
Verifying Dereference Safety
via Expanding-Scope Analysis

A. Loginov∗ E. Yahav S. Chandra S. Fink
IBM T. J. Watson Research Center

N. Rinetzky
Tel Aviv University

M. G. Nanda
IBM IRL

ABSTRACT
This paper addresses the challenging problem of verifying the safety
of pointer dereferences in real Java programs. We provide an au-
tomatic approach to this problem based on a sound interprocedural
analysis. We present a staged expanding-scope algorithm for in-
terprocedural abstract interpretation, which invokes sound analysis
with partial programs of increasing scope. This algorithm achieves
many benefits typical of whole-program interprocedural analysis,
but scales to large programs by limiting analysis to small program
fragments. To address cases where the static analysis of program
fragments fails to prove safety, the analysis also suggests possible
annotations which, if a user accepts, ensure the desired properties.
Experimental evaluation on a number of Java programs shows that
we are able to verify 90% of all dereferences soundly and automat-
ically, and further reduce the number of remaining dereferences
using non-nullness annotations.
Categories and Subject Descriptors: D.2.4 [Program Verifica-
tion]
General Terms: Algorithms, Reliability, Verification
Keywords: Static Analysis, Abstract Interpretation

1. INTRODUCTION
This paper addresses the challenging problem of verifying the

safety of pointer dereferences in real Java programs. Our analysis
operates on program fragments, and gradually expands the analysis
scope in which a fragment is considered when additional context
information is required.

We focus on sound analysis. In this setting, if the analysis issues
no warnings, then all dereferences in the program are guaranteed to
be safe. However, if the analysis issues a warning, it may be a false
positive. The challenge in designing a sound analysis is therefore
not only to produce one that scales in terms of program size, but
does so while maintaining a low number of false positives.

Our goal is not to produce a tool specifically for bug finding;
rather, our goal is to help a developer make her application more ro-
bust, while engaging her attention as few times as possible. There-
∗Author’s current affiliation: GrammaTech, Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’08, July 20–24, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-59593-904-3/08/07 ...$5.00.

fore, our metric of success is in getting the maximal number of
dereferences that can be automatically established as safe with a
minimal number of user annotations.

Verifying Dereference Safety. Null-pointer dereferences rep-
resent a non-negligible percentage of defects in Java applications.
Furthermore, a null dereference is often a symptom of a higher-
level problem; warning the programmer about a potential null deref-
erence may help in exposing the more subtle problem.

We present the tool SALSA (Scalable Analysis via Lazy Scope
expAnsion). Unlike most existing bug-finding tools for detecting
null dereferences our analysis is sound. We are unaware of any
reported sound approach for detecting null dereferences in real Java
programs that produces a reasonable percentage of false positives.

Expanding-Scope Analysis. We present a staged analysis that
adapts the cost of the analysis to the difficulty of the verification
task. Our analysis breaks the verification problem into multiple
subproblems and adapts the analysis of each subproblem along two
dimensions: the precision dimension and the analysis-scope di-
mension. Our analysis adapts the precision (and thus the expected
cost) of the abstract interpretation [4] to the difficulty of verifying
the subproblem. In this aspect, it is similar to the staging in [11].

The novelty of our approach lies in its ability to adapt the scope
of the analyzed program fragment to the difficulty of the verifica-
tion task. Unlike existing staged techniques, which analyze whole
programs (e.g., [11]), our analysis operates on program fragments.
The basic idea, inspired by Rountev et. al. [18], is to break the pro-
gram into fragments and analyze each fragment separately, making
conservative assumptions about the parts of the program that lie
outside the fragment. However, if the property cannot be verified
under the conservative context assumptions, our approach provides
for gradually expanding the scope of the analyzed fragment.

The premise of this work is that a large percentage of the po-
tential points of failure in a program can be verified by (i) using a
scalable imprecise analysis that conservatively approximates con-
text information, and (ii) employing more precise analyses that con-
sider a limited scope, which may be expanded as needed.

SALSA is based on the principle of expanding scopes; it applies
this principle to the problem of dereference safety, which is partic-
ularly challenging due to its dependence on aliasing information.

Experimental Results. Our experimental results show that our
analysis is effective in proving the safety of dereferences. Around
90% of the dereferences, averaged over a suite of 21 benchmarks,
were proved safe fully automatically. The benchmarks, which are
mostly open-source programs downloaded from sourceforge, ranged
in size from 3K bytecodes to over 460K bytecodes (see Tab. 4).
Given that each of these benchmarks had several thousand derefer-
ences on average, we find the results encouraging.

Related Approaches. To evaluate the results of our analysis,
we compared it with the results of state-of-the-art best-effort bug-
finding tools. We have implemented two such tools: Loco, a local
belief-based bug finder, and Xylem, a local symbolic path simula-
tor. We have also compared the results of our analysis to ones we
obtained by running FindBugs [14] on our benchmark suite.

Our preliminary experimental evaluation suggests that SALSA
can complement bug-finding tools by exposing problems that were
missed by these tools, as well as by showing that some of their re-
ports do not correspond to bugs when considered in a larger scope.

SALSA can benefit from the reports of bug-finding tools by us-
ing them as a basis for ranking.

Leveraging Annotations. For some safe dereferences, SALSA
may not be precise enough to verify their safety fully automatically.
In such cases, we allow the user to specify additional knowledge via
lightweight annotations (described in §7). For example, if the user
annotates a field as non-nullable, our analysis can use this knowl-
edge to verify additional dereferences as safe.

SALSA uses simple heuristics to suggest effective candidate an-
notations to the user. The task of examining suggested annotations
is far less onerous than the task of writing annotations from scratch.
In our experiments, we show that using these suggested annota-
tions can significantly increase the number of verified dereferences.
More specifically, we annotated 8 out of our 21 benchmarks, and
we show that adding a total number of 173 annotations reduced the
number of remaining unverified dereferences by an average of 30%
for these benchmarks.

Main Results. The contributions of this paper can be summa-
rized as follows:

• We present a novel approach for a staged analysis based on
the notion of expanding analysis scopes and apply it to the
problem of dereference safety.

• We implemented our approach and evaluated it on a number
of benchmarks. We show that our approach can automati-
cally verify the safety of around 90% of dereferences.

• We show how simple user annotations enable the analysis to
verify significantly more dereferences as safe.

2. OVERVIEW
In this section, we introduce our running example and provide an

overview of our approach at a semi-technical level. The technical
details are fleshed out in later sections.

2.1 Running Example
Fig. 1 shows a Java class for manipulating an employee record.

Method test creates an employee record for “Jane Smith”, sets
her salary to $50,000, and prints the record.

We emphasize points in the example program where derefer-
ences have to be shown as safe by marking the dereference with
a small square. Our analysis considers every such dereference as a
separate verification problem.

The example program is safe. Our analysis is able to verify each
of these subproblems automatically. It shows that every pointer
dereference statement in the running example is safe.

