

Distributed Streams
Algorithms for Sliding
Windows

Phillip B. Gibbons, Srikanta Tirthapura

IRP-TR-02-08
August 2002

In Proceedings of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, Winnipeg, Manitoba, Canada, August 2002.

DISCLAIMER: THIS DOCUMENT IS PROVIDED TO YOU "AS IS" WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE. INTEL AND THE AUTHORS OF THIS DOCUMENT DISCLAIM ALL LIABILITY,
INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OR
IMPLEMENTATION OF INFORMATION IN THIS DOCUMENT. THE PROVISION OF THIS DOCUMENT TO
YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS

Copyright 2002, Intel Corporation, All rights reserved.

Distributed Streams Algorithms for Sliding Windows

Phillip B. Gibbons

Intel Research Pittsburgh
417 South Craig Street
Pittsburgh, PA 15213

phillip.b.gibbons@intel.com

Srikanta Tirthapura

Computer Science Department
Brown University

Providence, RI 02912

snt@cs.brown.edu

ABSTRACT
This paper presents algorithms for estimating aggregate func-
tions over a “sliding window” of the N most recent data
items in one or more streams. Our results include:

1. For a single stream, we present the first ε-approxima-
tion scheme for the number of 1’s in a sliding window
that is optimal in both worst case time and space. We
also present the first ε-approximation scheme for the
sum of integers in [0..R] in a sliding window that is
optimal in both worst case time and space (assuming
R is at most polynomial in N). Both algorithms are
deterministic and use only logarithmic memory words.

2. In contrast, we show that any deterministic algorithm
that estimates, to within a small constant relative er-
ror, the number of 1’s (or the sum of integers) in a
sliding window over the union of distributed streams
requires Ω(N) space.

3. We present the first randomized (ε, δ)-approximation
scheme for the number of 1’s in a sliding window over
the union of distributed streams that uses only loga-
rithmic memory words. We also present the first (ε, δ)-
approximation scheme for the number of distinct val-
ues in a sliding window over distributed streams that
uses only logarithmic memory words.

Our results are obtained using a novel family of synopsis
data structures which we call waves.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications; F.1.1
[Theory of Computation]: Models of Computation

General Terms
Algorithms, Theory

Keywords
Data streams, Sliding windows, Distributed, Waves

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
SPAA’02,August 10-13, 2002, Winnipeg, Manitoba, Canada.
Copyright 2002 ACM 1-58113-529-7/02/0008 ...$5.00.

1. INTRODUCTION
There has been a flurry of recent work on designing ef-

fective algorithms for estimating aggregates and statistics
over data streams [1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 16,
17, 18, 19, 25], due to their importance in applications such
as network monitoring, data warehousing, telecommunica-
tions, and sensor networks. This work has focused almost
entirely on the sequential context of a data stream observed
by a single party. Figure 1 depicts an example data stream,
where each data item is either a 0 or a 1.

On the other hand, for many of these applications, there
are multiple data sources, each generating its own stream. In
network monitoring and telecommunications, for example,
each node/person in the network is a potential source for
new streaming data. In a large retail data warehouse, each
retail store produces its own stream of items sold. To model
such scenarios, we previously proposed a distributed streams
model [13], in which there are a number of data streams,
each stream is observed by a single party, and the aggregate
is computed over the union of these streams.

Moreover, in many real world scenarios (e.g., marketing,
traffic engineering), only the most recent data is important.
For example in telecommunications, call records are gener-
ated continuously by customers, but most processing is done
only on recent call records. To model these scenarios, Datar
et al. [4] recently introduced the sliding windows setting for
data streams, in which aggregates and statistics are com-
puted over a “sliding window” of the N most recent items
in the data stream.

This paper studies the sliding windows setting in both
the single stream and distributed stream models, improv-
ing upon previous results under both settings. In order to
describe our results, we first describe the models and the
previous work in more detail.

1.1 Sequential and Distributed Streams
The goal in a (sequential or distributed) algorithm for

data streams is to approximate a function F while minimiz-
ing (1) the total workspace (memory) used by all the parties,
(2) the time taken by each party to process a data item, and
(3) the time to produce an estimate (i.e., the query time).
Many functions on (sequential and distributed) data streams
require linear space to compute exactly, and so attention is
focused on finding either an (ε, δ)-approximation scheme or
an ε-approximation scheme, defined as follows.

Definition 1. An (ε, δ)-approximation scheme for a quan-
tity X is a randomized procedure that, given any positive
ε < 1 and δ < 1, computes an estimate X̂ of X that is

position 1 2 · · · 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
stream 0 1 · · · 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0
1-rank 1 · · · 31 32 33 34 35 36 37 38 39 40 41

position 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
stream 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1
1-rank 42 43 44 45 46 47 48 49 50

Figure 1: An example data stream, through m = 99 bits. The position in the stream (position) and the rank
among the 1-bits (1-rank) are computed as the stream is processed.

within a relative error of ε with probability at least 1−δ, i.e.,

Pr
{
|X̂ − X| ≤ εX

}
≥ 1 − δ. An ε-approximation scheme

is a deterministic procedure that, given any positive ε < 1,
computes an estimate whose worst case relative error is at
most ε.

Algorithms for a Sliding Window over a Single
Stream. Datar et al. [4] presented a number of interest-
ing results on estimating functions over a sliding window for
a single stream. A fundamental problem they consider is
that of determining the number of 1’s in a sliding window,
which they call the Basic Counting problem. In the stream
in Figure 1, for example, the number of 1’s in the current
window of the 39 most recent items is 20. They presented an
ε-approximation scheme for Basic Counting that uses only
O(1

ε
log2(εN)) memory bits of workspace, processes each

data item in O(1) amortized and O(log N) worst case time,
and can produce an estimate over the current window in
O(1) time. They also prove a matching lower bound on the
space. They demonstrated the importance of this problem
by using their algorithm as a building block for a number
of other functions, such as the sum of bounded integers and
the Lp norms (in a restricted model).

We improve upon their results by presenting an ε-approx-
imation scheme for Basic Counting that matches their space
and query time bounds, while improving the per-item pro-
cessing time to O(1) worst case time. We also present an
ε-approximation scheme for the sum of bounded integers in
a sliding window that improves the worst case per-item pro-
cessing time from O(log N) to O(1).

Our improved algorithms use a family of small space data
structures, which we call waves. An example wave for Ba-
sic Counting is given in Figure 2, for the data stream in
Figure 1. (The basic shape is suggestive of an ocean wave
about to break.) The x-axis is the 1-rank, and extends to
the right as new 1-bits arrive. As we shall see, as additional
stream bits arrive, the wave retains this basic shape while
“moving” to the right so that the crest of the wave is always
over the largest 1-rank thus far.

