Modular Verification with Shared Abstractions

Uri Juhasz *

Tel Aviv University
urijuhasz@tau.ac.il

Mooly Sagiv
Tel Aviv University
msagiv@tau.ac.il

Abstract

Modular verification of shared data structures is a challenging prob-
lem: Side-effects in one module that are observable in another mod-
ule make it hard to analyze each module separately. We present a
novel approach for modular verification of shared data structures.
Our main idea is to verify that the inter-module sharing is restricted
to a user-provided specification which also enables the analysis to
handle side-effects.

1. Introduction

In object-based programming languages, it is natural to imple-
ment abstract data types using pointers. Pointers permit situations
in which the representations of apparently distinct data structures
share objects in a way which is observable to their clients. For ex-
ample, a client may perform operations on a wrapper [10] object,
yet have access to, and operate directly on, the underlying object of
the wrapper. This form of sharing drastically complicates the task
of (modular) reasoning. In particular, naive reasoning in terms of
the wrapper’s specification may be unsound because of updates to
the underlying object that can change the abstract state as specified
by the wrapper. Systems for modular reasoning based on hierarchi-
cal ownership (see, e.g., [22, 23, 9], for surveys), do not apply to
programs in which internal data structures that come from differ-
ent modules are shared. However such programs are common in
practice.

In this paper, we present a novel modular approach for verifying
partial correctness of shared data structures for a restricted class
of programs. Historically, our starting point is Hoare’s seminal
work on modular verification of abstract data types [11]. Hoare’s
approach for modular verification is centered around hiding the

* Supported by the German-Israeli Foundation for Scientic Research and
Development (G.L.F.).
T This work was done partly when Noam Rinetzky was at Tel Aviv Univer-

sity and supported by the German-Israeli Foundation for Scientic Research
and Development (G.LE.).

Copyright is held by the author/owner(s).

FOOL 09 24 January, Savannah, Georgia, USA.
ACM .

Noam Rinetzky '

Queen Mary University of London
maon@dcs.gmul.ac.uk

Arnd Poetzsch-Heffter

Kaiserslautern University
poetzsch@informatik.uni-kl.de

Eran Yahav

IBM T.J. Watson Research Center
eyahav@us.ibm.com

implementation details of data structures using an abstract value
which records the data structure’s abstract (i.e., client-observable)
state. The abstract value is computed using an implementation-
dependant representation function. Our main insight is that we
can allow for modular reasoning involving shared data structures,
which Hoare forbids, by combining the following two ideas:

(1) a controlled exposure of the inter-module sharing patterns:
The user specifies the permitted inter-module sharing, i.e., the
allowed sharing of internal data structures that come from dif-
ferent modules. This information allows to determine which
(abstract value of which) data structures may be affected when
another data structure is modified, and

(ii) a user provided aggregate model function which allows to up-
date the abstract value of a data structure due to an indirect
change. The key idea behind the aggregate model function is
that it can (conservatively) compute the new abstract value
of a data structure using its old abstract values and the ab-
stract values of its internal data structures. This compositional
way for computing abstract values is possible thanks to the in-
formation provided by the (controlled) exposure of the inter-
module sharing.

Main Contributions. The main contributions of this paper can be
summarized as follows:

1. We present a novel approach for manual and automatic modular
verification of shared composite data structures. The additional
proof burden required in our approach is proportional to the
expected “degree of sharing”.

2. We define a form of specification and enumerate the proof obli-
gations which suffice for the modular verification of a module.
The specification allows to control the permitted inter-module
sharing patterns.

3. Based on our approach, we develop a non-standard semantics
specifically designed as a foundation for modular analysis: The
semantics allows to execute a module m using the specification
of the modules used by m, and aborts when m violates its
specification.

4. We develop a modular static analysis by abstract interpretation
of our non-standard semantics.

Outline The rest of the paper is organized as follows: Sec. 2
and 3, present an extended informal overview of our approach.
Sec. 4 describes our programming model. Sec. 5 lists the main re-
strictions on the class of programs that our approach can handle.
Sec. 6 defines the required specification and the proof obligations

in our approach. Sec. 7 presents our non standard semantics. Sec. 8
shortly discusses a static analysis based on an abstract interpreta-
tion of our non-standard semantics. Sec. 9 discusses possible ways
to overcome some of our limitations. Sec. 10 reviews related works
and Sec. 11 concludes.

For clarity, we omit some of the technical details, which can be
found in [12].

2. Running Example

Fig 1 shows our running example. The code is written in a Java-like
language. The figures shows three modules: a Client module,
a KeySet module, and a Map module. Our running example,
uses a single instance of each module: a client using a key-set
and a map. We refer to a data structure instance as a component
and to an internal data structure as a subcomponent. We refer to
data structures sharing an internal data structure as siblings. In this
example, the key-set and the client are sibling data structures: the
map is a shared subcomponent of both of them.

The client initialization procedure, C1ient, shown in Fig 1(a),
uses the map module to associate keys (integers) to values (floats).
The set reflects the domain of the map: In the spirit of the
keySet () method of a Java’s maps, when the set is constructed,
it is linked to a map and provides a view of the keys contained in
this map. For example, the third invocation of insert associating
key 9 to value 1.0, has a side-effect on the key-set, it makes 9 a
member of the key-set.

The Keyset class, shown in Fig 1(b), stores in field map a
reference to the set’s underlying map. This field is initialized upon
construction and utilized to delegate methods invoked on the set to
its map. Note that after the key-set is initialized, the client keeps—
and uses—a reference to its underlying map.

Fig 1(c) shows the signature of the methods in the Map class,
whose actual implementation, using a binary search tree, is irrele-
vant for the purpose of this paper, and thus omitted.

Verification Goal Our goal is to verify each module separately.
In the following, we focus on verifying that all the instances of the
Keyset class comply with their specification (explained below).
In our approach, we also modularly extracts information about the
dependencies between Keyset and Map in a way that allows to
verify that all the instances of the client satisfy the assertions. The
main challenge we face is the propagation of side-effects due to
methods invoked on shared subcomponents. For example, verifying
the first assert statement stating that 9 is a member of the key-
set requires propagating the side-effects of the third invocation of
insert on the map to the key-set.

3. Our Approach

In this section, we provide an informal overview of our approach.
Our approach builds on the seminal work of Hoare [11] which
allows for manual modular verification of abstract data structures.
Hoare proposes the use of a representation function which maps the
representation of the data structure’s state to an abstract value. The
specification of the data structure’s procedures is given in terms
of abstract values. This allows a client of the data structure to be
independent of the data structure’s actual implementation. Hoare’s
work does not support pointers and dynamically allocated memory.
However, it can be extended naturally to nested (encapsulated) data
structures, i.e., where subcomponents can be organized only in the
form of a tree.

3.1 Controlled exposure of sharing

In this work, we provide an approach for manual and automatic
modular verification of composite data structures in the presence

of shared subcomponents. In this setting, any sound analysis needs
to consider side-effects due to sharing. Our main idea is to have
a controlled exposure of the sharing of subcomponents instead of
forbidding it or ignoring it.

