for any 8-vint). Then
the total charge cannot exceed 5 (the second and third terms account for
the four addional 5-vints and for sixteen of their 6-vint extensions; the
fourth term represents the remaining two 6-vints, which consist of a rigid
level-1 edge and two level-2 edges; the fifth term represents four 8-vints,
each with a support of 4, as just discussed; the last term represents an
8-vint with a support of at most 132)

21
1

10
+ 2 · 23

4
+ 2 · 113

15
+

1

3
· 2 − 1

4
· 4 − 1

132
= 29

131

132
.

• Exactly one of the two 5-vints has a support of 3 (without loss of generality,
we assume that it is in the subtree of Z). On top of the four 8-vints with

5Without the additional 8-vint, the charge would be 30, and this is the only case in our
analysis where the charge is not strictly smaller than 30. We use this vint to demonstrate
that the maximum charge of a 3-vint is indeed smaller.
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a double support that were already mentioned, we show the existence of
additional 8-vints, whose support is easily analyzed by noticing that all
of their vertices are in their non-visible terrains. First, each of the two

Figure 102:
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6-vints, which extend the handicapped 5-vint of Z with a level-3 edge,
can be extended into an 8-vint with a double support, using the edges
of the non-handicapped 5-vint from the subtree of Y (similarly and in
addition to the reduction in charge yielded by the extension through the
handicapped 5-vint; such an 8-vints is depicted in Figure 100, where the
6-vint is shaded, and the additional 8-vint is using ac and cd). Next, the
6-vint using Y and two level-2 edges (which has a support of at least 3)
can be extended into an 8-vint with a double support, using the edges of
the handicapped 5-vint of Z (as depicted in Figure 101, where the 6-vint
is shaded and the other handicapped 5-vint is using ab and ad). Finally,
One of the two 6-vints which extend the non-handicapped 5-vint of Y
with a level-3 edge, can be extended into an 8-vint with a double support,
using the edges of the handicapped 5-vint of Z (as depicted in Figure 102,
where the 6-vint is shaded and the extending edges are ac and ad; the
level-3 vertex of the 6-vint is in its non-visible terrain according to Rule
5). The total charge cannot exceed (the first four terms of the sum have
the same meaning as in the previous case; the last term accounts for eight
8-vints, four already encountered in the previous case, and the four new
ones mentioned above; of those, one extends a 6-vint with a support of 3)

21
1

10
+ 3 · 23

4
+ 1 · 113

15
+

1

3
· 2 − 1

2

(
1

2
· 7 +

1

3
· 1

)

= 29
29

30
.

• Both 5-vints have a support of 2. As in the previous case, we show the
existence of additional 8-vints, all of whose vertices are in their non-visible
terrains. Each of the four 6-vints which extend a handicapped 5-vint with
a level-3 edge can be extended into two 8-vints with a double support
(instead of just one 8-vint), each using the edges of a different 5-vint
from the other subtree (such as depicted in Figure 100, where the 6-vint
is shaded). This accounts for four additional 8-vints. Moreover, two of
the four 6-vints, which extend with a level-3 edge a non-handicapped 5-
vint with a rigid level-1 edge and a support of 2, can be extended into
two 8-vints with a double support, each using the edges of a different 5-
vint from the other subtree (as depicted in Figure 102, where the 6-vint is
shaded; the level-3 vertices of these 6-vints are in their non-visible terrains
according to Rule 5). There are four such 8-vints in this case, as opposed
to only a single 8-vint in the previous one. The total charge cannot exceed
(the first three terms of the sum have the same meaning as in the previous
cases; the last term accounts for twelve 8-vints, as mentioned above)
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RC 2b, as depicted in Figure 103.
Similarly to the previous analysis, we start by considering only the edges

from the RC, the edges from the non-rigid subtree, and the two child edges
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of X (the edges depicted in Figure 103). By applying a naive analysis, which
gives a support of 2 to each vint not entirely in the RC, we get a charge of
at most

4 · 1 + 3

(

2 +
1

2

)

+ 2

(

2 +
1

2
· 4

)

+ 1

(

1 +
1

2
· 13

)

= 27.

We observe that either at least one of the 5-vints of the non-rigid subtree
has a support of 3, or a Type I 5-vint must exist. In the former case, a

Figure 104:
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5-vint and four of the 6-vints which extend it have a support of at least 3
(we do not count the fifth 6-vint, in order not to clash with Method 2); the
charge is therefore reduced by at least

(
1
2 − 1

3

)
(2 ·1+1 ·4) = 1. In the latter

case, the handicapped 6-vint can be extended into an 8-vint with a support
that can be bounded by Method 1 — as explained in Method 1(D), we can
ignore this 6-vint when there are at least three RC edges. This is also valid
for the sibling of the handicapped 6-vint, unless it has a support of 5 (see
Method 1(E)). Finally, according to Method 1(A), we can extend the Type
I 5-vint into an 8-vint, using the three RC edges (as depicted in Figure 104,
where the hole of the 5-vint is shaded). There are at most five non-empty
sets of vertices connected to p, which implies that the support of this 8-vint
is at most 2 + 5 = 7. The reduction in the charge in this case is therefore at
least 1

2 + (1
2 − 1

5) + 1
7 = 33

35 . We conclude that in either case the total charge
goes down by at least 33

35 .
We next observe that either the 5-vint using A and Z has a support

of 3, or we can use Method 2 to extend vints from the non-rigid subtree
(using Z and X). In the former case, the support of one 5-vint and the
four 6-vints which extend it is at least 3, which lowers the bound by at least
(1
2 − 1

3 )(2 · 1 + 1 · 4) = 1. In the latter case, there exist two 6-vints from the
non-rigid subtree which can be extended into 8-vints with the same support,
by appending Z and X. This follows since the vertices of these 6-vints, as
considered in Method 2(C), cannot see vertices of RC edges (refer to Figures
94 and 95); the charge is therefore reduced by at least 2 · 1

2 = 1. We conclude
that in either case the bound on the total charge goes further down by at
least 1.

