
A Symbolic Justice Violations Transition System
for Unrealizable GR(1) Specifications

Aviv Kuvent, Shahar Maoz, Jan Oliver Ringert

School of Computer Science, Tel Aviv University, Israel

ABSTRACT
One of the main challenges of reactive synthesis, an automated

procedure to obtain a correct-by-construction reactive system, is to

deal with unrealizable specifications. Existing approaches to deal

with unrealizability, in the context of GR(1), an expressive assume-

guarantee fragment of LTL that enables efficient synthesis, include

the generation of concrete counter-strategies and the computation

of an unrealizable core. Although correct, such approaches pro-

duce large and complicated counter-strategies, often containing

thousands of states. This hinders their use by engineers.

In this work we present the Justice Violations Transition System

(JVTS), a novel symbolic representation of counter-strategies for

GR(1). The JVTS is much smaller and simpler than its corresponding

concrete counter-strategy. Moreover, it is annotated with invariants

that explain how the counter-strategy forces the system to violate

the specification. We compute the JVTS symbolically, and thus

more efficiently, without the expensive enumeration of concrete

states. Finally, we provide the JVTS with an on-demand interactive

concrete and symbolic play.

We implemented our work, validated its correctness, and evalu-

ated it on 14 unrealizable specifications of autonomous Lego robots

as well as on benchmarks from the literature. The evaluation shows

not only that the JVTS is in most cases much smaller than the cor-

responding concrete counter-strategy, but also that its computation

is faster.

CCS CONCEPTS
• Software and its engineering→ Formal methods; Software ver-
ification;

KEYWORDS
reactive synthesis, GR(1), unrealizability

ACM Reference format:
Aviv Kuvent, Shahar Maoz, Jan Oliver Ringert. 2017. A Symbolic Justice

Violations Transition System for Unrealizable GR(1) Specifications. In Pro-
ceedings of 2017 11th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, Paderborn, Germany, September 4–8, 2017 (ESEC/FSE’17),
11 pages.

https://doi.org/10.1145/3106237.3106240

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00

https://doi.org/10.1145/3106237.3106240

1 INTRODUCTION
Reactive synthesis is an automated procedure to obtain a correct-

by-construction reactive system from its temporal logic specifica-

tion [20]. Rather than manually constructing an implementation

and using model checking to verify it against a specification, syn-

thesis offers an approach where a correct implementation of the

system is automatically obtained for a given specification, if such an

implementation exists. In the case of reactive synthesis, an imple-

mentation is typically given as a controller, i.e., an automaton that

accepts input from the environment (e.g., from sensors) and pro-

duces the system’s output (e.g., commands for actuators) to always

satisfy the specification. If such a controller exists, the specification

is considered realizable. Otherwise, the specification is unrealizable

– there exists an environment that can force the system to violate

some of its guarantees.

GR(1) is a fragment of LTL, which has an efficient symbolic

synthesis algorithm [3, 19] and whose expressive power covers

most of the well-known LTL specification patterns of Dwyer et

al. [7, 13]. GR(1) specifications include assumptions and guarantees

about what needs to hold on initial states, on all states (safety), and

infinitely often on every run (justice). GR(1) synthesis has been

used and extended in different contexts and for different applica-

tion domains, including robotics [11, 12], scenario-based specifica-

tions [16], aspect languages [15], event-based behavior models [6],

hybrid systems [9], and device drivers [23], to name a few.

Previous work has shown how the debugging of an unrealizable

specification, in the context of GR(1), can be done via the extraction

of a counter-strategy (CS), which the engineer may explore in order

to analyze the source of unrealizability [10, 18]. First a Rabin game

is played over the specification, and then intermediate values saved

during the game are used to extract the concrete CS. The extracted

concrete CS can be viewed as a labeled transition system (LTS) that

represents a deterministic choice for the environment for every

choice by the system. The LTS can contain cycles in which all

environment assumptions are satisfied while at least one system

justice guarantee is violated, states which can force the system to

these cycles, and states from which every system choice violates a

safety guarantee. Although correct, such concrete CS LTS is often

large and complex, making it expensive to compute and difficult to

explore effectively.

In this work we introduce the Justice Violations Transition Sys-

tem (JVTS), a new, abstract, symbolic representation of a CS, with

three key properties. First, unlike a concrete CS, the JVTS is acyclic

and is typically small. Thus, in comparison to the concrete CS, it is

much simpler and easier to explore. Second, although it is abstract,

it is complete: every infinite and finite play on the concrete CS

has a corresponding play on the JVTS. Third, the JVTS states are

annotated with invariants that relate them to the specification and

362

https://doi.org/10.1145/3106237.3106240
https://doi.org/10.1145/3106237.3106240

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Aviv Kuvent, Shahar Maoz, Jan Oliver Ringert

1 env boolean dockRequest;
2 sys boolean ready;
3 sys boolean docking;
4

5 // don 't dock before ready
6 asm G dockRequest -> ONCE(ready);
7

8 gar Ready:
9 GF ready;
10

11 // respond to dock requests
12 gar DockingResponse:
13 pRespondsToS(dockRequest , docking);
14

15 gar G docking -> dockRequest;
16

17 gar G docking -> !next(docking);

Listing 1: Excerpt of the docking mechanism specification

explain exactly how the CS can force the system to violate the spec-

ification. The JVTS is comprised of cycle-states, which represent

sets of concrete states that the system can visit infinitely often, and

attractor-states, which represent sets of concrete states that the

system can visit at most once. We formally define the JVTS, discuss

its properties, and present a symbolic algorithm to compute it in

Sect. 4.

In addition to statically computing and presenting the JVTS, we

introduce an interactive approach to dynamically concretize parts

of it and execute it step-by-step while alternating between the con-

crete and the symbolic representations. We describe the interactive,

simultaneous play of concrete and symbolic CS representations

in Sect. 5. We further minimize the JVTS by merging of attractor

nodes described in Sect. 6.

We have implemented all the above ideas in a GR(1) synthesis

framework, and integrated them into an Eclipse-based environ-

ment. We present a preliminary evaluation of our work using 14

specifications of autonomous Lego robots (created by students in

a project class that we have taught) as well as using benchmarks

from the literature. The evaluation provides evidence that in many

specifications, the size of the JVTS is much smaller than that of

the concrete CS, and that its computation is faster. We present the

evaluation in Sect. 7.

Previous works on debugging unrealizable specifications for

reactive synthesis (e.g., [1, 4, 10, 18]) have considered the notion

of unrealizable core, and the idea of semi-automatic discovery of

possible assumptions to repair an unrealizable specification. To the

best of our knowledge, all have used concrete CSs and none has

considered a symbolic representation such as the JVTS. We discuss

related work in Sect. 8.

2 RUNNING EXAMPLE
We start off with a running example of an unrealizable specification

of the docking mechanism of a space station. The specification

shown in Lst. 1 is deliberately small, to fit and be simple enough to

explain in the paper format. The specifications used in our evalua-

tion (see Sect. 7) are larger and more complex.

2.1 Example Specification
The docking mechanism described by the specification in Lst. 1

receives as input a docking request (represented by the Boolean

environment variable dockRequest) and outputs whether the space
station is ready to receive docking requests (the Boolean system

s0 s1s3

s2

s7

s8

s6

s9

s10 s11

ready = true

docking = true

dockRequest = true

AUX_Once = true

AUX_Must_Respond = false

s4

ready = false

docking = false

dockRequest = true

AUX_Once = true

AUX_Must_Respond = false

s5

Figure 1: Concrete CS LTS for the docking mechanism specifica-
tion, as computed by existing tools such as [4, 10, 18].

variable ready) and whether the requesting spacecraft should pro-

ceed with docking (the Boolean system variable docking). The
specification contains an assumption that a docking request is only

sent if the mechanismwas in a ready state at some point previously,

as expressed in the environment assumption G dockRequest ->
ONCE(ready). All systems satisfying the specification will even-

tually be ready to accept docking requests, expressed by justice

guarantee Ready: GF ready. The guarantee DockingResponse en-
sures that every docking request will eventually receive a response.