We support shared subcomponents with the aid of a user speci-
fication that: (i) exposes subcomponents that can be referenced by
other data structures; (ii) provides the (lack of) effect of every op-
eration invoked on the data structure not only on the abstract value
of the data structure, but also on the abstract value of any subcom-
ponent that it may share with others. A key feature of this speci-
fication is that it exposes the effect of a procedure call on shared
subcomponents, but it need not specify the effect of the procedure
on sibling data structures, thus enabling modular reasoning.

3.2 The aggregate model function

The main challenge that we face is the tracking of indirect changes
to the abstract values of sibling data structures. Such changes may
occur, e.g., when a (shared) subcomponent of two data structures is
modified.

We address the above challenge using a user-specified aggre-
gate model function. The aggregate model function allows us to
compute a conservative approximation of the (side-affected) data
structure’s abstract value after an indirect change. It computes the
(updated) data structure’s abstract value based on the abstract val-
ues of its internal representation (including unshared subcompo-
nents) and the abstract values of its shared subcomponents. When
analyzing sibling data structures the analysis tracks which subcom-
ponents are shared and by whom. When the abstract value of a
shared subcomponent is modified, the analysis updates the abstract
values of the affected data structures using their aggregate model
functions.

Our approach uses two kinds of additional fields to record the
abstract value of a data structure and to define the aggregate model
function. Model fields are used to record the abstract values of
data structures. Model pivot fields are used to record the inter-
component reference structure.

Example 3.1. Fig 2(c) shows the (user-provided) interface specifi-
cation of the Map class. A map implements a partial function from
integers to reals. The abstract value of a map is a function from
integers to floats. We use the model field map to record this value.
The map is an example of a fully-encapsulated data structure, i.e.,
one which does not expose or share its internal data structures.

The Keyset data structure, whose interface specification is
shown in Fig 2(a), is an example of a data structure implementa-
tion which allows a controlled exposure of subcomponents. The
abstract value of the Keyset is a set of integers. The model field
keys records this value. In addition, the Keyset exposes a model
pivot field. The model pivot field is a special sort of a model field
whose value is a reference to a subcomponent. It is initialized with
the map parameter when a key-set is constructed and allows the
exposure of the effect of the key-set’s method’s on this (possibly)
shared component. For example, the specification of the Keyset’s
remove method exposes the fact that removing a key from a key-
set also removes it from the (abstract value of the) map.

The aggregate model function of the keys model field of the
Keyset class is keys,,. It is shown in Fig 2(a). It specifies how to
compute the value of the model field keys when the abstract value of
its underlying map changes. Specifically, it specifies that the value
of the key-set’s model field keys should be updated to the domain
of the abstract value of the map referenced by the key-set’s model
pivot field amap. Recall that the client of the map (and of the key-
set) is aware of the connection between the key-set and the map
because the key-set exposes its pivot field amap.

Module Client
class Client{

m = new Map();

s = new Keyset (m);
m.insert (3,4.0);
m.insert (2,5.0);

m.insert (9,1.0); }
assert s.isMember (9);
s.remove (9);

Module Keyset
class Keyset {

Keyset (Map smap) {

Map m; Map map;
Keyset s; - g
Client (){ map=smap;

bool isMember (int k){ .
return map.find (k) }
!= NOTFOUND;

Module Map
class Map {
static int NOTFOUND=-1;
Map (){...}
void insert (int k, float val) {

float find(int k) {

void remove (int k){ }
map.remove (k) ;

void remove (int k) {

assert m.find(9) == NOTFOUND; }} } o
’)
}
(a) Client program (b) Keyset class (c) A Map class
Figure 1. Running Example (code).

model keys € 2N rep pivot model map € N — ¢, R
amap = map

model pivot Map amap; post ret.map = ()

model function keysm, = keys = dom(amap.map) rep function ret fresh
keys = dom(map.map) Map ()

pre m # null

post ret fresh pre k>0

ret.amap =m
ret.keys = dom(m.map)
Keyset (Map m)

post ret =k € keys
bool isMember (int k)

post keys' = keys \ {k}
a’map‘map, = amap'map|dOm(am,ap.map)\{k}

void remove (int k)

post map’ = maplk — v]
void insert (int k, float v)

post ret = k € dom(map) ?

map(k) : NOTFOUND
float find(int k)

post map’ = map|dom(map)\ [k}

void remove (int k)

(a) Keyset interface specification

(b) Keyset internal specification

(c) Map interface specification

Figure 2. Running example (specification). Fields which are not mentioned, are assumed not to be modified.

3.3 Non-standard semantics

We use our approach to design a static analysis which verifies that
a program is correct according to its specification. The analysis is
based on an abstract interpretation [6] of LHM, a non-standard
componentized local-heap hybrid modular semantics. LHM ab-
stracts the standard semantics (instrumented to also track the val-
ues of model fields and model pivot fields) by abstracting away the
inner structure of subcomponents: LH.M records only the abstract
values of the subcomponents and their inter-component reference
structure. Technically, LH.M keeps track only of the model fields
of subcomponents and of their pivot model fields.

Example 3.2. (Instrumented Standard Memory States). Fig 3 (s.)
depicts a possible memory state that may arise in the execution of
the running example before the third invocation of insert ac-
cording to an (instrumented) standard semantics which is instru-
mented to track also the values of model fields. The state contains
a client object (depicted as a diamond). The client object has two
fields, depicted as labeled edges: An s-field pointing to a key-set,
depicted as a rectangle, and an m-field pointing to a map, depicted
as a hexagon. The key-set’s map-field also points to the map ob-
ject. The map associates 2 to 5.0 and 3 to 4.0. Recall that the map

is implemented as a binary search tree. Each tree node records an
association of a key to a value. Tree nodes are depicted as an oval.
Each node is annotated with the key and the value which are stored
in the node (d = ... and v = ..., respectively). For example, the
node at the root of the tree (i.e., the node pointed to by the root
field of the map object) records the association of key 3 with value
4.0. The rectangular frames depict the component-decomposition
of the memory state. We say that two objects reside within the
same implicit component if they belong to the same module and
are connected in the heap via an undirected heap path which only
goes through objects that belong to the same module. We say that a
component is an unsealed component if it is the current component
(its head is pointed to by this) and a sealed component otherwise.
The memory state s. is comprised of three components. The key-
set component and the map component are sealed.

The (instrumented) standard semantics records the values of
model fields and model pivot fields only for object in sealed com-
ponents. The value of the model pivot field amap is depicted as
a edge emanating from the set object to the map object annotated
with name of the pivot field written in italics. The values of the
model fields keys and map are depicted inside the key-set and map

this k=9 val=1.0

this k=9 val=1.0

(o¢) (o)

this k=9 val=1.0

(sz) (ST)

this k=9 val=1.0

Figure 3. Possible memory states. (s¢, Se, Sz, Sr) memory states occurring in an invocation of m. insert (9, 1.0) on s, according to the
instrumented standard semantics. (o, 0, 0z, o) memory states occurring in an invocation of m. insert (9, 1.0) on o according to the

LHM semantics.

object, respectively. For example, the (local) model field map of the
map is the partial function [2 — 5.0, 3 — 4.0].

Fig 3 (se) depicts the part of the memory state which the
insert procedure can reach after being invoked for the third
time. This part of the memory state is transformed into the one
shown in Fig 3 (s.) by the execution of the insert procedure.
The standard memory state shown in Fig 3 (s,) results when the
call to insert returns to the Client. Note that while insert
could not directly modify fields in object which it could not reach,
it does have a side effect on the abstract value of the key-set’s keys
model field.

