
209

Taming Callbacks for Smart Contract Modularity

ELVIRA ALBERT, Complutense University of Madrid and Institute of Knowledge Technology, Spain

SHELLY GROSSMAN, Tel-Aviv University, Israel

NOAM RINETZKY, Tel-Aviv University, Israel

CLARA RODRÍGUEZ-NÚÑEZ, Complutense University of Madrid, Spain

ALBERT RUBIO, Complutense University of Madrid and Institute of Knowledge Technology, Spain

MOOLY SAGIV, Tel-Aviv University, Israel

Callbacks are an effective programming discipline for implementing event-driven programming,
especially in environments like Ethereum which forbid shared global state and concurrency. Call-
backs allow a callee to delegate the execution back to the caller. Though effective, they can lead
to subtle mistakes principally in open environments where callbacks can be added in a new code.
Indeed, several high profile bugs in smart contracts exploit callbacks. We present the first static
technique ensuring modularity in the presence of callbacks and apply it to verify prominent smart
contracts. Modularity ensures that external calls to other contracts cannot affect the behavior of
the contract. Importantly, modularity is guaranteed without restricting programming.
In general, checking modularity is undecidableÐeven for programs without loops. This paper

describes an effective technique for soundly ensuring modularity harnessing SMT solvers. The
main idea is to define a constructive version of modularity using commutativity and projection

operations on program segments. We believe that this approach is also accessible to programmers,
since counterexamples to modularity can be generated automatically by the SMT solvers, allowing
programmers to understand and fix the error.

We implemented our approach in order to demonstrate the precision of the modularity analysis
and applied it to real smart contracts, including a subset of the 150 most active contracts in Ethereum.
Our implementation decompiles bytecode programs into an intermediate representation and then
implements the modularity checking using SMT queries. Overall, we argue that our experimental
results indicate that the method can be applied to many realistic contracts, and that it is able to
prove modularity where other methods fail.

CCS Concepts: · Theory of computation→ Program analysis; Invariants; Logic and verification.

Additional Key Words and Phrases: program verification, program analysis, invariants, logic and verification,

blockchain, smart contracts

Authors’ addresses: Elvira Albert, elvira@sip.ucm.es, Complutense University of Madrid and Institute of Knowledge

Technology, Spain; Shelly Grossman, shellygr@mail.tau.ac.il, Tel-Aviv University, Israel; Noam Rinetzky, maon@post.tau.ac.

il, Tel-Aviv University, Israel; Clara Rodríguez-Núñez, clarrodr@ucm.es, Complutense University of Madrid, Spain; Albert

Rubio, alberu04@ucm.es, Complutense University of Madrid and Institute of Knowledge Technology, Spain; Mooly Sagiv,

msagiv@acm.org, Tel-Aviv University, Israel.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART209

https://doi.org/10.1145/3428277

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3428277

209:2 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

ACM Reference Format:

Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv.

2020. Taming Callbacks for Smart Contract Modularity. Proc. ACM Program. Lang. 4, OOPSLA, Article 209

(November 2020), 30 pages. https://doi.org/10.1145/3428277

1 INTRODUCTION

Modularity is a key principle in system design: Encapsulating code and data into different modules
which communicate via clearly defined procedural interfaces allows separately designing, develop-
ing, understanding, testing, and reasoning about different parts of the system. For example, the
fully encapsulated programming model of the Ethereum blockchain allows for any object (łsmart
contractž) to interact with other ones by invoking their methods, but prevents direct access to
the other contracts’ data. Modularity, however, is not a panacea as demonstrated by the infamous
DAO bug [Buterin 2016]. The latter exploited the callback mechanism to temporarily steal money.
Callbacks occur when a method of a module, say a smart contract, invokes a method of another
module, say, another smart contract, and the latter, either directly or indirectly, invokes one or
more methods of the former before the original method invocation returns.
Callbacks complicate program reasoning (see, e.g., [Hernandez 2019]) because they require

programmers to consider interleavings of calls to their own code, which, as in concurrent pro-
gramming [Sergey and Hobor 2017], can be very tricky. The danger of callback attacks, also called
reentrancy attacks, led to many suggestions for syntactical program restrictions, e.g., delaying
external calls (see, e.g., [Consensys 2019]). However, these restrictions are overly severe and several
realistic programs violate them.

The goal of this paper is to develop a sound static analysis for proving immunity to reentrancy
attacks while permitting benign use of callbacks, thus, allowing for flexible programming without
placing syntactical restrictions. This problem is challenging since we need to prove relational

hyper-properties properties of the code [Barthe et al. 2019; Benton 2004; Finkbeiner et al. 2019;
Sousa and Dillig 2016]. Intuitively speaking, the static analysis will show that a program without a
callback is semantically equivalent to a program with a callback (in such, modularity is ensured).

1.1 Effective Callback Freedom (ECF)

This paper is inspired by the work of [Grossman et al. 2018] which defines the notion of Effectively
Callback Free (ECF) modules. Intuitively, a module is effectively callback free if for every trace
with a callback, there exists łan equivalentž callback free trace. [Grossman et al. 2018] suggest two
definitions of trace equivalence inspired by database theory [Bernstein et al. 1987]: (i) semantic
equivalence based on final state inspired by final state serializability, and (ii) a syntactic notion
of equivalence based on conflict, i.e., reordering based on reads and writes, inspired by conflict-
serializability. The former asserts the existence of a sequence of invocations of the object methods
without any interfering callbacks which transforms the object’s state in the same way as the original
trace. The latter provides a conservative mechanism to determine whether such a sequence exists
by inspecting the read/write conflicts in the original trace.

The benefit of these definitions is that they allow for dynamic sound reasoning about properties of
the module’s state at quiescent points, i.e., when its methods are not being executed, by considering
only callback-free executions. Therefore, our original motivation was to statically enforce these
conditions using a static algorithm. It is an undecidable problem, and is more challenging than the
dynamic case as it requires reasoning about an unbounded number of arbitrary unknown sets of
program traces.
Unfortunately, we found out that neither one of the aforementioned definitions is useful for

static analysis: final state ECF does not provide nor suggest an effective algorithm, and conflict ECF

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

https://doi.org/10.1145/3428277

Taming Callbacks for Smart Contract Modularity 209:3

Fig. 1. Sequence of commutation and projection operations on an example trace.

drastically limits programming, even disqualifying as non-ECF programs using simple łcontract-
locksž mechanisms to prevent reentrancy, as we will show in the examples through the paper.

1.2 Static Verification of ECF

This paper develops a powerful method for statically verifying ECF using commutativity checks
(which assure equivalence) while also allowing projecting away irrelevant pieces of code. Our
starting point is the reduction of [Grossman et al. 2018] for ECF: it shows that if there is a violation
(using syntactic conflict equivalence) of the ECF property in a trace with arbitrary nested callback
calls then there is one where callbacks are not nested. We generalize this reduction to semantic
final state equivalence and develop our techniques for simple traces, i.e., ones where the execution
of a single method can be interrupted at call nodes by an arbitrary sequence of executions of other
procedures, however these interrupting procedures themselves never get interrupted.
We prove that a simple trace is ECF by constructing an equivalent callback free trace via a

sequence of swapping and removing of all possible different interrupting invocations that might
arrive.

Example 1.1. Consider trace ta shown in Figure 1. The trace depicts an execution of procedure
h() of a module m which is interrupted twice by different callbacks: h() starts executing at its
entry point and performs a sequence of primitive commands following its control flow graph (h1)
until it gets to a call node (c1) where it relinquishes control to an external method. At that point,
the external method invokes procedure f () onm thus generating a callback. Control returns to
h() only after f () exits and h()’s execution continues from c1 by executing the next sequence of
intra-procedural primitive commands (h2) until another call node (c2) is reached. At that point the
external procedure generates two callbacks by invoking p() and then q(). After control returns to
h() the sequence h3 is executed and the execution ends. We turn ta into the callback free trace te
by either commuting the subtraces corresponding to the callback calls or projecting them away.
(Note that callback p() is not part of te). Trace tb shows the result of (right) commuting q with h3.
Intuitively, such a transformation is possible if the composed effect of q;h3 is preserved by h3;q
(c.f. Section 4.3). Trace tc shows a different way to transform the trace, namely by projecting p
away. The elimination of p can be done by a (right) projection with h3, provided the composed
effect of p;h3 is preserved by only executing h3. Alternatively, we can achieve the same goal using
(left) projection with h2, provided the composed effect of h2;p is preserved by only executing h2.
At this point, we consider the call node c2 łsolvedž. Once we solved c2, we can continue with the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

209:4 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

swapping and projecting operations to the other callbacks. However, we can do better. Note that
once we solved c2 the trace of h2;h3 is not interrupted. Thus, while we could, for example, try to
swap f with h2 and then with h3 in order to solve call node c1, we, instead, try to swap it with the
łjoinedž trace h2;h3 (td). Note that if the separate swaps succeeds it is guaranteed that the swap
over the joint trace h2;h3 succeeds too. This is not true, however, the other way around.
The aforementioned transformation ensures that the resulting trace is final-state equivalent

to the original one, i.e., the effect of executing the original trace (ta) on an initial state σ can be
reproduced by executing it on the transformed (callback-free) trace (te). Importantly, since our
method is static, the above transformations will be applied on code segments that represent sets of
potentially infinite number of traces, rather than on a single trace.

1.3 Summary of Contributions

In summary, the paper makes the following technical contributions:
(1) Semantic commutation and projection, and segment-join operations.Wepresent semantic notions

of left/right/zero-projection, that together with the operations of commutation and segment-join
(intuitively illustrated in the example in Figure 1), lay down our analysis.

(2) Static analysis.We introduce a novel static analysis (that will be intuitively outlined in Figure 8
and formalized through the rest of the paper) based on proving commutativity and projection
between all the fragments of code (or code segments) in between call nodes and all other procedures
of the module.

(3) Callback invariant. The framework is extended smoothly to work with invariants in order to
increase accuracy. To this end, we introduce the new concept of callback invariant, which is an
invariant that holds in a call node and, in addition to the properties of standard invariants, must be
preserved by all procedures of the module, as they can be executed as callbacks in the call node.

(4) Implementation and evaluation. A prototype of our static analysis algorithm is implemented
on top of the EVM bytecode [Wood 2016] and evaluated on the most active Ethereum contracts
and on a realistic decentralized finance application.

1.4 Outline of the Rest of the Paper

This paper presents the first sound algorithm to attack ECF directly. The algorithm statically
determines that all executions of the program are effectively callback free. Existing algorithms
suffer from two limitations: (1) no full path coverage; and (2) checking a stronger property leading
to practical false alarms. Our algorithm succeeds to prove ECF in sophisticated contracts in an open
environment, in which any sequence of methods of the contract can be executed in a callback.
Section 2 provides an overview of the problem we want to solve and the intution behind our

proposal. Sections 3 and 4 define the necessary notations and main definitions. Section 5 describes
our static analysis technique for checking ECF. Section 6 extends the analysis to include the concept
of callback invariant. Section 7 presents the implementation and its evaluation on Ethereum smart
contracts. Section 8 discusses related work and concludes.

2 CALLBACKS: THE PROBLEM AND THE PROPOSAL

2.1 The Problem and the Gap

We motivate our work using the infamous bug in the DAO (Decentralized Autonomous Organiza-
tion) contract [Buterin 2016]. Figure 2 shows a simplified vulnerable Solidity contract. The purpose
of the DAO contract is to facilitate voting on investment proposals by the owners of the DAO
(referred to as objects in the following). The contract stores in the variable shares the individual
investment for each object as well as the balance variable.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

Taming Callbacks for Smart Contract Modularity 209:5

1 pragma solidity ^0.4.24;
2

3 contract Bank {
4 mapping (address => uint) public shares;
5 function deposit() payable {
6 /* balance is an alias for

address(this).balance */

7 balance += msg.value;
8 shares[msg.sender] += msg.value;
9 }
10 }

11 function withdraw() {
12 uint256 orig_balance = balance;
13 uint256 orig_shares = shares[msg.sender];
14 if (orig_shares > 0 && orig_balance >= orig_shares) {
15 balance = balance − orig_shares;
16 if (msg.sender.send_money(orig_shares)!=success) {
17 balance = orig_balance; // reverting

18 shares[msg.sender] = orig_shares;
19 }
20 else shares[msg.sender] = 0;
21 } }

Fig. 2. A Solidity contract illustrating the DAO bug. We write the balance update effects of payable functions
and send operations explicitly using the balance variable. The send_money operation is the same as Solidity’s
send. success represents a success code as returned by send_money. Revert operations are also stated explicitly.