This is defined using the pRespondsToS(dockRequest, docking)
pattern, which is translated to G (dockRequest -> F docking)1.
The last two guarantees require that there is a docking request

when the mechanism allows docking G docking -> dockRequest,
and that there should not be two consecutive docking responses

G docking -> !next(docking).
This specification is unrealizable. To try to understand the prob-

lem using existing tools [4, 10, 18], the engineer can generate a

concrete CS, as shown in Fig. 1 (the complete result will list in each

state the assignments to all of the variables; to avoid clutter, we

show assignments only for states s4 and s7).
While the concrete CS in Fig. 1 does not contain many states,

one can see that even for such a simple and small specification, the

concrete CS as computed by existing tools is already relatively com-

plicated. Moreover, computing an unrealizable core (as suggested

by some tools [4, 10]) will not help here, because the core for this

example specification contains all guarantees and system variables.

2.2 The Justice Violations Transition System
We present an alternative, the Justice Violations Transition System

(JVTS), a symbolic representation of a CS, which is much smaller,

simpler (acyclic), and informative. Fig. 2 shows the JVTS we com-

pute for the same example specification.

From the JVTS, the engineer sees that the system can initially

choose whether to set ready for docking requests or not. If it never
sets the variable ready, it remains in a cycle-state (q2) where it will
violate the system justice of Ready. If it sets ready at any point, it

moves to an attractor state (q1) from which the environment can

force the system to a second cycle-state (q3), where the system

justice of DockingResponse is violated. In addition, in every state

the system can choose to set docking when the environment sets

1
This LTL formula is not in GR(1).We use here its equivalent GR(1) translation, see [13].

363

A Symbolic Justice Violations Transition System
for Unrealizable GR(1) Specifications ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

!dockRequest, which will get it to attractor state q4, representing
the violation of the safety G docking -> dockRequest.

To better understand the flow when the system chooses to

set ready, the engineer can begin by selecting the cycle-state q3
and viewing the invariants over the concrete states it contains,

as shown in Fig. 2. AUX_Must_Respond is an auxiliary variable in-

dicating that there was previously a docking request to which

the system must respond. From these invariants it is clear to the

engineer that indeed the system violates the justice guarantee

of DockingResponse, since previously there was a state where

dockRequest is set, but the environment does not provide this value

again (invariant !dockRequest), and the system cannot therefore

set docking without violating the safety guarantee G docking ->
dockRequest.

2.3 Concretizing a JVTS State
To better observe how the environment can force the system to q3
(once the system sets ready), the engineer can concretize only the

attractor state q1, resulting in the concrete LTS shown in Fig. 3.

The engineer can choose each of the states in the concretized

attractor to view the variable assignments, as she would do in the

concrete CS. In Fig. 3, the states are named using the equivalent

states in the concrete LTS of Fig 1. The initial state s2 is the state
where ready & !dockRequest & !docking. This state has 4 suc-
cessor states, which depend on the system choice. In all of them,

dockRequest holds. However, the system can choose whether to

respond immediately to this request, resulting in states s6 or s7,
where docking is set, or not to respond immediately, resulting in

states s4 or s5, where !docking. Even if the system responds, the en-

vironment sends dockRequest immediately and the system cannot

respond to it immediately without violating the safety guarantee G
docking -> !next(docking). Therefore, in states s4 and s5 it also
holds that dockRequest. Finally, in the next step the environment

attractor

cycle

!DockingResponse

cycle

!Ready

ready = false

docking = false

dockRequest = false

AUX_Once = false

AUX_Must_Respond = false

AUX_Once = true

AUX_Must_Respond = false

docking = false

dockRequest = false

AUX_Once = true

AUX_Must_Respond = true

attractor

docking = true

dockRequest = false

q1 q2

q3 q4

Figure 2: JVTS for the docking mechanism specification. States are
labeled with invariants.

s
2

s
6

s
7

s
4

s
5

Figure 3: The concretization of attractor q1 in the JVTS of
the space station docking mechanism shown in Fig. 2. The
names of concrete states are the ones appearing in Fig. 1.

will not send a docking request, and hence trap the system in the

previously described cycle-state q3.
The above example demonstrates how the JVTS provides the

engineer with a high-level view of the CS, and then focus on specific

areas of interest for more in-depth examination. Concretization of a

JVTS state is done only on demand. The engineer can also choose to

start an interactive play from a JVTS state (where the engineer plays

the role of the system), moving between concrete states contained

in it based on the engineer choices of output. We describe state

concretization and interactive play in Sect. 5.

3 PRELIMINARIES
3.1 LTL and GR(1)
We repeat some of the standard definitions of linear temporal logic

(LTL), e.g., as found in [3], a modal temporal logic with modalities

referring to time. The syntax of LTL formulas is typically defined

over a set of atomic propositions AP with the future temporal

operators X (next) and U (until).

Definition 3.1. The syntax of LTL formulas over AP is

φ ::= p | ¬φ | φ ∨ φ | Xφ | φUφ for p ∈ AP .
For Σ = 2

AP
, a computationu = u0u1.. ∈ Σω is a sequence where

ui is the set of atomic propositions that hold at the i-th position.

For position i we use u, i |= φ to denote that φ holds at position i ,
inductively defined as:

• u, i |= p iff p ∈ ui ;
• u, i |= ¬ϕ iff u, i ̸ |= ϕ;

• u, i |= φ1 ∨ φ2 iff u, i |= φ1 or u, i |= φ2;

• u, i |= Xφ iff u, i+1 |= φ;

• u, i |= φ1Uφ2 iff ∃k ≥ i: u,k |= φ2 and ∀j, i ≤ j < k : u, j |= φ1.

We denote u, 0 |= φ by u |= φ. We use additional LTL operators

F (finally), G (globally), ONCE and H (historically):

• Fφ := true U φ;

• Gφ := ¬F¬φ;
• u, i |= ONCEφ iff ∃0 ≤ k ≤ i: u,k |= φ;

• u, i |= Hφ iff ∀0 ≤ k ≤ i: u,k |= φ.

LTL formulas can be used as specifications of reactive systems

where atomic propositions are interpreted as environment (input)

and system (output) variables. An assignment to all variables is

called a state.

A strategy for an LTL specification φ prescribes the outputs of a

system that from its winning states for all environment choices lead

to computations that satisfy φ. A specification φ is called realizable

if a strategy exists such that for all initial environment choices the

initial states are winning states. The goal of LTL synthesis is, given

an LTL specification, to find a strategy that realizes it, if one exists.

GR(1) synthesis [3] handles a fragment of LTL where specifica-

tions contain initial assumptions and guarantees over initial states,

safety assumptions and guarantees relating the current and next

state, and justice assumptions and guarantees requiring that an as-

sertion holds infinitely many times during a computation. A GR(1)

synthesis problem consists of the following elements [3]:

• X input variables controlled by the environment;

• Y output variables controlled by the system;

• θe assertion over X characterizing initial environment states;

364

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Aviv Kuvent, Shahar Maoz, Jan Oliver Ringert

• θs assertion over X ∪Y characterizing initial system states;

• ρe (X ∪ Y,X) transition relation of the environment;

• ρs (X ∪ Y,X ∪Y) transition relation of the system;

• Jei ∈1..n justice goals of the environment;

• J sj ∈1..m justice goals of the system.

GR(1) synthesis has the following notion of (strict) realizability:

φsr = (θe → θs) ∧ (θe → G((Hρe) → ρs))∧

(θe ∧ Gρe → (
∧

i ∈1..n
GFJei →

∧
j ∈1..m

GFJ sj)).

