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ABSTRACT
The computation of semantic information about the behavior
of pointer-manipulating programs has been a long standing
issue, attacked with diverse and numerous techniques and
tools for over 50 years. As usual in automatic verification
of infinite-state programs, properties of interest are not
computable. Thus, static analyses can only be conservative,
leading different analyses to make different tradeoffs between
the intricacies of the properties they detect, the precision of
their inference procedure and analysis, and the scalability
of the analysis.
In this context, shape analyses focus on inferring highly
complex properties of heap-manipulating programs. These
programs utilize data structures which are implemented
using an unbounded number of dynamically- (heap-) allo-
cated memory cells interconnected via mutable pointer-links.
Because shape analyses have to reason about data struc-
tures whose size is not bounded by a fixed, known value,
they cannot track explicitly the particular properties of ev-
ery concrete memory cell which the program uses, as done,
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e.g., by analysis of variable-manipulating non-recursive pro-
grams. Instead, shape analyses summarize memory regions
by letting one piece of abstract information, called summary
predicate, describe several concrete cells. The need to cope
with data structures of unbounded sizes is a challenge shape
analyses share with static analyzers of array-manipulating
programs. However, while the size of an array may change
in different executions, its layout (i.e., its dimensions and
the way its contents are spread over the memory) is fixed.
In contrast, the layout of a pointer-linked data structure,
colloquially referred to as its shape, may evolve dynamically
during the program execution and a memory cell can be
part of different data structures at different points in time.
As a result, shape analyses need to let the denotation of
summary predicates in terms of the constituents and layouts
of the memory regions which they represent evolve during
the analysis as well.
In this survey, we consider that shape analyses are charac-
terized and defined by the presence of summary predicates
describing a set of concrete memory cells that varies during
the course of the analysis. We use this characterization as
a means for distinguishing shape analyses as a particular
class of pointer analyses. We show that many “standard”
pointer analyses do not fit the aforementioned description,
while many analyses relying on very different mathemati-
cal foundations, e.g., shape graphs, three-valued logic, and
separation logic, do.
The ambition of this survey is to provide a comprehensive
introduction to the field of shape analysis, and to present
the foundation of this topic, in a single document that is
accessible to readers who are not familiar with it. To do
so, we characterize the essence of shape analysis compared
to more classical pointer analyses. We supply the intuition
underlying the abstractions commonly used in shape analysis
and the algorithms that allow to statically compute intricate
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semantic properties. Then, we cover the main families of
shape analysis abstraction and algorithms, highlight the
similarities between them, and also characterize the main
differences between the most common approaches. Last,
we review a few other static analysis works (such as array
abstractions, dictionary abstractions and interprocedural
analyses) that were influenced by the ideas of shape analysis,
so as to demonstrate the impact of the field.



1
Introduction

1.1 Verifying Pointer-Manipulating Programs

Pointers and dynamic memory allocation are present in one form or
another in many modern programming languages and significantly con-
tribute to their expressiveness. For instance, they enable maintaining
mutable data structures such as lists, trees, and graphs. The size of such
structures may vary during the execution, as cells can be dynamically
allocated in the heap when the program needs them in order to store
new data. Moreover, the links between elements may be modified locally
without changing the whole structure, e.g., to insert a new element into
its proper location inside a sorted list. Similarly, common implementa-
tions of functional or object oriented languages also make great use of
both pointers and dynamic memory allocation so as to represent the
call stack, closures, and objects.

On the other hand, these features make reasoning over programs
very difficult since the layout of the memory states heavily depends on
the program executions. As a consequence, using such features is a no-
toriously hard task for programmers, and bugs related to them are both
common and challenging to diagnose. Depending on the programming
language, pointer manipulation errors may cause abrupt crashes due to

4
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runtime errors (as the dereference of a null pointer), memory leakage,
i.e., make memory blocks unreachable, and thus impossible to ever
deallocate, cause pointers to become dangling, i.e., point to (manually)
deallocated memory regions, which may lead to further pointer related
errors, e.g., memory corruptions (a write through a dangling pointer,
that happens to refer to a memory area that has been freed and then
allocated again to store other, unrelated, data).