Fig. 4. The CFG of the withdraw method from the objects in Figure 2 and the malicious trace using the
attacker object from Figure 3, marked with blue edges (b is balance, s is shares). The area under the grey
rectangle pertains to the callback.

For clarity of the presentation, we avoid using predefined Solidity instructions for money transfer
and state reversal, and implement them by explicit updates to the state.

22 bool attacked;
23 function send_money(uint value) {
24 if (!attacked) {
25 attacked = true;
26 balance += value;
27 Bank.withdraw(); } }

Fig. 3. Attacker object stealing money
from DAO contract

This includes the special reserved global variable balance
representing the amount of money owned by the executing
contract that is maintained by the runtime VM. The contract
offers two functions that manipulate the state: deposit and
withdraw. The purpose of deposit is to store money in the
contract by increasing the object’s shares by the value sent
as parameter. In Solidity msg is a special variable that always
exists in the global namespace, providing information about
the blockchain. The field sender of msg stores the caller’s
object’s address and the field value stores the łmoneyž (Ether,
the cryptocurrency of the Ethereum blockchain) transferred in the transaction. The withdraw
function allows pulling out all available shares of the object, which is implemented by decreasing
the current shares amount from the contract’s own balance and transferring it to the object by
means of the send_money in line 16. This is a call node where control is relinquished to the callee

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

209:6 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

28 contract Bank {
29 mapping (address => uint) public shares;
30 bool lock = false;
31 function deposit() payable {
32 balance += msg.value
33 require (!lock);
34 shares[msg.sender] += msg.value;
35 }
36 function withdraw() {
37 require (!lock);
38 uint256 orig_balance = balance;
39 uint256 orig_shares = shares[msg.sender];
40 if (orig_shares > 0 && orig_balance >=

orig_shares) {

41 lock = true;
42 balance = balance − orig_shares;
43 if (msg.sender.call(orig_shares)!=success) {
44 balance = orig_balance;
45 shares[msg.sender]= orig_shares;
46 lock = false;
47 } else {
48 lock = false;
49 shares[msg.sender] = 0;
50 }
51 }
52 }

Fig. 5. Solidity contract avoiding the DAO bug. Not verifiable using previous approaches for ECF checking.

object. At this point, the callee object might execute a callback. If the call does not fail (programmed
as returning success), the object’s shares is set to zero. Otherwise the state is reverted to the
initial one (then branch). The DAO was attacked by a łcallback loop-holež in which the receiver
object calls back the method withdraw to steal money, in particular, the code of the send_money
function is designed to call withdraw again. Figure 3 shows a snippet of code that produces such a
callback loop-hole and Figure 4 shows the exploit trace. Basically, when the attacker receives the
control in send_money, it increases its balance and calls back withdraw again.1 As the shares of the
attacker are only updated in line 20 after the send_money has finished, the callback execution of
withdraw will find the shares with the initial value and will make another transfer to the attacker.
Figure 4 depicts the bug in the malicious trace. The presence of the callback violates the invariant
balance ≥

∑

shares.

Severity of Reentrancy Attacks. The DAO problem is also called ‘Reentrancy Attack’ since it
exploits the non-reentrant nature of the stateful code. The attack is pervasive, e.g., [Buterin 2016;
Daian 2016], and keeps occurring even after the DAO hack [Bizga 2020; Palmer 2018; Turley 2020].
For example, [Bernardi et al. 2020] describe a bug in a test version of Synthetix [Synthetix 2020],
one of the three top-most valuable crypto assets according to [The Concourse Open Community
2019]. As we will see in Section 7, this bug has been identified using the algorithm presented in
this paper.

Pattern Based Tools. The standard way to identify problems like the DAO is by searching for a
common pattern, of ‘write-after-call’, e.g., [Brent et al. 2020; Feist et al. 2019; Ferreira Torres et al.
2019; Luu et al. 2016; Tikhomirov et al. 2018; Tsankov et al. 2018]. The idea is that if there are no
writes to the state after calls, then it is easy to see that the contract is ECF. Pattern-based solutions
yield many false alarms on existing code, preventing the developers from using these tools.

Example 2.1. Consider the contract in Figure 5 that illustrates a łcontract-locksž solution to
avoid callbacks found in real contracts. It uses a boolean state variable lock to forbid callbacks such
that a callback from a different object to execute withdraw will encounter lock set to true, and the
require instruction will prevent the execution of the withdraw function.2 Pattern-based tools flag

1In order to simplify the trace with the callbacks shown later, the attacker object is designed in a way that it can be invoked

at most once (by using attacked as a lock), and generate only a single callback. Note that even without the lock, there is no

infinite recursion here since eventually the condition for sending money will not hold.
2In Solidity, if the condition within the require does not hold, the execution is reverted to the initial state.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

Taming Callbacks for Smart Contract Modularity 209:7

this function as vulnerable to a reentrancy attack, which is not useful to smart contract developers
and deterring them from deploying these tools.

Callback Free Objects. As observed in [Grossman et al. 2018], a semantic way to guarantee
immunity to reentrancy attacks is to show that every execution with a callback can also be
simulated without callbacks, by making sure that an object is Effectively Callback Free (ECF).
However, checking ECF is algorithmically challenging in both open and closed environments, since
it is clearly undecidable when objects can have infinite state. By definition, the ECF property
is a hyperproperty (e.g., see [Barthe et al. 2019; Benton 2004; Finkbeiner et al. 2019; Sousa and
Dillig 2016]) relating two traces. It states that for every trace with a callback there exists a trace
without callback yielding the same effect on the mutable state. Therefore, it is hard to check
ECF both dynamically and statically. A constructive approach for creating the witness trace is
reordering callbacks such that they are executed outside the context of a callback, and show
that the resulting trace is in some sense equivalent to the original trace. This approach requires
checking commutativity of potentially unbounded sequences of operations and each such check is
potentially undecidable due to the infinite state nature of smart contracts.

Conflict Serializability. A simple conservative way to check for ECF already suggested in [Gross-
man et al. 2018], is to check that an object is ECF by reordering operations without read/write
conflicts. This method, called conflict serializability, is the basis for parallelization in modern
database systems, e.g., [Bernstein et al. 1987]. Two executions are conflict-equivalent if every pair
of read/write operations appears in the same order in both of these executions. An execution is
therefore conflict-serializable if there exists another valid execution of the object that is conflict-
equivalent to it. Thus, ECF can be ensured using the definition for conflict-serializability if we find
a callback-free reordering of an execution which is conflict-equivalent to the execution with the
callbacks. Consider the malicious execution trace from Figure 2 described above, where read (r)
and write (w) operations appear on the edges:

this trace is not conflict-serializable because the read of s in the first call is conflicting with the
write of s in the callback (marked red), and the write of s in the first call is conflicting with the
read of s in the callback (marked purple). Thus, any attempt to reorder the callback before or after
the first call will change the order of conflicts.

[Grossman et al. 2018] suggested to check for conflict serializability dynamically, i.e., checking
each execution at runtime. Even statically, conflict serializability is easier to check using some
syntactic techniques, e.g., [Tripp et al. 2012]. Therefore, the original motivation of this work
was to implement a static algorithm for checking conflict serializability. Unfortunately, conflict
serializability is over-conservative and prohibits valid solutions for reentrancy attacks. For example,
the aforementioned Figure 5 contains a corrected version of the DAO. The main idea of this
corrected code is to deploy a boolean lock preventing unintended callbacks. However, there are
traces with callbacks which are not conflict serializable:

observe that the lock variable is written to before and after the callback, and thus the read of the
lock variable in the callback cannot be reordered with respect to either write. Therefore, a tool
based on conflict serialization would yield, as well, to a false alarm in these kind of solutions.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

209:8 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

2.2 Simplified Semantic Solution Based on Commutativity Checks

Our Solution. We propose a constructive ECF analysis that can be realized using SMT solvers.
For the overview, we present a simplified and intuitive version of the definition, that does not
show all edge cases. The full definition appears in the main sections of the paper. For simplicity,
we assume here that only one function f of all functions F in our object code contains a single
location n in which callbacks may appear. (The method generalizes to any number of such nodes
and functions.) We partition f in two parts prefix and suffix, representing respectively the code
before and after the location n. Then, we consider sequences T of the form prefix ;A; suffix where
A ∈ F ∗, i.e., all possible sequences of function calls from the object, of unbounded length. Let α(·)
denote the multiset of letters in a sequence. The goal is to find subsequences G,H contained in
A, i.e., α(G) ⊎ α(H) ⊆ α(A), such that the callback-free sequence G; prefix ; suffix ;H is final-state
equivalent to T .

1 check_ECF_single_callnode(n, f):
2 prefix = extract_prefix(f,n)
3 suffix = extract_suffix(f,n)
4 L = get_left_movers(prefix)
5 R = get_right_movers(suffix)
6 if (L == F || R == F)
7 return ECF
8 else return MayNotBeECF

Fig. 6. Pseudocode of the algorithm for
checking a function with a single call node.

A pseudocode of the algorithm for checking a simpli-
fied version of our constructive ECF definition is given
in Figure 6. It operates by extracting the code segments
that pertain to the ‘prefix’ and ‘suffix’ parts of the code
of f with respect to the call node N , which yields control
to callbacks. The algorithm then computes the set of left
and right movers (similar in spirit to [Lipton 1975]). The
left and right movers determine how the subsequences
G,H from the above definitions are chosen. The simpli-
fied version of the algorithm shown in Figure 6 assumes
that all callbacks can be either moved to the left, or all
can be moved to the right.

For the code in Figure 5, we note that all callbacks can be moved to the left thanks to left-

projection: when lock is set to true, the requirements for both withdraw and deposit are not
satisfied, thus they revert without changing the state. Therefore, they can be omitted. As a result,
the check of left-movement for the segment of code of withdraw, from the start node until the call
node N (the prefix), and the full code of either withdraw or deposit, succeeds. Thus, any execution
of withdraw that has a callback is final-state equivalent to an execution of withdraw without a
callback. Indeed, in the algorithm we will have L = F and return ECF.

2.3 Strengthening the Technique for More Challenging Examples

The algorithm in Figure 6 is already capable of handling two popular schemes for safe handling
of callbacks, i.e., locks for ensuring left-movement and putting callback in the end for ensuring
right-movement. Furthermore, by checking final-state equivalence, it has precision that surpasses
the existing state of the art. However, we show a simple example of a safe code whose callback
safety cannot be explained with only left- or only right-movements, but a mix of both.

The code given in Figure 7 contains a single call node. Two boolean variables, transfersEnabled
and isMinting, are used as locks to the functions transfer and mint, respectively. Each of these
increment an integer variable, countTransfers and mintedTokens, respectively. The init function
increases by amt the value of mintedTokens assuming minting is enabled and transfers are not.
It then flips the value of both locks and initiates an external call from which callbacks can be
triggered. Upon returning from the external call, countTransfers is incremented and minting is
re-enabled. This code is safe since any calls to mint in the callback will fail and have no effect on
the final state, while calls to transfer can be postponed after init. The algorithm in Figure 6 fails to
show that the code in Figure 7 is safe. We note that a key property of the callbacks is that they

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

Taming Callbacks for Smart Contract Modularity 209:9

53 contract DeFi {
54 uint countTransfers;
55 bool transfersEnabled;
56 uint mintedTokens;
57 bool isMinting;
58 function init(uint amt) {
59 require (!transfersEnabled);
60 require (isMinting);
61 mintedTokens += amt;
62 transfersEnabled = true;
63 isMinting = false;

64 ext_call();
65 countTransfers += 1;
66 isMinting = true;
67 }
68 function transfer() {
69 require (transfersEnabled);
70 countTransfers += 1;
71 }
72 function mint() {
73 require (isMinting);
74 mintedTokens += 1;
75 }

Fig. 7. A challenging example that involves both left- and right-movement. The state consists of two boolean
variables and two integer variables countTransfers and mintedTokens. It is ECF since state that can be reached
with callbacks can also be reached without callbacks. Intuitively, after running init once, both mint and
transfer can be run to account for any delta in the integer variables that could have been accrued in callbacks.

commute with each other: transfer and mint effects are not interfering with each other and thus
not blocking movements in opposite direction: mint projected left and transfer moved right. To
simplify the presentation, we ignore the case that init is called as the callback. Importantly though,
init does not violate our property, and our technique is able to prove that.

1 check_ECF_single_callnode(n, f):
2 prefix = extract_prefix(f,n)
3 suffix = extract_suffix(f,n)
4 L = get_left_movers(prefix)
5 R = get_right_movers(suffix)
6 if (L + R == F)
7 return check_no_move_collisions(L, R)
8 else return MayNotBeECF
9

10 check_no_move_collisions(L, R):
11 mleft = F − R
12 mright = F − L
13 while mleft changes:
14 mleft = mleft + not_move_right_for(mleft)
15 while mright changes:
16 mright = mright + not_move_left_for(mright)
17 if mleft & mright = empty:
18 return ECF
19 else return MayNotBeECF

Fig. 8. Pseudocode of an algorithm for checking a
function with a single call node, that allows bidi-
rectional movement of callbacks.