Hence, so far the total charge is at most

27 − 33

35
− 1 = 25

2

35
.
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Similarly to the previous analysis, we now bring back the edges that were
ignored up to now (resulting in the complete flip-tree depicted in Figure 105;
as before, the dashed edges are optional). There might be additional charges
from three 5-vints with a rigid level-1 edge and a non-rigid level-2 edge, and
from their extensions into fourteen 6-vints (in all possible ways). The 6-vint
which contains Y and two level-2 edges has a support of at least 3 (since
both of the level-2 edges are flippable). The 6-vint which contains Z and
two level-2 edges has a support of at least 2. The support of each of the
other twelve 6-vints depends on the support of its 5-vint:
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• A handicapped 5-vint. The two 6-vints which extend the 5-vint with a
level-3 edge, use only vertices which are in their non-visible terrains (see
Rule 5); this implies that each of them can be extended into an 8-vint with

Figure 106:
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the same support, using the additional RC edges. The 6-vint extending
the 5-vint with A has a support of at least 4, since it holds two non-
adjacent flippable edges. This leaves one 6-vint with “full” charge and
another with a charge of 1

4 , so the overall charge from the 5-vint and its
four extensions cannot exceed 1

4 + 1
2(2 · 1 + 1 · 1) = 13

4 .

• A non-handicapped 5-vint with a support of 2. One of the two 6-vints,
which extend the 5-vint with a level-3 edge, must be entirely in its non-
visible terrain (see Rule 5); this 6-vint can be extended into an 8-vint
with the same support, using RC edges. The second 6-vint and the 8-vint
extending it with the other RC edges give an overall charge of at most
1
4 − 1

6 = 1
12 . (See Table 2 in Section 6.5, where this is the worst possible

charge for the case where only o can see a, and the 8-vint is a standard
8-vint. This must be the case here, since the 5-vint has a support of 2;
such a case is depicted in Figure 106, where the 6-vint is shaded.) As in
the previous case, the 6-vint extending the 5-vint with A has a support of
at least 4. The charge from 5-vint and its four extensions cannot exceed
1
4 + 1

12 + 1
2(2 · 1 + 1 · 1) = 15

6 .

• A 5-vint with a support of 3. The two 6-vints, which extend the 5-vint
with a level-3 edge, can be extended into 8-vints, using RC edges. The
appropriate parts of Section 6.5 (when only q can see a, and when both q
and o can see a) contain a single case where the 6-vint has a support of at
most 3, and in this case, the overall charge of the two vints cannot exceed
1
3 − 1

8 = 5
24 < 1

4 . This implies that, no matter what the support of the 6-
vint is, the overall charge of such a 6-vint and its extending 8-vint cannot
exceed 1

4 . Similarly to the previous cases, the 6-vint extending the 5-vint
with A has a support of at least 5 (four triangulations as before, plus an
additional triangulation where the level-1 edge of the 5-vint is flipped).
The overall charge from the 5-vint and its four extensions cannot exceed
1
4 · 2 + 1

5 + 1
3(2 · 1 + 1 · 1) = 1 7

10 .
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The above implies that when at least one of these three 5-vints is missing,
the total charge cannot exceed 25 2

35 + 1
2 + 2 · 15

6 = 29 47
210 (the second term

represents the single 6-vint which consists of a rigid level-1 edge and two
level-2 edges; the third term represents the maximal charge from the other
previously ignored vints that are present in this case). We may therefore
assume that all three 5-vints are present, which implies that there is at least
one handicapped 5-vint (in the subtree of Y ; see Section 5). We can use this
5-vint to modify the above use of Method 2, and raise the negative charge
attained by it from 1 up to 11

2 , as follows (see Method 2(B)).
Consider the two 5-vints, which use a rigid level-1 edge and a non-rigid

level-1 edge. When both 5-vints have a support of 2, we can extend a 5-vint
and two 6-vints from the non-rigid subtree into three respective 8-vints with
the same supports (according to Method 2; the extension of the 5-vint is
depicted in Figure 107, where the 5-vint is shaded). The negative charge in
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this case is at least 1
2 · 3 = 11

2 .
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If both 5-vints have a support of 3, there are six 6-vints which we pre-
viously considered to have a support of at least 2, and now have a support
of at least 3. Namely, we have two 6-vints using A, Y , and a child of A,
two using A, Z, and a child of A, one using A, Y , and Z, and one using
A, Z, and X. However, we ignore one of the 6-vints using Y , A, and a
child of A, in order not to clash with Method 1; the other 6-vint clashing
with Method 1 has been ignored in the application of Method 1, and we
can safely use it here. (Note that there are three additional 6-vints which
extend these 5-vints, but they were already considered as having a higher
support.) Thus, in this case, the bound on the total charge decreases by at
least

(
1
2 − 1

3

)
(2 · 2 + 1 · 5) = 11

2 .
If only the 5-vint using Y and A has a support of 3, we can extend the

two 6-vints from the non-rigid subtree (those considered in the first case,
where the two 5-vints have a support of 2), but not necessarily the 5-vint.
Therefore, in this case, the charge goes down by at least 1

2 · 2 +
(

1
2 − 1

3

)
(2 ·

1 + 1 · 2) = 12
3 (the second term represents the change in the bound on the

supports of the 5-vint and of two other 6-vints which extend it).
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If only the 5-vint using Z and A has a support of 3, we can extend two
6-vints from the non-rigid subtree into 8-vints with a double support, using
the edges of the handicapped 5-vint (as depicted in Figure 108, where the
6-vint is shaded and the extending edges are ac and ad). Therefore, in this
case, the charge goes down by at least 1

4 · 2 +
(

1
2 − 1

3

)
(2 · 1 + 1 · 4) = 11

2
(the second term represents the change in the bound on the supports of the
5-vint and of four other 6-vints which extend it).

