
Order out of Chaos:
Proving Linearizability Using Local Views

Noam Rinetzky
Tel Aviv University

Sharon Shoham
Tel Aviv University

Yotam Feldman
Tel Aviv University

Constantin Enea
University Paris Diterot

Adam Morrison
Tel Aviv University



Concurrent Reasoning is Hard

Goal: Prove linearizability of 
highly-concurrent data structures



Optimistic Traversals

• Lazy list [OPODIS’05]

• Lock-free skiplist [Fraser-2004]

• Contention-Friendly Tree 
[EuroPar’13, PPL’16]

• Lock free trees 
[PPOPP’14b, SPAA’12, PPOPP’14a, 
PODC’10, ICDCN’15]

• …

Good performance, hard proofs



This Work

Main challenge: correctness of optimistic traversals

Traversal correctness
without interference
(sequential reasoning)

Traversal correctness 
with interference

(concurrent reasoning)



Example: Lazy Binary Tree

• Variant of Contention-Friendly Tree [EuroPar’13, PPL’16]

• Traversal does not take locks
• Used by contains, insert & delete

• Self balancing – rotation allocates a new node

• Marks logical & physical deletion by separate bits

7

4

2

1

8

3



Linearizability Proof Uses Paths

• A tree represents a set using search paths:

• Linearization point: set modified by at most
one write in each operation

7

4

2

1

8

3 𝑥



• A tree represents a set using search paths:

• Linearization point: set modified by at most
one write in each operation

Linearizability Proof Uses Paths

• Contains: exists path to key/null at some point

• Insert/delete: add/remove path

• Maintenance operations (e.g. rotate):
no observable effect

Correct traversals required 
for correct paths manipulation



Traversals: Inconsistent View

7

4

2

1

8

3

contains(3)?



Traversals: Inconsistent View

7

4

2

1

8

3

contains(3)? global memorythread’s view



Traversals: Inconsistent View

7 7

4

2

1

8

3

contains(3)? global memorythread’s view



Traversals: Inconsistent View

7 7

4

2

1

8

3

4

contains(3)? global memorythread’s view



Traversals: Inconsistent View

7

4

7

4

2

1

8

3

remove(4)

contains(3)? global memorythread’s view



Traversals: Inconsistent View

7

4

2

7

4

2

1

8

3

contains(3)? global memorythread’s view



Traversals: Inconsistent View

7

4

2

7

4

2

1

8

remove(3)

contains(3)? global memorythread’s view



Traversals: Inconsistent View

7

4

2

null

7

4

2

1

8

contains(3)? global memorythread’s view



Traversals: Inconsistent View

7

4

2

null

7

4

2

1

8

contains(3)? no global memorythread’s view

contains(3): false contains(3): false
at some point



Traversals: Inconsistent View

7

4

2

null

7

4

2

1

8

global memorythread’s view

contains(3): false contains(3): false
at some point

contains(3)? no



Traversals: Inconsistent View

7

4

2

null

global memorythread’s view

?

contains(3): false contains(3): false
at some point

contains(3)? no



Traversal Correctness Problem

• The heart of the linearizability
proof:

• Contains:

• Insert:

• Full details in the paper

+unmarked

?

Prove the existence of a search path
in real memory
at some point during the traversal



Traversal Correctness Problem

Prove the existence of a search path
in real memory
at some point during the traversal

• The heart of the linearizability
proof:

• Contains:

• Insert:

• Full details in the paper

+unmarked

?
How to prove traversal correctness?



Our Approach

• Apply the technique to prove the linearizability of
1. Variant of Contention-Friendly

self-balancing binary tree [EuroPar’13, PPL’16]

2. Lazy list and Optimistic list [OPODIS’05]

3. Lock-free list
4. Lock-free skiplist

Traversal correctness
without interference
(sequential reasoning)

Traversal correctness 
with interference

(concurrent reasoning)



Local View Argument

7

4

2

null

?



Local View Argument

Sequential reasoning to 
show traversal correct 
without interference ?



Local View Argument

Sequential reasoning to 
show traversal correct 
without interference

Correctness of 
concurrent traversals



Local View Argument

Sequential reasoning to 
show traversal correct 
without interference

Order & Preservation

Correctness of 
concurrent traversals



Requirement 1: Order on Memory

• Partial order ≤𝐻 on memory
induced by the pointers in the 
global state 𝐻
(not order on the data)

• Reads follow the order

• Search paths follow the order

• Temporal acyclicity: the order 
is not violated across 
intermediate states



Requirement 1: Temporal Acyclicity



3

7

4

2

1

8

Requirement 1: Temporal Acyclicity



3

7

4

2

1

8

e.g. &4 > &7

Requirement 1: Temporal Acyclicity



3

7

4

2

1

8

Requirement 1: Temporal Acyclicity



3

7

4

2

1

8

remove(4)
now &4, &7 unordered

Requirement 1: Temporal Acyclicity



3

7

4

2

1

8

remove(4)

remove(3)

Requirement 1: Temporal Acyclicity



Requirement: no cycles in accumulated order

3

7

4

2

1

8

Requirement 1: Temporal Acyclicity



Requirement 2: Preservation

Writes do not destroy search paths to locations to 
which there could be later writes