A more precise algorithm for ECF checking is
given in Figure 8. For simplicity of the presentation,
it is still not handling more than a single call node,
but we describe the generalized technique in Sec-
tion 5. The algorithm of Figure 8 does not require all
callbacks to move to one determined side. Instead,
as long as all callbacks can be moved to either side,
and callbacks cannot block the movement of an-
other, we can prove a single call node is not adding
new behaviors if callbacks are invoked in it. The
key property that guarantees the soundness of the
algorithm is to show a callback cannot block an-
other callback, in any sequence of callbacks that
occurs. We consider initially the sets F-L and F-R.
They represent callbacks that must move to the
right and to the left, respectively. Since L+R==F
this means F-L ⊂ R and F-R ⊂ L. To illustrate the
problem of collisions, we assume there is a function
f ∈ F-R, that must move to the left of the call node,
and that there is a function д such that д cannot
move to the right of f and that д < L. Then, for a

sequence of callbacks д; f we cannot prove the existence of an equivalent execution using the
reordering technique. A concrete example will be given later in Figure 13.
The function check_no_move_collisions generalizes this check for any potential sequence of

callbacks by computing sets mleft and mright that represent the set of callbacks that must move to
the left or to the right, respectively. These sets are updated iteratively until a fixed point is reached,
starting from the left and right sets computed for commutativity over prefix and suffix segments

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

209:10 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

Call node at function withdraw(): line 16
withdraw() deposit()

Move before X not checked
Move after X not checked
ECF check of withdraw() failed due to the
following callback trace at line 16:

withdraw();

(a) Simple counterexample to ECF

Call node at function withdraw(): line 49
withdraw() deposit()

Move before X X

Move after not checked not checked
ECF check of withdraw() succeeded.

(b) Proof of ECF

Fig. 9. Results produced by the analysis

as before, and updated in each round relative to the set of callbacks F. It is easy to see that the
example from Figure 7 can be proven ECF by Figure 8 as transfer and mint commute.

In the following sections, we explain how the definition and algorithm are generalized to handle
the case of multiple call nodes in a function. The method applied by Figure 8 can be generalized
for any number of call nodes using induction, see Section 5.

2.4 Checking Mechanics

The lifting of the dynamic trace-based case to the static case uses the notion of segments. For a
program Pr we define a finite set of segments which conservatively cover all traces in Pr . We
show that if there is a trace violating ECF, then the segments also violate the commutativity
and projection properties. This is realized using SMT solvers for checking commutativity and
projection.
SMT solvers can be used to soundly reason about commutativity properties, e.g., [Albert et al.

2018; Bansal et al. 2018; Wang et al. 2008], and we use those in the implementation. Given the
known limitations of such solvers in large scale, our chief insight is that for ECF, it is possible to
minimize the number of commutativity checks discharged with the SMT solver. This is described
in further detail in Section 7.

To intuitively illustrate how our algorithm operates, and how counterexamples are given, we go
back to the buggy code from Figure 2. This code contains two functions, one of them containing a
single call node (withdraw). Therefore, the algorithm analyzes whether both functions, withdraw
and deposit, can commute with the code segments before and after the call node, which we denote
as withdraw_prefix and withdraw_suffix, resp. It can be seen that withdraw does not commute
with either withdraw_prefix nor with withdraw_suffix. Thus, the SMT solver shows us traces for
violating the commutativity for both, and the conclusion overall would be that withdraw cannot be
moved out if it runs as a callback in this call node. An example summarized output of the analysis
is given in Figure 9a.
For the corrected code from Figure 5, assuming the algorithm starts by trying to move both

functions to the left, then clearly the callbacks can be projected away with respect to the prefix
of the call nodeśthe lock is set to true, and the callbacks have no effect and can be omitted. An
example summary is given in Figure 9b.

2.5 Implementation

Implementing our analysis in the realistic setting of Ethereum smart contracts introduces even
more challenges: The Solidity language is Turing-complete and implements unique features such
as reverting when reaching an exceptional state, and the concept of ‘gas’ to bound the length of

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

Taming Callbacks for Smart Contract Modularity 209:11

executions, 3 among others. Furthermore, in Solidity, the distinction between a function call that
invokes the same contract, and a function that invokes an external contract, is not always clear.
While this problem is easier when operating on the EVM bytecode instead (to which Solidity is
compiled), the EVM bytecode introduces additional challenges, e.g., hiding local variables and
fields using hash functions. Our implementation operates on the EVM bytecode.

3 PRELIMINARIES

Programming language. We formalize our results using a simple imperative programming lan-
guage in which a program Pr is a (finite) collection of procedures p1, . . .pk . Each procedure has
its own (finite) set of local variables which only it can access, and all the procedures share access
to a (finite) set of global variables. Procedures are represented using control-flow graphs (CFGs).
Every edge e of the CFG is annotated with a precondition c and a set of variable assignments a.
We refer to the nodes of the CFG as program locations and to its annotated edges as transitions.
We usually range over program locations and transitions using n and ρ, resp. As our results are not
tied to a particular syntax of conditions or assignments, we leave those unspecified.

Every procedure has a unique entry node, to which no edge leads, and a unique exit point, from
which no edge leaves. In addition, some of the program locations of a procedure may be call nodes.
We sometimes refer to call nodes as callback points. Every time a procedure reaches a call node it
may invoke arbitrary procedures an arbitrary number of times and then finally havoc the value of
a specially designated return variable r by setting it to an arbitrary value.
Program states σ ∈ Σ record the program counter (which is the current location), the values

of the program’s global variables and the local variables of the currently executing procedure.
The state also maintains a stack of the program locations and values of the local variables of
pending calls. Note that in our approach we will many times compare states at call nodes, before
the execution of the procedure is completed, and hence local variables should also be taken into
account. We assume to have at our disposal a semantic function ⟦·⟧ which assigns meaning to
transitions ⟦ρ⟧ ⊆ Σ × Σ as a binary relation over program states. Our programs are deterministic
in the sense that at most one output state can be produced by applying a transition (with the
exception of the aforementioned havoc transitions) to any input state. The intention is that the
program can proceed from the program location n at the source of a transition ρ = ⟨n, c : a, n′⟩ to
the target program location n′ of ρ only when the program is in an input state σ which satisfies c
and it then produces an output state σ ′ according to the assignments a annotating ρ. Thus, ⟦ρ⟧ is
comprised of all such pairs of states ρ = ⟨σ ,σ ′⟩ that define a transition relation. Hence, from now
on, we will refer to our CFGs as (a symbolic denotation of) Transition Systems (abbreviated as TS).
Figure 10 depicts the TS of the withdraw procedure from Figure 5 where n0 and n4 are the entry
and exit nodes, resp. We write the assignments annotating edges using two-vocabularies in the
standard way: The primed variables v ′ represent the value of a variable v after the transition and
the unprimed version v represents its value before the transition executes. We mark its sole call
node (n3) using a double circle.
In our programming language we can describe encapsulated objects as programs defined as

the set of TSs for their procedures, and the non-deterministic call mechanism used to represent
callbacks. The programming model considered is general enough to define the relevant part of our
analysis for most programming languages, and its simplicity helps clarify our presentation.

3In this paper, we will ignore the subject of gas for the sake of a cleaner presentation. Contracts that are verified as ECF

will stay safe regardless of actual gas allocation and prices for instructions. This is justified since gas consumption per

instruction can be changed [Jameson 2019], exposing existing contracts to new reentrancy exploits.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

209:12 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

n0 n1 n2

n4

n3

ρ6 : lock == true

ρ0 : lock == f alse :

o_balance ′ = balance

o_shares ′ = shares

ρ1 : o_shares > 0 ∧

o_balance ≥ o_shares :

lock ′
= true

ρ2 : o_shares ≤ 0 ∨

o_balance < o_shares

ρ4 : r == success :

lock ′
= f alse

shares ′ = 0
ρ5 : r ! = success :

lock ′
= f alse

balance ′ = o_balance

shares ′ = o_shares

ρ3 : balance ′ = balance − o_shares

Fig. 10. TS for withdraw procedure from Fig. 5 written in our programming language. Conditions appear in
red and assignments in blue.

Traces. A trace is a (finite) sequence of transitions t = ρ1; . . .; ρn . We say that a trace starts resp.
ends at program location n if n is the source resp. target program location of its first resp. last
transition. We denote the starting resp. ending program location of a trace t by start(t) resp. end (t).
We denote the length of a trace t by |t |, the empty trace by ε , and the trace composition operator
which concatenates two traces by ; . We say that a trace t1 is a subtrace of a trace t if t = t0; t1; t2 for
some traces t0 and t2. A trace is a trace of procedure p if all its transitions come from p’s transition
system. A trace of procedure p is well-formed if the target program location of every transition in
it is the source program location of the next transition. A well-formed trace t of p is complete if
start(t) is p’s entry node and end (t) is p’s exit node. We refer to complete well-formed traces of
procedures as function traces. We denote the set of well-formed procedure traces of a program Pr by
TR(Pr) and the set of all well-formed traces of procedures in Pr starting at program location n

and ending at n′ by TRPr (n,n
′) = {t ∈ TR(Pr) | start(t) = n ∧ end (t) = n′}. (We omit the Pr

subscript in what follows as we assume to be working with an arbitrary fixed program Pr .).

Example 3.1. In the program shown in Figure 10, we have, for instance, that TR(n0,n3) =

{ρ0; ρ1; ρ3}, TR(n0,n4) = {ρ0; ρ1; ρ3; ρ4, ρ0; ρ1; ρ3; ρ5, ρ0; ρ2, ρ6}, and TR(n3,n4) = {ρ4, ρ5}.

A trace t is a complete callback-free trace of a program Pr if t = t1; . . . ; tn , for some 0 ≤ n such
that every ti , for i = 1..n, is a function trace. Thus, the execution of the procedures is not split due
to an incoming call. A trace is callback-free if it is a subtrace of a complete callback-free trace.

A trace t is a complete well-formed trace if it is a complete callback-free trace of Pr or there exist
traces t1, t2, and t3 such that (i) t2 is a complete well-formed trace of Pr , (ii) end (t1) is a call node,
and (iii) the trace t1; t3 is a complete well-formed trace of Pr . Note that conditions (ii) and (iii)
ensure that start(t3) = end (t1). When t1 and t3 are not complete traces and end (t1) = start(t3) is
a call node, then t2 is a sequence of complete subtraces which we refer to as the callbacks. Thus, a
trace tc is a callback in trace t if it is a function trace and there are non-empty traces t0, t1 such
that t = t0; tc ; t1. A trace is well-formed if it is a subtrace of a complete well-formed trace. In the
following, unless stated otherwise, we use the term trace to mean a well-formed trace.

Example 3.2. Examples of traces without callbacks from n0 to n4 are shown in Ex. 3.1 in
TR(n0,n4). Examples with callbacks would be (the callback trace is underlined): ρ0; ρ1; ρ3; ρ

′
6
;ρ4

where ρ ′
6
is a callback trace, or ρ0; ρ1; ρ3; ρ

′
0
; ρ ′

2
;ρ4 . However, the latter would be pruned out by

the execution since it is not feasible to execute ρ ′
0
at this point as ρ1 sets lock to true and hence the

condition in ρ ′
0
does not hold.

Executions. We denote the set of executions of a trace t by ⟦t⟧. An execution is an alternating
sequence of states and transitions ξ = σ0 ρ0σ1 . . . σn−1 ρn−1σn which starts and ends with a state
and for every i = 0..n − 1, ⟨σi ,σi+1⟩ ∈ ⟦ti⟧. We say that ξ is an execution of trace t if t is the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

Taming Callbacks for Smart Contract Modularity 209:13

subsequence of transitions in ξ . We denote the first and last states of ξ by start(ξ) and end (ξ),
respectively. We write σ − t − σ ′ to denote an execution ξ ∈ ⟦t⟧ of t such that start(ξ) = σ and
end (ξ) = σ ′. All notions for traces, like being complete, well-formed or callback-free are extended
to executions in the natural way.

Definition 3.3 (≃FS). Executions ξ1 and ξ2 are final state equivalent, written ξ1 ≃FS ξ2, if
start(ξ1) = start(ξ2) and end (ξ1) = end (ξ2).

It is now possible to use the above notations to define ECF for both executions (dynamic) and
programs (static), similarly to [Grossman et al. 2018].