Specifications for GR(1) synthesis have to be expressible in the

above structure and thus do not cover the complete LTL. Efficient

symbolic algorithms for GR(1) realizability checking and controller

synthesis for φsr have been presented in [3, 19]. The algorithm of

Piterman et al. [19] computes winning states for the system, i.e.,

states from which the system can ensure satisfaction of φsr .

3.2 Unrealizability and Rabin Game
A specification φsr is unrealizable if there is a CS in which the

environment can force the system to violate one of its guarantees

while satisfying all the environment assumptions. In such a CS,

there is an initial environment choice for which the initial states

are not winning for the system. A CS can be represented as a labeled

transition system (LTS).

Definition 3.2 (CS LTS). Given an unrealizable specification φsr ,
a CS is an LTS ⟨Q,T , I ,L⟩ where:
• Q is a set of states;

• L is a labeling function L : Q → 2
X∪Y

;

• T ⊆ Q ×Q is a transition relation where ∀q ∈ Q :
– q is a deadlock for the system �q′ : T (q,q′) iff

∃x ∈ X : ρe (q,x) ∧ ∀y ∈ Y : ¬ρs (q, ⟨x ,y⟩)
– or the transitions from q are environment deterministic and

system complete:

∃1 x ∈ X : ρe (q,x) ∧ ∀y ∈ Y :

ρs (q, ⟨x ,y⟩) → ∃q′ ∈ Q : L(q′) = ⟨x ,y⟩ ∧T (q,q′)
• I is a set of initial states such that:

– the environment initially deadlocks the system I = ∅ iff
∃x ∈ X : θe (x) ∧ ∀y ∈ Y : ¬θs (x ,y)

– or the initial states are environment deterministic and system

complete:

∃1x ∈ X : θe (x) ∧ ∀y ∈ Y :

θs (x ,y) → ∃q ∈ I : L(q) = ⟨x ,y⟩
and every infinite path π = q1q2 . . . of the LTS violates φsr , i.e.,
L(q1)L(q2) . . . ̸ |= φsr (unrealizability).

For a CS we say that a state q is on a cycle iff the system has a

strategy to visit the state infinitely many times.

Definition 3.3 (state on a cycle). Given a CS TS = ⟨Q,T , I ,L⟩,
a state q ∈ Q is on a cycle in TS if there exists an infinite path

π = q1q2 . . . of TS s.t. q repeats infinite times in π .

It is obvious that for every such cycle there exists at least one

justice guarantee J si that is not satisfied by any state on the cycle.

Konighofer et al. [10] and Maoz and Sa’ar [18] show how to

derive a CS for an unrealizable specification from the intermediate

results of a Rabin game. The game computes the environment’s

winning states, displayed here using µ-calculus notation:

Wenv = µZ .
m⋃
j=1

νY .
n⋂
i=1

µX .

(¬J sj ∪ (Z)) ∩ (Y) ∩ (Jei ∪ (X))
where Jei is environment justice i , J sj is system justice j, and

(R) = {q ∈ 2X∪Y | ∃x ∈ X : ρe (q,x) ∧ ∀y ∈ Y :

(¬ρs (q, ⟨x ,y⟩) ∨ ⟨x ,y⟩ ∈ R)}.
The Rabin game algorithm computes CSs based on cycles vio-

lating at least one justice guarantee J si while satisfying all justice

assumptions Jej . Cycles can be left by the system iff the environ-

ment can force it to a future cycle (ensures termination) or to a

safety guarantee violation.

Note that the above still allows CSs that are “larger” than the

ones we compute. Importantly, all the ones we compute satisfy

Def. 3.2. Note that a CS can have memory and |Q | ∈ O(n |2X∪Y |).
During the computation of the Rabin game, the following inter-

mediate results are collected:

• Z - array of sets of concrete states. Cell Z[i] contains concrete
states which either violate system justice guarantee i (mod m)
or from which the environment can force the system to a cell

Z[j] with j < i .

• X - A three-dimensional array of sets of concrete states. For

indices i from 0 to |Z| − 1 (cell Z[i]), j from 0 to n − 1 (for justice
assumption Jej), and k (maximal number of steps required to

satisfy current Jej , each step consisting of a concrete state), the

cell X[i][j][k] contains a set of concrete states which (1) for k = 0

satisfy environment justice assumption Jej and have a successor

in X[i][j ′][k ′] for j ′ = (j+1 mod n) and some k ′ or (2) are a step
towards satisfying Jej and have a successor in X[i][j][k ′] with
k ′ < k .

Based on the Rabin game we define the Z-Rank of a state:

Definition 3.4 (Z-Rank). The Z rank of a state s contained in the

intermediate results of the Rabin game is:

ZRank(s) =min{i | s ∈ Z[i]}.
By construction of the Rabin game, all states on a cycle have the

same Z-Rank i and avoid satisfaction of at least the justice guarantee
J si modm . We denote all states of Z-Rank i by ZRankS(i) ⊆ Z[i]. For
a set of states S , all of Z-Rank i , we define ZRank(S) = i .

4 THE JUSTICE VIOLATIONS TRANSITION
SYSTEM (JVTS)

We are now ready to present the main contribution of our work,

namely the Justice Violations Transition System (JVTS). We define

the JVTS in Sect. 4.1 and describe the symbolic algorithm to compute

it in Sect. 4.2.

4.1 Defining the JVTS
A Justice Violations Transition System (JVTS) is an acyclic LTS

consisting of two types of states, cycle-states and attractor-states.

Each state in the JVTS represents a set of states in some CS, and

365

A Symbolic Justice Violations Transition System
for Unrealizable GR(1) Specifications ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

each transition in the JVTS represents a set of transitions in the CS.

We call this CS a CS of the JVTS.

Definition 4.1 (Justice Violations TS (JVTS)). Given an unrealiz-

able GR(1) specification, a JVTS is an acyclic LTSTS j = ⟨Q j ,T j , I j ,
Lj ⟩, s.t. there exists a concrete CS TSc = ⟨Qc ,T c , Ic ,Lc ⟩, extracted
from the intermediate values of a Rabin game (note that every

qc ∈ Qc
has a ZRank per Def. 3.4), where:

• Q j
is a partition of Qc

where for each qj ∈ Q j
either

– qj is a cycle-state, i.e., ∀qc ∈ qj : qc is on a cycle in TSc

(see Def. 3.3) or ∃C1,C2 ⊆ Qc
representing cycles in TSc , s.t.

ZRank(C1) = ZRank(C2) and qc is on a path from C1 to C2 in

TSc (i.e. in-between cycles with same Z-Rank), or

– qj is an attractor-state, i.e., ∀qc ∈ qj : qc is on a path leading to
a deadlock or cycle only through attractor states or ∃C1,C2 ⊆
Qc

representing cycles in TSc , s.t. ZRank(C1) > ZRank(C2)
and qc is on a path fromC1 toC2 inTS

c
only through attractor

states (i.e. in-between cycles with decreasing Z-Ranks);

• Lj is a labeling function: ∀qj ∈ Q j
: Lj (qj) = {Lc (qc) | qc ∈ qj };

• T j ⊆ Q j ×Q j
is a transition relation where T j (qj

1
,q

j
2
) iff

q
j
1
, q

j
2
∧ ∃qc

1
∈ qj

1
,qc

2
∈ qj

2
: T c (qc

1
,qc

2
); and

• I j is a set of initial states: qj ∈ I j iff (qj ∩ Ic) , ∅.
Example 4.2. In our running example (Sect. 2) Fig. 2 shows a

JVTS. A CS of the JVTS is shown in Fig. 1. The label of attractor

state q1 is: Lj (q1) = {Lc (s2),Lc (s4),Lc (s5),Lc (s6),Lc (s7)}, where
s2, s4, s5, s6, and s7 are the concrete states contained in q1, as can
be seen in Fig. 3. From the definition of Lc in Def. 3.2, the label

Lj (q1) is the set of assignments to input and output variables in the

concrete states contained in q1.