Different reasons contribute to the successful verification of the
various subproblems. For example, it can be established based on
the following facts: (1) The result of a successful allocation is non-
null (line 45), (2) A successful dereference ensures that subsequent
dereferences of the same pointer will succeed, e.g., after success-
ful dereference of empStr at line 16; (3) Specifications of library
methods, e.g. substring (line 17) and getInstance (line 41)

1 p u b l i c c l a s s EmpRec {
2 f i n a l S t r i n g name ;
3 I n t e g e r s a l a r y ;

5 EmpRec (S t r i n g empStr) {
6 i n t s e p I d x = empStr! indexOf (’ : ’) ;
7 t h i s . name = getName (empStr , s e p I d x) ;
8 t h i s . s a l a r y = g e t S a l a r y (empStr , s e p I d x) ;
9 }

11 S t r i n g getName (S t r i n g empStr , i n t s e p I d x) {
12 re turn empStr! s u b s t r i n g (0 , s e p I d x) ;
13 }

15 I n t e g e r g e t S a l a r y (S t r i n g empStr , i n t s e p I d x) {
16 i n t l e n = empStr! l e n g t h () ;
17 S t r i n g s a l a r y S t r = empStr! s u b s t r i n g (s e p I d x +1 , l e n) ;

19 i f (s a l a r y S t r ! matches (" \ \ p{ D i g i t }+ "))
20 re turn I n t e g e r . va lueOf (s a l a r y S t r) ;
21 e l s e / / Unpaid
22 re turn new I n t e g e r (0) ;
23 }

25 p u b l i c S t r i n g t o S t r i n g () {
26 S t r i n g B u f f e r r e s u l t = new S t r i n g B u f f e r () ;
27 r e s u l t ! append (t h i s . name! toUpperCase ()) ;

29 r e s u l t ! append (" \ t s a l a r y : ") ;
30 r e s u l t ! append (t h i s . s a l a r y ! t o S t r i n g ()) ;
31 Cur rency c u r r e n c y = g e t C u r r e n c y () ;
32 r e s u l t ! append (c u r r e n c y ! getSymbol ()) ;

34 re turn r e s u l t ! t o S t r i n g () ;
35 }

37 Cur rency g e t C u r r e n c y () {
38 Lo c a l e l o c a l e = L oc a l e . g e t D e f a u l t () ;
39 Cur rency c u r r e n c y = Cur rency . g e t I n s t a n c e (l o c a l e) ;
40 re turn (c u r r e n c y != n u l l ?
41 c u r r e n c y : Cur rency . g e t I n s t a n c e ("USD")) ;
42 }

44 p u b l i c s t a t i c vo id t e s t () {
45 EmpRec emp = new EmpRec (" Jane Smith :50000 ") ;
46 System . o u t ! p r i n t l n (emp! t o S t r i n g ()) ;
47 }
48 }

Figure 1: The running example.

are guaranteed to return non-null objects; (4) Various path condi-
tions (e.g. x instanceof T) guarantee non-nullness along the path.

An intraprocedural analysis can discover some of these facts,
with a straightforward dataflow analysis similar to available ex-
pressions (§4). Such analysis can prove the following dereferences
safe: (1) emp at line 46 due to prior allocation; (2) empStr at
line 17 due to prior dereference; (3) all occurrences of result in
toString due to prior allocation; (4) salaryStr at line 19 due
to known non-null return value from preceding library call.

The remaining dereferences depend either on formal parameters,
on values returned from called methods, or on temporal ordering
of assignments and accesses to fields. Without information from
callers and callees, sound intraprocedural analysis must make pes-
simistic assumptions. For example, dereferences of methods’ pa-
rameters, such as the dereference of empStr in the constructor,
must be considered possibly unsafe. This effect grows more pro-
nounced with larger and more realistic programs.

When intraprocedural analysis fails, we turn to staged interpro-
cedural analysis as illustrated in Fig. 2. The three columns of the
figure show the callgraph of the program (we omit library methods
for clarity). Fig. 2 (a) contains dashed boxes around every method
that contains dereferences. The first stage, a 0-scope analysis is a
(sound) intraprocedural analysis as just discussed.

test

EmpRec
<init>

getName

toString

getSalary get
Currency

test

EmpRec
<init>

getName

toString

getSalary get
Currency

test

EmpRec
<init>

getName

toString

getSalary get
Currency

(a) (b) (c)

Figure 2: Expanding scopes for the running example: (a) 5 regions of scope depth 0, (b) 2 regions of scope depth 1, and (c) 1 region
of scope depth 2

Expanding the scope of the analysis leads to the analysis of mul-
tiple methods together. Fig. 2 (b) shows the analysis scopes of the
1-scope analysis performed in the next stage. These scopes contain
the analyzed method, one of its callers, and all the other methods
that can be invoked directly by that caller. In our example, the anal-
ysis of getName and getSalary is performed in a scope con-
taining EmpRec’s constructor and these two methods, and the anal-
ysis of the dereferences in toString and in EmpRec’s construc-
tor is performed in a scope containing the test method and these
two methods. The 1-scope analysis of EmpRec’s constructor can
successfully propagate non-nullness information—a string constant
being a non-null object—from the actual parameter in test to the
formal parameter empStr of the constructor of EmpRec, and con-
sequently show that the dereference on line 6 is safe.

Fig. 2 (c) shows the 2-scope analysis of getName and getSalary.
This scope contain the grand-parent of the analyzed method in
the call graph (i.e., method test) and all children and grandchil-
dren of method test. This stage is able to show that the derefer-
ences in methods getName (line 12) and getSalary (line 16)
are safe by propagating the non-nullness of the empStr parame-
ter from the test method. In a similar manner, the dereference
this.name (line 27) are proven safe. The two remaining deref-
erences, this.salary (line 30), and currency(line 32) are
proven safe by techniques described in §6.1 and §6.3, respectively.

In summary, all dereferences are proved safe for this example
program. In this small program, a 2-scope analysis amounts to
a whole-program analysis, but in general, we omit large portions
of an application when reasoning about a certain dereference with
a 2-scope analysis. Note also that the analysis performed with
larger scopes deals with only those dereferences that could not be
proved safe by preceding, less expensive scopes, and thus reduces
the cost of the analysis significantly. §8.1 sketches one of a number
SALSA’s optimizations that are enabled by considering a small set
of dereferences in larger scopes.

3. PRELIMINARY ANALYSIS
We assume the existence of a preliminary phase that constructs

the program’s call graph and obtains points-to information, together
with aliasing information.

The program’s call graph. The nodes of the program’s call
graph are the methods in the program. There is an edge between
node m1 and node m2, if method m1 may invoke method m2. For
example, Fig. 2 (a) shows the call graph of our running example,
omitting nodes that represent library methods.

Access paths. Let VarId be the set of local variable identifiers,
SFieldId be the set of static field identifiers, and IFieldId be the
set of instance field identifiers of the program (all assumed to be
of reference type). Let Γ ∈ IFieldId∗ be a (possibly empty) se-
quence of instance field identifiers. An access path ap ∈ AP =
(VarId∪ SFieldId)× Γ represents the l-value of the reference-type
expression that is the dereference of the first component by the sec-
ond component.

Alias analysis. For an access path ap, may-alias information
provides the set of access paths that may be aliased with ap (de-
noted by mayAlias(ap) ⊂ AP) at some point during program ex-
ecution. For an access path ap at a given program point n, must-
alias information provides the set of access paths that refer to the
same object as ap every time program point n is reached. This
set is denoted by mustAlias(ap). For convenience in presentation,
we assume that ap is included in mustAlias(ap). For a method
m, may-alias information provides the set of access paths that may
change their value as a result of m’s invocation. This set is denoted
by mayKill(m).

Our analysis is parametric in the preliminary phase. In our ex-
periments we use a call-graph construction and may-alias analy-
sis involving a flow-insensitive, context-insensitive subset-based
Andersen-style may-points-to analysis, as described in [11]. For
must-alias information, we use a simple demand-driven must-alias
computation that is based on following def-use chains. Note that
the analysis remains sound given any sound call-graph construc-
tion and alias analysis. In particular, we can utilize highly scalable
class-hierarchy-based call-graph construction [5] and type-based
alias analysis [6].