Example 3.3. (LHM Memory States). The LHAM memory
states depicted in Fig 3 (o), Fig 3 (o), Fig 3 (¢2), and Fig 3 (o),
abstract the standard memory states depicted in Fig 3 (s.), Fig 3 (se),
Fig 3 (sz), and Fig 3 (s,), respectively. Note that the LH M mem-
ory states represents the abstract values of sealed components,
but abstract away their representation. Also note that the inter-
component reference structure is maintained by the model pivot
fields.

The LHM memory state shown in Fig 3 (o), representing
the memory state when the insert procedure terminates, is com-
puted directly from the memory state shown in Fig 3 (o), repre-
senting the memory state when the insert is invoked using the
specification of insert. Furthermore, the model pivot field amap
exposing the dependency of the value of the key-set’s keys model
field on the abstract value of the map allows computing the updated
value of keys using its aggregate model function.

3.4 Static Analysis

We define a modular static analysis based on an abstract interpreta-
tion of LHM using a bounded conservative abstraction. Our anal-
ysis is parametric in the bounded abstraction and can use different
(bounded) abstractions when analyzing different modules. In our
implementation, we use canonical abstraction [29].

Our static analysis is conducted in an assume-guarantee man-
ner allowing each module to be analyzed separately. The analysis
computes a conservative representation of every possible input state
to an intermodule procedure call. This process, in effect, identifies
structural module invariants. Our analysis verifies conservatively
that a module satisfies its specification and respects the restrictions
we impose.

Technically, our analysis computes in a conservative manner
all possible input states of intermodule procedure calls by exer-
cising the analyzed module using its most-general-intrusive-client
(MGIC): a program that simulates all possible procedure invoca-
tions on the analyzed component (thus simulating arbitrary usage
contexts) and on its exposed subcomponents (thus simulating all
possible side-effects).

4. Program Model

We reason about imperative object-based (i.e., without subtyping)
programs. A program consists of a collection of procedures and
a distinguished main procedure. The programmer can also define
her own types (a la Java classes). We expect to be given a parti-
tioning of the program types and procedures into modules.

Syntactic domains. We assume the syntactic domains z € V of
variable identifiers, f € F of field identifiers, T" € 7 of type iden-
tifiers, p € PZD of procedure identifiers, and m € M of module
identifiers. We assume that types, procedures, and modules have
unique identifiers in every program.

Modules. We denote the module that a procedure p belongs to
by m(p) and the module that a type identifier T belongs to by
m(T). A module mi depends on module ms if m1 # m2 and one
of the following holds: (i) a procedure of m invokes a procedure
of mg; (ii) a procedure of m, has a local variable whose type
belongs to mo; or (iii) a type of m; has a field whose type belongs
to mo.

Procedures. A procedure p has local variables and formal param-
eters, which are considered to be local variables. Only local vari-
ables are allowed. We assume that the target of a procedure invoca-
tion is bound to an implicit this parameter. For each field access
x.f=e or y = x.f by a procedure p we require that the type 7" of the
object pointed to by x satisfies m (p) = m(T).

5. Limitations and Simplifying Assumptions

In this section we list the main limitations on the class of programs
for which the work presented in this paper can be applied. The
goal of some of the limitations is to simplify our approach. Other
limitations are more inherent in our approach. See Sec. 9 for a
discussion.

1. We assume that the programming language is object-based, i.e.,
with dynamic memory allocation and procedures, but without
inheritance or subtyping.

2. We expect the module dependency relation to be acyclic. (See
Sec. 9 for a possible alleviation of this restriction.)

3. Every component has a single object (the component’s header)
which dominates the entire component, meaning that any heap
path reaching the objects comprising the component passes
through the component’s header, except for heap paths reaching
the headers of subcomponents. (Note that these heap paths must
come from a different module).

4. Every component has a bounded number of exposed (possibly
shared) subcomponents.

5. We do not handle deallocation or garbage collection.

In addition, to simplify the presentation, we make the following
assumptions:

6. Every module defines a single data structure which can be used
by other modules.

7. Every module has a specially-designated initialization proce-
dure which allocates new instances of its data structure and ini-
tializes them.

6. Specification and Proof Obligations

In this section, we describe the required user-provided specification
and the proof obligations. Any approach, be it manual or automatic,
which can establish the proof obligations with the given specifica-
tion verifies soundly that the module respects its specification.

6.1 Standard Module Specification

In this section, we discuss the more-standard Hoare-style specifica-
tion that we use.

6.1.1 Interface specification

We expect to have a user-supplied Hoare-style “public” specifica-
tion of the program’s modules:

e Every module may have model fields. The model fields repre-
sent the abstract value of the data structure implemented by the
module. A model field should range over a value domain. For
example, the (only) model field of the Keyset module is keys
and its possible values are sets of integers. The model field of
the Map module is map and its possible values are maps of in-
tegers to floats.

Every procedure should have a pre-post specification which de-
scribes the effect of the procedure on the model fields of its
parameters. A pre-post specification is admissible if it refers to
a relation over expressions over the callee’s local model heap
— i.e. access paths starting at the procedure parameters and

following a sequence of model pivot fields or to the values of
model fields that can be reached by traversing such access paths.
For example, the specification of the map’s insert procedure
indicates the abstract value of a map after the invocation of
insert (k, v), indicated by a map’, is the same as the map’s
value before the insertion except that the key k is now associ-
ated with the value v. As a negative (inadmissible) example —
if Map’s specification were to mention the keys field of a Key-
set object referring to it, it would be inadmissible as this Keyset
is not reachable from the Map. In the following, we assume that
procedure specifications are admissible.

6.1.2 Internal specification

We expect an internal module specification which provides a repre-
sentation function [11] mapping the data structure’s concrete repre-
sentation to its abstract value. We allow the representation function
to be defined only as a function of (i) the values of objects reach-
able from the component’s header via fields defined in the module
and (ii) the values of model fields of subcomponents.

6.2 Additional Specification Burden

In this section, we describe the additional specification burden re-
quired by our approach. More specifically, the additional specifica-
tion burden required by our approach (compared, e.g., to [11]) is
the specification of the model pivot fields and the aggregate model
functions.

6.2.1 Interface specification

The model pivot fields specify the data structure’s subcomponents
that can be shared with other data structures. Any such subcompo-
nent is given an externally-visible name and any procedure which
has a side-effect on the abstract value of such a subcomponent is
required to expose it in its specification. For example, the Keyset
module has a (single) model pivot field amap. The set’s initializa-
tion function, Keyset specifies that amap names the map passed
as parameter. The set’s remove function specifies that the removed
key is extracted not only from the set’s model field, but also from
the map which amap refers to. We emphasize that a model field is
allowed to have reference (location) value only if it is a model pivot
field.