Algorithms for Distributed Streams. In the dis-
tributed streams model [13], each party observes only its
own stream, has limited workspace, and communicates with
the other parties only when an estimate is requested. Specif-
ically, to produce an estimate, each party sends a message
to a Referee who computes the estimate. This model re-
flects the set-up used by commercial network monitoring
products, where the data analysis front-end serves the role
of the Referee. Among the results in [13] were (i) an (ε, δ)-
approximation scheme for the number of 1’s in the union of
distributed streams (i.e., in the bitwise OR of the streams),

using only O(1
ε2

log(1/δ) log n) memory bits per party, where
n is the length of the stream, and (ii) an (ε, δ)-approximation
scheme for the number of distinct values in a collection of
distributed streams, using only O(1

ε2
log(1/δ) log R) mem-

ory bits, where the values are in [0..R]. Both algorithms
use coordinated sampling: each stream is sampled at the
same random positions, for a given sampling rate. Each
party stores the positions of (only) the 1-bits in its sample.
When the stored 1-bits exceed the target space bound, the
sampling probability is reduced, so that the sample fits in
smaller space. Sliding windows were not considered.

In this paper, we combine the idea of a wave with coor-
dinated sampling. We store a wave consisting of many ran-
dom samples of the stream. Samples that contain only the
recent items are sampled at a high probability, while those
containing older items are sampled at a lower probability.
We obtain an (ε, δ)-approximation scheme for the number
of 1’s in the position-wise union of distributed streams over
a sliding window. We also obtain an (ε, δ)-approximation
scheme for the number of distinct values in sliding windows
over both single and distributed streams. Each scheme uses
only logarithmic memory words per party.

The algorithms we propose are for the distributed streams
model in the stored coins setting [13], where all parties share
a string of unbiased and fully independent random bits, but
these bits must be stored prior to observing the streams,
and the space to store these bits must be accounted for in
the workspace bound. Previous works on streaming models
(e.g., [1, 5, 6, 8, 18, 19]) have studied settings with stored
coins. Stored coins differ from private coins (e.g., as studied
in communication complexity [21, 23, 24]) because the same
random string can be stored at all parties.

1.2 Summary of Contributions
The contributions of this paper are as follows.

1. We introduce a family of synopsis data structures called
waves, and demonstrate their utility for data stream
processing in the sliding windows setting.

2. We present the first ε-approximation scheme for Basic
Counting over a single stream that is optimal in worst
case space, processing time, and query time. Specif-
ically, for a given accuracy ε, it matches the space
bound and O(1) query time of Datar et al. [4], while
improving the per-item processing time from O(1) amor-
tized (O(log N) worst case) to O(1) worst case.

3. We present the first ε-approximation scheme for the
sum of integers in [0..R] in a sliding window over a sin-
gle stream that is optimal in worst case space (assum-
ing R is at most polynomial in N), processing time,

by 16

by 8

by 4

by 2

by 1

25 67 91

44 67 9176

847672

8684 91

91

99

89 91 94 99

0

160 24 32 36 40 44 46 48 504947

window

Figure 2: A deterministic wave and an example window query (n = 39). The x-axis shows the 1-ranks, and
on the y-axis, level i is labeled as “by 2i”.

and query time. Specifically, it improves the per-item
processing time of [4] from O(1) amortized (O(log N)
worst case) to O(1) worst case.

4. We show that in contrast to the single stream case,
no deterministic algorithm can estimate the number
of 1’s in a sliding window over the union of distributed
streams within a small constant relative error unless it
uses Ω(N) space.

5. We present the first randomized (ε, δ)-approximation
scheme for the number of 1’s in a sliding window over
the union of distributed streams that uses only log-
arithmic memory words. We use this as a building
block for the first (ε, δ)-approximation scheme for the
number of distinct values in a sliding window over dis-
tributed streams that uses only logarithmic memory
words.

The remainder of the paper is organized as follows. Sec-
tion 2 presents further comparisons with previous related
work. Section 3 and Section 4 present results using the
deterministic (randomized, resp.) wave synopsis. Finally,
Section 5 shows how the techniques can be used for various
other functions over a sliding window such as distinct values
counting and nth most recent 1.

2. RELATED WORK
In the paper introducing the sliding windows setting [4],

the authors gave an algorithm for the Basic Counting prob-
lem that uses exponential histograms. An exponential his-
togram (EH) maintains more information about recently
seen items, less about old items, and none at all about items
outside the “window” of the last N items. Specifically, the
k0 most recent 1’s are assigned to individual buckets, the k1

next most recent 1’s are assigned to buckets of size 2, the k2

next most recent 1’s are assigned to buckets of size 4, and
so on, until all the 1’s within the last N items are assigned
to some bucket. For each bucket, the EH stores only its size
(a power of 2) and the position of the most recent 1 in the
bucket. Each ki (up to the last bucket) is either 1

2ε
or 1

2ε
+1.

Upon receiving a new item, the last bucket is discarded if
its position no longer falls within the window. Then, if the
new item is a 1, it is assigned to a new bucket of size 1. If

this makes k0 = 1
2ε

+ 2, then the two least recent buckets of
size 1 are merged to form a bucket of size 2. If k1 is now too
large, the two least recent buckets of size 2 are merged, and
so on, resulting in a cascading of up to log N bucket merges
in the worst case. As we shall see, our approach using waves
avoids this cascading.

Our previous paper [13] formalized the distributed streams
model and presented several (ε, δ)-approximation schemes
for aggregates over distributed streams. We also compared
the power of the distributed streams model with the previ-
ously studied merged streams model (e.g., [5, 19]), where all
the data streams arrived at the same party, but interleaved
in an arbitrary order.

The algorithm by Flajolet and Martin [7] and its variant
due to Alon, Matias and Szegedy [1] estimate the number
of distinct values in a stream (and also the number of 1’s in
a bit stream) up to a constant relative error of ε > 1. The
algorithm works in the distributed streams model too, and
can be adapted to sliding windows [4]. There are two results
we know of that extend this algorithm to work for arbitrary
relative error, by Trevisan [25] and by Bar-Yossef et al. [3].1

Trevisan’s algorithm can be extended to distributed streams
quite easily, but the cost of extending it to sliding windows is
not clear. There are O(log(1/δ)) instances of the algorithm,
using different hash functions, and each must maintain the
O(1

ε2
) smallest distinct hashed values in the sliding window

of N values. Assuming the hashed values are random, main-
taining just the minimum value over a sliding window takes
O(log N) expected time [4]. We do not know how to extend
the algorithm in [3] to sliding windows, and in addition, its
space and time bounds for single streams are worse than ours
(however, their algorithm can be made list efficient [3]).