4. INTRAPROCEDURAL ANALYSIS
Our analysis attempts to infer for every pointer dereference state-

ment whether the dereferenced access path is guaranteed to have a
non-null value. In this section, we describe the abstract domain and
the transformers that we use for the intraprocedural analysis.

4.1 Abstract Domain
Our abstract domain is a product of three domains: (i) the ab-

stract domain used for the may-alias analysis, (ii) the abstract do-
main used for the must-alias analysis, and (iii) a set APnn of access
paths that are guaranteed to have a non-null value. We guarantee
that the abstract domain is finite by placing a (parameterized) limit
on the size of the APnn sets and on the maximal length of the ac-

Statement Resulting abstract value
v = null APnn \ {v.γ | γ ∈ Γ}
v = w APnn ∪ {v.γ | w.γ ∈ APnn}
v = w.f APnn ∪ {v.γ | w.f.γ ∈ APnn} ∪ mustAlias(w)
v = new T() APnn ∪ {v}
v.f = null APnn \ {e′.f.γ | e′ ∈ mayAlias(v) ∧ γ ∈ Γ}

∪ mustAlias(v)
v.f = w APnn ∪ {e′′.f.γ | w.γ ∈ APnn ∧ e′′ ∈ mustAlias(v)}

∪ mustAlias(v)
v.foo()
u = v[i]
v[i] = u APnn ∪ mustAlias(v)
u = v.length

Table 1: Transfer functions for statements indicating how an
incoming non-null access-path set APnn is transformed, where
u, v, w ∈ VarId range over variable names and f ∈ IF ieldId
ranges over instance-field identifiers

Condition Resulting abstract value
on true branch on false branch

v == null v ∈ APnn?⊥ : APnn APnn
∪ mustAlias(v)

v instanceof T APnn ∪ mustAlias(v) APnn
v == w APnn APnn

∪ (mustAlias(w) ifv ∈ APnn)
∪ (mustAlias(v) if w ∈ APnn)

Table 2: Transfer functions for conditions indicating how an
incoming non-null access-path set APnn is transformed, where
v, w ∈ VarId range over variables names and T ∈ TypeIds
ranges over type names

cess paths that they may contain.1 We refer to the size of the access
path set APnn as the width of APnn and to the maximal length of
an access path ap ∈ APnn as the length of APnn.

4.2 Transformers
Our analysis collects at every program point the third component

of the abstract domain, i.e., the set APnn of non-null-valued access
paths. The first two components are determined by the results of the
preliminary analysis; they are not modified thereafter.

We assume, without loss of generality, that instruction sequences
are normalized in the following way: only local variables are deref-
erenced, every statement contains at most one field dereference,
and that all assignments of the form v = w and v.f = w are pre-
ceded by assignments v = null and v.f = null, respectively.

Tab. 1 shows the transfer functions associated with statements.
Most transfer functions are quite straightforward. The only subtle
point is that after a statement that dereferences a variable v, the
analysis can add v, as well as access paths in v’s must-alias set, to
the set of non-null access paths. This is because the dereference of
v can be executed successfully only if v is non-null. Tab. 2 shows
the transfer functions associated with conditions. We explain the
more subtle points. If v is known to be non-null, the true branch
of the condition v == null indicates an infeasible path. Also, if
v is known to be non-null, the true branch of the condition v == w
indicates that w, as well as its must-alias access paths, are non-null.

We can ensure that a statement at a given program point cannot
perform a null dereference by verifying that the access path that the
statement dereferences is in the set of non-null access paths APnn
collected at that point.

1The length of access path 〈v, 〈f1, . . . , fk〉〉 is defined to be k + 1.

test

EmpRec
<init>

getName

toString

getSalary get
Currency

test2

Figure 3: Call graph for an extension of the running example

5. EXPANDING-SCOPE ANALYSIS
The combinatorial nature of our abstract domain (that is based

on sets of non-null access paths) makes a whole-program inter-
procedural analysis infeasible. We address the scalability problem
by presenting the novel notion of the analysis of limited program
scopes. A limited-program-scope analysis considers a small frag-
ment of the program, namely a method that contains a dereference
together with some of its neighbors in the call graph. (The effect of
the rest of the program on the analysis is reflected conservatively.)
The analysis attempts to verify that every dereference in the method
is safe using the smallest possible scope. When the analysis cannot
establish the safety of a dereference in a given scope, it extends the
scope and performs the analysis again in the extended scope(s).

We found that the use of expanding scopes is key for the scalabil-
ity of our analysis. The utilization of expanding scopes for scaling
the analysis is one of the main contributions of this paper. We note
that the notion of expanding-scope analysis is also relevant in other
verification problems such as typestate verification [20].

This section describes the steps of expanding-scope interproce-
dural analysis for a set of dereferences that have not been shown
to be safe (each paired with a calling context in which it should be
analyzed next). These steps can be summarized as follows:
Compute analysis scopes Find all scopes that need to be analyzed

to be able to verify the remaining dereferences.
Allocate dereferences to analysis scopes For each scope of anal-

ysis identified in the previous step, find all dereferences that
should be analyzed in this scope.

Perform limited-scope interprocedural analysis Perform limited-
scope interprocedural analysis on each analysis scope in an
attempt to verify the safety of remaining dereferences allo-
cated to the scope.

Extend dereference contexts for unverified dereferences Refine
the contexts of those of the remaining dereferences that were
not shown to be safe.

Consider a dereference statement S that occurs in a method m.
To track the calling context in which S should be analyzed, we as-
sociate it with a dereference context. The dereference context is a
chain in the call graph that starts with an ancestor of m (that we
call context root) and ends with m, the method containing S. For
instance, the sole dereference context associated with the 2-scope
analysis of getSalary is 〈test, EmpRec<init>, getSalary〉.
The analysis maintains a worklist of all dereferences whose safety
has not yet been established, together with the dereference contexts
in which they need to be analyzed (we refer to a pairing of a deref-
erence with a context as an unprocessed dereference).

Compute analysis scopes. For a method m, we say that a
subgraph of the program call graph, is a (u, d)-scope for m if, when
considered without back edges,2 the subgraph forms a dag rooted
at method p, located at distance u above m in the call graph, and
the subgraph contains all descendants of p up to depth d (we refer
to parameter d as the scope depth). We refer to method p as the
scope root. We refer to (u, d)-scope analysis where u = d = k
as k-scope analysis. Intuitively, parameters u and d in the analysis
of method m control how much caller and callee context is consid-
ered when attempting to verify the dereferences in m. Parameter u
controls how high up the chain of callers from m are the callers that
a scope should include, and parameter d controls how deep below
scope root are the nodes with a common ancestor with m (namely,
scope root) that the scope should include.

Fig. 3 shows the call graph for our running example augmented
with an additional test method, test2. (The code of test2 is
irrelevant for the discussion.) A (0, 1)-scope analysis of method
test attempts to verify the safety of dereferences in test in
scope s = {test, EmpRec<init>, toString}, rooted at
test. A (1, 1)-scope analysis of EmpRec<init> attempts to
verify the safety of dereferences in the constructor in scope s, as
well as in scope {test2,EmpRec<init>,toString}, rooted
at test2.