We refer to a model field whose value does not depend on model
fields of externally-visible subcomponents as a local model field.
An aggregate model function is admissible if it is defined as a
function of the values of the component’s local model fields and
the model fields of its subcomponents. For example, the aggregate
model function associated with the model field keys of the Keyset
module specifies that the value of this field is the domain of the
abstract value of the key-set’s map. If we change the key-set to be
a filtered key-set which contains only keys whose values are bigger
than a given threshold, then the threshold value could be exposed by
a local model field and the aggregate model function of the filtered
key-set would specify that the key-set contains all elements in the
domain of its map that are smaller than the (exposed) threshold.

Remark 6.1. In our running example, the model function and the
representation function agree. In general, the model function can
be less precise than the representation function. This can happen in
cases where the representation function can compute a more precise
value than the model function thanks to internal knowledge of the
data structure implementation.

6.2.2 Internal specification

The internal specification is used only during the verification of the
module itself. It links the model pivot fields and model fields with
the actual implementation of the module’s data structure.

Every local model field is associated with a representation func-
tion that specifies its value. The representation function can depend
only on properties of objects that are reachable from the header of
the data structure through fields defined in the module.

The representation function for every model pivot field is fur-
ther limited to only access fields inside the current component (so
it depends only on objects which resides also in the current com-
ponent) and must evaluate to an outgoing pointer. Note that as a
result of the above restriction, changes made to one component,
cannot have side effects on the values of pivot model fields of an-
other component.

For example, the model pivot field amap is associated with the
Keyset’s map-field which points to a Map.

Remark 6.2. We note that the goal of our analysis, described in
Sec. 8, is to find module invariants (properties which are expected
to hold when the data structure is not being manipulated) in an
automatic manner. For example, a module invariant of the Keyset
module which our analysis can find is that the field m never has a
null value.

6.3 Proof Obligations

In this section, we list the required proof obligations. When verify-
ing a module, we need to verify, as usual, that the post-condition of
every procedure p and the module invariant are implied from exe-
cuting p’s body in any state which satisfies p’s precondition and the
module invariant. (When verifying an initialization function only
the precondition can be assumed.) In addition, we need to establish
the following properties:

Model function consistency evaluating the aggregate model func-
tion of a model field mf of component c using the abstract value
(of ¢’s model fields) is conservative with respect to evaluating
the representation function of mf over any component that can
be represented by c.

Model pivot consistency in any state which satisfies the module
invariant, every reachable subcomponent which is not domi-
nated by the data structure’s header (i.e., possibly exposed) is
named (pointed to) by a model pivot field.

Single header every component has a single header.

Model function dependency is locally acyclic there is no local
dependency cycle between model functions of the same com-
ponent.

This admissibility of the aggregate model function in addition
to the single header requirement and the acyclicity of the module
dependency relation ensure that these functions are well defined,
i.e., there is no cyclic definition of aggregate model functions.

7. Non-Standard Semantics

In this section we define LHM, a non standard concrete semantics
which serve as a foundation for a modular analysis. Specifically,
the semantics aborts if a module violates its specification. We note
that our analysis establishes that the proof obligations are satisfied
according to the LHM semantics. Our restrictions on the program
model and on the specification ensure that even though the proof
obligations are shown to be satisfied in LH.M, the properties that
they assert also hold in the standard semantics.

LHM is a store-based semantics (see, e.g., [26]). A traditional
aspect of a store-based semantics is that a memory state represents
a heap comprised of all the allocated objects. LH.M, on the other
hand, is a local heap semantics [27]: A memory state which occurs
during the execution of a procedure does not represent objects
which, at the time of the invocation, were not reachable from the
actual parameters.

l € Loc Location

var € Varld Variable id

€ € Env=YV — Val Local variables

v € Val=LocU{null} UNUTF Concrete value

h € H=Loc— F — Val Concrete heap

t € Type Type

t € TM=Loc—T Type heap

a e AVal Model value

ah € AH = Loc— F — AVal Model heap

ph € PH= Loc— F — Val Pivot heap

o € X = Enux2™°xHx Memory states
TMXMXAHXxPHx AH

Figure 4. Semantic domains.

LHM is a hybrid semantics: It represents both objects and
components as well as concrete fields and model fields, however it
uses different representations for the current component and for the
sealed components (thus the name hybrid): LHM represents the
allocated objects inside the current component and their concrete
fields. However, it does not represent the model fields of the current
component. In contrast, LH.M does not represent either the objects
inside sealed components or record the values of their concrete
fields. Instead, it represents every sealed components using its
header and only records its model fields and model pivot fields.
Technically, LH .M associates the model and model pivot fields of
a component with its header.

LHM is a “mixed-step” semantics: When executing intrapro-
cedural statements and intra-module procedure calls, it acts as
small-step operational semantics [25]. However, instead of encod-
ing a stack of activation records inside the memory state, as tra-
ditionally done, LH M maintains a stack of program states [15].
The use of a stack of program states allows us to represent in
every memory state the (values of) local variables and the par-
tial heap of just one (the current) procedure. When executing an
inter-module procedure call, LHM acts as large-step operational
semantics [13]: it computes the effect of a procedure invocation in
“one step” using the procedure’s specification.

LHM checks that the program memory states satisfy certain
admissibility conditions (listed below). Thus, LHM may abort
whereas standard heap semantics would not abort. Such an abort
means that a module does not satisfy our restrictions. (Our analysis
conservatively detects such aborts.) For brevity, we only informally
discuss the relation between LHM and the standard heap seman-
tics and describe key aspects of the operational semantics. In [12],
we formally define LH.M and relate it to the standard semantics
using Galois connections.

7.1 Memory States

Fig 4 defines the concrete semantic domains and the meta-variables
ranging over them. We assume Loc to be an unbounded set of
locations. A value v € Val is either a location, the special null
value, an integer or a float.
A memory state in the LH.M semantics is an 8-tuple:
o = (e, L, h,t,m, alh, ph, ah). The first four elements in the
tuple comprise a 2-level store:
(1) € € Enwv is an environment assigning values for the variables
of the current procedure.

(ii)) L C Loc contains the locations of allocated objects. (An
object is identified by its location. We interchangeably use the
terms object and location.)

(iii) The heap h € H assigns values to fields of allocated objects.

(iv) t € T M maps every allocated object to the type-identifier of
its (immutable) type. Implicitly, ¢ associates every allocated

location to a module: The module that a location | € L
belongs to in memory state o is m(t(1)).

The last four elements of the tuple are specific to LH.M, and are

used to record the module of the current procedure and the fields of

local model fields, model fields, and model pivot fields:!

(v) The fifth component, m € M, is the module of the current

procedure. We refer to m as the current module of o.

(vi) The sixth component, alh € AH, is the local abstract value
map. It records the abstract values of local model fields.

(vii) The seventh component, ph € PH, is the model pivot heap,
recording the reference values of pivot model fields.

(viii) The eighth component, ah € AH, is the abstract value map.
It records the abstract values of non-local model fields.

To exclude states that cannot arise in any program, we now de-
fine the notion of admissible states. We note that LH .M preserves
the admissibility of memory states.

An LHM memory state o = (g, L, h,t, m, alh, ph,ah) € &
is admissible if

(1) The domain of the heap and the local abstract value map, the
model pivot heap, and the abstract value map are disjoint, i.e.,
let A = dom(alh) U dom(ph) U dom(ah), then dom(h) N

(ii) Every object in the domain of the heap belongs to the current
module, i.e., for every I € dom(h), m(t(l)) = m;

(iii) The type of every object in the (local) abstract values map and
the model pivot heap does not come from the current module,
ie., forevery I € A, m(t(l)) # m, where A is as defined
above;

(iv) Fields and model fields can point only to allocated locations,
e, {h()f € Loc,ph(l)f |l € L, f € F} C L; and

(v) The pivot heap is acyclic.