We now quickly survey some other recent related work.
Frameworks for studying data synopses were presented in [12],
along with a survey of results. There have been algorithms
for computing many different functions over a data stream
observed by a single party, such as maintaining histograms [16],
maintaining significant transforms of the data that are used
to answer aggregate queries [14], and computing correlated
aggregates [9]. Babcock et al. [2] considered the problem

1Datar et al. [4] also reported an extension to arbitrary rel-
ative error for a sliding window over a single stream, using
the Trevisan approach [20].

of maintaining a uniform random sample of a specified size
over a sliding window of the most recent elements.

In communication complexity models [22], the parties have
unlimited time and space to process their respective in-
puts. Simultaneous 1-round communication complexity re-
sults can often be related to the distributed streams model.
The lower bounds from 1-round communication complexity
certainly carry over directly.

None of these previous papers use wave-like synopses.

3. DETERMINISTIC WAVES
In this section, we will first present our new ε-approxima-

tion scheme for the number of 1’s in a sliding window over
a single stream. Then we will present our new ε-approx-
imation scheme for the sum of bounded integers in a sliding
window over a single stream. Finally, we will consider dis-
tributed streams, for three natural definitions of a sliding
window over such streams. We will show that our small-
space deterministic schemes can improve the performance
for two of the scenarios, but for the third, no deterministic
ε-approximation scheme can obtain sub-linear space.

3.1 The Basic Wave
We begin by describing the basic wave, and show how it

yields an ε-approximation scheme for the Basic Counting
problem for any sliding window up to a prespecified max-
imum window size N . The basic wave will be somewhat
wasteful in terms of its space bound, processing time, and
query time.

Consider a data stream of bits, and a desired positive ε<1.
To simplify the notation, we will assume throughout that 1

ε
is an integer. We maintain two counters: pos, which is the
current length of the stream, and rank, which is the current
number of 1’s in the stream (equivalently, the 1-rank of the
most recent 1).

The wave contains the positions of the recent 1’s in the
stream, arranged at different “levels”. The wave has ` =
dlog(2εN)e levels. For i = 0, 1, . . . , `−1, level i contains the
positions of the 1/ε + 1 most recent 1-bits whose 1-rank is a
multiple of 2i.2 Figure 2 depicts the basic wave for the data
stream in Figure 1, for ε = 1

3
and N = 48. In the figure,

there are five levels, with level i labeled as “by 2i” because
it contains the positions of the 1/ε+1 = 4 most recent 1-bits
whose 1-ranks are 0 modulo 2i. The 1-ranks are given on
the x-axis.

Given this wave, we estimate the number of 1’s in a win-
dow of size n ≤ N as follows. Let s = max(0, pos−n+1); we
are to estimate the number of 1’s in stream positions [s, pos].
The steps are:

1. Let p1 be the maximum position stored in the wave that
is less than s, and p2 the minimum position stored in
the wave that is greater than or equal to s. (If no such
p2 exists, return x̂ := 0 as the exact answer.) Let r1

and r2 be the 1-ranks of p1 and p2 respectively.

2. Return x̂ := rank − r + 1, where r := r2 if r2 − r1 = 1
and otherwise r := r1+r2

2
.

For example, given the window query depicted in Figure 2,
we have n = 39, pos = 99, rank = 50, s = 61, p1 = 44,

2To simplify the description, we describe throughout the
steady state of a wave. Initially, there will be fewer than
1/ε + 1 such 1-bits and the wave stores all of them.

p2 = 67, r1 = 24, r2 = 32, r = 28, and hence x̂ = 23. As
noted earlier, the actual number of 1’s in this window is 20,
and indeed x̂ ∈ [(1 − 1

ε
) · 20, (1 + 1

ε
) · 20] = [40

3
, 80

3
].

Lemma 1. The above estimation procedure returns an es-
timate x̂ that is within a relative error of ε of the actual
number of 1’s in the window.

Proof. Each level i contains (1/ε + 1) 1’s (stored with
their positions in the stream) whose 1-ranks are 2i apart.
Thus, regardless of the current rank, the earliest 1-rank at
level i is at most

(
rank − 1

ε
· 2i

)
. Thus, the difference be-

tween rank and the earliest 1-rank in level ` − 1 is at least
2`−1/ε ≥ N ≥ n. Since the difference in 1-ranks is at least as
large as the difference in positions, it follows that p1 exists.
Let j be the smallest numbered level containing position p1.

We know that the number of 1’s in the window is in [rank−
r2 +1, rank−r1]. For example, it is between [50−32+1, 50−
24] in Figure 2. Thus if r2 − r1 = 1, we return the exact
answer. So assume r = r1+r2

2
and j > 0. By returning the

midpoint of the range, we guarantee that the absolute error
is at most r2−r1

2
. By construction, there is at most a 2j gap

between r1 and its next larger position r2. Thus the absolute
error in our estimate is at most 2j−1. To bound the relative
error, we will show that all the positions in level j − 1 are

contained in the window, and this includes at least 2j−1

ε
1’s.

Let r3 be the earliest 1-rank at level j−1. Position p1 was not
in level j−1, so r1 < r3. Since r2 is the smallest 1-rank in the
wave larger than r1, we have r2 ≤ r3. Moreover, as argued

above, r3 ≤ rank− 2j−1

ε
. Therefore, the actual number of 1’s

in the window is at least rank−r2 +1 ≥ rank−r3 +1 > 2j−1

ε
.

Thus the relative error is less than 1
ε
.

Note that the proof readily extends beyond the steady
state case: Any level with fewer than 1

ε
+ 1 positions will

contain a position less than s, and hence can not serve the
role of level j − 1 above.

3.2 Improvements
We now show how to improve the basic wave in order to

obtain an optimal deterministic wave for a sliding window
of size N . Let N ′ be the smallest power of 2 greater than
or equal to 2N . First, we use modulo N ′ counters for pos

and rank, and store the positions in the wave as modulo N ′

numbers, so that each takes only log N ′ bits, regardless of
the length of the stream. Next, we discard or expire any po-
sitions that are more than N from pos, as these will never be
used, and would create ambiguity in the modulo N ′ arith-
metic. We keep track of both the largest 1-rank discarded
(r1) and the smallest 1-rank still in the wave (r2), so that
the number of 1’s in a sliding window of size N can be
answered in O(1) time. Processing a 0-bit takes constant
time, while processing a 1-bit takes O(log(εN)) worst case
time and O(1) amortized time, as a new 1-bit is stored at
each level i such that its 1-rank is a multiple of 2i. Each of
these improvements is used for the EH synopsis introduced
by Datar et al. [4], to obtain the same bounds.