In either case, we lose a charge of at least 11
2 , which implies that the

total charge (not including the previously ignored vints) is at most

27 − 33

35
− 1

1

2
= 24

39

70
.
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Moreover, one of the two 6-vints which contain X and a level-3 edge is en-
tirely in its non-visible terrain, according to Rule 5. This 6-vint can be
extended into an 8-vint with a double support, using the edges of the hand-
icapped 5-vint in the subtree of Y (as depicted in Figure 109, where the
6-vint is shaded). We will use this observation repeatedly in what follows.

At least one of the three 5-vints that consist of a rigid level-1 edge and
a non-rigid level-2 edge is handicapped, and thus, must have a support of
2 (it lies in the subtree of Y , as stated above). The rest of the analysis is
divided according to the supports of the other two 5-vints:

• The (non-handicapped) 5-vint from the subtree of Y has a support of
2 (with no restrictions on the support of the 5-vint in the subtree of
Z). The above 6-vint using X and a level-3 edge can be extended into
two 8-vints with a double support (instead of just one), each using the
edges of a different 5-vint from the subtree of Y . Moreover, the 6-vint
using Y and two level-2 edges is entirely in its non-visible terrain, and
thus, can be extended into an 8-vint with the same support, using Z and
X, neutralizing its charge (as depicted in Figure 110, where the 6-vint
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is shaded). Thus, the total charge cannot exceed (the fourth and fifth
terms account for the three addional 5-vints and for twelve of their 6-vint
extensions; the second and third terms represent the two remaining 6-
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vints, which consist of a rigid level-1 edge and two level-2 edges; the last
term represents two 8-vints, each with a support of 4, as just discussed)

24
39

70
+

1

2
+ 0 + 1

3

4
+ 2 · 15

6
− 1

4
· 2 = 29

409

420
.

• Only the 5-vint from the subtree of Z has a support of 2. The 6-vint using
Z and two level-2 edges is entirely in its non-visible terrain, and thus, can
be extended into an 8-vint with a double support, using the edges of the
handicapped 5-vint. We next consider the 6-vint using Y and two level-2
edges. We use Section 6.4 in order to bound the support of the 8-vint
which extends it with Z and X. If the two level-2 edges cannot see each
other (as depicted in Figure 111, where the 6-vint is shaded), the 6-vint
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has a support of tr(bp) + tr(cq) = 3 + 1 = 4, and the 8-vint a support
of at most 4 + 2 = 6 (as explained in Section 6.4; in our case, there are
two non-empty sets of vertices connected to o). Otherwise, the 6-vint has
a support of tr(bc) + tr(ao) = 5 + 2 = 7, and the 8-vint has a support
of at most 7 + 2 · 2 = 11 (as depicted in Figure 112, where the 6-vint
is shaded). In either case, the overall charge from the vints is at most
1
4 − 1

6 = 1
12 . Thus, the total charge cannot exceed (the fourth, fifth, and

sixth terms account for the three addional 5-vints and for twelve of their
6-vint extensions; the second and third terms represent the two remaining
6-vints, which consist of a rigid level-1 edge and two level-2 edges; the last
term represents two 8-vints, each with a support of 4, as just discussed)

24
39

70
+

1

12
+

1

2
+ 1

3

4
+ 1

5

6
+ 1

7

10
− 1

4
· 2 = 29

97

105
.

• Both 5-vints have a support of 3. As in the previous case, the overall charge
from the 6-vint using Y and two level-2 edges, and from its extending 8-
vint, cannot exceed 1

12 . The 6-vint using Z and two level-2 edges has a
support of 3. Thus, the total charge cannot exceed (the fourth and fifth
terms account for the three addional 5-vints and for twelve of their 6-vint
extensions; the second and third terms represent the two remaining 6-
vints, which consist of a rigid level-1 edge and two level-2 edges; the last
term represents an 8-vint with a support of 4, as discussed above)
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Figure 113:
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RC 2c, as depicted in Figure 113.

• The four 6-vints, which use Y and a level-3 edge, meet the conditions of
Rule 8. By the rule, their overall charge cannot exceed 4 · 1

1400 = 1
350 .

• The 6-vint, which consists of Y and two level-2 edges, meets the conditions
of Rule 7. By the rule, this 6-vint can be ignored.
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• Each of the four 6-vints using Z and a level-3 edge can be extended into
an 8-vint, using the additional RC edges (as depicted in Figure 114, where
the hole of the 6-vint is shaded). When o is in its non-visible terrain, the 6-
vint is entirely in its non-visible terrain, and thus, the extending 8-vint has
the same support (by Rule 2, o cannot see the vertex of bp), neutralizing
its charge. By Rule 5, three of the four 6-vints must be entirely in their
non-visible terrains (the fourth 6-vint is the one using cq as its level-3 edge,
which is the one shaded in Figure 114). For the fourth 6-vint, when o is in

Figure 114:

bc
ab

bp
cp

cq

v
b

a

c p

d

q
o

its visible terrain, the 6-vint has a support of tr(bc) + tr(ao) = 3 + 1 = 4,
and its extending 8-vint has a support of at most tr(bc)+tr(ao) = 3+2 = 5
(which occurs when o can see the vertex of the RC edge ab, as in Figure
114). This implies that the overall charge from the four 6-vints and their
extension 8-vints cannot exceed 1

4 − 1
5 = 1

20 .