Definition 3.4 (dECFFS). A complete well-formed execution ξ is effectively callback-free, written
ξ |= dECFFS , if it is final state equivalent to a complete callback-free execution.

Definition 3.5 (sECFFS). A program Pr is effectively callback-free (denoted P |= sECFFS) if
every complete well-formed execution of Pr is effectively callback free.

The notion of feasible states will be useful in the following sections:

Feasible states. A state σ is feasible for a trace t if t can be fully executed starting at σ , i.e., there
exists a state σ ′ such that σ − t − σ ′ is an execution. We denote the set of feasible states for t by
Feasible(t) and the set of all feasible states of a set of traces P by Feasible(P) =

⋃

t ∈P Feasible(P).
When a state is feasible for a trace, we also say that the trace is feasible for the state. For

example, if the trace contains two transitions (n1, x ≤ 0 : x ′
= x + 1,n2); (n2, x ≥ 0 : x ′

= x ∗ 2,n3)

(and x is an integer variable) then the feasible states for this trace are those where x is either 0 or
−1 since only in such states we can execute both transitions (as we need both x ≤ 0 and x + 1 ≥ 0).

4 SEGMENTS, PROJECTION AND COMMUTATION

This section introduces auxiliary definitions that the static analyses in Sec. 5 relies on, namely
segments of code, and the projection and commutation operations on segments. As usual, the
static analysis handles many traces at once: the concept of segment will allow us to characterize all
traces that can arise from using the fragment of code that forms the segment. In order to explain
the intuition of our operations, we consider a simple complete well-formed trace which is not
callback-free t1; tf ; t2, where tf is a function trace and t1; t2 is a function trace as well. (Note that
end (t1) = start(t2) is a call node.) We say that t1 is the left subtrace, and t2 is the right subtrace,
and denote by τ1, τf and τ2 the segments to which t1, tf and t2, resp., belong. Our technique aims
at guaranteeing ECF by proving that the final state of an execution of t1; tf ; t2 is the same as the
final state of an execution of either τ1;τ2;τf or τf ;τ1;τ2 or τ1;τ2 (when starting from the same
initial state). In order to prove the equivalence, we define projection and commutation of pairs of
segments. Applying these operations guarantees that the resulting state is the same and that in
all feasible states from which the original segment sequence can start and fully execute, so can the
new one. Informally, the projection operation applied on τ1 and τf ensures that an execution of
τ1;τf leads to the same state as an execution of τ1 alone. If it holds, we have proven ECF for the
considered sequence. Commutation ensures that an execution of τ1;τf results in the same state as
an execution of τf ;τ1.

4.1 Basic Definitions on Segments

Segments represent potentially unbounded number of traces, going between start, exit, and call
nodes. In the definition for segments, we refer to the start and exit nodes of a procedure as call
nodes too. In the rest of the paper, we assume to be working with an arbitrary fixed program Pr

and that the locations of all its functions are uniquely identified.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

209:14 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

Definition 4.1 (Segment). Given two call nodes n and n′, the segment between n and n′ is the set
of traces TR(n,n′). A segment TR(n,n′) is a function if n is the start node of a procedure and n′ is
its exit node, in this case the segment represents the set of all function traces of the procedure. The
set of function segments of a program Pr is denoted by F (Pr). A segment belongs to a procedure
p if its start and exit nodes belong to p.

Example 4.2. The segment for the program shown in Figure 10 for n0 and n3 is τ0 = {ρ0; ρ1; ρ3},
forn3 andn5 isτ1 = {ρ4 , ρ5} and forn0 andn4 isτ2 = {ρ0; ρ1; ρ3; ρ4 , ρ0; ρ1; ρ3; ρ5 , ρ0; ρ2 , ρ6},
where τ2 is a function segment, since its traces go from the start node n0 to the end node n4.

Importantly, the notion of segments applies to programs with loops, as the next example
illustrates. Consider the following function (whose TS is shown to the right):

76 function loop(int val) {
77 int aux = 0;
78 do { aux += val; } while (aux < 10);
79 }

n0 n1 n2 n3
ρ0 ρ1

ρ2

ρ3

Fig. 11. Segments for programs with loops

The function loop has only one segment that goes from the start to the end node, although this
segment might contain an infinite number of traces (as val can be negative). In particular, the
segment TR(n0,n3) contains the traces that start in the node n0 and end in n3, but there might
be an unbounded number of these traces since we can take the path ρ1; ρ2 as many times as we
like before taking the transition ρ3 and end at n3.

Definition 4.3. Given a segment τ , we say that σ − τ − σ ′ if and only if there exist a trace t ∈ τ

such that σ − t − σ ′.

4.2 Segment-Sequences

We use sequences of segments (segment-sequences), in order to prove that an execution is ECF . We
use the notation τ for segments and π for segment-sequences.

Definition 4.4 (Segment-sequence). A segment-sequence is a non-empty sequence of segments of
the program. A segment-sequence is well-formed if the end node of each segment is the initial node
of the next one.

Following the example shown in Example 4.2, the segment-sequence for the execution trace
ρ0; ρ1; ρ3; ρ

′
6
; ρ4 would be τ0;τ ′2;τ1, where the segment τ ′

2
of the callback procedure is primed.

We need to distinguish when a segment-sequence includes a particular trace of the program.

Definition 4.5. We say that a trace t is represented by a segment-sequence π = τ1;τ2; . . . ;τn if
and only if t = t1; t2; . . . ; tn for some traces t1, t2,. . . ,tn such that for every i = 1, . . . ,n we have
that ti ∈ τi .

Definition 4.6. Given a segment-sequence π , we say that σ − π − σ ′ if and only if there exists a
trace t represented by π such that σ − t − σ ′.

4.3 Commutation and Projection

We define the following concepts about commutativity and projection.

Definition 4.7 (Commutation). Given two segments τ1 and τ2, we say that τ1 commutes with
τ2 for the state σ ∈ Feasible(τ1;τ2) if and only if σ ∈ Feasible(τ2;τ1) and if σ − τ1;τ2 − σ ′ and
σ − τ2;τ1 − σ ′′ then σ ′

= σ ′′.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

Taming Callbacks for Smart Contract Modularity 209:15

Here the condition σ ∈ Feasible(τ2;τ1) means that if τ1 commutes with τ2 for a state σ ∈

Feasible(τ1;τ2) then we can execute τ2;τ1 from σ as well. Therefore, commutation for the state σ
implies both (i) we can execute τ2;τ1 from the state σ and (ii) it produces the same state. In order
to clarify requirement (i), let τa and τb be the segments containing only the trace with a single
transition ⟨n, y ≥ 0 : x ′

= 0 , y ′
= y − 1, n′⟩ and ⟨m, y ≤ 1 : x ′

= y,y ′
= y − 1, m′⟩, respectively.

They do not commute for any state σ such that σ [y] = 0 since τa ;τb can be executed, but τb ;τa
cannot: The first transition in τb decrements y to −1, thus the condition y ≥ 0 in τa does not hold.
Hence, although when both can be executed they end in the same state, we cannot directly replace
τa ;τb by τb ;τa since when σ [y] = 0 the second execution would not be feasible and therefore we
cannot guarantee that we have an alternative execution.

Definition 4.8 (Left-projection). Given two segments τ1 and τ2, we say that τ1 left-projects with
τ2 for the state σ ∈ Feasible(τ1;τ2) if and only if if σ − τ1;τ2 − σ ′ and σ − τ1 − σ ′′ then σ ′

= σ ′′.

Definition 4.9 (Right-projection). Given two segments τ1 and τ2, we say that τ1 right-projects
with τ2 for the state σ ∈ Feasible(τ1;τ2) if and only if σ ∈ Feasible(τ2) and if σ − τ1;τ2 − σ ′ and
σ − τ2 − σ ′′ then σ ′

= σ ′′.

Consider the segments τ0 and τ2 defined in Example 4.2. τ0 represents the traces of withdraw
until the call node point. τ2 is representing the withdraw function.We study whether they commute
or project in order to prove ECF for traces of withdraw that have withdraw called as a callback.
τ0 does not commute over τ2 since there is an initial state where the final values of the balance
variable could be different: τ0;τ2 does not decrement balance a second time in the callback τ2 due
to the lock being set in τ0, while τ2;τ0 may fully execute the first withdraw, decrementing balance,
after which the trace in τ0 decrements balance again. However, we have left-projection as τ0;τ2
leads to the same state as τ0 (because the lock is taken when τ2 executes and there is only one
decrement of balance).
We now define movement as a combination of commutativity and projection properties. Left-

movement expresses that for all feasible states we can either commute or left-project, right-movement

expresses that we can either commute or right-project.

Definition 4.10 (Left-movement). Given two segments τ1 and τ2, we say that τ1;τ2 left-moves if
and only if for all σ ∈ Feasible(τ1;τ2) we have that either τ1 commutes or left-projects with τ2 for
the state σ .

Definition 4.11 (Right-movement). Given two segments τ1 and τ2, we say that τ1;τ2 right-moves
if and only if for all σ ∈ Feasible(τ1;τ2) we have that either τ1 commutes or right-projects with τ2
for the state σ .

We distinguish between left and right movements to ensure that the resulting segment sequence
represents a trace of the procedure. For example, for the segment-sequence π = τ1; f ;τ2, if τ1; f
left-moves we build an equivalent callback-free segment-sequence: for all feasible states either
the execution of τ1;τ2 or f ;τ1;τ2 is final-state equivalent to π . Both contain real traces of the
program. However, we could not use that τ1; f right-moves: in case it right-projects we would get
the sequence f ;τ2 that does not represent any complete trace.

On the other hand, any movement between different functions preserves the ability to generate
a real program trace. This is the reason why we consider a more general kind of movement that
includes left-projection, right-projection, commutation and a new kind of projection that eliminates
both functions: the zero-projection.

Definition 4.12 (Zero-projection). Given two segments τ1 and τ2, we say that τ1 zero-projects with
τ2 for the state σ ∈ Feasible(τ1;τ2) if and only if, σ − τ1;τ2 − σ ′, implies σ = σ ′.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

209:16 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

Zero-projection expresses that the executions of the two segments from a state, do not change
that state. For example, if x is an integer variable, assuming 0 ≤ x ≤ 1000, the segments τ1 : x ′

=

x ∗ 2 and τ2 : x ′
= x/2 zero-project, but they do not left or right-project or commute.

We define the notion of movement, expressing that for all feasible states we can either commute
or left, right or zero-project.

Definition 4.13 (Movement). Given two segments τ1 and τ2, we say that τ1;τ2 moves if and only
if for all σ ∈ Feasible(τ1;τ2) we have that either τ1 commutes, right-projects, left-projects or
zero-projects with τ2 for the state σ .

We use the terminology left-movement to express that if τ1;τ2 left-moves, then the equivalent
sequence we obtain keeps the left segment τ1 (the equivalent sequence is τ1 or τ2;τ1). The same
happens for the right-movements: if τ1;τ2 right-moves, then τ2 remains. Movements may not
preserve any segment: for τ1;τ2, the resulting sequence may be either ϵ , τ1, τ2, or τ2;τ1.

Finally, the final state equivalence check used in the definitions of this section can be effectively
implemented using SMT encodings for simple fragments of code containing no loops and no use of
data structures (like arrays or maps). In presence of these elements, the problem becomes harder.
In our system, we have overcome these difficulties by means of abstractions using uninterpreted
functions, as described e.g. in the commutativity checks of [Albert et al. 2018]. Developing more
accurate movement checkers is an independent problem that can be the focus of future research.
Furthermore, our overall analysis can also be parametrized with efficient movement checkers
based on syntactic overapproximations relying on read/write operations.

5 THE STATIC ANALYSIS

This section presents our static analysis to prove that a given program satisfies the sECFFS property.
We first introduce in Section 5.1 the basic approach to prove that one call node is solvable in isolation,
i.e., it does not break the ECF property. In order to handle all call nodes in the program, we extend
in Section 5.2 our approach with an operation that, once a call node has been solved, we allow
joining its left and right segments to gain further accuracy.

Our techniques have to ensure that given a trace we can always find an alternative callback-free
one. To this end, we first prove that if we can solve (i.e. find a final state equivalent callback-
free trace) all traces with callbacks only at depth one (i.e. no callbacks inside another callback),
then we can solve all traces. Moreover, we only have to show that we can solve traces where all
callbacks occur inside a single function, considering all its call nodes. This result generalizes to
final state equivalence the reduction to simple traces of [Grossman et al. 2018] that was based on
conflict-equivalence.

Definition 5.1 (simple trace). Given a trace t1; . . . ; tn with ti ∈ TR, the depth of ti in t1; . . . ; tn
is the number of entry nodes visited minus the number of exit nodes visited in t1; . . . ; ti−1. The
depth of the trace is the highest depth of all its ti . A trace is simple if: (1) it is of depth one, and (2)
after removing all ti that are callbacks we obtain a trace ti1 ; . . . ; tim that is a trace of a procedure p
of the program, and we say that it is a simple trace of p.