However, the deterministic wave synopsis is quite different
from the EH synopsis, so the steps used are different too.
Significantly, we can decrease the per-item processing time
to O(1) worst case, as follows. Instead of storing a single
position in multiple levels, we will store each position only
at its maximum level, as shown in Figure 3.3 For levels
3In the figure, we have not explicitly discarded positions

by 16

by 8

by 4

by 2

by 1

25 67 91

44 76

8472

86 99

0

160 24 32 36 40 44 46 48 504947

89 94

Figure 3: An optimal deterministic wave. The x-axis shows the 1-ranks, and on the y-axis, level i is labeled
as “by 2i”.

i = 0, . . . , `− 2, we store d 1
2
(1

ε
+ 1)e positions, and for level

`−1, we store d 1
ε
+1e positions. (At all levels, we may store

fewer positions, because we discard expired positions.) In
the wave, the positions at each level are stored in a fixed
length queue, called a level queue, so that each time a new
position is added for the level, the position at the tail of the
queue is removed (assuming the queue is full). For example,
using a circular buffer for each queue, the new head position
simply overwrites the next buffer slot. We maintain a doubly
linked list of the positions (of the 1-bits) in the wave in
increasing order. Positions evicted from the tail of a level
queue are spliced out of this list. As each new stream item
arrives, we check the head of this sorted list to see if the
head needs to be expired.

Finally, as observed in [4], the set of positions is a sorted
sequence of numbers between 0 and N ′, so by storing the
difference (modulo N ′) between consecutive positions in-
stead of the absolute positions, we can reduce the space
from O(1

ε
log(εN) log N) bits to O(1

ε
log2(εN)) bits.

Figure 4 summarizes the steps of the deterministic wave
algorithm. Putting it altogether, we have:

Theorem 1. The algorithm in Figure 4 is an ε-approx-
imation scheme for the number of 1’s in a sliding window of
size N over a data stream, using O(1

ε
log2(εN)) bits. Each

stream item is processed in O(1) worst case time. At each
time instant, it can provide an estimate in O(1) time.

Proof. (sketch) The proof of ε relative error follows
along the lines of the proof of Lemma 1, because the set
of positions in the improved wave is the same or a superset
of the set of positions in the basic wave. The wave level in
step 3(a) is the position of the least-significant 1-bit in rank

(numbering from 0). Assuming this is a constant time op-
eration, the time bounds follow from the above discussion.4

As for the space, because the level queues are updated in
place, the same block of memory can be used throughout,
and hence the linked list pointers are offsets into this block
and not full-sized pointers. The space bound follows.

The space bound is optimal because it matches the lower

outside the size N = 48 window, in order to show the full
levels. All positions less than pos − N = 51 have expired,
and r1 = 24 is the largest expired 1-rank.
4Below, we show how to determine the wave level in con-
stant time even on a weaker machine model that does not
explicitly support this operation in constant time.

Upon receiving a stream bit b:

1. Increment pos. (Note: All additions and comparisons
are done modulo N ′, the smallest power of 2 greater
than or equal to 2N .)

2. If the head (p, r) of the linked list L has expired (i.e.,
p ≤ pos − N), then discard it from L and from (the
tail of) its queue, and store r as the largest 1-rank
discarded.

3. If b = 1 then do:

(a) Increment rank, and determine the corresponding
wave level j, i.e., the largest j such that rank is a
multiple of 2j .

(b) If the level j queue is full, then discard the tail of
the queue and splice it out of L.

(c) Add (pos, rank) to the head of the level j queue
and the tail of L.

Answering a query for a sliding window of size N :

1. Let r1 be the largest 1-rank discarded. (If no such r1,
return x̂ := rank as the exact answer.) Let r2 be the
1-rank at the head of the linked list L. (If L is empty,
return x̂ := 0 as the exact answer.)

2. Return x̂ := rank − r + 1, where r := r2 if r2 − r1 = 1
and otherwise r := r1+r2

2
.

Figure 4: A deterministic wave algorithm for Basic
Counting over a single stream.

bound by Datar et al. [4] for both randomized and deter-
ministic algorithms.

Computing the Wave Level on a Weaker Machine
Model. Step 3(a) of Figure 4 requires computing the least-
significant 1-bit in a given number. On a machine model
that does not explicitly support this operation in constant
time, a naive approach would be to examine each bit of rank

one at a time until the desired position is found. But this
takes Θ(log N) worst case time, because rank has N ′ bits.
Instead, we store the log N ′ wave levels associated with the
sequence 1, . . . , log N ′−1 in an array (e.g., {0, 1, 0, 2, 0, 1, 0,
3, 0, 1, 0, 2, 0, 1, 0} if log N ′ = 16). This takes only O(log N
log log N) bits. We also store a counter d of log N ′−log log N ′

bits, initially 1. As 1-bits are received, the desired wave
level is the next element in this array. The first 1-bit after
reaching the end of the array has the property that the last
log log N ′ bits of rank are 0, and the desired wave level is
log log N ′ plus the position of the least significant 1-bit in
d (numbering from 0). We then increment d and return to
cycling through the array. This correctly computes the wave
level at each step. Moreover, note that while we are cycling
through the array, we have log N ′ steps until we need to
know the least significant 1-bit in d. Thus by interleaving
(i) the cycling and (ii) the search through the bits of d, we
can determine the wave levels in O(1) worst case time.

Basic Counting for Any Window of Size n ≤ N .
The algorithm in Figure 4 achieves constant worst case query
time for a sliding window of size N . For a sliding window
of any size n ≤ N , this single wave can be used to give
an estimate for the Basic Counting problem that is within
an ε relative error, by following the two steps outlined for
the Basic Wave (Section 3.1). However, the query time for
window sizes less than N is O(1

ε
log(εN)) in the worst case,

because we must search through the linked list L in order to
determine p1 and p2. This matches the query time bound
for the EH algorithm [4].

3.3 Sum of Bounded Integers
The deterministic wave scheme can be extended to handle

the problem of maintaining the sum of the last N items in a
data stream, where each item is an integer in [0..R]. Datar et
al. [4] showed how to extend their EH approach to obtain an
ε-approximation scheme for this problem, using O(1

ε
(log N+

log R)) buckets of log N +log(log N +log R) bits each, O(1)
query time, and O(log R

log N
) amortized and O(log N + log R)

worst case per-item processing time. (They also presented
a matching asymptotic lower bound on the number of bits,
under certain weak assumptions on the relative sizes of N ,
R, and ε.) We show how to achieve constant worst case
per-item processing time, while using the same number of
memory words and the same query time. (The number of
bits is O(1

ε
(log N +log R)2), which is slightly worse than the

EH bound if R is super-polynomial in N .)
Our algorithm is depicted in Figure 5. The sum over

a sliding window can range from 0 to N · R. Let N ′ be
the smallest power of 2 greater than or equal to 2NR. We
maintain two modulo N ′ counters: pos, the current length,
and total, the running sum. There are ` = dlog(2εNR)e
levels. The algorithm follows the same general steps as the
algorithm in Figure 4. Instead of storing pairs (p, r), we
store triples (p, v, z) where v is the value for the data item
(not needed before because the value for a stored item was
always 1) and z is the partial sum through this item (the
equivalent of the 1-rank for sums). When answering a query,
we know that the window sum is in [total−z2 +v2, total−z1],
and we return the midpoint of this interval.