The context roots of all unprocessed dereferences define the roots
of the analyses scopes that need to be analyzed in an attempt to ver-
ify those dereferences as safe. For an unprocessed dereference with
context 〈m1, m2, . . . , mu〉, the analysis will compute a (u, d)-scope,
where d is defined by the expanding mechanism in use. For in-
stance, if the analysis expands scopes above the analyzed method,
then d = u, and if the analysis expands scopes around the analyzed
method, then d = 2 ∗ u.

Allocate dereferences to scopes. When performing the anal-
ysis in a given context, we try to establish the safety of only those
unprocessed dereferences whose context root is the same as the
root method of the scope. This prevents unnecessary re-analysis.
If a given unprocessed dereference is marked as safe during the
analysis of a particular scope, it can be safely discarded (the deref-
erence statement is safe in the corresponding calling context). A
given scope rooted at method p is thus responsible for the verifi-
cation of the safety of all unprocessed dereferences whose context
starts with p.

Limited-scope analysis. We lift the intraprocedural analysis
described in §4 into an interprocedural setting using the IFDS frame-
work of Reps-Horwitz-Sagiv [17]. In this framework, every method
is summarized by an input-output relation between sets of non-null
access paths. (Recall that the other components of the abstract do-
main are not updated after by the preliminary analysis.)

Given an analysis scope, the analysis proceeds as if performing
whole-program analysis. However, when it encounters a call to a
method m that lies outside the analysis scope, it reflects the ef-
fect of the call conservatively by removing mayKill(m) (the set of
access paths that may be modified by m) from the non-null access-
path set collected prior to the call. In §6, we explain how to improve
the handling of calls to methods outside the analysis scope.

Extend dereference contexts. When the analysis of a method
in a given scope fails to establish the safety of an unprocessed
dereference, we need to expand the scope of analysis.

2We handle recursion soundly via a fixedpoint computation over
strongly connected components, as described later.

To do this, we extend the context of the dereference by consid-
ering every possible caller of the current context root. For exam-
ple, extending the scope of analysis for a dereference with context
〈EmpRec<init>,getSalary〉 results in two context derefer-
ences: 〈test, EmpRec<init>, getSalary〉 and 〈test2,
EmpRec<init>, getSalary〉.

Suppose method toString invoked method getSalary us-
ing the string "John Doe:40000" as a parameter (this is not the
case in the example). In that case, 1-scope analysis of getSalary
with dereference context 〈toString, getSalary〉 would suc-
ceed in verifying the safety of the dereference of empStr
on line 16. However, as discussed above, 1-scope analysis
will fail to do this with dereference context 〈EmpRec<init>,
getSalary〉. Our analysis will extend only the latter context.

The analysis keeps expanding the analysis scope until it reaches
a preset limit (or succeeds in marking all dereferences as safe).

Analysis of the running example. As stated in §2.1, 0-scope
analysis of the scopes shown in Fig. 2 (a) succeeds in verifying that
method test contains no unsafe dereferences. 1-scope analysis
of the scope rooted at EmpRec’s constructor—which also includes
getName and getSalary—fails to verify the unprocessed deref-
erences of empStr on lines 12 and 16, as the value comes from
test, which is not included in the scope. 1-scope analysis of the
scope rooted at test—which also includes the constructor and
toString—succeeds in verifying the safety of the remaining un-
processed dereference in the constructor on line 6. 2-scope analysis
of the scope rooted at test—which includes all methods in this
example program—succeeds in verifying the safety of the unpro-
cessed dereferences of empStr in getName and getSalary.
The analysis identifies these dereferences as safe because it finally
includes test and the constructor, which witness the flow of the
constant "Jane Smith:50000" from test to getName and
getSalary.

The dereferences on lines 30 and 32 are not handled by a (u, d)-
scope analysis, unless d > u (and in k-scope analysis d = u). This
is because k-scope analysis of method toString does not in-
clude methods getSalary and getCurrency that lie “below”
toString in the call graph, and yet are needed for verifying the
safety of toString. The obvious solution is to perform a (d, u)-
scope analysis with d > u but this incurs a significantly higher
cost. In §6.1 and §6.3, we explain how to handle such dereferences
while still using k-scope analysis.

6. STAGED ANALYSIS
These are SALSA’s analysis stages, in order of execution:
• Preliminary: preliminary analyses, described in §3, con-

struct the program flow graph and perform alias analysis.

• Pruning: pruning analysis, described in §6.1, verifies the
safety of some dereferences, e.g., by identifying non-null fi-
nal and stationary fields [22].

• Caller: caller-guarantee analysis, described in §6.2, uses a
0-scope analysis to compute for every method non-nullness
information which holds whenever it is invoked.

• Callee: callee-guarantee analysis, described in §6.3, uses a
0-scope analysis to compute for every method non-nullness
information which always holds when the method returns.

• 1-scope: a 1-scope analysis, as described in §5.

• 2-scope: a 2-scope analysis, as described in §5.

6.1 Pruning Analysis
Pruning analysis prunes out dereferences that can be seen as safe

given a simple dataflow computation. The primary kinds of derefer-
ences that are pruned out are those of final and stationary fields that
are assigned non-null values. For example, in method toString
of the running example, pruning analysis identifies the dereference
of final field name on line 27 as safe. Additionally, pruning analy-
sis finds that field salary is stationary (in fact, it could have been
declared final) and is assigned a non-null value, thus identifying
the dereference on line 30 as safe. In this method, pruning analy-
sis leaves only the dereferences of the local variables result and
currency to subsequent stages.

6.2 Caller-Guarantee Analysis
Caller-guarantee analysis computes for every method m the set

of access paths that all callers of m guarantee to be non-null at m’s
entry. Caller-guarantee analysis initializes a worklist to contain all
methods in the call graph in topological order (which helps cap-
ture the flow of non-null values from callers to callees). For each
method removed from the worklist, the algorithm performs local
(0-scope) analysis. When the analysis encounters a call to method
m, it updates the guarantee provided by callers of m by taking the
intersection of the current guarantee set with the non-null access
paths for this call. If the guarantee set shrinks, m is placed on the
worklist for the sound handling of recursion.

The results of the caller-guarantee analysis help improve the pre-
cision of the following stages: during the analysis of a scope rooted
at m, the set of non-null access paths APnn is initialized to the
caller-guarantee non-null access-path set computed for method m.
For example, during the analysis of method test in the running
example, caller-guarantee analysis records the guarantee that the
empStr parameter of the constructor is non-null. Then, during
the analysis of the constructor, caller-guarantee analysis records
the guarantee that the empStr parameters of getName and
getSalary are non-null. The subsequent analyses of getName
and getSalary identify the dereferences of empStr as safe
without expanding scopes.

6.3 Callee-Guarantee Analysis
Callee-guarantee analysis computes for every method m the set

of access paths that are guaranteed to be non-null upon m’s return.
Callee-guarantee analysis initializes a worklist to contain all meth-
ods in the call graph in reverse topological order (which helps cap-
ture the flow of non-null values from callees to callers). For each
method removed from the worklist, the algorithm performs local
(0-scope) analysis. When the analysis encounters a return state-
ment, it updates the guarantee that m provides to its callers by tak-
ing the intersection of the current guarantee set with the non-null
access-path set collected at the return statement. If the guarantee
set shrinks, m’s callers are placed on the worklist for the sound
handling of recursion.