Lemma 5.2. If all executions of simple traces of a program Pr are dECFFS then Pr is sECFFS .

The proofs of all our results are provided within the supplementary material.
Therefore, from now on, we will focus on ensuring that all executions of simple traces can be

solved. Every simple trace of a procedure p can be represented by a segment-sequence of the form

τ0; f
1
0 ; . . . ; f

1
k1
;τ1; . . . ; f

m
0 ; . . . ; f mkm ;τm

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

Taming Callbacks for Smart Contract Modularity 209:17

where all f ij are function segments and the start node of τ0 is the start node of p, the end node of
τm is the end node of p, and for all i ∈ 0 . . .m − 1, the end node of τi and the start node of τi+1
are the same call node. Note that, every pair τi and τi+1 captures, resp., the code before and after
a call node where any number of callbacks f i+1

0
; . . . ; f i+1

ki+1
can enter. The rest of this section will

provide sufficient conditions to ensure that all callbacks can either be removed by projections or
sent before τ0 or after τm .

5.1 Solvable Call Nodes

We first apply commutation and projection operations over a single call node to ensure that, for
this call node, we can convert all executions with callbacks in this call node into executions without
callbacks in this call node. When defining the segments on which the operations are applied, for
the soundness of the analysis, we need to take the minimal segments, i.e., segments that do not
include any other call node apart from the start and end node.

In this definition we consider that the initial and end nodes of a procedure are call nodes too, as
we did before introducing the definition of segment in Def. 4.1

Definition 5.3 (Minimal left/right segments). Given a call node c of a procedure p of Pr with a set
of call nodes C , we define the set of minimal left/right segments resp. as follows:

• SLeft(c) = ∪c ′{TR(c ′, c)|∀t = ρ1; . . . ; ρn ∈ TR(c ′, c), ∀j ∈ {2 . . .n}. source(ρ j) < C}

• SRight(c) = ∪c ′{TR(c, c ′)|∀t = ρ1; . . . ; ρn ∈ TR(c, c ′), ∀j ∈ {1 . . .n − 1}. target(ρ j) < C}

Intuitively, the left (resp. right) segments are those segments τ of p whose end (resp. initial)
node is c ′ for some c ′ ∈ C , and there are no more call nodes occurring in τ .

Example 5.4. Let us illustrate these sets on the examples of the paper. First, we consider the
example in Fig. 5, which is the fixed DAO, and whose TS is given in Fig. 10. Here, in addition to the
initial node n0 and the final node n4, there is a single call node n3. Then, SLeft(n3) = {{ρ0; ρ1; ρ3}}

and SRight(n3) = {{ρ4; ρ5}}. For the original DAO problem in Fig. 2 (where there is no use of the
lock variable), we have the same SLeft(n3) and SRight(n3) since its TS is like Fig. 10, but omitting
transition ρ6 and all conditions or assignments involving the lock variable.

Example 5.5. We can apply these notions to call nodes that appear in loops. Consider a function
with one call node in the loop:

81 function loop1(int val) {
82 int aux = 0;
83 do {
84 if (val != 0){
85 aux += val;
86 val++;
87 }

88 else{
89 aux = call();
90 }
91 }
92 while (aux < 10);
93 }

n0 n1

n2

n3 n4 n5
ρ0

ρ1

ρ2

ρ5

ρ6

ρ3

ρ4

Fig. 12. Example with call nodes inside loops

The only call nodes are n3 and the initial and final nodes n0 and n5. The set SLeft(n3) contains
segments that represent traces from a call node (the initial n0 or n3) to n3 and SRight(n3) from n3 to
a call node (the final n5 or n3). We first consider the segment that goes from n0 to n3: it contains all
the traces between these two nodes that do not include any other call node apart from themselves.
There might be an unbounded number of such traces since we can take the path ρ1; ρ5; ρ3 as many
times as we like before taking the transition ρ2 to end at n3. The same happens for the traces from

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

209:18 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

n3 to n3 and the ones from n3 to n5. Then, using the notation t = ρ1; ρ5; ρ3,

SLeft(n3) = {{ρ0; ρ2 , ρ0; t ; ρ2 , ρ0; t ; t ; ρ2 , . . . },

{ρ6; ρ3; ρ2, ρ6; ρ3; t ; ρ2 , ρ6; ρ3; t ; t ; ρ2 , . . . }}

SRight(n3) = {{ρ6; ρ4 , ρ6; ρ3; t ; ρ4 , ρ6; ρ3; t ; t ; ρ4 , . . . },

{ρ6; ρ3; ρ2 , ρ6; ρ3; t ; ρ2 , ρ6; ρ3; t ; t ; ρ2 , . . . }}

The static analysis needs to consider sequences of n callbacks, e.g., of the form τ1; f1; . . . ; fn ;τ2,
where the fi (for i = 1, . . . ,n) are function segments for the callbacks to all n different procedures
in the program. As we do not know which call(s) might arrive at runtime, all permutations of the
fi must be considered. Thus, we cannot just apply the operations for movements in Sec. 4 to each
of the functions since it could be the case that, for instance, f1;τ2 right-moves (but τ1; f1 does not
left-move) and τ1; fn left-moves (but fn ;τ2 does not right-move). A necessary condition in this
case is that f1; fn must move as well, since f1 may appear before fn . However, it is insufficient
since there are additional calls in the middle (f2, . . . , fn−1) whose own ability to move with τ1 and
τ2 must be preserved independently of f1 and fn . Therefore, this imposes additional movement
properties of f1 over all of f2, . . . , fn and of fn over f1, . . . , fn−1. The example in Fig. 13 illustrates
this situation for only two calls. There, we have a single call node n1, τ1 is the segment that contains
only the trace with ρ0 and τ2 is the segment that contains only the trace with ρ1. Thus, although
f1 commutes with τ2 (but not with τ1) and f2 commutes with τ1 (but not with τ2), because f1; f2
does not move, any trace represented by the segment-sequence τ1; f1; f2;τ2, does not have a final
state equivalent callback-free trace, and hence the program is not ECF. This is the reason why we
must require f1; f2 to move.

94 contract Example_no_ECF {
95 uint c;
96 uint s;
97 function inc() {
98 c = c+1;
99 call();
100 s = s+1;
101 }

103 function f_1() {
104 s = s+1;
105 c = 0;
106 }
107 function f_2() {
108 s = 0;
109 c = c+1;
110 }

inc : n0 n1 n2
ρ0 : c ′ = c + 1 ρ1 : s ′ = s + 1

f1 : n3 n4
ρ2 : s ′ = s + 1, c ′ = 0

f2 : n5 n6
ρ3 : s ′ = 0, c ′ = c + 1

Fig. 13. Example of functions f1 and f2 that do not commute. The contract is not ECF (trace ρ0; ρ2; ρ3; ρ1)

The aforementioned situation requires leveraging the projection and commutation operations
to handle multiple callbacks at a call node. Basically, we classify in Def. 5.6 the calls at this node
as either left-solvable (commute or project with the minimal left segment) and/or right-solvable
(commute or project with the minimal right segment), and then Def. 5.7 requires movement
properties for those that are exclusively left- or right-solvable.

Definition 5.6. Given a call node c of a procedure p, we define sets of function segments Left(c)
and Right(c) as follows:

(1) for every function д in Pr we have that д ∈ Left(c) iff τ ;д left-moves for all τ ∈ SLeft(c).
(2) for every function д in Pr we have that д ∈ Right(c) iff д;τ right-moves for all τ ∈ SRight(c).

The idea is that the sets Left(c) and Right(c) include the functions that, individually and
independently of other functions, can move over the left and right segments of the call at call
node c . But as the functions may appear in the callback at any order, we have to take into account
the movements between the possible functions. For example, consider functions f1, f2 such that
f1 < Right(c) and f2; f1 does not move, then if we consider the sequence of callbacks f2; f1, then
the only possibility for f2 is to move to the left, although it may belong to Right(c). This happens
because the movement to the right of f1 is impossible. To make sure we are able to handle all

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

Taming Callbacks for Smart Contract Modularity 209:19

potential permutations of functions appearing as callbacks in a call node c , we introduce the
sets MLeft(c) (must-left) and MRight(c) (must-right). Informally, these sets include the functions
that cannot move over the right and left segments resp.; either because they are not members of
Right(c) or Left(c), or because they are blocked by a function, or sequence of functions, that must
move left or right.

Definition 5.7. Given a call node c of a procedure p, and denoting the set of functions of Pr by
F (Pr), we define sets of function segments MLeft(c) and MRight(c) using the least fixed point
operator as follows:

(1) MLeft(c) = LFPX

(

X ∪
{

f |f ∈ F (Pr) ∧ ∃x ∈ X .f ; x not moving
})

, X0 = F (Pr) \Right(c)

(2) MRight(c) = LFPX

(

X ∪
{

f |f ∈ F (Pr) ∧ ∃x ∈ X .x ; f not moving
})

, X0 = F (Pr) \Left(c)

Intuitively, we can now define when a call node is solvable by ensuring that we can always take
the callbacks at that node and either remove them or send them before its minimal left segment
or after its minimal right-segment.

Definition 5.8 (Solvable call node). Given a program Pr , we say that a call node c of Pr is solvable
ifMLeft(c) ∩MRight(c) = ∅.

If all procedures in our program have a single call node then, if they are all solvable, it is easy
to show that the program is sECFFS . However, if a procedure has several consecutive call nodes,
we cannot handle each one of them in isolation, as the following example illustrates. Consider a
procedure p with two call nodes (left) and a procedure f (right).

n0 n1 n2 n3
ρ0 : x ′

= x ∗ 2 ρ1 : x ′
= x + 1 ρ2 : x ′

= x ∗ 2
n4 n5

ρ3 :: x ′
= x + 1

There, f is only in Right(n1) as it only commutes with its minimal right segment, and it is only
in Left(n2) as it only commutes with its minimal left segment. This shows a circularity that
implies that we cannot move a callback to f in n1 out of the trace since it will be moved to n2 (by
commutation) and then back to n1 (by commutation) again.
We can only ensure ECF if we also impose that, for every function, we will always be able to

move it to the right or to the left of all call nodes as the following theorem states:

Definition 5.9 (sECFSS). Given a program Pr , it is sECFSS if and only if for all procedures p in
Pr with call nodes C we have that, for every c, c ′ in C such that c ′ is reachable from c or c ′ = c , it
holds thatMRight(c) ∩MLeft(c ′) = ∅.

Example 5.10. Consider again the example in Figs. 5 and 10 which is sECF. In Example 5.4, we
have seen that SLeft(n3) = {{ρ0; ρ1; ρ3}} and SRight(n3) = {{ρ4; ρ5}}. Now let τd be the function
segment of deposit and τw be the function segment of withdraw. We have that Left(n3) = {τd , τw }

as for both {ρ0; ρ1; ρ3};τd and {ρ0; ρ1; ρ3};τw left project to {ρ0; ρ1; ρ3}, since ρ1 sets lock to true
(which is not changed in ρ3), and in such state both deposit and withdraw do nothing. Then all
functions are in Left(n3) and hence the program is sECFSS .

Now, we show why the example in Fig. 2 (which is not ECF) is not sECFSS . As seen in Example 5.4
we have that SLeft(n3) = {{ρ0; ρ1; ρ3}} and SRight(n3) = {{ρ4; ρ5}}, and recall that we do not
use the lock variable and we do not have transition ρ6. Here, we have that τw neither belong to
Left(n3) nor to Right(n3), since without using lock, we cannot project or commute.