The key insight in this algorithm is that it suffices to store
an item (only) at a level j such that 2j is the largest power
of 2 that divides a number in (total, total + v]. Naively, one
would mimic the Basic Counting wave by viewing a value v
as v items of value 1. But this would lead to O(R) worst case
processing time per item. Datar et al. [4] reduced the time
to O(log N + log R) by directly computing the EH resulting
from v insertions of items of value 1. However, a single item
is stored in up to O(log N +log R) EH buckets. In contrast,
we store the item just once, which enables our O(1) time

Upon receiving a stream value v ∈ [0..R]:

1. Increment pos. (Note: All additions and comparisons
are done modulo N ′.)

2. If the head (p, v′, z) of the linked list L has expired
(i.e., p ≤ pos − N), then discard it from L and from
(the tail of) its queue, and store z as the largest partial
sum discarded.

3. If v > 0 then do:

(a) Determine the largest j such that some number
in (total, total + v] is a multiple of 2j . Add v to
total.

(b) If the level j queue is full, then discard the tail of
the queue and splice it out of L.

(c) Add (pos, v, total) to the head of the level j queue
and the tail of L.

Answering a query for a sliding window of size N :

1. Let z1 be the largest partial sum discarded from L.
(If no such z1, return x̂ := total as the exact answer.)
Let (p, v2, z2) be the head of the linked list L. (If L is
empty, return x̂ := 0 as the exact answer.)

2. Return x̂ := total − z1+z2−v2
2

Figure 5: A deterministic wave algorithm for the
sum over a sliding window.

bound.
The challenge is to quickly compute the wave level in

step 3(a); we show how to do this in O(1) time. First ob-
serve that the desired wave level is the largest position j
(numbering from 0) such that some number y in the inter-
val (total, total + v] has 0’s in all positions less than j (and
hence y is a multiple of 2j). Second, observe that y − 1 and
y differ in bit position j, and if this bit changes from 1 to
0 at any point in [total, total + v], then j is not the largest.
Thus, j is the position of the most-significant bit that is 0
in total and 1 in total + v. Accordingly, let f be the bitwise
complement of total, and let g = total + v. Let h = f ∧ g,
the bitwise AND of f and g. Then the desired wave level is
the position of the most-significant 1-bit in h, i.e., blog hc.5

Putting it altogether, we have:

Theorem 2. The algorithm in Figure 5 is an ε-approx-
imation scheme for the sum of the last N items in a data
stream, where each item is an integer in [0..R]. It uses
O(1

ε
(log N + log R)) memory words, where each memory

word is O(log N + log R) bits (i.e., large enough to hold an
item or a window size). Each item is processed in O(1) worst
case time. At each time instant, it can provide an estimate
in O(1) time.

5On a weaker machine model that does not support this
operation on h in constant time, we can use binary search
to find the desired position in O(log(log N + log R)) time,
as follows. Let w be the word size, and B be a bit mask
comprising of w

2
1’s followed by w

2
0’s. We begin by checking

if h ∧ B equals zero. If so, we left shift B by w
4

positions
and recurse. Otherwise, we right shift B by w

4
positions and

recurse.

Proof. (sketch) For the purposes of analyzing the ap-
proximation error, we reduce the wave to an equivalent basic
wave for the Basic Counting problem, as follows. For each
triple (p, v, z) in the sums wave, we have a pair (p, z′) in the
basic wave for each z′ ∈ [z − v + 1, z], stored in all levels l
such that z′ is a multiple of 2l. Also add the pair (p1, z1)
where z1 is the largest partial sum discarded by the sums
wave algorithm, to all levels l′ such that z′ is a multiple of

2l′ . Next, for each level, discard all but the most recent
1
ε
+1 at the level. Let rank = total. Let r1 = z1, and let j be

the minimum level containing p1. Adapting the argument
in the proof of Lemma 1, it can be shown that (1) regardless
of the current rank, the earliest 1-rank at level i is at most
rank − 1

ε
· 2i, (2) there is at most a 2j gap between r1 and

its next larger position r2, and (3) all the positions in level
j − 1 are contained in the window.

We know that the window sum is in [total−z2 +v2, total−
z1], and since we take the midpoint, the absolute error of
x̂ is at most z2−v2−z1

2
. The gap between z2 − v2 and z1 is

at most the gap between r1 and r2 in the basic wave. Thus
by (2) above, the absolute error is at most 2j−1. Moreover,
by (1) and (3) above, the actual window sum is at least

rank − r2 + 1 > 2j−1

ε
. Thus the relative error is less than 1

ε
.

The space and time bounds are immediate, given the
above discussion of how to perform step 3(a) in constant
time.

3.4 Distributed Streams
We consider three natural definitions for a sliding window

over a collection of t ≥ 2 distributed streams, as illustrated
for the Basic Counting problem:

1. We seek the total number of 1’s in the last N items in
each of the t streams (t · N items in total).

2. A single logical stream has been split arbitrarily among
the parties. Each party receives items that include a
sequence number in the logical stream, and we seek the
total number of 1’s in the last N items in the logical
stream.

3. We seek the total number of 1’s in the last N items in
the position-wise union (logical OR) of the t streams.

The deterministic wave can be used to answer sliding win-
dows queries over a collection of distributed streams, for
both the first two scenarios. For the first scenario, we apply
the single stream algorithm to each stream. To answer a
query, each party sends its count to the Referee, who simply
sums the answers. Because each individual count is within
ε relative error, so is the total. The second scenario can
similarly be reduced to the single stream problem. The only
issue is that each party knows only the latest sequence num-
ber in its stream, not the overall latest, so some waves may
contain expired positions. Thus to answer a query, each
party sends its wave to the Referee, who computes the max-
imum sequence number over all the parties and then uses
each wave to obtain an estimate over the resulting window,
and sums the result. Because each individual estimate is
within an ε relative error (recall the discussion at the end of
Section 3.2), so is the total. By improving the single stream
performance over the previous work, we have improved the
distributed streams performance for these two scenarios.

However, the third scenario is more problematic. Denote
as the Union Counting problem the problem of counting the
number of 1’s in the position-wise union of t distributed data
streams. (If each stream represents the characteristic vector
for a set, then this is the size of the union of these sets.) We
present next a linear space lower bound for deterministic
algorithms for this problem, before considering randomized
algorithms in Section 4.