Note that Def. 4.1 allows for multiple JVTSs for the same CS (we

look at a minimal JVTS in Sect. 6).

The following states the completeness of the JVTS in terms of

paths in its concrete CS computed by the Rabin game algorithm.

Theorem 4.3 (JVTS Completeness). Given a concrete CS LTS

TSc of a JVTS TS j , the following holds:

• For every infinite path πc = qc
1
qc
2
.. in TSc , exists a single corre-

sponding finite path π j = q
j
1
..q

j
k inTS j s.t. q

j
k is a cycle-state for

justice J si and πc ̸ |= GF J si ;

• For every finite path πc = qc
1
..qcr in TSc , exists a single corre-

sponding finite path π j = q
j
1
..q

j
k (k ≤ r) in TS j s.t. Lc (qcr) ∈

Lj (qjk); and
• For every prefix πca = qc

1
..qcr of a finite or infinite path πcb =

qc
1
..qcr .. in TS

c
, exist unique corresponding finite paths π

j
a and

π
j
b in TS j s.t. π

j
a is a prefix of π

j
b .

Proof. (sketch) By definition of the JVTS (as a partition of the

CS) and by the correctness of the existing algorithm of the Rabin

game (for cycles avoiding justice guarantees). �

Example 4.4. In our example (Sect. 2), the infinite path πc =
s2, s4, s8, s9, s8, s9, . . . in the concrete CS has a single finite corre-

sponding path ending in a cycle-state in the JVTS π j = q1,q3.
The finite path πc = s2, s4, s8, s9, s8, s10 in the concrete CS has a

corresponding finite path in the JVTS π j = q1,q3,q4.

Algorithm 1 Computing the JVTS

1: if deadendIni(ini) then
2: attr F romState ← дetDeadendIni(ini)
3: jvts .add (attr F romState)
4: return ⟨jvts, envChoices ⟩
5: end if
6: RTS ← compRankingTS
7: for state in RTS (reverse z-rank order) do
8: ⟨attr F romCands, envChoices ⟩ ← compAttrFromCands
9: X← filterX(X[ZRank (state)])
10: ⟨paths, envChoices ⟩ ← compPaths
11: cycleState ← compCycleState
12: attrToState ← compAttrToState
13: attr F romState ← compAttrFromState
14: jvts .add (cycleState, attrToState, attr F romState)
15: end for
16: return ⟨jvts, envChoices ⟩

The following theorem states lack of redundant states and tran-

sitions in the JVTS.

Theorem 4.5 (JVTS State and Transition Soundness). Given

a concrete CS LTSTSc of a JVTSTS j , every state qj ∈ Q j
and every

transition t j ∈ T j
appears on at least one path inTS j corresponding

to a concrete path in TSc .

Example 4.6. In our example, the states q3 and q4 and the transi-

tion between them in the JVTS appear in the path π j = q1,q3,q4,
which corresponds to the concrete CS path πc = s2, s4, s8, s9, s8, s10.

4.2 Computing the JVTS
A naive method to compute the JVTS could have been to first

extract a CS using the methods described in [10] and then compute

the JVTS from the CS. However, this method would require the

enumeration of all states in the CS and is therefore inefficient. Our

algorithm, presented below, is purely symbolic, and thus avoids

the costly enumeration. The algorithm uses an efficient symbolic

representation and manipulation of sets of concrete states. We

consider this to be an important part of our contribution.

Alg. 1 presents our symbolic algorithm for computing the JVTS.

Its input is the set of initial states ini and the intermediate values

collected during the Rabin game (Sect. 3.2) - the Z array (Z) and
the three-dimensional X array (X). The output of the algorithm is a

JVTS and a set envChoices, which contains all possible transitions

between states, deterministic for the environment inputs.

We start by checking if the set of initial states ini contains

a dead-end state for the system (i.e., the environment can force

the system to violate a safety guarantee). If such a state exists, it

constitutes the CS. It is added to the JVTS (Alg. 1, line 3) and the

algorithm ends. Else, we compute the Ranking TS (Alg. 1 line 6), a

TS representation of Z cells reachable from the initial set of states

(Sect. 4.2.1). The algorithm then traverses the Ranking TS states in

reverse Z-Rank order. Each Ranking TS state is split into at most 3

JVTS states, a cycle-state and 2 attractor-states.

• In line 8 of Alg. 1, a set of concrete state-candidates to be in

one of the attractor-states - the attractor-from-cycle state - are

computed, with the relevant environment choices (Sect. 4.2.2);

• In line 9 of Alg. 1, the attractor-from-cycle state candidates are

removed from the array X;

• In line 10 of Alg. 1, a set of paths along the cells (with the rele-

vant environment choices) in X are computed. Each such path

366

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Aviv Kuvent, Shahar Maoz, Jan Oliver Ringert

represents a series of steps ending in a cycle which satisfies all

environment assumptions while violating a system guarantee

(Sect. 4.2.3);

• In lines 11 and 12 of Alg. 1, the set of concrete states to be

contained in the cycle-state and in the attractor-to-cycle state

are extracted from the computed paths (Sect. 4.2.4 and Sect. 4.2.5);

• In line 13 of Alg. 1, the set of concrete states to be contained in

the attractor-from-cycle state are computed using the previously

computed attractor-from-cycle state candidates, the attractor-to-

cycle state and cycle state (Sect. 4.2.6).

Finally, the algorithm adds the computed states to the JVTS.

As it follows the general steps of the concrete CS extraction

described in [10], and relies on the intermediate values of the Rabin

game, the result of the algorithm is a valid JVTS, symbolically

representing a concrete CS.

Theorem 4.7. Algorithm 1 outputs a valid JVTS as defined in
Def. 4.1, which is minimal in the number of cycle-states.

4.2.1 Ranking TS. The Ranking TS is an acyclic TSwhich groups
concrete states according to their Z-Rank. Concrete states of Z-Rank

i are part of the Ranking TS only if they are reachable from initial

states ini through other concrete states of Z-Ranks j ≥ i . The
intermediate Ranking TS is non-deterministic, as opposed to the

more refined JVTS we later compute from it.

Definition 4.8 (Ranking TS). Given a set of concrete initial states

ini and an array Z of disjoint sets of concrete states, the Ranking
TS ⟨Q,T , I ⟩ is an acyclic TS where:

• Q ⊆ 2
2
X∪Y

is the set of states: ∀q ∈ Q,∃10 ≤ i < |Z|: q ⊆
ZRankS(i) s.t. all concrete states in q are reachable from ini via

states of higher Z-Rank:

∀s ∈ q,∃π = s1..sk : s1 ∈ ini ∧ sk = s ∧
∀1 < j ≤ k : ρ(sj−1, sj) ∧ ZRank(sj−1) ≥ ZRank(sj);

• Transition T (q1,q2) exists for q1 , q2 iff ∃s1 ∈ q1, s2 ∈ q2 :

ρ(s1, s2); and
• I ⊆ Q initial states: q ∈ I iff q ∩ ini , ∅.

The symbolic removal of duplicate concrete states from Z (keep-

ing their Z-Rank copy only), ensures that we advance to the lowest

Z-Rank for the correctness of the algorithm, as explained in [10].

4.2.2 computeAttrFromCands. After computation of the Rank-

ing TS, we compute the sets of concrete states which are the candi-

dates to be contained in the attractor-from-cycle state. This com-

putation is done for every state rankState of the previously com-

puted Ranking TS ⟨Q,T , I ⟩. We return the set of candidate states

(attrFromCands) and environment choices collected between the

candidate states (envChoices). The computation of attrFromCands
is the standard attractor computation, done to the set of concrete

states contained in all Ranking TS states of lower Z-Rank value:

lower = {s | ∃q ∈ Q : ZRank(rankState) > ZRank(q) ∧ s ∈ q}.
In addition, we store the environment choices taken at each step of

the fixed-point computation of the attractor in envChoices. The
envChoices stored here are used in Sect. 4.2.6 to compute the valid

reachable (per environment choices taken) set of concrete states

contained in the attractor-from-cycle JVTS state.