As in the previous cases, we first ignore some of the vints. This time, we
only ignore the two 5-vints using Y and one of its child edges, and the four 6-
vints which extend one of these 5-vints with either A or Z. We have already
accounted for nine 6-vints (different from those ignored). Each of the other
vints has a support of at least 2 (apart from the two rigid 4-vints, three rigid
5-vints, and three rigid 6-vints), and therefore, we get a charge of at most

4 · 1 + 3

(

2 +
1

2

)

+ 2

(

3 +
1

2
· 4

)

+ 1

(

3 +
1

2
· 12

)

+
1

20
+

1

350
= 30

387

700
.

We observe that either at least one of the 5-vints of the non-rigid subtree
has a support of 3, or a Type I 5-vint must exist (or one of these 5-vints is
missing). In the former case, a 5-vint and four of the 6-vints which extend
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it have a support of at least 3 (we do not count the fifth 6-vint, in order
not to clash with Method 2); the charge is therefore reduced by at least
(

1
2 − 1

3

)
(2 · 1 + 1 · 4) = 1. In the latter case, the handicapped 6-vint can be

extended into an 8-vint with a support that can be bounded by Method 1
— as explained in Method 1(D), we can ignore this 6-vint when there are
at least three RC edges. This is also valid for the sibling of the handicapped
6-vint, unless it has a support of 5 (see Method 1(E)). Finally, according
to Method 1(A), we can extend the Type I 5-vint into two 8-vints, each
using two level-1 RC edges and one level-2 RC edge (as depicted in Figure
115, where the hole of the 5-vint is shaded; there are additional extension
vints, but we do not consider them here). There are at most five non-empty
sets of vertices connected to p, which implies that the support of either of
these two 8-vints is at most 2 + 5 = 7 (this analysis is identical to the one
in RC 2b). The reduction in the charge in this case is therefore at least
1
2 +

(
1
2 − 1

5

)
+ 1

7 · 2 = 38
35 . We conclude that in either case the total charge

goes down by at least 1.
We next observe that either the 5-vint using A and Z has a support of

3, or we can use Method 2 to extend vints from the non-rigid subtree (using
Z, X, and W ). In the former case, the support of the 5-vint (the one using
A and Z) and the five 6-vints which extend it is at least 3, which lowers
the bound by at least

(
1
2 − 1

3

)
(2 · 1 + 1 · 5) = 11

6 . In the latter case, we
can extend two 6-vints and a 5-vint from the non-rigid subtree into three
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respective 8-vints with the same supports, by appending Z and X (and also
W in the case of the 5-vint). This follows since the vertices of these 6-vints,
as considered in Method 2(C), cannot see vertices of RC edges. Therefore,
in this case, the charge is reduced by at least 3 · 1

2 = 11
2 . We conclude that

in either case the bound on the total charge goes further down by at least
11

6 .
Hence, so far the total charge is at most

30
387

700
− 1 − 1

1

6
= 28

811

2100
.

We next consider the possible charges of the two 5-vints and the four 6-vints
that were previously ignored:
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• A 5-vint with a support of 2. The level-2 vertex of the 5-vint is in its
non-visible terrain, since otherwise it would have a support of at least
tr(bc) + tr(ap) = 2 + 1 = 3 (as depicted in Figure 116). This implies that
the 5-vint can be extended into an 8-vint with the same support, using
the additional RC edges. The 6-vint which extends the 5-vint using A has
a support of at least 4, since it holds two non-adjacent flippable edges.
The overall charge from the 5-vint, its two extending 6-vints, and their
extensions into larger vints, cannot exceed 1

2(2 · 1 + 1 · 1− 1 · 1) + 1
4 = 11

4 .

• A 5-vint with a support of 3. The 6-vint which extends the 5-vint using A
has a support of at least 5 (four triangulations as before, plus an additional
triangulation where the level-1 edge of the 5-vint is flipped). The overall
charge from the 5-vint, and its two extending 6-vints, cannot exceed 1

3(2 ·
1 + 1 · 1) + 1

5 = 11
5 .

The above implies that when at least one of these two 5-vints is missing,
Figure 117:
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the total charge cannot exceed 28 811
2100 + 11

4 = 29334
525 . We may therefore

assume that both 5-vints are present, which implies that there is at least
one handicapped 5-vint (see Section 5). We can use this 5-vint to modify
the above use of Method 2, and raise the negative charge attained by it from
11

6 up to 12
3 , as follows (see Method 2(B)).

Consider the two 5-vints, which use a rigid level-1 edge and a non-rigid
level-1 edge. When both 5-vints have a support of 2, we can extend two 6-
vints from the non-rigid subtre into 8-vints with the same support (according
to Method 2); we can also extend a 5-vint from the non-rigid subtree into
a 9-vint with the same support. The negative charge in this case is at least
1 · 1

2 · 2 + 2 · 1
2 = 2.