A Lower Bound for Deterministic Algorithms. We
show the following lower bound on any deterministic algo-
rithm for the Union Counting problem that guarantees a
small constant relative error.

Theorem 3. Any deterministic algorithm that guaran-
tees a constant relative error ε ≤ 1

64
for the Union Counting

problem requires Ω(n) space for n-bit streams, even for t = 2
parties (and no sliding window).

Proof. The proof is by contradiction. Suppose that an
algorithm existed for approximating Union Counting within
a relative error of ε = 1

64
using space less than αn, where

α = 1
16

. (We have not attempted to maximize the constants
ε or α.)

Let A and B be the two parties, where A sees the data
stream X and B sees the data stream Y . X and Y are of
length n (n even), and a query request occurs only after both
streams have been observed. Suppose that both X and Y
have exactly n

2
ones and zeroes. Note that for this restricted

scenario, the exact answer for the Union Counting problem
is

n

2
+

1

2
H(X, Y) , (1)

where H(X, Y) is the Hamming distance between X and Y .
For each possible message m from A to the Referee C, let

Sm denote the set of all inputs to A for which A sends m
to C. Since A’s workspace is only αn bits, the number of
distinct messages that A could send to C is 2αn. The num-

ber of possible inputs for A is (n
n/2

). Using the pigeonhole

principle, we conclude that there exists a message m that A
sends to C such that

|Sm| ≥ (n
n/2

)/2αn (2)

Because the relative error is at most ε and the exact an-
swer is at most n, the absolute error of any estimate pro-
duced by the algorithm is at most nε. We claim that no
two inputs in Sm can be at a Hamming distance greater
than 4nε. The proof is by contradiction. Suppose there are
two inputs X1 and X2 in Sm such that H(X1, X2) > 4nε.
Consider two runs of the algorithm: in the first, X = X1

and Y = X2, and in the second, X = X2 and Y = X2. In
both runs, the Referee C gets the same pair of messages,
and so it outputs the same estimate z. Because the abso-
lute error in both cases is at most nε, we have by equa-
tion (1) that z ≥ n

2
+ 1

2
H(X1, X2) − nε > n

2
+ nε and

z ≤ n
2

+ 1
2
H(X2, X2) + nε = n

2
+ nε, a contradiction.

For a given n-bit input t with exactly n
2

1’s, the number of
n-bit inputs with exactly n

2
1’s at a Hamming distance of k

from t (k an even number) is (n/2
k/2

)2 — all combinations of k
2

out of n
2

0’s in t flipped to 1’s and k
2

out of n
2

1’s in t flipped
to 0’s. (There are no such inputs at odd distances.) Thus
the number of such inputs at Hamming distance at most k

is
∑k/2

j=0(
n/2

j
)2, which, for k ≤ n

4
, is at most (1 + k

2
)(n/2

k/2
)2.

By the above claim, for all messages m that A sends to C,
we have:

|Sm| ≤ (1 + 2nε)(n/2
2nε

)2 (3)

By choosing α = 1
16

in equation (2), we have that

|Sm| ≥
(n

n/2
)

2αn
≥ 2n/2

2αn
= 27n/16

By choosing ε = 1/64 and n suitably large, it follows from
equation (3) that

|Sm| ≤ (1 + 2nε)
(e

4ε

)4nε

< 2
24n
64 +log(1+n/32) < 27n/16

We obtain the contradiction, which completes the proof.

Sum of Bounded Integers. For the sum of bounded
integers problem, scenarios 1 and 2 are straightforward ap-
plications of the single stream algorithm. For scenario 3, if
“union” means to take the position-wise sum, the problem
reduces to the first scenario. If “union” means to take the
position-wise maximum, then the lower bound applies, as
the number of 1’s in the union is a special case of the sum
of the position-wise maximum.

The linear space lower bound for deterministic algorithms
in Theorem 3 is the motivation for considering the random-
ized waves introduced in the next section.

4. RANDOMIZED WAVES
Similar to the deterministic wave, the randomized wave

contains the positions of the recent 1’s in the data stream,
stored at different levels. Each level i contains the most
recently selected positions of the 1-bits, where a position is
selected into level i with probability 2−i. Thus the main
difference between the deterministic and randomized waves
is that for each level i, the deterministic wave selects 1 out
of every 2i 1-bits at regular intervals, whereas a randomized
wave selects an expected 1 out of every 2i 1-bits at random
intervals. Also, the randomize wave retains more positions
per level.

4.1 The Basic Randomized Wave
We begin by describing the basic randomized wave, and

show how it yields an (ε, δ)-approximation scheme for Union
Counting in any sliding window up to a prespecified maxi-
mum window size N . We then sketch the proof of the ap-
proximation guarantees, which uses the main error analy-
sis lemma from [13]. Finally, we show the time and space
bounds.

Let N ′ be the minimum power of 2 that is at least 2N ; let
d = log N ′. Let ε < 1 be the desired error probability. Each
party Pj maintains a basic randomized wave for its stream,
consisting of d + 1 queues, Qj(0), . . . , Qj(d), one for each
level l = 0 . . . d.

We use a pseudo-random hash function h to map posi-
tions to levels, according to an exponential distribution. For
0 ≤ l ≤ (d − 1), Pr {h(p) = l} = 1/2l+1. Pr {h(p) = d} =
1/2d. h(·) is computed as follows: we consider the num-
bers {0 . . . N ′ − 1} as members of the field G = GF (2d).
In a preprocessing step, we choose q and r uniformly and
independently at random from G and store them with each
party. In order to compute h(p), a party computes x =

Party Pj, upon receiving a stream bit b:

1. Increment pos. (Note: All additions and comparisons
are done modulo N ′.)

2. Discard any position p in the tail of a queue that has
expired (i.e., p ≤ pos − N).

3. If b = 1 then for l := 0, . . . , h(pos) do: (Note: All
parties use the same function h.)

(a) If the level l queue Qj(l) is full, then discard the
tail of Qj(l).

(b) Add pos to the head of Qj(l).

Answering a query for a sliding window of size n ≤
N , after each party has observed pos bits:

1. Each party j sends its wave, {Qj(0), . . . , Qj(log N ′)},
to the Referee. Let s := max(0, pos − n + 1). Then
W = [s, pos] is the desired window.

2. For j := 1, . . . , t, let lj be the minimum level such that
the tail of Qj(lj) is a position p ≤ s.

3. Let l∗ := maxj=1,... ,t lj . Let U be the union of all
positions in Q1(l

∗), . . . , Qt(l
∗).