4.2.3 compPaths. We now describe the symbolic computation

of paths along the cells in X[Zr] array of arrays, where Zr =
ZRank(rankState). Each such path will represent a series of steps

ending in a cycle which satisfies all of the environment assumptions

while violating a system guarantee. The first step of the computa-

tion is done in the filtering of X[Zr], performed in Alg. 1, line 9. The

filtered X (filterX) is constructed thus: ∀i, j : s ∈filterX[Zr][i][j]
iff: (1) s ∈X[Zr][i][j], i.e., s computed by Rabin game, and (2) ∀0 ≤
k < j : s < X[Zr][i][k], i.e., s closest to satisfying Jei , and (3)

s <attrFromCands, i.e., paths through s end in a cycle.

After removal of duplicate states in step 2, we can perform an

algorithm similar to the one described for concrete CS extraction

in [10] in order to compute the paths. The algorithm in [10] enumer-

ates the concrete states beginning with the initial state. For each

concrete state reached, the original algorithm locates to which Z cell
it belongs (its Z-Rank Zr) and to which X[Zr][j] cell it belongs. It
then defines an environment choice for this concrete state based on

the following order of priorities: (1) If there exists an environment

choice for which all successors of this concrete state are in a Z cell

of lower Z-Rank than the cell of the current concrete state, this

environment choice is taken; (2) Else, the environment choice taken

has successors in a cell closest to index 0 in the current X[Zr][j]
array (or in the next array X[Zr][(j + 1) mod n] if the current con-
crete state is already in index 0). The concrete successor states are

then added to the concrete CS, and are iterated over in turn (if they

were not already visited previously as a result of a concrete cycle).

Our symbolic algorithm follows a similar flow, except that instead

of checking for successors of concrete states at each step (and

iterating over them), it performs a symbolic step between sets of

states, composed of two parts:

• In the first part, a valid environment choice which leads to the

target set of states dst is selected for the source set of states src
for which an environment choice was not yet taken:

newSuccsTrans(src, dst, others, envChoices) =
{⟨s,x⟩ | s ∈ src,x ∈ X ∧ ρe (s,x) ∧ ⟨s,x⟩ < envChoices∧
(∀y ∈ Y : ρs (s, ⟨x ,y⟩) → ⟨x ,y⟩ ∈ (dst ∪ others)∧

(∃y ∈ Y : ρs (s, ⟨x ,y⟩) ∧ ⟨x ,y⟩ ∈ dst)}

others are additional destination states which can be reached via
a different system choice for the taken environment choice. The

src and dst sets of states are subsets of states in some X[Zr][k]
cells determined according to the flow in [10].

• In the second part we take all relevant successors in dst accord-

ing to the environment choices taken for states in src:
succs(src, dst, envChoices) =
{s ∈ dst | ∃s ′ ∈ src,x ∈ X : ⟨s ′,x⟩ ∈ envChoices∧

∃y ∈ Y : ⟨x ,y⟩ = s}.

The successors which are the result of succs are then used as the

src states in the next step.

Despite the similar flow, there are two key differences between

our computation and the one described in [10]. First, due to the

removal of states that are in attrFromCands, done in step 3, the

resulting CS represented by the JVTS will attempt to force to states

with the lowest Z-Rank possible in one or more steps. In [10], the

choice of moving to a state in a lower Z-Rank is only done by

367

A Symbolic Justice Violations Transition System
for Unrealizable GR(1) Specifications ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

looking one step ahead. Second, during computation of a path,

when performing steps over the filterX, we consider sets of states
and not a single concrete state.

4.2.4 compCycleState. The concrete states contained in a JVTS

cycle-state are computed using the previously calculated paths.

There are two types of concrete states inside a cycle-state: (1) states

which are part of a concrete cycle in a single path, and (2) states

which are between concrete cycles in different paths computed

from the same Ranking TS state (see Def. 4.1).

We identify states on cycles by iterating over the computed paths,

and for each path computing the set of all concrete states which are

a part of the cycle.We denote these states on cycles by S. We identify

states in-between cycles B using a least fixed-point computation of

successors of S within paths: B = µC.S ∪ succs(C, A, envChoices),
where A are all the states in the paths for this Ranking TS state.

4.2.5 compAttractorToState. The concrete states contained in

the attractor-to-cycle state are computed using the previously com-

puted cycle-state and the paths. The attractor-to-cycle state contains

all concrete states in paths that are not in the calculated cycle-state.

4.2.6 compAttractorFromState. The set of concrete states con-
tained in the attractor-from-cycle state are computed from the

attrFromCands using the Ranking TS, the previously computed

attrTo and cycle states, the concrete states contained in the pre-

viously computed JVTS states P and the envChoices. The compu-

tation begins by finding states Start ⊆ attrFromCands reachable

in a single step from P:

Start = {s ′ ∈ attrFromCands |
∃s ∈ (attrTo ∪ cycle ∪ P),x ∈ X,y ∈ Y :

⟨s,x⟩ ∈ envChoices ∧ ρe (s,x) ∧ ρs (s, ⟨x ,y⟩) ∧ s ′ = ⟨x ,y⟩}.
We then compute attrFrom as the least fixed-point of states reach-

able from start:

attrFrom = µA.Start ∪ {s ′ ∈ attrFromCands |
∃s ∈ A,x ∈ X,y ∈ Y : ⟨s,x⟩ ∈ envChoices∧

ρe (s,x) ∧ ρs (s, ⟨x ,y⟩) ∧ s ′ = ⟨x ,y⟩}.

4.3 Computing JVTS Annotations
On top of the JVTS computation, for its presentation to the engineer,

we annotate its states with the following information:

• State type (attractor-state or cycle-state);

• For each cycle-state – the specific violated justice. From the con-

struction of the Z array in the Rabin game, the Z-Rank identifies

a system justice guarantee being violated by the states in the rel-

evant Z-array cell, and therefore by the states in the cycle-state

constructed from this Z-array cell; and

• Invariants - we annotate each JVTS state with invariants of the

form <var> = <value>. Computation of the invariants is per-

formed by iterating over the values of each variable and checking

if a restriction to the value constitutes an invariant. In the worst-

case, the computation of all invariants requiresO(|X ∪Y|)many

efficient symbolic operations. As a performance improvement,

we only check for variables that appear in the symbolic repre-

sentation as only their values might constitute an invariant.

Note that the annotations present aggregated information. They

are not the labels from Def. 4.1.

5 CONCRETIZATION AND INTERACTIVE
SYMBOLIC AND CONCRETE PLAY

To further assist the engineer in the exploration of the CS, we

implemented an interactive play over the JVTS. The engineer can

select a JVTS state (cycle or attractor) and can either (1) concretize

the state, or (2) perform interactive play starting from concrete

states in the JVTS state.

Concretizing a JVTS State. Concretizing a JVTS state results in
generating all concrete states contained in it, allowing the engineer

to view the concrete cycle violating at least one justice guarantee,

or an attractor path towards the next cycle. Generation of concrete

states entails enumerating all concrete states contained in the JVTS

state. Therefore, this can be (in the worst-case) as expensive as

computation of the concrete CS.

Example 5.1. In our running example, Fig. 3 shows the result

of concretizing the attractor state q1. In the figure we see the 5

concrete states it contains, and the transitions between them.

The computation of concrete states contained in a JVTS state

is immediate from the JVTS structure returned by Alg. 1 and the

envChoices accumulated in memory. Each JVTS state consists of

a symbolic representation of the set of concrete states it contains,

and we simply extract these concrete states by enumerating all

assignments to environment and system variables representing a

state in this set. We build the transitions between the states using

the envChoices.