Example 7.1. Figures 3(o.) and 3(o,) depict the (admissible)
LHM memory states that arise in the execution of the running
example before and after the third invocation of insert, respec-
tively.

7.2 Operational Semantics

We only discuss the key aspects of the operational semantics, for-
mally defined in [12]. For simplicity, we assume that the procedure
of the module are partitioned into public procedures, which can
be invoked only by procedures of other modules and private pro-
cedures, which can be invoked only be procedures of the module.
(Note that, in particular, a public procedure cannot be invoked by
another procedure of the module.)

7.2.1 Intraprocedural statements.

Intraprocedural statements are handled, essentially, as usual in a
two-level store semantics for pointer programs (see, e.g., [26]). The
main difference from the standard semantics is that the semantics
checks that the program accesses only fields of objects that belong
to the current component.

We note that we simplify the memory management mechanism
in our semantics by exploiting the fifth simplifying assumption
(i.e., the assumption that memory locations are not reused): When-
ever a new location is allocated, the semantics chooses an arbitrary
location which was not allocated before. Technically, it utilizes the

! Recall that model fields are used to record the abstract values of sealed
components and that pivot model fields are used to record the inter-
component reference structure between sealed components. Specifically,
the model pivot fields of a component specify which of its subcomponents
is externally-visible and thus can be shared with other components. We re-
mind the reader that we refer to a model field whose value does not depend
on model fields of externally-visible subcomponents as a local model field.
See Sec. 6.2.1.

set of allocated location (i.e., the second component of a memory
state, see Fig 4) to accumulate all allocated locations.

7.2.2 Intra-module interprocedural statements.

LHM is a local-heap semantics [27] which maintains a stack of
program states to handle intra-module procedure calls [28]. The
program state of the current procedure is stored at the top of
the stack, and it is the only one which can be manipulated by
intraprocedural statements.

Note that only a intra-module procedure call can invoke only a
private procedure.

7.2.3 Inter-module interprocedural statements.

Fig 5 defines the axioms for intermodule procedural calls. When an
intermodule procedure call is invoked, LH.M computes the return
state o, in three steps, as described below.

Computing the callee’s entry state. First, the rule computes an
intermediate memory state, 0., which represents the callee’s (input)
local heap but with all components remaining sealed. It does this
by restricting the heap to L,.;, the part reachable from the actual
parameter. Because the module dependency is acyclic, only headers
of sealed components (reachable via the pivot heap) can be passed
as the values of actual parameters. Thus, L,.; is computed as the
set of locations that are reachable from the parameters in the pivot
heap. Note that every location in L, is the header of a sealed
component. Also note that the restriction of the caller’s heap (h.)
to L necessarily returns an empty heap.

Computing the callee’s exit state. LHM applies the effect of the
invoked procedure in one step: it selects (non-deterministically) any
exit state (o) which is a possible outcome of the invoked procedure
according to its specification on the computed entry state (o).

Remark 7.2. The notation o @] oz is used to express that
according to the specification of procedure p, its invocation on
an entry state o. may result in memory state o. In particular, it
denotes that o. satisfies p’s preconditions (and that the semantics
aborts otherwise.)

Note that this notation also makes it clear that the specification
cannot refer to the current component, as it should hold in any
(arbitrary) calling context in which p is invoked on oe.

Computing the caller’s return state. LM computes the return
state (o) of the invocation y = p(z1, . .., Zx) by, essentially, carv-
ing out the local heap passed to the callee from the call heap and
replacing it with the callee’s heap at the exit site. The replacement
is mostly straightforward:
(i) Updating the caller’s environment amounts to assigning the
return value of the procedure (g, (ret)) to y.

(i1) The module of the caller’s function at the return state is the
same as in the call state (m.), and thus does not change.

(iii1) The caller’s set of allocated locations is set to that of the callee
(Lz) to account for the locations which were allocated during
the procedure invocation. (Recall that L. C L.)

(iv) The caller’s heap at the return state is the same heap as at
the call state (h.) because the callee could not have modified
it. (Recall the h. contains only the objects inside the caller’s
component, and that the callee could not have reached them.)

(v-vii) The caller’s type map at the return memory state is defined
to be the same as the call state, except for location which
are in the callee’s local heap, whose type is taken from the
type map of the callee at the exit state (t). We note that the
callee could not have allocated a location which appears in
the caller’s heap because these locations are accumulated in
the set of allocated locations passed to the callee in its input
state. The caller’s local abstract value map (alh,) and model

LHM
<Cally:p(a:1,...,zk)7 UC> — Or

where:
ge = (€e, LmQvtc‘LW“mualhc|L,epPhc\L,
e =[zi —ec(ms) | 1 < i <K

[»]
e ~ Og

tr = te[ta)
alhy = alhclalhy)
phr = phe [Pha:]

update(l, ahc, alhy, phy, tr,ahy) =
ahg

L., = R{l'}, phr)

alhe|r,,,)

rel?

Ly = R({ec(zi) € Loc | 1 <i < k},phe)

or = (ecly — ez (ret)],me, Lz, he, tr, alhy, phy, ahy)

ahy = ahg U Uledom(ahc)\do’ln(ahg) update(l, ahe, alhr, phr, tr, ahz)

ahgyp U{l — f— mg(l,alhy, ahsyp, phe) | f € model(t, (1))}
ahgup = Ul’esubcomponents update(l', ahe| s z’alhTILigzphT'L;»ez’t7"L?ez’ah”|L§ez)
subcomponents = {I’ € {ph.(I,p)|p € pivot(t-(1))}

R(L,ph) = {l € dom(ph) | there is a heap path in pivot heap ph which starts at a location in L and reaches [}

l € dom(ahz)
otherwise

Figure 5. The axioms for an arbitrary intermodule procedure call y = p(z1,...,zx) assuming p’s formal parameters are z1, . .., zx and p
returns its value by assigning it to a specially designated variable ret. The call state is o = (€c, Le, he, te, me, alhe, ph,, ah.) The exit state
is 0z = (€2, Lz, ha, tz, My, alhz, ph,,, ahy) is a possible outcome of p when invoked on memory state o according to p’s specification,
[p]. For a type t € T, model(t) denotes the model fields of ¢, pivot(t) denotes the model pivot fields of ¢. The aggregate model function

associated with a model field f is denoted by m .

pivot map (ph,) are constructed in a similar way. We note
the straightforward update of these maps is possible thanks
to (a) the restrictions that we impose on these maps (See
Sec. 6.2.2 and Sec. 6.2.2) and (b) the fact that the callee could
not have reached the components which were not passed to it
in its input state.

The most challenging aspect of our semantics is the compu-
tation of the caller’s abstract value map (ah.): The computation
has to account for operations by the callee that might have change
the abstract value of components which the callee could not have
reached.