If both 5-vints have a support of 3, there are seven 6-vints which we
previously considered to have a support of at least 2, and now have a support
of at least 3. Namely, we have two 6-vints using A, Y , and a child of A,
two using A, Z, and a child of A, one using A, Y , and Z, one using A,
Z, and X, and one using A, Z, and W . However, we ignore one of the
6-vints using Y , A, and a child of A, in order not to clash with Method 1,
and recall that, as above, another such 6-vint (using Z) was ignored in the
application of Method 1. (Note that there are two additional 6-vints which
extend these 5-vints, but they were already considered as having a higher
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support.) Thus, in this case, the bound on the total charge decreases by
(

1
2 − 1

3

)
(2 · 2 + 1 · 6) = 12

3 .
If only the 5-vint using Y and A has a support of 3, we can still extend

the two 6-vints from the non-rigid subtree (those considered in the first
case, where the two 5-vints have a support of 2) into 8-vints with the same
support, but not necessarily the 5-vint. Therefore, in this case, the charge
goes down by at least 1

2 · 2 +
(

1
2 − 1

3

)
(2 · 1 + 1 · 2) = 12

3 (the second term
represents the change in the bound on the supports of the 5-vint and of two
other 6-vints that extend it).

If only the 5-vint using Z and A has a support of 3, we can extend two
6-vints from the non-rigid subtree into 8-vints with a double support, using
the edges of the handicapped 5-vint in the subtree of Y (as depicted in Figure
117, where the 6-vint is shaded and the extending edges are ac and ad), and
thus, the charge goes down by at least 1

4 · 2 +
(

1
2 − 1

3

)
(2 · 1 + 1 · 5) = 12

3
(the second term represents the change in the bound on the supports of the
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5-vint and of five other 6-vints that extend it).
In either case, we lose a charge of at least 12

3 , which implies that the
total charge (including the previously ignored vints) is at most

28
811

2100
+

(

1
2

3
− 1

1

6

)

+ 1
1

4
· 2 = 30

811

2100
.

If the non-visible subtree of Z,X, and W is the non-rigid subtree, we can
ignore our previous use of the two methods, and instead, extend each 5-vint
and 6-vint from the non-rigid subtree into an 8-vint with the same support
(adding RC edges from the subtree of Z cannot increase the support). This
increases the negative charge by 1

2 · (2 + 5) −
(
1 + 12

3

)
= 5

6 , and thus, the
total charge cannot exceed 30 811

2100 − 5
6 = 29387

700 . We may therefore assume
that the non-visible subtree of Z,X, and W is the subtree of Y .
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Consider the 6-vint using Y and its two child edges, as depicted in Figures
118 and 119. When both 5-vints from the subtree of Y have a support of 2 (as
depicted in Figure 118), the chord bc must be present in every triangulation
of the hole of the 6-vint, and thus, the 6-vint has a support of at most
C3 = 5 (the number of triangulations of the pentagon bqpoc). When one of
the 5-vints has a support of 3 (as depicted in Figure 119; the other 5-vint is
handicapped, and thus, must have a support of 2), the support is at most
tr(bc) + tr(ao + bo) = 5 + 2 = 7. We can ignore our previous use of Rule 7
(which implied that we can ignore the 6-vint) and extend the 6-vint into two
8-vints and one 9-vint with the same support, using RC edges (due to the
assumption on the non-visible subtree of Z). The change in the charge is at
most 1

7(1 · 1 − 1 · 2 − 2 · 1) = −3
7 , and therefore, the charge cannot exceed
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RC 2d, as depicted in Figure 120.

• The four 6-vints which consist of a rigid level-1 edge, a non-rigid level-2
edge, and a level-3 edge, meet the conditions of Rule 8. By the rule, their
overall charge cannot exceed 4 · 1

1400 = 1
350 .
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• Each of the four 6-vints, which consist of a rigid level-1 edge, a rigid
level-2 edge, and a level-3 edge, can be extended into an 8-vint, using the
additional RC edges. By Rule 5, at least two of these 6-vints are entirely
in their non-visible terrains, and thus, each of their corresponding 8-vints
has the same support as the 6-vint it extends. For each of the other two
6-vints, by Table 2 of Section 6.5 (the part where the level-2 edge is rigid),
either the 6-vint has a support of at most 3 and the 8-vint has the same
support, or the 6-vint has a support of 4 and the 8-vint has a support
of at most 7. Thus, the overall charge from these vints cannot exceed
2
(

1
4 − 1

7

)
= 3

14 .

As in the previous cases, we first ignore some of the vints. This time, we
ignore the two 5-vints using a rigid level-1 edge and a non-rigid level-2 edge,
and the six 6-vints which extend one of these 5-vints with either a level-1
edge or a level-2 edge. We have already accounted for eight 6-vints (different
from those ignored). Each of the other vints has a support of at least 2 (apart
from the two rigid 4-vints, three rigid 5-vints, and two rigid 6-vints), and
therefore, we get a charge of at most

4 · 1 + 3

(

2 +
1

2

)

+ 2

(

3 +
1

2
· 4

)

+ 1

(

2 +
1

2
· 12

)

+
3

14
+

1

350
= 29

251

350
.

We can use Method 1 in a manner completely identical (and essentially
verbatim) to the one presented in RC 2c. This lowers the bound on the total
charge by at least 1.

We next consider the two 5-vints which consist of a rigid level-1 edge and
a non-rigid level-1 edge. When both 5-vints have a support of 2, according
to Method 2(A), we can extend a 5-vint from the non-rigid subtree into a
9-vint with the same support, by using RC edges. According to Method
1(C), we can extend each of the two 6-vints, which extend this 5-vint with
a level-3 edge, into an 8-vint with the same support. Therefore, in this case,
the charge is reduced by at least 1

2(2 · 1 + 1 · 2) = 2.
When both 5-vints have a support of 3, there are seven 6-vints which

we previously considered to have a support of at least 2, and now have
a support of at least 3. Namely, we have two 6-vints using A, Y , and a
child of A, two using A, Z, and a child of A, one using A, Y , and Z,
one using A, Y and X, and one using A, Z, and W . However, we ignore
one of the 6-vints, say one of the two using Y , A, and a child of A, in
order not to clash with Method 1, and recall that, as above, another such
6-vint (using Z) was ignored in the application of Method 1. (Note that
there are two additional 6-vints which extend these 5-vints, but they were
already considered as having a higher support.) Thus, in this case, the charge
decreases by at least