Interactive Symbolic and Concrete Play. The engineer can per-
form an interactive play starting from a JVTS state. The play consists

of 4 steps: (1) The engineer chooses as a starting point a concrete

state contained in a JVTS state; (2) The concrete state and all its

possible concrete successors, in the same JVTS state and in other

JVTS states, are displayed to the engineer; (3) The engineer chooses

a concrete successor; (4) We return to step (2).

Example 5.2. In our running example, the engineer chooses to

perform interactive play starting from the attractor (symbolic state

q1) in Fig. 2. She selects assignments to environment and system

variables in order to pick a concrete state of her interest within JVTS

state q1. She chooses to give the value of true to all variables and

is shown only the concrete state s7 and its immediate successors s4
and s5 (all of which are in the attractorq1, as seen in Fig. 3). She then
continues the play from state s4, which will display its immediate

successors s8, s9, s10, and s11 (as they appear in the concrete graph

in Fig. 1). Note that these successors are in a different JVTS state

q3; this is indicated to the engineer during the interactive play.

Using the interactive play, the engineer can traverse the concrete

states of the CS, on demand, while seeing the context provided by

the JVTS states in which they are contained, e.g., the system justice

guarantee which the CS attempts to violate or invariants shared by

this concrete state and other concrete states in the JVTS state.

Computation of an interactive play is done in the same way a

concretization of a JVTS state is performed, except that in each

step, the only concrete states extracted are the ones chosen by the

368

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Aviv Kuvent, Shahar Maoz, Jan Oliver Ringert

attractor

cycle

!DockingResponse

cycle

!Ready

attractor

attractor

ready = false

docking = false

dockRequest = false

AUX_Once = true

AUX_Must_Respond = false

dockRequest = true

AUX_Once = true

AUX_Must_Respond = false

attractor

ready = true

docking = true

dockRequest = true

AUX_Once = true

AUX_Must_Respond = false

q1a

q1c

q1b

q2

q3 q4

Figure 4: JVTS for dockingmechanism specificationwith un-
merged attractors. Attractors q1a ,q1b , and q1c can be merged
to attractor q1, as is shown in Fig. 2. The invariants of q2, q3,
and q4 are the same as shown in Fig. 2.

engineer and its immediate successors. This allows instantaneous,

on-demand computation of concrete states and is thus very efficient.

A set of screenshots demonstrating interactive symbolic and con-

crete play in our Eclipse-based environment is available from [25].

6 MERGING OF JVTS ATTRACTOR STATES
Since the JVTS computation is based on the intermediate values of

the Rabin game, as shown in Sect. 4.2, it may contain sequences

of attractor states that were computed from Z cells of different

Z-Ranks (Def. 3.4). In our experience, these sequences may be rela-

tively long and do not always provide valuable information to the

engineer. Thus, our default implementation merges such sequences

of attractor states into one.

Still, in some cases the engineer may be interested in a more

refined version of the JVTS, where such attractors are not merged.

We therefore provide the engineer with a means to unmerge and

merge such sequences of attractor states on demand.

Example 6.1. Using our running example in Sect. 2, running the

JVTS algorithm without merging of attractor states results in the

JVTS shown in Fig. 4, where state q1a ,q1b , and q1c are unmerged.

The version of this JVTS shown earlier in Fig. 2 has these attractors

merged to a single attractor, q1.

As can be seen in our example, without merging, the resulting

JVTS is not the minimal JVTS which is also acyclic. The algorithm

whichmerges attractors traverses the JVTS andmerges neighboring

attractors that can bemergedwithout creating a cycle. This merging

minimizes the number of attractor states of the JVTS. Thus, the

resulting JVTS, after merging, is minimal not only in the number of

cycle states (see Sect. 4.2) but also in the number of attractor states.

7 EVALUATION
We have implemented Alg. 1, the interactive play discussed in

Sect. 5, and the merging discussed in Sect. 6, in our synthesis en-

vironment, based on CUDD [22] as a BDD library, and integrated

into Eclipse. Our implementation includes also the computation

Table 1: The 14 unrealizable specifications of Lego robots created
by our students in the workshop class and used for the evaluation
in this paper. For each specification we report the number of justice
assumptions and guarantees (n and m resp.), number of safety as-
sumptions and guarantees (дe and дs), number of input and output
variables (|X | and |Y |), and number of auxiliary variables (|AUX |)
added due to the use of patterns and past LTL formulas.

Name n m |дe | |дs | |X | |Y | |AUX |
Gyro_rev_710 4 2 1 4 3 6 3

Gyro_var2_rev_710 3 2 1 4 3 5 2

Humanoid_rev_458 0 0 0 11 3 10 0

Humanoid_rev_503 0 1 1 16 6 13 2

Humanoid_rev_531 2 1 0 15 1 14 2

Humanoid_rev_741 2 1 3 19 4 19 5

Humanoid_rev_742 0 1 2 24 1 16 2

PCar_rev_769 2 1 2 25 5 13 2

PCar_rev_870 2 1 4 29 5 16 5

PCar_rev_888 1 1 2 19 3 11 2

PCar_un2 1 1 2 19 3 11 2

ColorSort_rev_790 4 2 2 25 11 17 4

ColorSort_rev_791 5 2 2 31 13 22 6

SelfParkingCar_rev_974 3 3 0 42 4 28 5

of concrete CS extraction based on [10, 18]. It is important to note

that the concrete CS computed might not be the one represented by

the JVTS, i.e., the concrete CS computed by the original algorithm

might have a slightly different size than the one represented by

the JVTS. Both algorithms work on the same results of the Rabin

game but JVTS computation might prefer leaving cycles early as

mentioned in Sect. 4.2.3.

We consider the following research questions:

R1 Is the JVTS computation efficient and how does it compare to

concrete CS construction?

R2 Is the JVTS smaller than the concrete CS?

7.1 Specifications Used
Only few GR(1) specifications are available and these were usually

created by authors of synthesis algorithms or extensions thereof.

For the purpose of evaluation, we have used unrealizable specifi-

cations created by 3rd year CS students in a workshop project class

that we have taught. Over the course of a semester, the students

have created specifications for the following systems, which they

actually built and run: ColorSort – a robot sorting Lego pieces by

color; Humanoid – a mobile robot of humanoid shape; PCar – a self

parking car; Gyro – a robot with self-balancing capabilities; and

SelfParkingCar - a second version of a self parking car.

The specifications were not created specifically for the evaluation
in our paper but as part of the ordinary work of the students in the

workshop class. During their work, the students have committed

many versions of their specifications to the repository. Most of

these were realizable, but some unrealizable. We use here all of the

unrealizable specifications from the repository. In total, we have

collected 14 specifications. We consider these GR(1) specifications

to be the most realistic and relevant examples one could find for

the purpose of evaluating our work.

Tbl. 1 provides basic information regarding the size of the 14 spec-

ifications: number of justice and safety assumptions and guarantees,

369

A Symbolic Justice Violations Transition System
for Unrealizable GR(1) Specifications ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

number of input and output variables, and number of auxiliary vari-

ables. As can be seen, the number of justice guarantees is small,

ranging from 0 to 3. The total number of safety guarantees ranges

from 5 to 42. The state space (input, output, and auxiliary variables)

ranges from 2
10

to 2
41
.

In addition to the specifications created by the students, we

considered the ARMAMBAAHBArbiter, which is the most popular

GR(1) example in literature, used, e.g., in [1, 3, 4, 10]. We looked at

4 different sizes of AMBA (1 to 4 masters), each in the 3 variants of

unrealizability described in [4] (with a justice assumption removed,

with a justice guarantee added, and with a safety guarantee added).

We have thus run our experiments on 12 AMBA specifications.

All specifications used in our evaluation, the raw results, and

the code to reproduce our experiments are available from [25].