To correctly propagate the side effect of the invoked proce-
dure on the (aggregate) model fields the semantics updates the
value of every model field pertaining to an object which was not
passed to the callee using the update procedure. The invocation
of update(l, ahe, alhy, phy, t,, ah,) updates the model fields of [
by first (recursively) computing ah ., an abstract value map con-
taining the updated values of model fields of every subcomponent
of [. (Note that to determine the subcomponents, the semantics uses
the updated pivot heap.) LHM then computes the value of every
model field f of [using my, the aggregate model function of f.
Note that this computation is well defined because of the acyclicity
of model field dependencies promised by our assumptions.

Remark 7.3. We note that the above definition recomputes values
of fields that cannot be modified. In [12], we present a more compli-
cated version of the axioms for intermodule procedural calls. The
latter updates only fields that depend on potentially modified fields,
and behaves better under abstraction. The version in [12] also han-
dle some delicate issues that may occur when the model function is
less precise than the representation function.

The procedure call rule for public procedures also checks that
usual Hoare requirement: i.e., it executes a procedure only if the
entry state satisfies its precondition and checks that its exit state

satisfies the post condition.? The semantics computes the abstract
value of the current component using the representation functions
defined in the module internal representation. For example, Fig 2(b)
shows the internal specification of the KeySet module. For brevity,
we omit this standard part from Fig 5. For details, see [12, App.
C.].

7.3 Observational Soundness

Our goal is to verify (modularly) properties of modules according
to the standard semantics. The admissibility of LHM memory
states, our programming model, and the conditions checked by the
operational semantics, ensure that if the LM semantics never
aborts when executing a module, then for any memory state s
that can arise according to the standard semantics (in a program
comprised only of such “well-behaved” modules) there exists a
LHM memory state o which arises during the execution of the
program in the LHM semantics which abstracts s.

An immediate consequence of the above is that any assertion
regarding properties of objects reachable from component headers
which is shown to hold with respect to £LH.M semantics also holds
with respect to the standard semantics. For a formal definition of
the observational soundness theorem, see [12].

8. Static Analysis

This section presents key aspects of our (conservative) modular
static analysis. The analysis is obtained as an abstract interpretation
of LHM using a bounded conservative abstraction. Our analysis
is parametric in the bounded abstraction and can use different
(bounded) abstractions when analyzing different modules. In our
implementation, we use canonical abstraction [29].

Our static analysis is conducted in an assume-guarantee manner
allowing each module to be analyzed separately. The analysis,
computes a conservative representation of every possible input state
to an intermodule procedure call. This process, in effect, identifies

2In addition, the rule checks that every component of the module has a
single header. This check is similar to the one done in [28].

structural module invariants. Our analysis verifies conservatively
that a module satisfies its specification and respects the restrictions
we impose.

The main challenge in our analysis lies in finding all the pos-
sible input states to an intermodule procedure calls. We overcome
this challenge by utilizing the fact that in LH.M whenever a pro-
gram passes a component of the analyzed module a parameter to an
intermodule procedure call, it must be a sealed component which
was previously generated by the program. (This is derived from the
fact that every component has a single header and that a compo-
nent can be manipulated only by the module which generated it).
In particular, we can anticipate the possible entry memory states
of an intermodule procedure call: Note that components are sealed
only when an intermodule procedure call returns. Furthermore, the
only way a sealed component can be mutated is to pass it back as
a parameter to a procedure of its own module. Thus, a partial view
of the execution trace, which considers only the executions of pro-
cedures that belong to the analyzed module, and collects the sealed
components generated when an intermodule procedure invocation
returns, can anticipate (conservatively) the possible input states for
the next intermodule invocations. Specifically, only a combination
of already generated sealed components of the module can be the
component parameters in an intermodule procedure invocation.

We conservatively compute the effect of procedure calls on sub-
components using the user-provided specification. The procedure’s
pre-post specification allows us to find the effect of the procedure
on the components passed to it as parameters (and their subcom-
ponents) and the aggregate model function allows us to propagate
side effects to sibling components.

8.1 Modularity

Our analysis is modular in two aspects. First, it is modular in the
program code: When verifying one module, we only require the
code implementing that module and only the specification of the
other modules. (Specifically, we determine the effect of an inter-
module procedure call on a subcomponent using the procedure’s
specification.) Second, it is modular in the program state: when
reasoning about a module, we

(i) reason about the concrete representation of data structures
manipulated by the module,

(ii) represent the abstract values and the topologies (sharing pat-
terns) of subcomponents that come from other modules, and

(iii) ignore the data structure context containing the analyzed data
structures.

(In comparison, Hoare’s approach, by being targeted to verify only
fully encapsulated data structures, can avoid reasoning about shar-
ing patterns.) A key reason for the modularity of our analysis in
the program state is the heterogeneous memory representation of
the hybrid states. This allows our analysis to require only the spec-
ification of dependant modules and not their implementation (as is
required, e.g., in [31]).

8.2 Most-General-Intrusive Client

We conduct modular static analysis by performing an interproce-
dural analysis of a module together with its most-general-intrusive
client (MGIC). The module’s MGIC is defined outside the module
and invokes a sequence of arbitrary (intermodule) procedures calls
to the module using arbitrary input arguments. (In this respect, the
most-general-intrusive-client is similar to the most-general-client
of a class [28].) However, it also invokes procedures directly on the
exposed subcomponents of the analyzed module. (In this respect,
the client is intrusive as it bypasses the component and directly
interacts with its subcomponents.) This allows to simulate conser-

vatively any arbitrary context in which components of the module
can be used. In our analysis, the MGIC takes the role of the LHM
semantics in verifying that the preconditions and post-conditions
(specified using abstract values) are respected. This allows our an-
alyzer to verify that every intermodule procedure call made by the
MGIC respects the procedure’s specification.

Example 8.1. The MGIC for the Keyset of the running example
is shown in Fig 6. The MGIC first allocated a map, and invokes
an arbitrary sequence of operations on the map, thus generating
any possible map that can be passed to the KeySet when the latter
is initialized. The MGIC executes a loop in which it invokes the
KeySet methods (cases 2 and 3) acting as a client of the KeySet. It
also invokes, “intrusively”, methods on the underlying map (cases
0 and 1), simulating indirect changes to the underlying map.

We note that the analysis considers the actual implementation
of the KeySet, but only the abstract view (i.e., the model fields) of
the underlying map.

Pre and post conditions are checked before/after each call (in
the model space). The last assertion checks that the model function
over-approximates the representation function.

8.3 Bounded abstraction

We provide an effective conservative abstract interpretation [6]
algorithm which determines module invariants by devising a
bounded abstraction of LHAM memory states. An abstraction of
a LHM memory state, being comprised essentially of an envi-
ronment of a single procedure and a subheap, is very similar to an
abstraction of a standard two-level store. The additional elements
that the abstraction tracks are the model pivot fields (which can
be abstracted in a similar manner to standard concrete fields) and
model fields representing abstract values of data structures. Thus,
the abstract domain is expected to be able to (conservatively) rep-
resent the abstract values used in the specification.

Abstracting a LHM memory state is simpler than abstracting
standard memory states: Instead of abstracting the representation
of a data structure (e.g., the representation of a map as a tree) the
abstraction needs to record the essential properties of the data struc-
ture, e.g., the association between keys and values, the elements in
the domain of the map, etc. Furthermore, we believe that a key rea-
son for the success of our analyzer is the fact that while a procedure
call might have a complicated effect on the concrete heap, e.g., in-
serting a node to a tree, its effect on the abstract value of the data
structure can be much more limited, e.g., adding an association to
a map.