When a limited-scope analysis encounters a call to method m
that lies outside the analysis scope, the analysis adds the callee-
guarantee set (mapped to caller’s variables) to the set of non-null
access paths APnn.(The analysis first removes the members of
the set mayKill(m) from APnn, as before.) For example, during
the analysis of getCurrency in the running example, callee-
guarantee analysis records the guarantee that the method’s return
value is non-null. The subsequent analysis of toString identifies
the dereference of currency on line 32 as safe without expanding
scopes. During the analysis of getSalary, callee-guarantee anal-
ysis records the guarantee that this method’s return value is also
non-null.

Final analysis of the running example. The staged analy-
sis described above is able to verify the safety of all dereferences
via simple steps. First, pruning analysis identifies dereferences of
final field name and stationary field salary as safe. Then, caller-
guarantee analysis succeeds in verifying the dereferences of param-
eter empStr in the constructor, as well as in methods getName
and getSalary, because the string constant "Jane Smith:50000"
flows from test. Finally, callee-guarantee analysis succeeds in
verifying the only remaining dereference—that of currency in
toString—because a non-null return value flows from getCurrency.

7. USER ANNOTATIONS
When there are dereferences that cannot be established as safe

by the analysis, SALSA can leverage information specified via user
annotations. The basic mechanism for the user to declare an unver-
ified dereference as safe is by adding an annotation for that sin-
gle dereference. However, the user can also provide the tool with
higher-level information as described below.

We note that our goal is to reduce the number of annotations that
have to be introduced into the code. Fewer annotations mean fewer
places that the programmer has to reason about, and fewer changes
to apply when the code is modified. Additionally, we want to help
the programmer express knowledge about her program that goes
beyond the null-check of a local value. Ideally, we would like to
enable the programmer to express the strongest knowledge she has
about program behavior (with respect to nullness of values).

7.1 Annotations
Our annotations are essentially the same as the annotations pro-

posed in JSR 305 [15]. We deliberately choose to keep the annota-
tion language simple, even at the cost of limited expressiveness.

We support the three kinds of annotations described in Tab. 3.
Annotations @CheckForNull(ap) and @NonNull(ap) operate on
an access-path expression ap that can be a local variable, a static
field, an expression of the form pexp.fld where fld is an instance
field, or a designated variable ret that denotes a method’s return
value. Annotation @NonNullable(fld) operates on a field fld.

Annotation @CheckForNull(ap) corresponds to a required run-
time check that ensures that the value of ap is non-null. Annota-
tion @NonNull(ap) allows the user to express that a parameter to a
method, or a method’s return value can be assumed to be non-null.
Annotation @NonNullable(fld) allows the user to express that an
instance field maintains a non-null value in each containing object.
The latter is inspired by the notion of non-null types proposed in
previous work [1, 10], and requires that: (i) every assignment to
the field is of a non-null value; (ii) all accesses to the field take
place after an assignment.

These annotations are limited and do not allow the programmer
to capture notions such as varying nullness of fields. However, we
will see in §8 that even these simple annotations can go a long way.

7.2 Suggesting Annotations to the User
Our system provides user guidance in the form of suggested

@NonNull and @NonNullable annotations. The system produces
a list of these annotations ranked by their expected effect on the
overall number of required annotations.

It is important to note that inferring @NonNull and @NonNul-
lable annotations from @CheckForNull is a strengthening of the
asserted information. In general, such strengthening may be based
on information that is known to the programmer, but is very hard or
even impossible to infer from the program itself. Our current strate-
gies for suggesting annotations are based on simple heuristics.

Annotation Meaning
@CheckForNull(ap) Require the access path ap to have a non-null value at runtime.
@NonNull(ap) Assume the access path ap to have a non-null value.
@NonNullable(fld) Assume the field fld to have a non-null value.

Table 3: Non-nullness annotations, ap is an access path, fld is a field

8. EXPERIMENTAL RESULTS
In this section, we describe our prototype implementation, and

evaluate our approach over a number of benchmarks. We start by
evaluating the approach without any user-provided annotations, and
then show how the system helps the programmer provide a small
number of annotations that make a significant impact.

8.1 Implementation
We have implemented our approach in a tool called SALSA,

based on the WALA framework [23]. SALSA handles the full Java
language, excluding concurrency, subject to caveats regarding dy-
namic language features such as reflection. The analysis deals with
reflection by tracking objects to casts, as in [11]. Subject to these
standard caveats, our implementation is sound.

Focusing the attention of the analysis on a small set of deref-
erence statements in a given scope enables a number of optimiza-
tions that we implemented in SALSA. For instance, we use a cheap
and conservative slicer implementation to cull from the scope those
methods that have no bearing on the value being dereferenced at
any of the statements in question. The slicer analyzes the scope
by assuming that it is a complete program call graph. However, it
soundly over-approximates the effect of program methods that lie
outside the scope by adding a heap dependence from a statement
that modifies an object to all statements that may access that object
according to may-alias information. Such intra-scope slicer invo-
cations incur negligible execution cost but often dramatically re-
duce the sizes of analyzed scopes. In the example of Fig. 2, slicing
removes methods toString and getCurrency from 2-scope
analysis of the scope rooted at test. This leaves exactly the meth-
ods that are relevant to establishing the safety of dereferences in
getName and getSalary. In the future, we plan to start using
slicing for even finer control—by skipping individual statements’
transformers we expect to achieve greater scalability.

8.2 Benchmarks
Tab. 4 lists the benchmarks used in this paper. Apache Ant is a

Java-based build tool. Antlr is a parser generator. ArtOfIllusion
(aoi) is an open source 3D modeling and rendering studio. Apache
Bcel is a bytecode toolkit with a sample verifier. flickrj is
a Flickr client. Fluid is a server daemon for streaming media.
freecol is an open-source strategy game. freemind is a “brain
mapping” content-management system. ganymed is a library that
implements the SSH-2 protocol in pure Java. Java_cup is a
parser generator. Jbidwatcher is an online auction tool. jgnash
is a personal finance desktop application. JLex is a lexical ana-
lyzer. jo is a pure Java webserver. kolm is a desktop tool which
interfaces with an online adventure game. L2j is Multi-User Dun-
geon game server. ourtunes is a popular Java-based itunes browser.
pjirc is a Java-based IRC client. toyWS is a small web-server
written in Java. tvla is a static analysis framework. warrior is
an open-source web browser that is written completely in Java.

Num Benchmark Classes Methods Bytecodes Derefs
1 ant 575 4311 353553 4486
2 antlr 109 1337 191492 14803
3 aoi 158 1232 104446 5853
4 bcel 297 1754 88543 10252
5 flickrj 32 152 6052 608
6 fluid 33 187 12648 1109
7 freecol 237 2083 157582 13729
8 freemind 360 2408 119294 10838
9 ganymed 91 443 70193 7755

10 javacup 32 279 28194 2856
11 jbidwatcher 216 1494 167184 16648
12 jgnash 1215 7340 465943 37225
13 Jlex 24 130 25534 2570
14 jo 10 41 3010 321
15 kolm 237 2726 293003 25174
16 l2j 280 1868 104872 10562
17 ourtunes 64 243 20548 1640
18 pjirc 37 109 6298 612
19 toyWS 13 48 3439 372
20 tvla 222 1284 105017 9587
21 warrior 333 1880 129742 7460

Total 4575 31349 2456587 179443

Table 4: Benchmarks. The numbers exclude all library code
used by the applications.

8.3 Methodology
In this section, we evaluate our analysis with respect to two ma-

jor parameters that affect its precision: access-path length (see §3),
and scope depth (see §5).