7.2 Validation
We have systematically validated the correctness of our implemen-

tation by model-checking the symbolic JVTS constructed for the

specifications mentioned in this paper and for many more. We first

transformed the JVTS into a symbolic controller. The initial states

of this symbolic controller are the union of the initial states in the

JVTS states. The transitions of this symbolic controller are the tran-

sitions accumulated in envChoices (see Sect. 4.2). We then used a

model-checker to check whether this symbolic controller satisfies

the specification φsr (as described in Sect. 3.1).

In addition, we validated the completeness of JVTS with regard

to system choices by ensuring that, given a concrete state and an

environment choice represented in the JVTS, every system choice

either violates a safety guarantee or leads to a successor which is

also represented in the JVTS.

Our validation helped us find a number of bugs in our earlier

implementation and to increase our confidence in the correctness

of its latest version.

7.3 Results
R1: Computation Time. We run all experiments on an ordinary

PC, Intel i7 CPU 3.4GHz, 16GB RAM with Windows 7 64-bit OS,

Java 8 64Bit, and CUDD 3 compiled for 64Bit, using only a single

core of the CPU. We measured the running time of concrete CS

extraction, and of symbolic JVTS computation with and without

merging of attractors, for the 14 specifications shown in Tbl. 1, as

well as for 12 AMBA AHB specifications from [4]. Times we report

are median values of 12 runs per specification measured by Java

in milliseconds. Even though the JVTS computation algorithm is

deterministic, we performed 12 runs since JVM garbage collection

and BDD dynamic-reordering add variance to running times.

As it is well known that BDD-based implementations’ perfor-

mance is sensitive to variable order, it is important to note that in

all our experiments we used CUDD’s automatic variable reordering

for the Rabin game, and no variable reordering for strategy extrac-

tion. Our experience shows that this configuration provides the

fastest results for both the concrete CS extraction and the JVTS

computation, across all the specifications we examined.

Tbl. 2 (left) displays the running time quartiles for concrete

CS extraction for the 14 specifications from Tbl. 1 and ratios of

JVTS computation times. We see that the JVTS computation is

Table 2: Running time (in ms) quartiles of the concrete CS extrac-
tion and ratios of JVTS computation (including annotations) for the
14 specifications from Tbl. 1 and the 12 AMBA specifications. T/O
represents running time of over 10 minutes.

14 Lego Robots 12 AMBA AHB

Quartile Concrete
Concrete

JVTS
ratio Concrete

Concrete

JVTS
ratio

MIN 17 1 7 1

Q1 93 3 11 2

Q2 8426 190 129 4

Q3 38794 1658 1292 6

MAX T/O ∞ 26787 23

Table 3: Size quartiles and ratios for the 14 specifications of Tbl. 1
(upper part), and the 12 AMBA specifications (lower part), compar-
ing the concrete CS numbers of states Qc and transitions T c and
the ratios of JVTS states and transitions with merged attractors (un-
merged attractors in parentheses). We use 1 as the size of empty sets
of states and transitions to avoid division by 0.

Quartiles |Qc | |T c | |Qc |
|Q j | ratio

|T c |
|T j | ratio

MIN 8 20 3 (3) 7 (7)

Q1 167 204 92 (65) 83 (73)

Q2 1308 1884 878 (468) 1884 (740)

Q3 3309 608861 1377 (1104) 124270 (101658)

MAX 2124000 66816000 708000 (708000) 22272000 (22272000)

MIN 1 0 1 (1) 1 (1)

Q1 1 0 1 (1) 1 (1)

Q2 25 46 10 (8) 20 (15)

Q3 85 196 21 (14) 34 (24)

MAX 1921 7292 274 (160) 521 (270)

significantly faster for these 14 specifications. In fact, for half of the

specifications, the JVTS running time is more than 190 times faster

than the concrete CS extraction, and for 25% the running time is

more than 1658 times faster.

Tbl. 2 (right) displays the running time quartiles and ratios for

the 12 AMBA specifications. Here as well we see the that JVTS

computation is faster than the concrete CS extraction. For half of

the specifications, the running time of the JVTS is faster than the

concrete CS by a factor of 4, and for 25% of the specifications, the

JVTS computation is faster by a factor of 6.

In all the specifications evaluated, attractors merging added only

very small overhead (at most 16 ms) to the JVTS computation time.

To answer R1: Computation time of the JVTS is faster than ex-

traction of a concrete CS, for both the Lego robot (more than 190

times faster for half of the specifications) and the AMBA specifi-

cations (more than 4 times faster for half of the specifications).

R2: Size. We have measured the number of states and transitions

for the CSs of the 14 specifications listed in Tbl. 1, as well as for

the 12 AMBA AHB specifications, for concrete CSs and for JVTSs

with/without merging of attractors.

Tbl. 3 (upper part) shows the quartiles of the number of states

Qc
and transitionsT c of the concrete CS and the ratios of the JVTS

sizes with merged attractors and unmerged attractors, for the 14

specifications listed in Tbl. 1. For all of these specifications, the

370

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Aviv Kuvent, Shahar Maoz, Jan Oliver Ringert

number of states and transitions in the JVTS is significantly smaller

than the number of states and transitions in the concrete CS. In

more than half of the specifications, the number of states in the

JVTS is smaller by a factor of at least 878 than in the concrete

CS, and in about 25% the factor is more than 1377. For half of the

specifications, the number of transitions in the JVTS is smaller by

a factor of 1884 than the number of transitions in the concrete, and

for 25% of the specifications, the number of transitions is smaller

by a factor of 124270. Merging of attractors further reduces the

number of states and transitions.

Tbl. 3 (lower part) shows the quartiles of the number of states

and transitions of the concrete CS and the ratios of the JVTS sizes

(with/without merging of attractors), for the 12 AMBA AHB speci-

fications listed in Sect. 7.1. The results show that in all the AMBA

specifications, the size of the JVTS is smaller than or equal to the

size of the concrete CS. Half of the JVTSs of these specifications are

smaller than the concrete CSs by a factor of 10 or more. Merging of

attractors further decreases the size of the JVTS in some cases.

To answer R2: The size of the JVTS, states and transitions, is much

smaller than the size of the concrete CS in most the examined

specifications.

7.4 Threats to Validity
We briefly discuss threats to the validity of our results.

Internal. The JVTS computation is not trivial and our implemen-

tation may have bugs. To mitigate this, we performed a thorough

validation (Sect. 7.2) using all specifications available to us.

External. First, we did not perform a user-study, with engineers, to

examine how the JVTS achieves its ultimate goal of aiding them in

debugging unrealizable specifications. However, the orders of mag-

nitude smaller size of the JVTS and its simplicity (in comparison

with the concrete CS, as seen in Sect. 7), as well as the annotations

added to the JVTS states (directly referencing elements in the spec-

ification), all hint that the JVTS will indeed be easier for engineers

to explore and use. Second, we have based most of our evaluation

on specifications created by 3rd year CS students with no prior

experience in writing LTL specifications. Due to the lack of other

real-world unrealizable specification examples, the specifications

chosen were all unrealizable specifications available to us.

8 RELATEDWORK
GR(1) synthesis was introduced in [19], and has since been used

and investigated in many works. To list a few, D’Ippolito et al. [5, 6]

used GR(1) to deal with fallible domains and non-anomalous event-

based behavior models; Kress-Gazit et al. [11] used GR(1) in ro-

botics; Maoz and Ringert showed GR(1) synthesis for specifica-

tion patterns [13]. Several tools support GR(1) synthesis, including

RATSY [2], TuLiP [24], and Slugs [8]. We give an overview of exist-

ing approaches to dealing with unrealizable GR(1) specifications.

Counter-Strategies and Core. Cimatti et al. [4] suggest to use

a CS to provide an explanation for unrealizability, and use a core

to explain a single specific unrealizability cause. Konighofer et

al. [10] compute a core not only for system guarantees but also

for output variables. Maoz and Sa’ar [17] present CSs for scenario-

based specification. All works use concrete CSs. Our work is the

first to suggest a symbolic CS. It can be composed on top of a core

calculation.