Theorem 5.11. If a program is sECFSS then it is sECFFS

5.2 Segments Join

The technique we have considered in the previous section is powerful, but it can be more accurate
if, once a call node has been solved, we allow joining its left and right segments. For instance,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

209:20 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

consider a general segment-sequence representing simple traces of some procedure of our program
τ0; f

1
0
; . . . ; f 1

k1
;τ1; . . . ; f

m
0
; . . . ; f m

km
;τm . Then if we solve the call node between τ0 and τ1, i.e., if

we take all functions f 1
0
; . . . ; f 1

k1
out of this call node, by projecting or commuting with τ0 or τ1,

we will have τ0 and τ1 together without any callback in the middle. Hence, we can consider them
together as a single segment τ0;1 after joining them. The reason for joining them is that having
larger segments leads to strictly more accurate results. The following example shows a situation
where we can gain accuracy by joining segments:
111 contract Example_no_ECF {
112 uint c;
113 function discount2() {
114 c = c − 1;
115 call();
116 c = c − 1;
117 call();
118 c = 0;
119 }

121

122 function
mult(){

123 c = c ∗ 2;
124 }
125 }

discount2 :

n0 n1 n2 n3
ρ0 : c ′ = c − 1 ρ1 : c ′ = c − 1 ρ2 : c ′ = 0

multiply :

n3 n4
ρ3 : c ′ = c ∗ 2

Fig. 14. ECF contract that requires call node removal and cannot be proven using minimal segments)

Example 5.12. Consider the example in Fig. 14 whose procedure discount2 has three transitions
and two call nodes, namely n1 and n2 (where callbacks can enter), while the functionmultiply has
a single transition and no call nodes. Assume that our trace has a callback (to multiply) at each
call node: ρ0; ρ3; ρ1; ρ

′
3
; ρ2 (we have primed the second use of multiply). The minimal segments

of discount2 are (i) the set of traces from n0 to n1, i.e. τ0 = {ρ0}, (ii) the set of traces from n1 to
n2, i.e. τ1 = {ρ1}, and (iii) the set of traces from n2 to n3, i.e. τ2 = {ρ2}. We use f for the function
segment {ρ3} of multiply. Now, the segment-sequence representing our trace is τ0; f ;τ1; f ;τ2. We
start by handling the second call node, n2, first. We can do either commutation of f over τ2 or we
can do right-projection of f ;τ2 to τ2, e.g., in the latter we have solved the call node n2, and the
new segment-sequence (representing final state equivalent traces to our trace) is τ0; f ;τ1;τ2. But
now we cannot go further and solve n1 since we cannot apply any projection or commutation on
τ0; f or f ;τ1. However, if we use the fact that n2 has already been solved, we can consider that n2
is no longer a call node, since it does not have callbacks in it, then our transition system would be:

n0 n1 n2 n3
ρ0 : c ′ = c − 1 ρ1 : c ′ = c − 1 ρ2 : c ′ = 0

and hence if we compute the right segment of n1 we obtain the segment τ1;2 = {ρ1; ρ2}, which
is the join of segments τ1 and τ2, and hence the sequence we have to consider now is τ0; f ;τ1;2.
Then, we can right-project f ;τ1;2 to τ1;2, and the result τ0;τ1;2 is a callback-free sequence (which
implies that we have a callback-free execution). The following table compares the different options
to try to solve the call nodes, with and without joins (⊘ means no operation can be applied, and ✷

means that callbacks were successfully removed):

τ0; f ;τ1; f ;τ2
start with n1 start with n2 start with n2 with joins

⊘ RightProj(f , τ2) RightProj(f , τ2)
⊘ remove n2 as call node

RightProj(f , τ1;2)
✷

Note that the reason we can right-project f ;τ1;2 to τ1;2 is that after setting c to zero, we have that
2 ∗ 0 = 0, thus f is not changing c .

We will thus consider that we can apply an operation to remove call nodes that enables a more
accurate static analysis for procedures with multiple call nodes. However, once we introduce this

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

Taming Callbacks for Smart Contract Modularity 209:21

operation, the order in which call nodes are solved might affect the accuracy of the analysis results.
Assume we have a segment-sequence π with k callbacks (n1, . . . ,nk ordered by their position at
the execution). We establish a new order in which they are solved, by means of a permutation
i1, . . . , ik of 1, . . . ,k which indicates that we will solve the callback nodes in the order ni1, . . . ,nik .
For instance, the order 2, 1 leads to a solution in Example 5.12. The general concept we have is an
order <O that indicates when a call node is solved before another, i.e. if c ′ <O c then we know
that c ′ has been solved when we solve c . This means that when checking if c is solvable we have
to first remove as call nodes from the transition systems all those call nodes c ′ such that c ′ <O c .
Now, we present a generalization of the sECFSS property to the case where we solve the call nodes
in a given order. First we define the notion of solvable call node for a given order <O .

Definition 5.13 (Orderly solvable call node). Given a program Pr and an order <O on the call
nodes of Pr . We say that a call node c of Pr is solvable wrt. <O if c is solvable after removing as
call nodes from Pr all c ′ <O c .

Our main result is that if there exists an order for which all call nodes in our program are
solvable, then the program is ECF:

Definition 5.14 (sECFOS). We say that a program Pr is sECFOS if there exists a total order <O
for the call nodes C of Pr such that all c ∈ C are solvable with respect to <O .

Theorem 5.15. If a program is sECFOS then it is sECFFS .

Example 5.16. Consider the example in Fig. 14 for the function discount2 whose TS is in Ex. 5.12,
takingO as n2 <O n1, we have that SLeft(n2) = {{ρ1}} and SRight(n2) = {{ρ2}}, and SLeft(n1) =
{{ρ0}} and SRight(n1) = {{ρ1; ρ2}}. Now, we can prove that both discount2 and multiply belong
to Right(n2) and to Right(n1).

6 CALLBACK INVARIANT

Motivated by challenging contracts found in the Ethereum environment (similar to the one
in Example 6.2 to follow), we introduce the notion of callback invariant as a way to increase the
accuracy of the sECFSS and sECFOS approaches. As a standard invariant, a callback invariant is
a property that holds whenever we reach the call node but, in addition, it must also hold after
executing any possible sequence of callbacks. The notion of callback invariant can be extended to
several call nodes, having an invariant per call node. Note that we can always take true as invariant
in a call node if we do not need it. Then, taking true as a (fictitious) invariant for the initial node,
we have that the invariants must be preserved by all transitions between two call nodes (or the
initial node) and they need to be preserved when executing any of the functions in the contract.
Being precise:

Definition 6.1. Given a procedure p with call nodes C and initial node n0, we say that I (C), from
nodes to properties, is callback invariant of C , if, taking I (n0) = true , we have that

• For every c ∈ C and every segment τ in SLeft(c) starting at node n ∈ C ∪ {n0}, we have that
if σ satisfies I (n) and σ − τ − σ ′, then σ ′ satisfies I (c).

• For all c ∈ C and д ∈ F (Pr) if σ satisfies I (c) and σ − д − σ ′, then σ ′ satisfies I (c).

Example 6.2 (Monotone lock). The contract appearing in Figure 15 is a simplification with no loops
of the Synthetix case study. It uses a counter to prevent callbacks that can lead to harmful results.
This contract only has two call nodes: n2 and n3. The node n2 is solvable according to the sECFOS

approach, but n3 is not. The minimal segments of the node n3 are SLeft(n3), which only contains
the segment τl = {ρ0; ρ3}, and SRight(n3), which only contains τr = {ρ5; ρ6, ρ5; ρ7}. This node

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

209:22 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

pragma solidity ^0.4.24;
contract Bank {
mapping (uint => uint) public deposits;
uint initIndex;
uint count = 0;
function exchange(uint remaining) {
count += 1;
uint lc = count;
deposit = deposits[initIndex];
if(deposit == 0){
initIndex++;

}
else if(deposit > remaining){
uint newAmount= deposit − remaining;
deposits[initIndex] = newAmount;
user.send(remaining);

}
else{
deposits[initIndex] = 0;
user.send(deposit);
initIndex++;

}
require(lc == count);

}
}

n0

n1

n2 n3

n4

n5

ρ0 : count ′ = count + 1

lc ′ = count + 1

deposit ′ = deposits[initIndex]

ρ1 : deposit == 0 :

initIndex ′
= initIndex + 1

ρ2 : deposit > remaininд :

deposits[initIndex]′ = deposit − remaininд

ρ3 : deposit ! = 0∧

deposit <= remaininд :

deposits[initIndex]′ = 0

ρ4

ρ5 : initIndex ′
= initIndex + 1

ρ6 : count == lc
ρ7 : count ! = lc :

revert

Fig. 15. Simplified Synthetix contract that requires a callback invariant

is not solvable: the function exchange does not left-move nor right-move with the segments τl
and τr , resp. The states that are problematic for the right-movements are only the ones where
σ [count] = σ [lc] − 1. For any other state, after executing exchange we will obtain a state σ ′ such
that σ ′[count] , σ ′[lc], thus the execution will revert. Hence, if we could prove that no execution
gets to the call node n3 in the problematic state described above, we would be able to prove that
the contract is sECFFS .

We can check that I , with I (n3) = {lc ≤ count} and I (n2) = true , is a callback-invariant. First,
it is clear that the only trace that goes from n0 (the initial node) to n3 is t = ρ0; ρ3. Then, for
any initial state σ if σ − t − σ ′ then σ ′[count] = σ [count] + 1 and σ ′[lc] = σ [count] + 1, thus σ ′

satisfies I (n3). On the other hand, if we execute any function of the program from a state that
satisfies I (n3), then it ends at a state that satisfies I (n3): the value of the local variable lc does not
change and count can only increment. Note that the property is invariant provided there are no
overflows, however since we start in 0 and can only increment by 1 in each call, the assumption
that we will not reach 2256 is reasonable. There is a more complex invariant which does not need
this assumption but for readability reasons we have decided not to present it.
We want to use the information that a callback invariant gives us to check the commutation

and projection of the callbacks. We first adapt the definition of movements to take into account
the invariants: in the previous version we included all feasible states, now we are going to restrict
it to the ones that satisfy the invariant.

Definition 6.3 (Left-movement with precondition). Given two segments τ1 and τ2, and a property P ,
we say that τ1;τ2 left-moves assuming the precondition P if and only if for all σ ∈ Feasible(τ1;τ2)

such that σ satisfies P we have that either τ1 commutes or left-projects with τ2 for the state σ .

The definitions of right-movement with precondition, zero-projection with precondition and move-

ment with precondition are modified analogously.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

Taming Callbacks for Smart Contract Modularity 209:23

Consider the segment τr = {ρ5; ρ6, ρ5; ρ7} and τexc representing the function exchange. Using
the previous definition, we can check that τexc ;τr does not right-move: it reverts for any state
σ such that σ [count] , σ [lc] − 1, but for any state σ such that σ [count] = σ [lc] − 1 they do
not commute or right project. Nevertheless, τexc ;τr right-moves assuming the precondition I (n3),
because the problematic states do not satisfy I (n3).
Then, we just have to adapt the definitions of Left(c),Right(c) to use these new movements

using a precondition map I and modify the setsMLeft(c) andMRight(c) according to them.

Definition 6.4. Given a procedure p with call nodesC and initial node n0 and a map I from nodes
to properties. We extend function Left(c, I) and MLeft(c, I) for some c ∈ C as follows:

(1) for every function д in Pr we have that д ∈ Left(c, I) iff for all τ ∈ SLeft(c) starting at node
n ∈ C ∪ {n0} we have that τ ;д left-moves assuming the precondition I (n) .

(2) MLeft(c, I)) = LFPX

(

X ∪
{

f |f ∈ F (Pr) ∧ ∃x ∈ X .f ; x not moving assuming I (c)
})

with
X0 = F (Pr) \ Right(c, I)

The definition MRight(c, I) is modified analogously and the definition of Right(c, I) only varies in
that it assumes I (c) as precondition.

For the call node n3 of the previous example, according to the original definition Left(n3) = ∅

andRight(n3) = ∅, but if we consider the invariant I with I (n3) = {lc ≤ count} thenRight(n3, I) =
{τexc} so MLeft(n3, I) = ∅.
Finally, we define the notion of sECFIOS program that takes callback invariants into account.

Definition 6.5 (sECFIOS). Given a program Pr , it is sECFIOS if and only if there exist an order <O
for the call nodesC of Pr and a callback invariant I ofC such that all c ∈ C are solvable assuming I
with respect to <O .

Theorem 6.6. If a program is sECFIOS then it is sECFFS

Finally, we can prove that the above contract is ECF . The map I , with I (n3) = {lc ≤ count} and
I (n2) = true , is a callback invariant and MLeft(n3, I) = ∅, which implies that n3 is solvable. Since
n2 is also solvable, we conclude that the contract is sECFIOS .

7 IMPLEMENTATION AND EXPERIMENTAL EVALUATION

Our implementation decompiles [Lam et al. 2011] smart contracts given as EVM bytecode and
produces code in an intermediate representation amenable to static analysis and the generation
and discharge of verification conditions using SMT solvers, such as Z3 [De Moura and Bjùrner
[n.d.]]. Furthermore, since the EVM bytecode does not contain a notion of procedures or functions,
and the Solidity compiler generates generic ‘dispatch’ code to jump to the appropriate function
code, we split out the function implementations from the large EVM bytecode. Currently, we have
bounded support for loops using finite unrolling, we are working on the general extension.

Motivated by the real smart contracts analyzed, the actual algorithm implemented is based on
sECFOS , but with a predetermined call node ordering: going linearly from latest (in program-order)
call nodes to earlier call nodes. The considerations for choosing that particular approach are:

• The sECFOS is strictly more precise than sECFSS approach, thanks to join operations.
• Nevertheless, trying all possible call node orders, given that there are functions that have
over 10 call nodes, may be impractical due to the number of required SMT queries.