In order to evaluate our techniques, we consider the number of
warnings generated for our benchmarks with various choices for
the above parameters. In §8.4, we describe the results obtained for
our benchmarks without any user-provided annotations. Then, in
§8.5 we show how the system helps the user record her knowledge
about program behavior with simple high-level annotations that re-
duce the number of warnings. The final results obtained for our
benchmarks are summarized in Tab. 6. It is important to note that
caller and callee guarantees play a key role in the effectiveness of
analysis in smaller scopes described in the following results.

8.4 Initial Results
In this section we describe the number of warnings that are gen-

erated automatically without any user assistance.
Tab. 5 shows the effect of scope depth on the number of warn-

ings generated when the access-path length is limited to 2. Fig. 4
presents the data of Tab. 5 pictorially; it shows the percentage of
dereferences handled by each of the stages for each benchmark.
The rightmost column shows the aggregate percentages over all
benchmarks. Starting from 100%, the contribution of the different
stages is shown in top-down order: pruning, caller, callee, 1-scope,
and 2-scope. The percentage of remaining annotation is shown at
the bottom of the chart.

As shown in the chart, there is a clear trend of diminishing re-
turns from deeper stages, which is natural and expected. Pruning
itself is sophisticated enough to dismiss around 8% of the unveri-

Figure 4: Percentage of dereferences handled by each stage, and percentage of dereferences that result in warnings. Results were
obtained with access-path length limited to 2, and scope depth limited to 2.

fied dereferences on average. The top-down analysis using caller
guarantees (see §6.2) is able to dismiss around 77% of the unveri-
fied dereferences on average, and the deeper analyses are targeting
the remaining 15%. Note that this chart corresponds to stages up to
scope depth 2 with access-path length limited to 2. These settings
allow comparison across all benchmarks. The final results obtained
in this paper (Tab. 6) are obtained using varying settings for differ-
ent benchmarks, specified based on the expected cost of analysis.

The final results show that by using a larger scope depth (and
sometimes a larger limit on access-path length), the number of re-
maining warnings can be further automatically reduced to an av-
erage of 10.3% of all potentially unsafe dereferences. The running
time of the final analyses did not exceed 3 hours for any benchmark.

For most benchmarks, increasing the access-path length beyond
2 does not have an effect on the number of generated warnings.
However, for a few benchmarks, using access paths of length greater
than 2 does reduce the number of generated warnings. The bench-
marks that benefit from long access paths are written in a C-like
style in which fields are accessed directly rather than through ac-
cessor methods. For example, for the JLex benchmark with scope
limited to 2, limiting the length to 2 yields 238 warnings, and ex-
tending it to 4 reduces the number of warnings to 127.

There are several conclusions that we draw from the evaluation:
• increasing the access-path length limit beyond 2 is not bene-

ficial on most benchmarks.
• increasing the scope depth has diminishing returns in terms

of the numbers of dereferences handled. This has a lot to
do with the fact that caller-guarantee and callee-guarantee
analyses have propagated a large portion of the information
that requires wide scopes.

• one of the main sources of imprecision in our analysis is deep
initialization sequences observed in some benchmarks (e.g.,
freemind). Such initialization sequences require a rather
large scope depth, and are thus costly to observe.

While we can keep increasing the scope depth, covering larger
and larger scopes, it is sometimes more efficient to get user assis-
tance in the form of higher-level annotations, as we describe in the
following section.

We expected some false alarms to be caused by the relative sim-
plicity of our abstract domain. For instance, we expected branch
correlation to be a significant cause of false warnings. Interest-
ingly, this was not the case. Nonetheless, we implemented a heuris-
tic symbolic path-validity checker that we used for ranking reports
issued by SALSA. In our preliminary experiments, our ranking se-
lected around 20% of the reports as high-priority warnings. In fu-
ture work, we plan to use a more advanced interprocedural path
validator in order to produce finer rankings of reports, and possibly
generate concrete counterexamples.

8.5 Leveraging User Annotations
In some cases, a large number of warnings are generated for

dereferences of values obtained from one field. The analysis may
not be precise enough to establish that all accesses to the field ob-
tain a non-null value, for a variety of reasons. For example, the
scope depth may be insufficient to observe the temporal ordering
of calls that set the field to a non-null value.

Tab. 6 shows the number of annotations added by the user, and
their effect on the overall number of produced warnings. In this
experiment, we do not use @CheckForNull annotations.

We only added user annotations to 8 of the benchmarks for which
the automated phase reported warnings for a high percentage of
dereferences. For these 8 benchmarks, we show that adding a to-
tal number of 173 annotations reduced the number of remaining
warnings by an average of 30%.

In antlr, a large number of generated warnings are due to
grammar fields that record the parent grammar of various enti-
ties. These are non-nullable fields that are not modified once set,
and at least in some cases can be even made final.

Benchmark initial pruned caller callee 1-scope 2-scope
ant 4486 4263 482 370 328 317
antlr 14803 13642 2090 1754 1656 1634
aoi 5853 5402 691 545 494 486
bcel 10252 9912 1827 1543 1497 1485
flickrj 608 574 61 37 33 32
fluid 1109 992 70 64 63 63
freecol 13729 12871 3548 2992 2950 2933
freemind 10838 10629 3052 2641 2530 2510
ganymed 7755 7076 323 287 275 266
javacup 2856 2635 288 242 237 228
jbidwatcher 16648 15972 1254 921 862 832
jgnash 37225 1088 69 58 56 55
Jlex 2570 2434 304 264 245 238
jo 321 255 9 6 6 6
kolm 25174 22160 2931 2393 2278 2134
l2j 10562 9900 1578 1070 1045 1042
ourtunes 1640 1428 134 117 103 101
pjirc 612 564 49 35 34 31
toyWS 372 351 22 7 5 5
tvla 9587 9126 1582 972 891 881
warrior 7460 1888 178 115 83 73
total 184460 171723 26044 20709 19610 19243

Table 5: Number of warnings generated with access-path
length limited to 2, and interprocedural scope limited to 2.

In bcel, around 800 of the generated warnings are due to ac-
cesses to the stack field in the class Frame, which can be made
into a non-nullable field. Once this single annotation is added, the
number of warnings is dramatically reduced.

In freecol, the implementation widely uses initialization of
values by either initializing them in a constructor, or reading them
from a serialized file. This widely used pattern prevents the de-
signer from declaring the fields as final, although in most cases
the values are indeed not modified. This pattern makes the non-
nullness of a field harder to observe, as it becomes dependent on
calling a method other than the constructor to guarantee that the
field has a non-null value. Additionally, nearly 2200 of the gen-
erated warnings in freecol are due to dereferencing of return
values from 137 getters and other simple methods that can in fact
return null. Over 1100 of these potentially unsafe dereferences are
due to 10 getter methods. A redesign of these methods can improve
the quality of the code and lead to a substantially lower number of
warnings.

In freemind, highly customizable controller model and other
parts of the framework use null to denote options that are not used,
empty collections, etc. The system model uses heavy delegation
even for the simplest operations, making it hard to verify the safety
of dereferences within small scopes.

In JLex, minor changes to field initialization ordering in some
constructors can make a few more fields unconditionally initialized
to a non-null value, reducing the final number of warnings to 40.

In tvla, a class hierarchy implementing logical formulae con-
sists mostly of final non-nullable fields. The system suggests some
of these annotations, which are the majority of the total of 65 user
annotations added to this benchmark. Since some authors of this
paper are familiar with this code base, adding annotations was even
easier than adding them in other benchmarks.