Interactive Play. Some previous works suggest the use of an in-

teractive play [10, 17, 21], where the engineer explores the CS by

playing the role of the system against the winning environment.

Again, all these approaches to interactive play rely on a concrete

CS. No previous work provides an interactive play which is based

on a symbolic representation of the CS, as we have introduced and

implemented here.

Repair using StrengthenedAssumptions. Finally, Alur et al. [1]
proposed a method for semi-automatic strengthening of assump-

tions. It analyses the concrete CS and suggests candidate assump-

tions that may solve the cause of unrealizability. The use of our

symbolic CS representation in the context of repair is a very inter-

esting future work direction.

9 CONCLUSION
We presented the Justice Violations Transition System (JVTS), a

novel symbolic representation of CSs for GR(1). The JVTS is much

smaller and simpler than its corresponding concrete CS and is

annotated with invariants that explain how the CS forces the system

to violate the specification. We compute the JVTS symbolically,

and thus efficiently, without expensive enumeration of concrete

states. Finally, we provide the JVTS with an on-demand interactive

concrete and symbolic play.

We implemented our work, validated its correctness, and evalu-

ated it on 14 unrealizable specifications of autonomous Lego robots

and on benchmarks from the literature. The evaluation shows not

only that the JVTS is in most cases much smaller than a concrete

CS, but also that its computation is significantly faster.

We consider the following future work directions. First, one

may propose an analogous symbolic representation of strategies

for the realizable case, to allow engineers to efficiently explore a

synthesized controller. Second, as we mentioned in Sect. 8, some

works investigate the use of concrete CSs to generate candidate

assumptions that will repair the unrealizable specification. Based

on the JVTS, it may be possible to develop a symbolic and hence

much more efficient repair mechanism.

The work is part of a larger project
2
on bridging the gap between

the theory and algorithms of reactive synthesis on the one hand

and software engineering practice on the other. As part of this

project we are building engineer-friendly tools for writing and

understanding temporal specifications for reactive synthesis (see,

e.g., [13, 14]).

ACKNOWLEDGEMENTS
We thank Ofir Fisher and Yoni Wolbe for their help in the imple-

mentation. This project has received funding from the European

Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (grant agreement No 638049,

SYNTECH).

2
SYNTECH: http://smlab.cs.tau.ac.il/syntech/

371

http://smlab.cs.tau.ac.il/syntech/

A Symbolic Justice Violations Transition System
for Unrealizable GR(1) Specifications ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] R. Alur, S. Moarref, and U. Topcu. Counter-strategy guided refinement of GR(1)

temporal logic specifications. In FMCAD, pages 26–33. IEEE, 2013.
[2] R. Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Könighofer, M. Roveri, V. Schup-

pan, and R. Seeber. RATSY - A new requirements analysis tool with synthesis.

In CAV, volume 6174 of LNCS, pages 425–429. Springer, 2010.
[3] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of

Reactive(1) Designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.
[4] A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diagnostic information

for realizability. In VMCAI, volume 4905 of LNCS, pages 52–67. Springer, 2008.
[5] N. D’Ippolito, V. A. Braberman, N. Piterman, and S. Uchitel. Synthesis of live

behaviour models for fallible domains. In ICSE, pages 211–220, 2011.
[6] N. D’Ippolito, V. A. Braberman, N. Piterman, and S. Uchitel. Synthesizing

nonanomalous event-based controllers for liveness goals. ACM Trans. Softw. Eng.
Methodol., 22(1):9, 2013.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications

for finite-state verification. In ICSE, pages 411–420. ACM, 1999.

[8] R. Ehlers and V. Raman. Slugs: Extensible GR(1) synthesis. In CAV, volume 9780

of LNCS, pages 333–339. Springer, 2016.
[9] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Murray. Control

design for hybrid systems with tulip: The temporal logic planning toolbox. In

2016 IEEE Conference on Control Applications, CCA 2016, Buenos Aires, Argentina,
September 19-22, 2016, pages 1030–1041. IEEE, 2016.

[10] R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal specifications: a

practical approach using model-based diagnosis and counterstrategies. STTT,
15(5-6):563–583, 2013.

[11] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-logic-based reactive

mission and motion planning. IEEE Trans. Robotics, 25(6):1370–1381, 2009.
[12] S. Maniatopoulos, P. Schillinger, V. Pong, D. C. Conner, and H. Kress-Gazit.

Reactive high-level behavior synthesis for an atlas humanoid robot. In D. Kragic,

A. Bicchi, and A. D. Luca, editors, 2016 IEEE International Conference on Robotics

and Automation, ICRA 2016, Stockholm, Sweden, May 16-21, 2016, pages 4192–4199.
IEEE, 2016.

[13] S. Maoz and J. O. Ringert. GR(1) synthesis for LTL specification patterns. In

ESEC/FSE, pages 96–106. ACM, 2015.

[14] S. Maoz and J. O. Ringert. On well-separation of GR(1) specifications. In FSE,
pages 362–372. ACM, 2016.

[15] S. Maoz and Y. Sa’ar. AspectLTL: an aspect language for LTL specifications. In

AOSD, pages 19–30. ACM, 2011.

[16] S. Maoz and Y. Sa’ar. Assume-guarantee scenarios: Semantics and synthesis. In

MODELS, volume 7590 of LNCS, pages 335–351. Springer, 2012.
[17] S. Maoz and Y. Sa’ar. Counter play-out: executing unrealizable scenario-based

specifications. In ICSE, pages 242–251. IEEE / ACM, 2013.

[18] S. Maoz and Y. Sa’ar. Two-way traceability and conflict debugging for aspectltl

programs. T. Aspect-Oriented Software Development, 10:39–72, 2013.
[19] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In VMCAI,

volume 3855 of LNCS, pages 364–380. Springer, 2006.
[20] A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In POPL, pages

179–190. ACM Press, 1989.

[21] V. Raman and H. Kress-Gazit. Explaining impossible high-level robot behaviors.

IEEE Transactions on Robotics, 29(1):94–104, 2013.
[22] F. Somenzi. CUDD: BDD package, University of Colorado, Boulder. http://vlsi.

colorado.edu/~fabio/CUDD/cudd.pdf.

[23] A. Walker and L. Ryzhyk. Predicate abstraction for reactive synthesis. In Formal
Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, October
21-24, 2014, pages 219–226. IEEE, 2014.

[24] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray. TuLiP: A

Software Toolbox for Receding Horizon Temporal Logic Planning. In Proceedings
of the 14th International Conference on Hybrid Systems: Computation and Control,
HSCC ’11, pages 313–314, New York, NY, USA, 2011. ACM.

[25] SYNTECH JVTS website. http://smlab.cs.tau.ac.il/syntech/jvts/.

372

http://vlsi.colorado.edu/~fabio/CUDD/cudd.pdf
http://vlsi.colorado.edu/~fabio/CUDD/cudd.pdf
http://smlab.cs.tau.ac.il/syntech/jvts/

	Abstract
	1 Introduction
	2 Running Example
	2.1 Example Specification
	2.2 The Justice Violations Transition System
	2.3 Concretizing a JVTS State

	3 Preliminaries
	3.1 LTL and GR(1)
	3.2 Unrealizability and Rabin Game

	4 The Justice Violations Transition System (JVTS)
	4.1 Defining the JVTS
	4.2 Computing the JVTS
	4.3 Computing JVTS Annotations

	5 Concretization and Interactive Symbolic and Concrete Play
	6 Merging of JVTS Attractor States
	7 Evaluation
	7.1 Specifications Used
	7.2 Validation
	7.3 Results
	7.4 Threats to Validity

	8 Related Work
	9 Conclusion
	References