• The later-to-early call node order is a good fit for well-written contracts that make sure to
place call nodes after all updates to the global state were performed. For these contracts, the
approach would lead to faster proofs of ECF.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

209:24 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

We have run our benchmarks on an Amazon AWS c5n.2xlarge machine. The SMT solver used is
Z3, with a timeout of 60 seconds per query. To each call node we set a timeout of 5 minutes for
analyzing it, requiring all needed SMT queries to run within the time span.

Choice of call nodes. Call nodes are detected in a conservative mannerÐany instance of a call
instruction, except for STATICCALL, is considered a call node. The STATICCALL instruction is
not considered a call node because it enforces the VM to avoid any writes to the global state in
all calls until the STATICCALL returns, and therefore trivially projects. Our method assumes a
completely open environment, in which only the contract checked is fixed and known. As we show
later, many contracts use other contracts as libraries and thus establish properties that should
hold when the contract calls the library. In such cases, it is possible to ignore certain call nodes,
because the callee contract is guaranteed not to trigger a callback. In result, this would lead to a
greater number of verified contracts (those marked ∗ in Table 1).

Delegate calls. Two special instructions in the EVM bytecode are DELEGATECALL and CALL-
CODE. These instructions allow executing an external code, that is not necessarily known at
compile-time, and execute it in the context of the caller’s state. We are treating these instructions
as regular call nodes in order to prove ECF, but it should be noted that if a contract contains such
delegating instructions, then ECF does not guarantee sound modular reasoning.

Realistic setting. To validate the usefulness of our approach in a realistic setting, we picked
as benchmark set the most used and invoked smart contracts. To that end, we extracted the
top-150 contracts based on volume of usage, as of December 31st, 20194. A total of 132 contracts
were successfully decompiled, but 38 contracts did not contain call nodes and are excluded. Since
the ECF property that we check is based on the results for all functions, we give in Table 1 the
summarized results for all functions extracted out of all contracts.

Out of the total 2733 functions extracted, 386 contained call nodes, and thus are candidates to
ECF verification. Out of these 386 functions, 242 are verified to be ECF (62.7%), 133 are reported as
violating ECF (34.5%), and 11 time out (2.8%) before a definite answer is returned.

Manual assesment of the violations. We manually analyzed 115 of the violations (18 did not have
source code). 18 functions are confirmed to be true violations.5 The majority of the violations (56)
are due to the over-conservative choice of call nodes. After a careful inspection, we believe those
call nodes can be omitted, because they are calling into contracts that cannot generate callbacks.
As our analysis considers just the contract inspected for ECF, it cannot infer properties of the
callees. We therefore conclude that by extending the analysis tool to allow the user fine-grained
control over the choice of call nodes, the precision of the analysis increases significantly. 30 of the
violations are a result of overapproximations in the tool, mainly due to the intricacies of analyzing
low-level EVM such as pointer arithmetic based on hashing and compiler-generated copy loops.
The remaining 11 violations are true false-positives, since we found that the functions have ECF
behavior that cannot be proven using sECFOSÐnamely, it is possible to construct an equivalent
execution using a different function from the one being checked.

Challenging real case study. The vast majority of the contracts analyzed in Table 1 are rather
simple. Therefore, the readermay conclude that all smart contracts are simple, which is not our expe-
rience. Some of the valuable smart contracts actually implement complex logic, which makes check-
ing ECF and other properties quite hard. One such example is the reentrancy bug [Anonymized

4up to Ethereum blockchain block number 9193265 until 2019-12-31 23:59:45 UTC
5We have contacted the code owners and are waiting for their responses.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

Taming Callbacks for Smart Contract Modularity 209:25

Table 1. Summarized ECF results. ‘CN’ stands for ‘call node’, and ‘f’ for ‘function’.

fs % all % fs Avg. T
fs w. CN (sec.)

ECF Verified (>0 CNs) 242 8.9 62.7 30
ECF Violated 133 4.9 34.5 132
Timeout 11 0.4 2.8 1240

Analysis of violations (# fs)

Confirmed violations 18
No source code 18
FPs due to call node choice∗ 56
FPs due to the implementation 30
FPs to sECFOS 11

for the submission 2020] in Synthetix [Synthetix 2020]Ða high-volume De-Fi6 application.7 Our
technique can mechanically verify both: one of them as-it-is, the other using callback invariants.
To the best of our knowledge, none of the techniques available are able to show that immunity to
reentrancy attacks is true for the fixed contract.

Comparison to other tools. We compared our implementation to other existing tools whose
premise is to handle ‘reentrancy bugs’: Securify2 [Tsankov et al. 2018] and Slither [Feist et al. 2019].
Notably the properties checked by these tools are more restrictive than ECF: Securify and Slither

check that there are no global state updates following a call instruction. When we ran this case
study (as well as our lock-based example of Figure 5), Securify and Slither both failed to show that it
is actually safe (Securify times out after hours of running on the Amazon machine). The same holds
for the simplified version of our case study as appears in Figure 15. In addition, neither Securify
nor Slither were able to prove the correctness of the lock-based example of Figure 5.
We compared Securify and Slither against our tool on a compatible subset of 110 contracts

from the benchmark. We could not compare all contracts from the benchmark because the other
tools accept Solidity source code and sometimes even specific Solidity versions, rather than EVM
bytecode. Because of that we could only compare Securify to 10 contracts, and the results were
aligned with ours in 9 contracts. Securify crashed on the last contract.
For Slither, there were 15 examples where the results did not agree. In two of them Slither

reported a bug, but our tool was able to prove the contracts correct. In the other two Slither

missed real bugs, and our tool detected them. In the remaining 11, our tool detected false bugs
while Slither proved them correct. These bugs were caused by our conservative choice of call nodes
and overapproximations in the static analysis.

8 CONCLUSIONS AND RELATED WORK

We have presented a novel static analysis that proves modularity of the contract for any execution
and can be applied to ensure effective-callback freedom prior to deployment. Reentrancy attacks
have led to the most severe exploits in the blockchain and, as we have shown in the paper, general
techniques for ensuring modularity of programming languages can be used to detect ECF violations
and avoid these malicious attacks. This kind of reentrancy problems were pinpointed as a possible
source of correctness bugs [Atzei et al. 2017; Luu et al. 2016]. As discussed in Sections 1 and 2, our
work is inspired by that of [Grossman et al. 2018] who pioneered the idea of ECF as means to
immune modules (contracts) from reentrancy attacks and enable modular reasoning. However, the
analysis of [Grossman et al. 2018] is dynamic hence it cannot be used to verify ECF. In the rest of
this section, we review other closely related work.
[Mavridou and Laszka 2018] present a framework, called FSolidM [9], that allows preventing

reentrancy via a built-in locking mechanism. In contrast, we present a technique for verifying ECF,

6Decentralized Finance
7according to [The Concourse Open Community 2019], rated 2nd in locked USD value, with $116.7M locked as of May 5th,

2020.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

209:26 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

and thus the absence of reentrancy bugs, which is language-agnostic while allowing judicious use
of callbacks. [Grishchenko et al. 2018a] survey on recent theories and tools for formal verifica-
tion of Ethereum smart contracts focusing on the F*-formalized small-step semantics presented

by [Grishchenko et al. 2018b] and its Horn clauses-based abstraction. Most relevant to our work is

over-approximation of the single-reentrancy property [Grishchenko et al. 2018b; Schneidewind

et al. 2020] which, intuitively, states a contract is single-entrant if it cannot perform any more calls

once it has been reentered. This restriction, however does not mean that callbacks may not have

unique behaviors which cannot be exposed in callback-free executions. [Tsankov et al. 2018] report

of a parametric static verification tool which can detect whether a contract violates a given security

property encoded as a bad pattern in the contract’s data-flow graph. To detect reentrancy-related

bugs, they use a pattern which forbids writes after calls. Thus, their restrictions are more severe

even than the ones imposed by conflict-based ECF. Similar patterns are used by [Feist et al. 2019;

Tikhomirov et al. 2018].

[Kolluri et al. 2019] identified a family of bugs in blockchain-based smart contracts, dubbed

event-ordering (or EO) bugs, which are related to the dynamic ordering of contract events, i.e.

calls of its functions. However, in contrast to our work, the ordering they investigate is between

different transactions while our focus is on errors which occur within one transaction. Thus, the

class of bugs we are after does not overlap with theirs. Also, our tool is static while theirs is based

on dynamic (symbolic) testing. In MAIAN [Nikolić et al. 2018] the authors present a symbolic

execution tool for detecting contracts vulnerabilities such as ether leaking. Such vulnerabilities

may intersect with reentrancy vulnerabilities (for example, the DAO’s reentrancy attack leads to

leaked ether).

[Brent et al. 2020] checks information-flow properties to identify vulnerabilities that occur in a

multi-transaction setting, including callbacks.

[Rodler et al. 2019] employ taint analysis on Ethereum traces to detect reentrancy vulnerabilities.

The dynamic check implemented there is more precise than the as-of-then static analysis tools

and its performance is similar to [Grossman et al. 2018] for non CREATE-generated callnodes. (the

latter did not include CREATE as a callnode candidate). A work by [Ferreira Torres et al. 2019]

define a language for patterns in Ethereum transactions representing malicious behaviors, and an

instrumented Ethereum client that can detect such patterns in-vivo. Patterns can be added and

removed based on voting in a smart contract. 4 out of 6 patterns presented in [Ferreira Torres et al.

2019] are related to reentrancy vulnerabilities. Of most relevance to our work is the comparison

between pattern-based detection of malicious attacks and semantic equivalence checking. In both

the dynamic and static settings, the pattern-based approach can easily lead to over-approximation

and false positives, while on the other hand not giving full clarity about the actual immunity of

the code to malicious callbacks. In contrast, our approach, while more expensive computationally,

gives strong guarantees about callbacks not being able to influence the execution in unexpected

ways, while also being more resistant to false positives.

As [Sergey and Hobor 2017] note when discussing the similarity of smart contracts to concurrent

objects, enabling modular verification is one of the highlighted challenges. A key benefit of our

semantic equivalence based approach, when compared to pattern-based techniques, is that it

enables to modularly check properties of ECF contracts. For example, [Want et al. 2019] present

VeriSol, a tool for static verification of smart contracts against a state machine model specification

and an access-control policy. The analysis is capable of inferring contract invariantsÐproperties

of the state of the contract which are true when none of its procedures is pending. However,

the analysis is not modular. We believe that our approaches can be combined so that once the

contract is verified as ECF, VeriSol can infer its class invariants in a sound modular way. A

different approach to modularity is given in [Cecchetti et al. 2020], where reentrancy is defined as

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

Taming Callbacks for Smart Contract Modularity 209:27

an information-flow property, and reentrancy security as a property that guarantees invariants
inductiveness even in the presence of callbacks. Their approach has the benefit of finer-grained
policies, enabling supporting systems that consist of multiple contracts, but also requires the user
to annotate ‘critical sections’ in the code. Complementary approaches to modularity check an
invariant of the program, e.g., [Beillahi et al. 2020; Li et al. 2020].

As regards the state equivalence check, we have implemented an SMT-based technique similar to
the ones proposed to check commutativity in the context of model checking of concurrent programs
(see, e.g., [Albert et al. 2018; Wang et al. 2008]). However, our method is generic wrt. the particular
check used and we will benefit for future improvements in this domain. For example, [Bansal
et al. 2018] present a refinement-based technique for synthesizing commutativity conditions for
operations on representations (implementations) of abstract data types (ADTs). The algorithm is
generalized to handle left/right-movers [Lipton 1975]. We utilize commutativity checks as a łblack
boxž in our algorithms. Thus, in that respect our works are complementary. Nevertheless, the
projection checks and the gradual simplification of the commutativity checks done in the treatise
algorithm are novel.