(
1
2 − 1

3

)
(2 · 2 + 1 · 6) = 12

3 .
When exactly one 5-vint has a support of 2, we can still extend the two 6-

vints from the non-rigid subtree (those considered in the first case, where the
two 5-vints have a support of 2), but not necessarily the 5-vint. Therefore,
in this case, the charge is reduced by at least 1

2 ·2+
(

1
2 − 1

3

)
(2 ·1+1 ·3) = 15

6
(the second term represents the change in the bound on the supports of the
5-vint and of three other 6-vints that extend it).
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In either case, the bound on the total charge goes further down by at
least 12

3 , which implies that the total charge is at most
Figure 121:
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We next consider the possible charges of the two 5-vints and the six 6-vints
that were previously ignored:

• A 5-vint with a support of 2. The 6-vint which extends the 5-vint using
A has a support of at least 4, since it holds two non-adjacent flippable
edges. The 5-vint can be extended into an 8-vint with the same support,
using RC edges. The overall charge from the 5-vint and the three 6-vints
which extend it cannot exceed 1

2(2 · 1 + 1 · 2 − 1 · 1) + 1
4 = 13

4 .

• A 5-vint with a support of 3. Without loss of generality, we refer to the
5-vint using Y and its non-rigid child edge. The 6-vint which extends the
5-vint using A has a support of at least 5 (four triangulations as before,
plus an additional triangulation where the level-1 edge of the 5-vint is
flipped). Moreover, by rule 5(b), the two 6-vints using Y , X, and a level-

Figure 122:
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3 edge are entirely in their non-visible terrain. This implies that each
of these 6-vints can be extended into an 8-vint with the same support
using Z and W (as depicted in Figure 121, where bc and ac correspond
to Y and Z, respectively). This lowers the bound on the total charge by
1
4 − 1

7 = 3
28 (which was the previous bound on the charge of those two

6-vints). Finally, consider the 8-vint which extends the 5-vint using the
other RC edges, as depicted in Figure 122 (where bc and ac correspond to
Y and Z, respectively, and the 5-vint is shaded). Notice that bp is present
in every triangulation, which implies that the support of this 8-vint is at
most tr(bc) + tr(ao) = C2 + C ′

3 = 2 + 3 = 5. We conclude that the charge
of this 5-vint and its extensions is at most 1

3(2 ·1+2 ·1)+ 1
5 − 3

28 − 1
5 = 119

84
(the second term represents the 6-vint using A, the third term represents
the decrease in the two 6-vints that use a level-3 edge, and the last term
represents the 8-vint that was discussed above).

The above implies that when at least one of these two 5-vints is missing, the
Figure 123:
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total charge cannot exceed 27 53
1050 + 13

4 = 281681
2100 . We may therefore assume

that both 5-vints are present. We divide the rest of the analysis according
to the supports of these two 5-vints:

• Both 5-vints have a support of 3. The total charge cannot exceed

27
53

1050
+ 1

19

84
· 2 = 29

88

175
.

• Both 5-vints have a support of 2. Consider the 9-vint which consists of
the edges of both 5-vint and of the additional RC edges (as depicted in
Figure 123, where one of the 5-vints is shaded). Since all of these edges
are in their non-visible terrains, the support of the 9-vint is the product
of the supports of the two 5-vints, which is 2 · 2 = 4. By removing either
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X or W , we generate an 8-vint with the same support. The total charge
cannot exceed

Figure 124:
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• Exactly one 5-vint has a support of 2. We once again consider the two 8-
vints which were analyzed in the previous case. Such an 8-vint is depicted
in Figure 124, where the 5-vint with a support of 3 is shaded and the RC
edge that is not used is the one adjacent to this 5-vint. Since p cannot
see a, and e cannot see f , the support of such an 8-vint is smaller than
C ′′

6 = C6 −C5 · 2 + C4 = 132− 42 · 2 + 14 = 62. The second 8-vint can be
analyzed in a similar manner (albeit not symmetric to the previous case).
Therefore, the total charge cannot exceed

27
53

1050
+ 1

3

4
+ 1

19

84
− 1

62
· 2 = 29

2312

2325
.

RC 2e, as depicted in Figure 125.
Figure 125:
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• Each of the eight 6-vints, which use a rigid level-1 edge and a level-3 edge,
meets the conditions of Rule 8. By the rule, their overall charge 6-vints
cannot exceed 8 · 1

1400 = 1
175 .

• The 6-vint using A and B has a support of at least 4, since it holds two
non-adjacent flippable edges.

So far, we have accounted for nine 6-vints. Each of the other vints has a
support of at least 2 (apart from the two rigid 4-vints, four rigid 5-vints,
four rigid 6-vints, and one rigid 8-vint), and therefore, we get a charge of at
most

4 ·1+3

(

2 +
1

2

)

+2

(

4 +
1

2
· 5

)

+1

(

4 +
1

2
· 15

)

−1 ·1+
1

175
+

1

4
= 35

179

700
.
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If the non-rigid subtree is the non-visible subtree of Z, we can extend each
of the five 6-vints and two 5-vints from the non-rigid subtree into an 8-vint
with the same support. We can also extend the 5-vint which consists of A
and Y , the 6-vint which consists of A, Y , and X, and the two 6-vints which
consist of A, Y , and a child-edge of A, each into an 8-vint with the same
support (a case of a 6-vint which consists of A, Y , and a child-edge of A
is depicted in Figure 126, where ab, bc, and ac correspond to A, Z, and Y ,
respectively, and the 6-vint is shaded). Thus, the total charge cannot exceed
35179

700 − 1
2 · 11 = 29529

700 . (Note that in this analysis, we assume that all these
eleven 5-vints and 6-vints are present. If any of them is missing, we lose
at least as much positive charge as negative charge, so the total charge can
only decrease.) We may therefore assume that the non-visible subtree of Z
is the subtree of Y .