8.4 Experimental evaluation

We have experimented with expressing several examples in our
system. We realized our system by developing a proof-of-concept
modular analyzer using canonical abstraction [29] within the
TVLA system [19]. Our analyzer was able to verify the Keyset
module in 10 seconds running on a machine with a 2.66 Ghz Core
2 Duo processor and 2 Gb memory. The verification proved that
any Keyset component in any context using any map that conforms
to the Map specification would behave as in its specification.

9. Future Work

In our work we chose to focus on one of the main challenges in
object-invariant-based modular verification of object-oriented pro-
grams: invariants that span multiple data structures where sharing
is allowed [9]. Our approach can handle programs that employ cer-
tain popular programming idioms, e.g., the wrapper [10], deco-
rator [10], and passive-model-view-controller [4] design patterns.
However, other popular design patterns, such as iterators and the

MGIC(){

Map m;

Keyset s;

//Initialize an arbitrary map

m = new Map();

while (?){

switch (?) {
case 0: m.insert (?,?); break;
case 1: m.remove (?); break;

} //switch

} //while

//Exercise all use-cases of Keyset
s = new Keyset (m);
while (true){
int key = ?2;
float val =
switch (?) {
case 0:
assume (true) ;
m.insert (key,val);
assert (m.map’ = m.map U (key,val));
case 1:
assume (true) ;
m.remove (key) ;
assert (m.map’ = m.map \ {key});
case 2:
assume (true) ;
bool b = s.isMember (key);
assert (b == key € s.keys) ;
assert (m.map’ = m.map) ;
assert (s.keys’ = s.keys) ;
break;
case 3:
assume (true) ;
s.remove (key) ;
assert (m.map’ = m.map \ {key});
assert (s.keys’ = s.keys \ {key});
break;
} //switch
assert (s.keys = keys-m(s));
} //while

2.
<

Figure 6. MGIC for the Keyset component. The question marks
represent non-deterministic selections.

active-model-view-controller [4] cannot be handled.® In this sec-
tion, we discuss certain ways to extend the class of programs for
which our approach is applicable by alleviating some of the limita-
tions described in Sec. 5. For additional discussion, see [12].

Cyclic module dependency relation.. Our requirement that the
module dependency relation be acyclic is used to simplify the pre-
sentation. The fundamental requirement is model field dependency
acyclicity — that can be enforced modularly. A simple and practi-
cal way to achieve this is to require that model field dependency is
acyclic by type (meaning the dependency relation for model field
types is acyclic) however this disallows some existing program-
ming patterns such as alternating lists. A more general way is to
require local acyclicity (among model fields of the same type) and
require acyclicity whenever an object is abstracted (e.g. this on

3 The passive model can be employed when one controller manipulates the
model exclusively. The controller modifies the model and then informs the
view that the model has changed and should be refreshed. Specifically, there
is no means for the model to report changes in its state. In the active model,
the model notifies the views to refresh the display [1].

return from function) as a proof obligation. This requires more ver-
ification work but allows more programs.

A particular challenging issue with cyclic import is that this
can be passed (e.g., in callbacks) as an argument. In this situation,
any knowledge of the current component (including local variables
pointing into it) is lost upon return unless it is passed as immutable
(even if the specification does not specify any modification to its
model fields).

Multiple headers. Our restriction that every component should
have a single header simplifies our semantics and analysis as it pre-
vents us from tracking the relation between different entry points
into the same component. However, is quite severe as it disallows,
e.g., iterators. We believe it can be removed if all headers of the
component (e.g. List and its Iterators) are defined in the same mod-
ule and verified with knowledge of each other. Specifically, each
should have a pivot to other one. (This means pivots and represen-
tation functions in general will no longer only reference reachable
heap as, e.g., an iterator does not have to have a pointer to a List’s
header but only to a Node). We hope it is possible to allow multiple
headers per component with the above mentioned restrictions and
some additional modifications to the formulation. In particular, we
believe that this is doable if we restrict the number of headers.

Subtyping Subtyping is challenging because an upcast loses
specification information. The main problem that our approach
faces because of subtyping is that information pertaining model
fields which appear only in the subtype is lost on upcast (e.g. when
calling a function that receives a supertype as a parameter) and
hence has to be reconstructed on return.

We believe that with some restrictions on subtyping and mod-
ifications to the call rule, our system can support subtyping. In
particular, we suggest to consider a stricter subtyping model where
downcasts are forbidden, subtype-added methods are the only ones
allowed to modify subtype-added model fields. By a stricter subtyp-
ing model we mean that subtypes may have additional constructs
(concrete functions and specification model fields) and stricter
specification for constructs: stricter pre-post for functions, stricter
specification for model fields, i.e., less dependencies, and stricter
model functions, i.e., more deterministic ones.

10. Related Work

In this section, we review closely related works.

Modular verification. In [2], Barnett and Naumann presented
a verification approach that supports state dependencies across
ownership boundaries. A component can grant “friends” the right
to depend on their state. Thus, the dependency is publicly visible
and treated in a modular way. The downside of this technique is
that the granting component needs to know its clients. To overcome
this restriction, Leino and Schulte developed a technique based
on history invariants [18] which allow component invariants to
depend on other non-encapsulated components, which resembles
our method. However, the expressible dependencies are weaker
than the ones allowed by our method because they need to be
captured by a history constraint.

A modular solution for model fields and non-shared abstractions
is developed by Miiller in [21] and by Miiller and Leino in [17]. The
focus of their work is the verification of object oriented programs
using object invariants. They face a similar challenge to the one
faced in this work: maintaining consistency between the abstract
values of component and their concrete state. Indeed, These works
inspired some of our definitions for when an abstraction has to hold
and the ideas of pivots and dependencies. However, the methods
shown in these works are more suitable for manual verification or
theorem provers rather than analysis.

In [14], Kassios presents a framework for modular reason-
ing supporting abstraction, data-hiding, and subtyping. The frame-
work allows asserting properties such as disjointness and inclu-
sion between the domains of different representation functions and
to prove non-modification of model fields in a modular fashion.
Classes can have “public” invariants which encode similar infor-
mation to our “public” model function, however, in a less restric-
tive way. We give explicit rules for pivots and rely on pivot equal-
ity while Kassios uses frames which are sets of pointers and re-
lies on set operations (inclusion, disjointness etc) which we believe
are harder to use in practice. Our restrictions give us simpler proof
obligations with simpler propagation of side-effects which can be
verified automatically.

Cameron et al. [5] describe an ownership system that support
multiple owners. Their work supports programs with concurrency,
subtyping, inheritance and cyclic module import work supports.
Our work is similar to theirs in the sense that in both works the
ownership graph is required to be a dag. However, they focus on
verifying non-modification, whereas we focus on verifying more
general partial correctness assertions.