Finally, our problem is also related to the atomicity analysis [Flanagan and Qadeer 2003; Wang
and Stoller 2005] studied in the concurrency setting. An atomicity analysis infers that code blocks
are atomic, i.e., that every execution of the program is equivalent to one in which those code
blocks execute without interruption by other threads. An important difference of our work with
the atomicity analysis in [Wang and Stoller 2005] and earlier work in [Flanagan and Qadeer 2003]
is that our łmust-leftž and łmust-rightž sets provide strictly more accurate analysis than their
left-movers and right-movers. This is because we do not require that an action commutes in the
same direction (left or right) with all the actions of the other threads. Here is a simple example
considering atomicity at the instruction-level, composed of 3 functions (that in the concurrent
setting would be 3 threads and an interleaving point in the call):

function f(){
x = x + 1;
call();
y = y + 1;

}

function f1(){
x = 1;

}

function f2(){
y = 1;

}

We can verify atomicity/ECF because f1 right-commutes with the segment ły=y+1ž and f2
left-commutes with the segment łx=x+1ž and additionally the action in f1 and the action in f2
commute (this commutation is not considered by previous approaches and hence they would fail
to verify atomicity). While our technique makes the analysis potentially more costly, as there are
more commutations to be checked, in our setting the number of actions (functions in our context)
is typically small, compared to the number of actions in multi-threaded programs.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for their comments that have helped improve the
presentation and contents of this paper. This work was funded partially by the Spanish MCIU,
AEI and FEDER (EU) projects RTI2018-094403-B-C31 and RTI2018-094403-B-C33, and by the CM
project S2018/TCS-4314. This research was partially supported by the Israeli Science Foundation
(ISF) grant No. 1810/18. This material is based upon work supported by the United States-Israel
Binational Science Foundation (BSF) grant No. 2016260. The research was supported in part by
the Blavatnik Interdisciplinary Cyber Research Center, Tel Aviv University, and Pazy Foundation
grant No. 347853669; The Israel Science Foundation (ISF) grant No. 1996/18.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

209:28 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

REFERENCES

Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, and Albert Rubio. 2018. Constrained Dynamic Partial Order Reduction.
In Computer Aided Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference,

FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II. 392ś410.
Anonymized for the submission. 2020. Anonymized for the submission. .
Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks on Ethereum Smart Contracts SoK. In

Proceedings of the 6th International Conference on Principles of Security and Trust - Volume 10204. Springer-Verlag New
York, Inc., New York, NY, USA, 164ś186. https://doi.org/10.1007/978-3-662-54455-6_8

Kshitij Bansal, Eric Koskinen, and Omer Tripp. 2018. Automatic Generation of Precise and Useful Commutativity Conditions.
In Tools and Algorithms for the Construction and Analysis of Systems, Dirk Beyer and Marieke Huisman (Eds.). Springer
International Publishing, Cham, 115ś132.

Gilles Barthe, Renate Eilers, Pamina Georgiou, Bernhard Gleiss, Laura Kovács, and Matteo Maffei. 2019. Verifying Relational
Properties using Trace Logic. In 2019 Formal Methods in Computer Aided Design, FMCAD 2019, San Jose, CA, USA, October

22-25, 2019. 170ś178.
Sidi Mohamed Beillahi, Gabriela Ciocarlie, Michael Emmi, and Constantin Enea. 2020. Behavioral Simulation for Smart

Contracts. (2020), To appear.
Nick Benton. 2004. Simple relational correctness proofs for static analyses and program transformations. ACM SIGPLAN

Notices 39, 1 (2004), 14ś25.
Thomas Bernardi, Nurit Dor, Anastasia Fedotov, Shelly Grossman, Alexander Nutz, Lior Oppenheim, Or Pistiner, Mooly

Sagiv, John Toman, and James Wilcox. 2020. Preventing Reentrancy Bugs - Another Use Case for Formal Verification.
https://www.certora.com/blog/reentrancy.html.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency Control and Recovery in Database Systems.
Addison-Wesley.

Alina Bizga. 2020. A hackers’ dream payday: Ledf.Me and Uniswap lose $25 million worth of cryptocur-
rency. https://securityboulevard.com/2020/04/a-hackers-dream-payday-ledf-me-and-uniswap-lose-25-million-worth-

of-cryptocurrency/. [Online; accessed 11-May-2020].
Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis Smaragdakis. 2020. Ethainter: A Smart Contract

Security Analyzer for Composite Vulnerabilities. (2020), To appear.
Vitalik Buterin. 2016. CRITICAL UPDATE Re: DAO Vulnerability. https://blog.ethereum.org/2016/06/17/critical-update-re-

dao-vulnerability/. [Online; accessed 2-July-2017].
Ethan Cecchetti, Siqiu Yao, Haobin Ni, and Andrew Myers. 2020. Securing Smart Contracts with Information Flow. In Third

International Symposium on Foundations and Applications of Blockchain 2020.
Consensys. 2019. Ethereum Smart Contract Best Practices. https://consensys.github.io/smart-contract-best-practices/

known_attacks/. [Online; accessed 14-May-2020].
Phil Daian. 2016. (2016). http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/

Leonardo De Moura and Nikolaj Bjùrner. [n.d.]. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337ś340.

Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis framework for smart contracts. In 2019

IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8ś15.
Christof Ferreira Torres, Mathis Baden, Robert Norvill, and Hugo Jonker. 2019. ÆGIS: Smart Shielding of Smart Contracts.

In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (London, United Kingdom)
(CCS 19). Association for Computing Machinery, New York, NY, USA, 2589ś2591.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. 2019. Monitoring hyperproperties. Formal

Methods Syst. Des. 54, 3 (2019), 336ś363.
Cormac Flanagan and Shaz Qadeer. 2003. A type and effect system for atomicity. In Proceedings of the ACM SIGPLAN 2003

Conference on Programming Language Design and Implementation 2003, San Diego, California, USA, June 9-11, 2003. ACM,
338ś349.

Ilya Grishchenko, MatteoMaffei, and Clara Schneidewind. 2018a. Foundations and Tools for the Static Analysis of Ethereum
Smart Contracts. In Computer Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.). Springer International
Publishing, Cham, 51ś78.

Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018b. A Semantic Framework for the Security Analysis of
Ethereum Smart Contracts. In Principles of Security and Trust, Lujo Bauer and Ralf Küsters (Eds.). Springer International
Publishing, Cham, 243ś269.

Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam Rinetzky, Mooly Sagiv, and Yoni Zohar. 2018.
Online detection of effectively callback free objects with applications to smart contracts. PACMPL 2, POPL (2018),
48:1ś48:28.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

https://doi.org/10.1007/978-3-662-54455-6_8
https://www.certora.com/blog/reentrancy.html
https://securityboulevard.com/2020/04/a-hackers-dream-payday-ledf-me-and-uniswap-lose-25-million-worth-of-cryptocurrency/
https://securityboulevard.com/2020/04/a-hackers-dream-payday-ledf-me-and-uniswap-lose-25-million-worth-of-cryptocurrency/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/

Taming Callbacks for Smart Contract Modularity 209:29

Fernando Hernandez. 2019. Understanding Callbacks and Promises. https://dev.to/_ferh97/understanding-callbacks-and-
promises-3fd5. [Online; accessed 14-May-2020].

Hudson Jameson. 2019. Security Alert: Ethereum Constantinople Postponement. https://blog.ethereum.org/2019/01/15/

security-alert-ethereum-constantinople-postponement/. [Online; accessed 11-May-2020].
Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Saxena. 2019. Exploiting the Laws of Order in Smart

Contracts. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis (Beijing,
China) (ISSTA 2019). ACM, New York, NY, USA, 363ś373. https://doi.org/10.1145/3293882.3330560

Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. The Soot framework for Java program analysis: a
retrospective.

Ao Li, Jemin Andrew Choi, and Fan Long. 2020. Securing Smart Contract with Runtime Validation. (2020), To appear.
Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of Parallel Programs. Commun. ACM 18, 12 (Dec. 1975),

717ś721.
Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016. Making Smart Contracts Smarter. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (Vienna, Austria) (CCS ’16).
ACM, New York, NY, USA, 254ś269.

Anastasia Mavridou and Aron Laszka. 2018. Tool Demonstration: FSolidM for Designing Secure Ethereum Smart Contracts.
In Principles of Security and Trust, Lujo Bauer and Ralf Küsters (Eds.). Springer International Publishing, Cham, 270ś277.

Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. 2018. Finding the greedy, prodigal, and
suicidal contracts at scale. In Proceedings of the 34th Annual Computer Security Applications Conference. 653ś663.

Daniel Palmer. 2018. SpankChain Loses $40K in Hack Due to Smart Contract Bug. https://www.coindesk.com/spankchain-

loses-40k-in-hack-due-to-smart-contract-bug. [Online; accessed 11-May-2020].
Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2019. Sereum: Protecting Existing Smart Contracts

Against Re-Entrancy Attacks. In 26th Annual Network and Distributed System Security Symposium, NDSS 2019, San Diego,

California, USA, February 24-27, 2019. The Internet Society. https://www.ndss-symposium.org/ndss-paper/sereum-

protecting-existing-smart-contracts-against-re-entrancy-attacks/

Clara Schneidewind, Markus Scherer, Ilya Grishchenko, and Matteo Maffei. 2020. eThor: Practical and Provably Sound
Static Analysis of Ethereum Smart Contracts. (2020), To appear.

Ilya Sergey and Aquinas Hobor. 2017. A Concurrent Perspective on Smart Contracts. In Financial Cryptography and Data

Security, Michael Brenner, Kurt Rohloff, Joseph Bonneau, Andrew Miller, Peter Y.A. Ryan, Vanessa Teague, Andrea
Bracciali, Massimiliano Sala, Federico Pintore, and Markus Jakobsson (Eds.). Springer International Publishing, Cham,
478ś493.

Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In Proceedings of the 37th ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June

13-17, 2016. 57ś69.
Synthetix. 2020. Synthetix - Decentralised synthetic assets. www.synthetix.io.
The Concourse Open Community. 2019. DeFi Pulse. https://defipulse.com/. [Online; accessed 11-May-2020].
S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y. Alexandrov. 2018. SmartCheck: Static

Analysis of Ethereum Smart Contracts. In 2018 IEEE/ACM 1st International Workshop on Emerging Trends in Software

Engineering for Blockchain (WETSEB). 9ś16.
Omer Tripp, Roman Manevich, John Field, and Mooly Sagiv. 2012. JANUS: exploiting parallelism via hindsight. In ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012,
Jan Vitek, Haibo Lin, and Frank Tip (Eds.). ACM, 145ś156.

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli, and Martin Vechev. 2018. Securify:
Practical Security Analysis of Smart Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 67ś82. https://doi.org/10.1145/

3243734.3243780

Cooper Turley. 2020. imBTC Uniswap Pool Drained for $300k in ETH. https://defirate.com/imbtc-uniswap-hack/. [Online;
accessed 11-May-2020].

Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. 2008. Peephole Partial Order Reduction. In Tools and Algorithms

for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.
382ś396.

Liqiang Wang and Scott D. Stoller. 2005. Static analysis of atomicity for programs with non-blocking synchronization. In
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP 2005, June 15-17,

2005, Chicago, IL, USA. ACM, 61ś71. https://doi.org/10.1145/1065944.1065953

YuepengWant, Shuvendu Lahiri, Shuo Chen, Rong Pan, Isil Dillig, Cody Bprb, and Immad Naseer. 2019. Formal Specification
and Verification of Smart Contracts for Azure Blockchain. , 13 pages. arXiv:1812.08829v2.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

https://dev.to/_ferh97/understanding-callbacks-and-promises-3fd5
https://dev.to/_ferh97/understanding-callbacks-and-promises-3fd5
https://blog.ethereum.org/2019/01/15/security-alert-ethereum-constantinople-postponement/
https://blog.ethereum.org/2019/01/15/security-alert-ethereum-constantinople-postponement/
https://doi.org/10.1145/3293882.3330560
https://www.coindesk.com/spankchain-loses-40k-in-hack-due-to-smart-contract-bug
https://www.coindesk.com/spankchain-loses-40k-in-hack-due-to-smart-contract-bug
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
www.synthetix.io
https://defipulse.com/
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780
https://defirate.com/imbtc-uniswap-hack/
https://doi.org/10.1145/1065944.1065953

209:30 Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv

Gavin Wood. 2016. Ethereum: A Secure Decentralised Generalised Transaction Ledger. http://gavwood.com/paper.pdf .
[Online; accessed 5-July-2017].

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 209. Publication date: November 2020.

http://gavwood.com/paper.pdf

	Abstract
	1 Introduction
	1.1 Effective Callback Freedom (ECF)
	1.2 Static Verification of ECF
	1.3 Summary of Contributions
	1.4 Outline of the Rest of the Paper

	2 Callbacks: The Problem and the Proposal
	2.1 The Problem and the Gap
	2.2 Simplified Semantic Solution based on Commutativity Checks
	2.3 Strengthening the Technique for more Challenging Examples
	2.4 Checking Mechanics
	2.5 Implementation

	3 Preliminaries
	4 Segments, Projection and Commutation
	4.1 Basic Definitions on Segments
	4.2 Segment-Sequences
	4.3 Commutation and Projection

	5 The static analysis
	5.1 Solvable Call Nodes
	5.2 Segments Join

	6 Callback invariant
	7 Implementation and Experimental Evaluation
	8 Conclusions and Related Work
	Acknowledgments
	References