If B is present in the flip-tree, it generates a positive charge by partici-
pating in a 5-vint and three 6-vints (we ignore two additional 6-vints which
use a level-3 edge, since we consider, somewhat loosely, their charge as part
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of the term 1
175 , even when B is not present). We can extend the 5-vint

Figure 127:
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into a 9-vint with the same support, using X, Z, W , and U (by Rule 2, ap-
pending X cannot increase the support of the vint; such a 9-vint is depicted
in Figure 127, where ab and bc correspond to Y and Z, respectively, and
the 5-vint is shaded). Similarly, we can extend the 5-vint into three 8-vints
(each obtained by removing a single RC edge from the 9-vint), which more
than neutralize the charge of the three 6-vints (each of the three 8-vints has
the same support as the 5-vint, and at least one 6-vint has a higher sup-
port, since it is using the flippable edge A). We conclude that adding B to
the flip-tree can only decrease the bound on the total charge, and we may
therefore assume that B is not present in the flip-tree.

Hence, we now consider the flip-tree depicted in Figure 128, and so far,
the charge cannot exceed

4 · 1 + 3

(

2 +
1

2

)

+ 2

(

4 +
1

2
· 4

)

+ 1

(

4 +
1

2
· 13

)

− 1 · 1 +
1

175
= 33

1

175
.

Once again, we can use Method 1 in a manner completely identical (and
Figure 128:

Y
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essentially verbatim) to the one presented in RC 2c. This lowers the bound
on the total charge by at least 1.

We next consider the two 5-vints which consist of a rigid level-1 edge and
a non-rigid level-1 edge. When both 5-vints have a support of 2, according
to Method 2(A), we can extend a 5-vint from the non-rigid subtree into a
9-vint with the same support, by using RC edges. According to Method
1(C), we can extend each of the two 6-vints, which extend this 5-vint with
a level-3 edge, into an 8-vint with the same support. Therefore, in this case,
the charge is reduced by at least 1

2(2 · 1 + 1 · 2) = 2.
When both 5-vints have a support of 3, there are eight 6-vints which

we previously considered to have a support of at least 2, and now have
a support of at least 3. Namely, we have two 6-vints using A, Y , and a
child of A, two using A, Z, and a child of A, one using A, Y , and Z, one
using A, Y , and X, one using A, Z, and U , and one using A, Z, and W .
However, we ignore one of the 6-vints using Y , A, and a child of A, in
order not to clash with Method 1, and recall that, as above, another such
6-vint (using Z) was ignored in the application of Method 1. (Note that
there is an additional 6-vint which extends these 5-vints, but it was already
considered as having a higher support.) Thus, the charge decreases by at
least

(
1
2 − 1

3

)
(2 · 2 + 1 · 7) = 15

6 .
When only the 5-vint using A and Z has a support of 2, we can still use

Z, U , and W to extend the 5-vint and two 6-vints from the non-rigid subtree
(those considered in the first case, where the two 5-vints have a support of
2) into respective 8-vints with the same support. Therefore, in this case, the
charge is reduced by at least 1

2 · 3 +
(

1
2 − 1

3

)
(2 · 1 + 1 · 4) = 21

2 (the second
term represents the change in the bound on the supports of the 5-vint that
uses A and Y and of four other 6-vints that extend it).

When only the 5-vint using A and Y has a support of 2, we can still
use Y and X to extend the two 6-vints from the non-rigid subtree, but not
necessarily the 5-vint. Therefore, in this case, the charge is reduced by at
least 1

2 · 2 +
(

1
2 − 1

3

)
(2 · 1 + 1 · 4) = 2 (the second term represents the change
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in the bound on the supports of the 5-vint that uses A and Z and of four
other 6-vints that extend it).

Figure 129:
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In either case, the bound on the total charge goes further down by at
least 15

6 , which implies that the total charge is at most

33
1

175
− 1 − 1

5

6
= 30

181

1050
.

Consider the two 8-vints which consist of A, X, Y , Z, and a child-edge of Z
(as depicted in Figure 129, where bc, ab, and ac correspond to A, Y , and Z,
respectively). The number of triangulations of the hole of such an 8-vint is
at most tr(bc) + tr(ad) = 1 + C ′

3 · C ′
3 = 1 + 3 · 3 = 10. Therefore, the total

charge cannot exceed

30
181

1050
− 1

10
· 2 = 29

1021

1050
.