4

3
𝑚𝑜𝑑(𝑤𝑖)

the location 𝑤𝑖 will modify



Requirement 2: Preservation

4

3

Writes do not destroy search paths to locations to 
which there could be later writes

𝑚𝑜𝑑(𝑤𝑖)

the location 𝑤𝑖 will modify



Requirement 2: Preservation

4

3

𝑤𝑖

𝑚𝑜𝑑(𝑤𝑖)

Writes do not destroy search paths to locations to 
which there could be later writes

Required

the location 𝑤𝑖 will modify



Requirement 2: Preservation

4

3

𝑤𝑖

𝑚𝑜𝑑(𝑤𝑖)

Writes do not destroy search paths to locations to 
which there could be later writes

Required

the location 𝑤𝑖 will modify

In example: nodes are marked removed 
when their search reachability is 
reduced;
writers lock and check the marked bit



Local View Argument

Sequential reasoning to 
show traversal correct 
without interference

Correctness of 
concurrent traversals

Order & Preservation



Idea: Consistency from Ordering

global memorythread’s view

• Writes on 𝐻𝑟 are forward-agreeing with 𝐻𝑐

𝐻𝑐 = 𝑤1…𝑤𝑛(𝐻0)𝐻𝑟 = 𝑤𝑖1 …𝑤𝑖𝑘(𝐻0)

• Preservation complements the backwards path

• Run with no interference on a related heap

• Full details in the paper



• Concurrent traversal correctness:
Existence of search path in the past

• Order & preservation facilitate 
proof by sequential reasoning

• Reasoning on interleavings of writes 
completes the linearizability proof

• Challenges: backtracking, in-traversal validation

Summary





Establishing the Conditions

• In our examples, the proof of the conditions is trivial

• Valid to rely on local view arguments by induction on 
the sequence of writes

Order & Preservation

Correctness of traversal

Correctness of writes



Some Related Work
• General linearizability proof methods and program logics – see paper 

for references

• Peter W. O'Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, Greta 
Yorsh:
Verifying linearizability with hindsight. PODC 2010: 85-94
• Proof of the lazy list by the hindsight lemma
• Specific instance of our extension to path+field

• Kfir Lev-Ari, Gregory V. Chockler, Idit Keidar:
A Constructive Approach for Proving Data Structures' Linearizability.
DISC 2015: 356-370
• Uses sequential reasoning on the data structure
• Relies on base points – which our technique can establish

• Dennis E. Shasha, Nathan Goodman:
Concurrent Search Structure Algorithms. ACM Trans. Database Syst. 
13(1): 53-90 (1988)
• Framework for proving linearizability of search data structures
• 3 templates for traversal correctness, proofs require concurrent reasoning on 

interleavings of reads and writes

https://twitter.com/intent/tweet?url=http://doi.acm.org/10.1145/1835698.1835722&text="Verifying+linearizability+with+hindsight."&hashtags=dblp&related=dblp_org
https://twitter.com/intent/tweet?url=http://doi.acm.org/10.1145/1835698.1835722&text="Verifying+linearizability+with+hindsight."&hashtags=dblp&related=dblp_org
https://twitter.com/intent/tweet?url=https://doi.org/10.1007/978-3-662-48653-5_24&text="A+Constructive+Approach+for+Proving+Data+Structures'+Linearizability."&hashtags=dblp&related=dblp_org
https://twitter.com/intent/tweet?url=https://doi.org/10.1007/978-3-662-48653-5_24&text="A+Constructive+Approach+for+Proving+Data+Structures'+Linearizability."&hashtags=dblp&related=dblp_org


References
• [Fraser-04] Keir Fraser:

Practical lock-freedom. PhD thesis

• [OPODIS’05] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer III, Nir
Shavit:
A Lazy Concurrent List-Based Set Algorithm. OPODIS 2005: 3-16

• [PODC’10] Faith Ellen, Panagiota Fatourou, Eric Ruppert, Franck van Breugel:
Non-blocking binary search trees. PODC 2010: 131-140

• [SPAA’12] Shane V. Howley, Jeremy Jones:
A non-blocking internal binary search tree. SPAA 2012: 161-171

• [EuroPar’13] Tyler Crain, Vincent Gramoli, Michel Raynal:
A Contention-Friendly Binary Search Tree. Euro-Par 2013: 229-240

• [PPOPP’14b] Trevor Brown, Faith Ellen, Eric Ruppert:
A general technique for non-blocking trees. PPOPP 2014: 329-342

• [PPOPP’14a] Aravind Natarajan, Neeraj Mittal:
Fast concurrent lock-free binary search trees. PPOPP 2014: 317-328

• [ICDCN’15] Arunmoezhi Ramachandran, Neeraj Mittal:
A Fast Lock-Free Internal Binary Search Tree. ICDCN 2015: 37:1-37:10

• [PPL’16] Tyler Crain, Vincent Gramoli, Michel Raynal:
A Fast Contention-Friendly Binary Search Tree. Parallel Processing Letters 26(3): 1-17 (2016)