4. Return x̂ := 2l∗ · |U ∩ W |.

Figure 6: A randomized wave algorithm for Union
Counting in a sliding window (t streams).

q · p + r (all operations being performed in G). We rep-
resent x as a d-bit vector and then h(p) is the largest y
such that the y most significant bits of x are zero (i.e.,
y = d− blog xc − 1). Clearly, h(p) ∈ [0..d]. The two proper-
ties of h that we use are: (1) x is distributed uniformly over
G. Hence the probability that h(i) equals l (where l < d) is
exactly 1/2l+1. (2) The mapping is pairwise independent,
i.e., for distinct p1 and p2, Pr {(h(p1) = k1) ∧ (h(p2) = k2)}
= Pr {h(p1) = k1} ·Pr {h(p2) = k2}. This is the same hash
function we used in [13], except that the domain and range
sizes now depend only on the maximum window size N and
not the entire stream length.

The steps for maintaining the randomized wave are sum-
marized in the top half of Figure 6. A 1-bit arriving in
position p is selected into levels 0, . . . , h(p). The sample
for each level, stored in a queue, contains the c/ε2 most
recent positions selected into that level. (c = 36 is a con-
stant determined by the analysis; we have not attempted to
minimize c.) Consider a queue Qj(l), whose tail (earliest
element) is at position i. Then Qj(l) contains all the 1-bits
in the interval [i, pos] whose positions hash to a value greater
than or equal to l. We call this the range of Qj(l). As we
move from level l to l + 1, the range may increase, but it
will never decrease. For any window of size at most N , the
queues at lower numbered levels may have ranges that fail
to contain the window, but as we move to higher levels, we
will (with high probability) find a level whose range contains
the window.

The bottom half of Figure 6 summarizes the steps for
answering a query. We receive a query for the number of
1’s in the interval W = [max(0, pos − n + 1), pos]. Each
party Pj initially selects the lowest numbered level lj such
that the range of Qj(lj) contains W (step 2). Let l∗ be the

maximum of these levels over all the parties. Thus at each
party Pj , the range of Qj(l

∗) contains W . This implies that
each queue contains the positions of all the 1-bits in W in
its stream that hash to a value at least l∗. We take the
union of the positions in the t queues, to form the queue
for level l∗ of the position-wise OR of the streams (step 3).
The algorithm returns the number of positions in this queue
that fall within the window W , scaled up by a factor of 2l∗

(step 4).

Lemma 2. The algorithm in Figure 6 returns an estimate
for the Union Counting problem for any sliding window of
size n ≤ N that is within a relative error of ε with probability
greater than 2/3.

Proof. For each level l, define Sj(l) = {i|(l ≤ h(i)) ∧
(bi = 1 in stream j)}. Qj(l) maintains the positions of the
c/ε2 most recent 1’s in Sj(l). Consider the size of the over-
lap of Sj(l) and W . This is large for small l (because the
probability of selecting a 1-bit in W for Sj(l) is 1/2l), and
decreases as l increases. If the overlap at level l is greater
than c/ε2, then W contains a position not among the c/ε2

most recent positions of Sj(l). On the other hand, if the
overlap is less than or equal to c/ε2, then the range of Qj(l)
contains W . Thus, lj (the level selected by Pj) is the mini-
mum level such that |Sj(l) ∩ W | ≤ c/ε2.

In other words, we are progressively halving the sampling
probability until we are at a level where the number of points
in the overlap is less than or equal to c/ε2. This very ran-
dom process has been analyzed in our previous paper [13]
(though in a different scenario). Thus, the lemma follows
from Lemma 1 in [13].

By taking the median of O(log(1/δ)) independent instances
of the algorithm, we get our desired (ε, δ)-approximation
scheme:

Theorem 4. The above estimation procedure is an (ε, δ)-
approximation scheme for the Union Counting problem for

any sliding window of size at most N , using O(log(1/δ) log2 N

ε2
)

bits per party. The time to process an item is dominated by
the time for an expected O(log(1/δ)) finite field operations.

Proof. For each of the O(log(1/δ)) instances, we have
O(log N) queues of O(1/ε2) positions, and each position is
O(log N) bits. Also, for each instance, we have the hash
function parameters, q and r, which are O(log N) bits each.
Note that the approximation guarantees hold regardless of
the number of parties.

The per-item processing is O(1) expected time per in-
stance because the expected number of levels to which each
new position is added (step 3) is bounded by 2, and likewise
the expected number of levels that position p = pos − N
was ever in is bounded by 2. Thus scanning the tails of
the queues at levels 0, . . . , h(p) looking for p (step 2) takes
constant expected time.

4.2 Improvements in Query Time
The query time for the above estimation procedure is the

time for the Referee to receive and process O(t log(1/δ) log N

ε2
)

memory words. If all queries were for window size N , each
party Pj could easily keep track of the minimum level lj at
which the range of Qj(lj) contains the window, with con-
stant processing time overhead. When a query is requested,

Pj sends only lj and Qj(lj). After determining l∗, the Ref-
eree retains only those positions p in the queues that both
fall within the window and have h(p) ≥ l∗. (To avoid recom-
puting h(p), h(p) could be stored in all queues containing
p.) In this way, the Referee computes Qj(l

∗) ∩ W for each
j without ever explicitly receiving Qj(l

∗) from party Pj . It
takes the union of these retained positions and returns the
estimate x̂ as before. This reduces the query time to O(t/ε2)
time per instance, while preserving the other bounds.

5. EXTENSIONS
Number of Distinct Values. With minor modifica-

tions, the randomized wave algorithm can be used to esti-
mate the number of distinct values in a sliding window over
distributed streams. An item selected for a level’s sample
is now stored as an ordered pair (p, v), where v is a value
that was seen in the stream and p is the position of the most
recent occurrence of the value. This is updated every time
the value appears again in the stream. A sample at level l
stores the c

ε2
pairs with the most recent positions that were

sampled into that level. Note that, in contrast to the Union
Counting scheme, the hash function now hashes the value
of the item, rather than its position.

Each party maintains pos, the length of its observed stream.
It also maintains a (doubly linked) list of all the pairs in its
wave, ordered by position. This list lets the party discard
expired pairs.

When an item v arrives, we insert (pos, v) into levels 0, . . . ,
h(v). If v is already present in the wave, we update its
position. To determine the presence of a value in the wave,
we use an additional hash table (hashed by an item’s value)
that contains a pointer to the occurrence of the value in
the doubly linked list. Updating a value’s position requires
moving its corresponding pair from its current position to
the tail of the list, and this can be done in constant time.
The value’s position has to be updated in each of the levels to
which it belongs. A straightforward argument shows that all
this per-item processing can be done in constant expected
time, because each value belongs to an expected constant
number of levels.