Extensions of the previous cases. We start by treating additional level-
2 RC edges. There remains a single case that has not yet been handled —
an RC with four level-2 edges (it is depicted in Figure 130 and we refer to it
as RC 2e+). We analyze this case by showing that adding a level-2 edge to

Figure 130:
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RC 2e cannot increase the bound on its charge (without loss of generality,
we assume that this level-2 edge is T ). The following proof is very similar
to the one in the extensions part of λ1 = 3. The positive charge gained
from the change in the RC comes from the 5-vint using Y and T , the two
6-vints which extend this 5-vint with a level-3 edge, the two 6-vints which
extend it with a level-1 edge, and the 6-vint which extends it with X. In
the analysis of RC 2e, by Rule 8, the charge from the two 6-vints using a
level-3 edge was bounded by 1

1400 · 2 = 1
700 , and this remains valid after the

change. Thus, we only need to consider the change in the charges coming
from the 5-vint and the three other 6-vints. By extending the 5-vint with
the additional RC edges, we create a 9-vint (as depicted in Figure 131, where
the 5-vint is shaded). If before the change the 5-vint had a support of m ≥ 2,
this 9-vint had a support of at least m. The change in the overall charge

Figure 131:
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coming from these two vints is at most 2
(
1 − 1

m

)
− 2

(
1 − 1

m

)
= 0 (the first

term represents the change in the 5-vint, and the second term represent the
change in the 9-vint). This implies that the 9-vint neutralizes the change
in the charge coming from the 5-vint. We can use a similar argument to
neutralize the change in the charges coming from the 6-vint using Y , T , and
X, and from the 6-vint using Y , T , and Z (by using two out of the three
8-vints that extend the 5-vint with additional RC edges). We are left with
the 6-vint using T , Y , and A, and with the third 8-vint that extends the
5-vint with RC edges. After the change, the 6-vint has a support of at least
2, which implies that the change raised its charge by less than 1

2 . Similarly,
after the change, the 8-vint has a support of 1, which implies that the change
raised its (negative) charge by at least 1

2 , more than neutralizing the change
in the charge coming from the 6-vint. In conclusion, adding another level-2
edge to RC 2e cannot increase the bound on its charge.

We next deal with the addition of level-3 edges to the basic RCs. By Rule
3, adding a level-3 RC edge to RC 2c, RC 2d, or RC 2e (or RC 2e+), cannot
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increase the bound on their charge. Moreover, we cannot add a level-3 RC
edge to RC 2a, since it does not have any level-2 RC edges. This implies

Figure 132:
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that we only need to treat the addition of a single level-3 RC edge to RC
2b (by Rule 3, adding a second level-3 edge to this RC cannot increase the
charge). This RC, denoted by RC 2b+, is depicted in Figure 132, where W
is the new RC edge. We modify our previous analysis of RC 2b so that it
applies to RC 2b+, as follows.

Making W rigid can only increase the positive charge by reducing the
support of a single 6-vint (the one using Z, X, and W ); we will refer to
this 6-vint as u. In the original analysis of RC 2b, we considered W to be
part of the flip-tree only if the overall charge from u and from the various
extensions thereof was positive; otherwise, we would have assumed that W
is missing, in order to get a larger charge. Thus, it suffices to show that,
after the change, the overall charge from u and from its various extensions
is non-positive; this would imply that making W rigid can only decrease the
overall charge.

In the original analysis of RC 2b, we show that if at least one of the three
5-vints using a rigid level-1 edge and a non-rigid level-2 edge is not present
in the flip-tree, the charge cannot exceed 29 47

211 . While proving that claim,
we consider u as having a support of at least 2, and use the worst-case value
2 in the calculations. Moreover, we do not use W to generate any extension
vints. Thus, after the change, if at least one of these 5-vints is not present
in the flip-tree, the total charge cannot exceed 29 47

211 + (1− 1
2 ) = 29305

422 (the
second term represents the change in the charge coming from u). We may
therefore assume that all three 5-vints are present in the flip-tree.
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We next append the edges of the handicapped 5-vint in the subtree of Y
to the edges Z, X, and W . Since all of these edges are in their non-visible
terrain, we get an 8-vint with a support of 2 (as depicted in Figure 133,
where the 5-vint is shaded). This leaves a charge of 1− 1

2 = 1
2 to neutralize.

We divide the rest of the analysis into the following two cases:

• The 5-vint using Z and B has a support of 2. We can extend this 5-vint
with Y , X, and W , which will generate another 8-vint with a support of
2 (since all of the edges of the 8-vint are in their non-visible terrains; see
Section 6.1), neutralizing the rest of the charge.

• The 5-vint using Z and B has a support of 3. In the analysis of RC 2b, we
argued that each of the 6-vints extending the 5-vint with a level-3 edge,
and its possible extensions, generate a positive charge of at most 1

4 (see the
case of “A 5-vint with a support of 3” in RC 2b). By Rule 2, appending
X and W to such a 6-vint (where now W is rigid) cannot increase its
support. Therefore, we can create two 8-vints that neutralize the charge
of these two 6-vints, which decreases the bound on the charge by at least
1
4 · 2 = 1

2 .
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8 Conclusion

By a rather meticulous case analysis, we have shown that every set of n points in the plane
admits at most 30n different triangulations. We have also noted that our proof technique
cannot decrease the base below 2817

28 , so we are very close to the best base that this approach
can yield. Nevertheless, we strongly believe that the true upper bound is much smaller. A
major weakness of our machinery is that it caters to the worst possible charge that a 3-vint can
receive, as opposed to the average charge. Obtaining a sharper upper bound on the average
charge requires a totally different approach, which we leave open for future research. For
example, it might be possible to prove that for every 3-vint with λ1 = 3, there must exist a
3-vint with λ1 = 1 (with bijective correspondence).

Still, we note that all the cases in our analysis actually yielded charges that were strictly
smaller than 30, and each of them could be further improved if we were to consider further
expansions of the flip-tree. It might therefore be interesting to find the best base that this
approach can yield, which might well be the “lower bound” 2817

28 . For this, an exhaustive
search by computer is probably the way to proceed. This in turn requires the generation of all
possible combinatorially distinct configurations of up to 25 points and the flip trees that they
generate. The existing databases of order types (see, e.g., [3]) are not yet powerful enough to
provide the data we need. However, it might be possible to drastically decrease the number of
relevant configurations by using heuristics.
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