In pjirc, we do not add user annotations, but it is interesting
to observe that the source of 6 of the checks is due to calls such as
getArray("style:smiley"). Establishing that such calls
return a non-null value requires reasoning about actual key values,
which is a very challenging task.

Bench AP SD Initial Auto User Final
ant 2 2 4486 315 7.0% 0 315 7.0%
antlr 2 4 14803 1628 11.0% 10 1194 8.1%
aoi 2 2 5853 486 8.3% 0 486 8.3%
bcel 2 4 10525 1481 14.1% 1 668 6.3%
flickrj 2 2 608 32 5.3% 0 32 5.3%
fluid 2 2 1109 63 5.7% 0 60 5.4%
freecol 2 4 13729 2889 21.0% 45 1384 10.1%
freemind 2 4 10838 2491 23.0% 21 2280 21.0%
ganymed 2 4 7755 258 3.3% 0 258 3.3%
javacup 4 5 2856 223 7.8% 10 190 6.7%
jgnash 2 4 37225 3453 9.3% 0 3453 9.3%
jbidwatch 2 4 16648 813 4.9% 14 716 4.3%
Jlex 4 3 2570 127 4.9% 7 78 3.0%
jo 2 2 321 6 1.9% 0 6 1.9%
kolm 2 2 25174 2134 8.5% 0 2134 8.5%
l2j 4 4 10562 1042 9.9% 0 1015 9.6%
ourtunes 3 4 1640 129 7.9% 0 129 7.9%
pjirc 2 2 612 31 5.1% 0 31 5.1%
toyWS 2 3 372 4 1.1% 0 4 1.1%
tvla 2 2 9587 890 9.3% 65 517 5.4%
warrior 2 2 7460 550 7.4% 0 550 7.4%
Total 184733 19045 10.3% 173 15500 8.4%

Table 6: Number of warnings generated, number of annota-
tions accepted by the user, and the final number of warnings.
The columns AP and SD show the access-path length and scope
depth used, respectively.

For some benchmarks, we have done a preliminary study of what
constitutes the remaining warnings. Our preliminary exploration
suggests that some of the interesting causes are:

• higher-level correlations known to the programmer (e.g., list
of argument names is not null implies that list of argument
types is not null in Procedure representation of tvla.)

• implicit assumptions on the temporal ordering of method calls.
In these cases, observing that a dereference is safe can be re-
duced to verifying a typestate property [20].

• access to indexed data-structures (for example,
getArray("style:smiley") in pjirc.)

8.6 Comparison with Local Bug-Finding
In order to better understand the usability of SALSA in com-

parison to tools aimed at bug finding, we implemented two bug-
finding tools, Loco and Xylem. We applied them, together with
FindBugs [14], to our suite of benchmarks. All three tools essen-
tially perform local analysis. In the absence of information about
the callers and callees of a method, the tools rely on the program-
mer’s beliefs about the nullness of values: whether or not a pointer
dereference is guarded by a test against null constitutes a belief
about whether or not the pointer may be null. FindBugs and similar
bug detectors find likely bugs by identifying contradictory beliefs.
A dereference of a pointer that occurs outside a test of that pointer
against null presents a contradiction: the presence of the test in-
dicates that the programmer believes that the pointer may be null,
while the dereference of that pointer outside the scope of the test
constitutes a belief that the pointer may not be null. It must be the
case that either the test is superfluous or that a null dereference may
occur.

Benchmark FindBugs Loco Xylem
ant 2 9 24
antlr 1 17 14
aoi 8 27 44
bcel 1 4 7
flickr 3 4 4
fluid 0 0 4
freecol 6 17 0
freemind 1 4 7
ganymed 0 0 11
javacup 0 0 0
jbidwatcher 0 0 22
jgnash 7 3 55
JLex 1 9 13
jo 2 5 14
kolm 5 0 0
l2j 2 4 100
ourtunes 0 0 0
pjirc 0 0 0
toyWS 0 0 0
tvla 4 9 23
warrior 2 2 4

Table 7: Local tool results

The focus on belief contradictions can result in missed errors, as
well as false warnings. The absence of a test against null prevents
such tools from issuing any warnings. As discussed earlier, the
majority of the warnings issued by SALSA for freecol are due
to the dereferences of return values of methods that may return null.

For that application, the hundreds of legitimate concerns raised
by SALSA result in no warnings on the part of the contradiction-
based tools at our disposal. For instance, those tools did not issue
a warning for any dereference of the return value of the following
method:

public Tile getTile(int x, int y) {
if ((x >= 0) && (x < getWidth()) &&

(y >= 0) && (y < getHeight())) {
return columns.get(x).get(y);

} else {
return null;

}
}

While much less common, false positives can also arise. They
occur when a value that can never be null is compared with null.
The following snippet is inspired by IBM software:

1 Value lhsVal = getValue(lhs).copy();
2 for (int j = 0; j < uses; j++) {
3 int currUse = instr.getUse(j);
4 if (currUse != -1) {
5 Value currVal = getValue(currUse);
6 if (currVal != null && lhsVal != null) {
7 lhsVal = join(lhsVal, currVal);
8 }
9 }
10 }
11 if (!lhsVal.equals(getValue(lhs))) { ...

Method copy invoked on line 1 and method join invoked on
line 7 always return non-null values. The redundant test of vari-
able lhsVal results in a report of a possible null dereference of
lhsVal on line 11 by the three contradiction-based tools.

Tab. 7 shows the number of reports collected by FindBugs, Loco,
and Xylem. The number of reports produced by Loco and Xylem is
generally higher than the number of reports produced by FindBugs.
FindBugs appears more aggressive in suppressing warnings that
arise on few paths through a method. For instance, the dereference
of target on the last line of the following snippet of freecol
results in a warning from Loco and Xylem, but not from FindBugs:

Colony target = null;
for (int i = 0; i < nearbyColonies.size(); i++) {

Tile t = getGame().getMap().getTile(it.next());
...
if (tension > targetTension) {

targetTension = tension;
target = t;

}
}
Iterator<Unit> it = settlement.getOwnedUnitsIterator();
AIUnit chosenOne = null;
while (it.hasNext()) {

chosenOne = (AIUnit) getAIMain().getAIObject(it.next());
...

}
if (chosenOne != null) {

PathNode pn = chosenOne.getUnit().findPath(
settlement.getTile(), target.getTile());

If the first for loop never executes, the execution of the last line
will necessarily result in a null dereference. However, FindBugs
chooses to suppress such a warning to minimize false alarms. There
are also cases when FindBugs issues a warning, while Loco and
Xylem do not. This is not surprising, as the three tools use different
heuristics to suppress undesirable warnings. The results of the three
tools are often incomparable.

All tools that ignore interprocedural flow make assumptions about
the missing context. The number of false alarms that would result
from a sound local analysis makes such an approach of little practi-
cal utility. Thus, local tools generally make optimistic assumptions
about the context, and report only highly suspicious code. Such
tools provide a complementary approach to that of SALSA. For
instance, contradiction-based bug detectors are particularly well-
suited for finding obvious problems early in the development cy-
cle. However, as a software product matures, more complete cov-
erage, such as that offered by SALSA, may become a worthy in-
vestment. Note that it is possible to combine contradiction-based
analysis with expanding-scope analysis. For instance, searching for
contradictions between nullness assumptions made in callers and
callees may yield better coverage.