Local reasoning O’Hearn et al. [24] and Bierman and Park-
isnon [3] allow to conduct modularly (manual) local reasoning [26]
about abstract data structures and abstract data types with inheri-
tance, respectively. The reasoning requires user-specified resource
invariants and loop invariants. Our analysis automatically infers
these invariants based on user provided interface specification and
representation functions (and an instance of the bounded shape ab-
straction). Bierman and Parkisnon [3], however, allows for more
sharing than in our model. Their system can encode “public” invari-
ants of aggregates and model pivots, but does not have an inherent
notion of aggregate representation function. Lately, a verification
tool [8] based on abstract predicates [3] was developed by Diste-
fano and Parkinson.

Modular static analysis Cousot and Cousot [7] describe the fun-
damental techniques for modular static program analysis. These
techniques allow to compose separate analyses of different program
parts. We use their techniques, in particular, we use user provided
specification to communicate the effect and side effects of muta-
tions done by different modules.

Lam et al. [16] and Wies et al. [30] also utilize user-specified
pre- and post- conditions to achieve modular shape analysis which
can handle a bounded number of flat set-like data structures. Our
approach, allows for separately-analyzed arbitrarily-nested and
possibly shared sets.

Logozzo [20] presents a modular analysis which infers class
invariants. The determined invariants do not concern properties of
shared sub-objects.

Yorsh et al. [31] provide a method for computing the effect of a
procedure call which is modular in the program code — but not in
the program state: A theorem prover is used to propagate the effect
of a procedure call on the abstract field of the caller by inferring it
from the call’s effect on the concrete fields of the callee. Intuitively,
their approach requires maintaining the values of concrete fields for
subcomponents.

Rinetzky et al. [28] present a modular shape analysis which
identifies structural (shape) invariants for dynamically encapsu-
lated programs: heap-manipulating programs which forbids shar-
ing between components via live (i.e., used before set) references.
This paper allows shared components but requires that every shared
subcomponent be named by a model pivot field. This may restrict
our approach from handling data structures which hold object data
which are transferred as parameters. One way we can overcome
this restriction is by incorporating in our approach dynamic encap-
sulation for certain kinds of object parameters.

11. Conclusions

We present a novel approach for modular verification of programs
with shared data structures. The essence of our work is the prop-
agation of the side-effects on the abstract values of sibling data
structures. The aggregate model function provides a conservative
approximation of the data structure’s abstract value based on the
abstract values of its internal, unshared parts and the abstract val-
ues of its shared subcomponents.

The additional proof burden that we place (beyond the one
imposed, e.g., by Hoare’s approach for verifying abstract data
types [11]) is proportional to (i) the allowed sharing, i.e., to the
number of subcomponents of the verified data structure which are
allowed to be shared externally and the interconnection between
them, and (ii) the actual sharing, i.e., the sharing between the data
structure subcomponents.

References

[1] MSDN library; model-view-controller. available at http://msdn.microsoft

.com/en-us/library/ms978748.aspx.

[2] M. Barnett and D. A. Naumann. Friends need a bit more: Maintaining
invariants over shared state. In Lecture Notes in Compute Science,
number 3125, 2004.

[3] G. Bierman and M. Parkinson. Separation logic and abstractions. In
Principles of Programming Languages (POPL), 2005.

[4] S Burbeck. Application programming in smalltalk-80: How
to use model-view-controller (mvc). available at http://st-
www.cs.uiuc.edu/users/smarch/st-docs/mvce.html, 1992.

[5] N. Cameron, S. Drossopoulou, J. Noble, and M. Smith. Multiple
Ownership. In Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), October 2007.

[6] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction of
approximation of fixed points. In Principles of Programming
Languages (POPL), 1977.

[7] P. Cousot and R. Cousot. Modular static program analysis, invited
paper. In Compiler Construction (CC), 2002.

[8] D. Distefano and M. Parkinson. jstar: Towards practical verification
for java. In Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), 2008. to appear.

[9] S. Drossopoulou, A. Francalanza, P. Miiller, and A. Summers. A Uni-
fied Framework for Verification Techniques for Object Invariants. In
European Conference on Object-Oriented Programming (ECOOP),
Lecture Notes in Computer Science, July 2008.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., 1995.

[11] C. A. R. Hoare. Proof of correctness of data representations. Acta
Informatica, 1:271-281, 1972.

[12] U. Juhasz. Modular verification with shared abstractions. Master’s
thesis, Tel-Aviv University, School of Computer Science, Tel-Aviv,
Israel, July 2008. available at www.cs.tau.ac.il/~urijuhas/thesis.pdf.

[13] G. Kahn. Natural semantics. In 4th Annual Symposium on Theoretical
Aspects of Computer Sciences on STACS 87, pages 22-39. Springer-
Verlag, 1987.

[14] 1. T. Kassios. A Theory of Object Oriented Refinement. PhD thesis,
University of Toronto, 2006.

[15] J. Knoop and B. Steffen. The interprocedural coincidence theorem.
In Compiler Construction (CC), 1992.

[16] P. Lam, V. Kuncak, and M. Rinard. Hob: A tool for verifying data
structure consistency. In Compiler Construction (CC), 2005. (tool
demo).

[17] K. R. M. Leino and Peter Miiller. A verification methodology for

model fields. In European Symposium on Programming (ESOP),
2006.

[18] K. R. M. Leino and W. Schulte. Using history invariants to verify
observers. In European Symposium on Programming (ESOP), 2007.

[19] T. Lev-Ami and M. Sagiv. Tvla: A framework for kleene based static
analysis. In Static Analysis Symposium (SAS). Springer, 2000.

[20] F. Logozzo. Automatic inference of class invariants. In Verification,
Model Checking, and Abstract Interpretation (VMCAI), 2004.

[21] P. Miiller. Modular Specification and Verification of Object-Oriented
Programs. PhD thesis, FernUniversitit Hagen, 2001.

[22] Peter Muller. Modular specification and verification of object oriented
programs. In Lecture Notes in Compute Science, number 2262, 2002.

[23] J. Noble, R. Biddle, E. Tempero, A. Potanin, and D. Clarke. Towards a
model of encapsulation. In International Workshop on Aliasing, Con-
finement and Ownership in object-oriented programming (IWACO),
2003.

[24] P. O’Hearn, H. Yang, and J. Reynolds. Separation and information
hiding. In Principles of Programming Languages (POPL), 2004.

[25] G. D. Plotkin. A Structural Approach to Operational Semantics.
Technical Report DAIMI FN-19, University of Aarhus, 1981.

[26] J. Reynolds. Separation logic: a logic for shared mutable data
structures. In Logic in Computer Science (LICS), 2002.

[27] N.Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics
for procedure local heaps and its abstractions. In Principles of
Programming Languages (POPL), 2005.

[28] N. Rinetzky, A. Poetzsch-Heffter, G. Ramalingam, M. Sagiv, and
E. Yahav. Modular shape analysis for dynamically encapsulated
programs. In European Symposium on Programming (ESOP), 2007.

[29] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-
valued logic. Transactions on Programming Languages and Systems
(TOPLAS), 2002.

[30] T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. Field
constraint analysis. In Verification, Model Checking, and Abstract
Interpretation (VMCAI), 2006.

[31] G. Yorsh, A. Skidanov, T. Reps, and M. Sagiv. Automatic
assume/guarantee reasoning for heap-manupilating programs. In
International Workshop on Abstract Interpretation of Object-Oriented
Languages (AIOOL), 2005.