To produce an estimate, each party passes its wave to
the Referee. The Referee constructs a wave of the union
by computing a level-wise union of all the waves that it re-
ceives. This resulting wave is used for the estimation. As
before, we perform O(log(1/δ)) independent instances of the
algorithm, and take the median. The space bound and ap-
proximation guarantees follow directly from the arguments
in the previous section. Putting it altogether, we have:

Theorem 5. The above estimation procedure is an (ε, δ)-
approximation scheme for the number of distinct values in
a sliding window of size N over distributed streams. It uses

O(log(1/δ) log N log R

ε2
) bits per party, where values are in [0..R],

and the per-item processing time is dominated by the time
for an expected O(log(1/δ)) finite field operations.

Handling Predicates. Note that our algorithm for dis-
tinct values counting stores a random sample of the distinct
values. This sample can be used to answer more complex
queries on the set of distinct values (e.g., how many even dis-
tinct values are there?), where the predicate (“evenness”) is
not known until query time. In order to provide an (ε, δ)-
approximation scheme for any such ad hoc predicate that

has selectivity at least α (i.e., at least an α fraction of the
distinct values satisfy the predicate), we store a sample of
size O(1

αε2
) at each level, increasing our space bound by a

factor of 1
α
. Such problems without sliding windows were

studied in [10].

Nth Most Recent 1. We can use the wave synopsis
to obtain an (ε, δ)-approximation scheme for the position of
the Nth most recent 1 in the stream, as follows. Instead
of storing only the 1-bits in the wave, we store both 0’s
and 1’s. Thus, items in level l are 2l positions apart, not
2l 1’s apart. In addition, we keep track of the 1-rank of
the 1-bit closest to each item in the wave. The rest of the
algorithm is similar to our Basic Counting scheme. Note
that we need O(1

ε
log2(εm)) bits, where m is an upper bound

on the window size needed in order to contain the N most
recent 1’s.

Other Problems. Our improved time bounds for Ba-
sic Counting and for Sum over a single stream lead to im-
proved time bounds for all problems which reduce to these
problems, as described in [4]. For example, an ε-approx-
imation scheme for the sliding average is readily obtained
by running our sum and count algorithms (each targeting a
relative error of ε

2+ε
).

6. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space

complexity of approximating the frequency moments.
J. of Computer and System Sciences, 58:137–147,
1999.

[2] B. Babcock, M. Datar, and R. Motwani. Sampling
from a moving window over streaming data. In
Proc. 13th ACM-SIAM Symp. on Discrete Algorithms,
pages 633–634, Jan. 2002. Short paper.

[3] Z. Bar-Yossef, R. Kumar, and D. Sivakumar.
Reductions in streaming algorithms, with an
application to counting triangles in graphs. In
Proc. 13th ACM-SIAM Symp. on Discrete Algorithms,
pages 623–632, Jan. 2002.

[4] M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows. In
Proc. 13th ACM-SIAM Symp. on Discrete Algorithms,
pages 635–644, Jan. 2002.

[5] J. Feigenbaum, S. Kannan, M. Strauss, and
M. Viswanathan. An approximate L1-difference
algorithm for massive data streams. In Proc. 40th
IEEE Symp. on Foundations of Computer Science,
pages 501–511, Oct. 1999.

[6] J. Feigenbaum, S. Kannan, M. Strauss, and
M. Viswanathan. Testing and spot-checking of data
streams. In Proc. 11th ACM-SIAM Symp. on Discrete
Algorithms, pages 165–174, Jan. 2000.

[7] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Computer
and System Sciences, 31:182–209, 1985.

[8] J. Fong and M. Strauss. An approximate Lp-difference
algorithm for massive data streams. In Proc. 17th
Symp. on Theoretical Aspects of Computer Science,
LNCS 1770, pages 193–204. Springer, Feb. 2000.

[9] J. Gehrke, F. Korn, and D. Srivastava. On computing
correlated aggregates over continual data streams. In
Proc. ACM SIGMOD International Conf. on

Management of Data, pages 13–24, May 2001.

[10] P. B. Gibbons. Distinct sampling for highly-accurate
answers to distinct values queries and event reports.
In Proc. 27th International Conf. on Very Large Data
Bases, pages 541–550, Sept. 2001.

[11] P. B. Gibbons and Y. Matias. New sampling-based
summary statistics for improving approximate query
answers. In Proc. ACM SIGMOD International
Conf. on Management of Data, pages 331–342, June
1998.

[12] P. B. Gibbons and Y. Matias. Synopsis data structures
for massive data sets. In J. M. Abello and J. S. Vitter,
editors, External Memory Algorithms, pages 39–70.
AMS, 1999. DIMACS: Series in Discrete Mathematics
and Theoretical Computer Science, Vol. 50. A two
page summary appeared as a short paper in SODA’99.

[13] P. B. Gibbons and S. Tirthapura. Estimating simple
functions on the union of data streams. In Proc. 13th
ACM Symp. on Parallel Algorithms and Architectures,
pages 281–290, July 2001.

[14] A. C. Gilbert, Y. Kotidis, and M. J. Strauss. Surfing
wavelets on streams: One-pass summaries for
approximate aggregate queries. In Proc. 27th
International Conf. on Very Large Data Bases, pages
79–88, Sept. 2001.

[15] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In Proc. ACM
SIGMOD International Conf. on Management of
Data, pages 58–66, May 2001.

[16] S. Guha, N. Koudas, and K. Shim. Data-streams and
histograms. In Proc. 33rd ACM Symp. on Theory of
Computing, pages 471–475, July 2001.

[17] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. In Proc. 41st IEEE Symp. on
Foundations of Computer Science, pages 359–366,
Nov. 2000.

[18] M. R. Henzinger, P. Raghavan, and S. Rajagopalan.
Computing on data streams. Technical report, Digital
Systems Research Center, Palo Alto, CA, May 1998.

[19] P. Indyk. Stable distributions, pseudorandom
generators, embeddings and data stream computation.
In Proc. 41st IEEE Symp. on Foundations of
Computer Science, pages 189–197, Nov. 2000.

[20] P. Indyk. Personal communication, 2002.

[21] I. Kremer, N. Nisan, and D. Ron. On randomized
one-round communication complexity. Computational
Complexity, 8(1):21–49, 1999.

[22] E. Kushilevitz and N. Nisan. Communication
Complexity. Cambridge University Press, Cambridge,
UK, 1997.

[23] I. Newman. Private vs. common random bits in
communication complexity. Information Processing
Letters, 39:67–71, 1991.

[24] I. Newman and M. Szegedy. Public vs. private coin
flips in one round communication games. In Proc. 28th
ACM Symp. on the Theory of Computing, pages
561–570, May 1996.

[25] L. Trevisan. A note on counting distinct elements in
the streaming model. Unpublished manuscript, April
2001.

	trcover-irp-02-08.pdf
	Distributed Streams Algorithms for Sliding Windows
	Phillip B. Gibbons, Srikanta Tirthapura
	IRP-TR-02-08
	August 2002