9. RELATED WORK
Analyses for null dereferences and similar safety properties can

be roughly classified as verification, or bug finding. Verification
aims to prove the absence of problems in any possible execution,
and bug-finding analyses aim to find defects without promising to
be either sound or complete. From the vast literature covering this
space, we briefly review some of the most relevant related work.

PREfix [2] can detect possible null-dereference errors in C and
C++ programs with only a few false positives. It employs a path-
sensitive interprocedural analysis. The analysis, however, is not
conservative because only a few paths are considered (usually 100
paths in every function). PREfast [16] is a more lightweight tool
which attempts to find (in an unsound way) idioms associated with
programming mistakes in C and C++ programs.

Tomb et. al. [21], introduce the notion of variably interproce-
dural analysis that roughly corresponds to a subgraph of the call-
graph, similar to the program fragments we consider. They paper
uses such program fragments to perform symbolic path simulation
that is later combined with a dynamic analysis. In contrast, our
approach uses a sound abstract interpretation and the notion of ex-
panding analysis scopes.

The Spec# [1] system checks specifications both statically via
an automatic program verifier (Boogie), and dynamically via asser-
tions. The language includes non-null types, as well as a subset of
C# for specifying preconditions, postconditions, frame conditions,
and object invariants. The Boogie verifier employs interprocedural

abstract interpretation to learn loop invariants, and then employs
a theorem prover to check feasibility of contract violations. The
system is incorporated into the Visual Studio IDE, and provides
instantaneous feedback via decorations in the program editor.

ESC/Java [13] uses a theorem prover to find defects related to a
class of errors which includes null dereferences as well as array-
bounds errors, type errors, and synchronization problems. In con-
trast to our approach, ESC/Java does not attempt to find all er-
rors. ESC/Java relies on annotations to summarize external be-
havior, without any interprocedural analysis, and so introduces an
interactive methodology whereby the user adds annotations to sup-
press tool findings. Later work on ESC/Java2 [3] adapted the ESC
checker to the JML specification language.

To reduce the annotation burden for ESC/Java, the Houdini [12]
tool infers annotations by searching a range of plausible annota-
tions, and then employing the ESC checker to refute invalid can-
didates. As in our expanding-scope analysis, Houdini must make
either optimistic or pessimistic assumptions regarding unanalyzed
libraries; Houdini chooses optimistic assumptions, which reduce
the number of false alarms compared to the pessimistic alternative.

Saturn [24] checks C programs for a number of safety properites.
Saturn translates the program and safety properties into a boolean
constraint, and invokes a SAT solver to check feasibility of error
states. Saturn employs no abstraction, and is underapproximate in
the presence of loops. Notably, Saturn computes modular sum-
maries to enable bottom-up interprocedural summary-based analy-
sis, enabling the tool to scale to large code bases.

Annotations of program behavior correspond to invariants that
must hold at a program point. Many works have targeted static
and/or dynamic approaches to learn likely invariants. Most notably,
the Daikon [9] tool employs profiling and dynamic analysis to infer
likely invariants from program executions.

Approches based on shape analysis [19], e.g., [7, 8], enable the
conservative verification of the safety of pointer dereferences, in-
cluding those that occur during traversals of complicated date struc-
tures. These approaches use complicated invariants to capture the
shape of the program’s heap. It is very challenging to scale these
approaches to realistic Java programs due to their use of expensive
abstract domains.

Fähndrich and Leino check the null-dereference property using
non-null types [10]. Their approach focuses on the important prob-
lem of verifying accesses to partially constructed objects. Having
the user annotate methods with non-null types allows for modular
checking. Our works handles this problem conservatively by prop-
agating non-nullness information interprocedurally.

10. CONCLUSIONS AND FUTURE WORK
We present a novel approach for a staged analysis based on the

notion of expanding scopes. We applied our approach to the chal-
lenging problem of verifying dereference safety in real Java pro-
grams. In our experiments, we found that in many cases individual
dereference statements can be verified as safe using precise analy-
ses that consider limited scopes. We believe that our approach for
staged analysis can also be effective for typestate [20] verification;
we plan to investigate it in the future.

11. REFERENCES
[1] BARNETT, M., LEINO, K., AND SHULTE, W. The Spec#

programming system: An overview. In CASSIS (2004).
[2] BUSH, W. R., PINCUS, J. D., AND SIELAFF, D. J. A static

analyzer for finding dynamic programming errors. Softw.,
Pract. Exper. 30, 7 (2000).

[3] COK, D. R., AND KINIRY, J. ESC/Java2: Uniting ESC/Java
and JML. In CASSIS (2004).

[4] COUSOT, P., AND COUSOT, R. Systematic design of
program analysis frameworks. In POPL (1979).

[5] DEAN, J., GROVE, D., AND CHAMBERS, C. Optimization
of object-oriented programs using static class hierarchy
analysis. In ECOOP (1995).

[6] DIWAN, A., MCKINLEY, K., AND MOSS, J. Type-based
alias analysis. In PLDI (1998).

[7] DOR, N., RODEH, M., AND SAGIV, M. Detecting memory
errors via static pointer analysis (preliminary experience). In
PASTE (1998).

[8] DOR, N., RODEH, M., AND SAGIV, M. Checking cleanness
in linked lists. In SAS (July 2000).

[9] ERNST, M., COCKRELL, J., GRISWOLD, W., AND
NOTKIN, D. Dynamically discovering likely program
invariants to support program evolution. In ICSE (1999).

[10] FÄHNDRICH, M., AND LEINO, K. Declaring and checking
non-null types in an object-oriented language. In OOPSLA
(2003).

[11] FINK, S., YAHAV, E., DOR, N., RAMALINGAM, G., AND
GEAY, E. Effective typestate verification in the presence of
aliasing. In ISSTA (2006).

[12] FLANAGAN, C., AND LEINO, K. Houdini, an annotation
assistant for ESC/Java. In Proc. FME 2001. (2001).

[13] FLANAGAN, C., LEINO, K., LILLIBRIDGE, M., NELSON,
G., SAXE, J., AND STATA, R. Extended static checking for
Java. In PLDI (2002).

[14] HOVEMEYER, D., AND PUGH, W. Finding bugs is easy.
SIGPLAN Not. (2004).

[15] JSR 305: Annotations for software defect detection.
http://jcp.org/en/jsr/detail?id=305.

[16] LARUS, J., BALL, T., DAS, M., DELINE, R., FAHNDRICH,
M., PINCUS, J., RAJAMANI, S., AND VENKATAPATHY, R.
Righting software. IEEE Software (2004).

[17] REPS, T., HORWITZ, S., AND SAGIV, M. Precise
interprocedural dataflow analysis via graph reachability. In
POPL (1995).

[18] ROUNTEV, A., RYDER, B., AND LANDI, W. Data-flow
analysis of program fragments. In FSE (1999).

[19] SAGIV, M., REPS, T., AND WILHELM, R. Parametric shape
analysis via 3-valued logic. TOPLAS (2002).

[20] STROM, R., AND YEMINI, S. Typestate: A programming
language concept for enhancing software reliability. TSE
(1986).

[21] TOMB, A., BRAT, G., AND VISSER, W. Variably
interprocedural program analysis for runtime error detection.
In ISSTA (2007).

[22] UNKEL, C., AND LAM, M. Automatic inference of
stationary fields: a generalization of java’s final fields. In
POPL (2008).

[23] WALA: The T. J. Watson Libraries for Analysis.
http://wala.sourceforge.net.

[24] XIE, Y., AND AIKEN, A. Saturn: A scalable framework for
error detection using boolean satisfiability. TOPLAS (2007).