On top of that, the preservation of structural invariants of pointer-
linked data structures is often non-trivial, as a pointer manipulation
error might create a cycle in a structure that is supposed to be acyclic
and/or leak a large part of it. As an example, Figure 1.1 displays
several common examples of dynamic data structures, with very different
properties:

• singly-linked lists consist of acyclic chains of elements ending with
a special element, and where the link from one element to the next
usually boils down to a pointer field embedded in every element;

• doubly-linked lists augment the singly-linked list structure with
backward pointers from each element to its predecessor;

• circular lists have the same local structure as the singly-linked
lists, but form a loop, so that it is always possible to access the
successor of any element;

• binary trees are also chained structures, but are such that each
non-leaf node has a left and a right successor (a slightly different
definition of binary trees accepts structures where some nodes
may have no left child or no right child);

• binary trees with parent pointers augment binary trees with back-
ward links from every node to its predecessor, Similarly to the way
doubly-linked lists augments singly-linked lists with back-pointers;

• connected graphs consist of sets of elements, such that each element
has a number of successors who are also elements of the structure;
in particular, they may contain cycles, elements with no successors,
etc.
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Singly-linked list Doubly-linked list

Circular list Binary tree

Binary tree with parent pointers

1
2

2

3
2

0

1

Connected graph

Figure 1.1: A few unbounded and dynamic data structures.

This defines just a small sample of the structures one can imagine,
and it is possible to combine these patterns or invent others, e.g., a list
of trees or a tree the nodes of which are also connected by a list. Each
structure comes with a set of properties (existence of chains of links to
next elements, reachability, absence or existence of cycles, existence of
a linear order or not. . .). Furthermore, the correct utilization of each
structure relies on the preservation of its shape invariant—a combination
of global properties pertaining to the layout of its elements—which is
generally hard to establish.

Due to these difficulties, a large number of works have searched for
techniques to reason about pointer-manipulating programs automati-
cally so as to verify the aforementioned properties. In general, static
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analysis aims at computing automatically semantic properties of pro-
grams, namely properties that are satisfied by every program execution,
such as the absence of some classes of errors, or the preservation of some
invariants. Broadly speaking, there are two (somewhat overlapping)
categories of static analysis of heap-manipulating pointer programs:
pointer analyses and shape analyses, as we discuss next.

1.2 Pointer Analysis

Pointer analyses (see Smaragdakis and Balatsouras, 2015 for a recent
survey) attempt to determine properties of pointer values and of the
structures they refer to. A first useful property is the validity of pointer
values, which expresses that they are neither dangling nor null. While
it is useful in order to prove that some errors such as a null/dangling
pointer dereference or the corruption of an unknown memory location
cannot occur, this property is often too weak to fully understand what
a program does. A second useful semantic property focuses on the
resolution of pointers so as to determine to which address a pointer
may refer, or what pairs of pointers may be equal (alias). This property
is extremely useful to resolve memory accesses, and help basically
any kind of program reasoning technique when considering a program
that manipulates pointers. Points-to analyses such as Andersen (1994)
or Steensgaard (1996) compute a super-set of the addresses each pointer
variable may refer to. Essentially, each memory cell with a pointer type
is mapped into a set of symbolic addresses it may point to, and this
set can be used so as to resolve memory accesses. Alias analyses such
as Cooper and Kennedy (1989) compute a super-set of the aliasing
relation between pointers, which is another way to describe the topology
of pointers (see, e.g., Jonkers and Jonkers, 1981).

1.3 Limitations of Pointer Analyses and Need for
More Expressive Abstractions

Points-to and alias analyses rely on basic and generally cheap ab-
stractions of program states, and can often be carried out in a fully
flow-insensitive manner for better performance, relying on field-, object
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creation site, or context-sensitivity to improve precision. On the other
hand, the range of properties they may infer is typically quite limited.
In general, when the size of data structures or the numbers of allocated
memory blocks are unbounded, many important properties fall beyond
the scope of these analyses. As an example, the reachability of a cell
that is allocated dynamically becomes hard to establish since the chains
of pointers from program variables to it may be arbitrarily long. This
property is important in order to verify the absence of memory leaks
in languages where deallocation is manual. Similarly, the acyclicity of
a data structure expresses the absence of certain patterns in pointer
paths, can only be established by reasoning over arbitrarily long paths.
This property is important in order to verify structural preservation
or termination of loops. The key issue is that these properties are not
local, and can only be justified by global arguments. In fact, it is not
rare that even the verification of a local property, e.g., pointer validity,
requires establishing a global property, e.g., reachability.

There exist techniques to make pointer analyses less local and extend
their expressiveness. As an example, Deutsch (1994) infers aliasing
relations over access paths that are of unbounded length, and that
can be tied together by the means of numeric relations: this analysis
can express that some pointer stores the address of an element that
lies somewhere in the middle of a list-like structure. However, such
techniques remain limited, and cannot express that a list (or an instance
of some other dynamic structure) is well-formed.

1.4 Shape Analysis

Shape analyses, in contrast to pointer analyses, aim at computing global
structural properties of unbounded sets of memory cells and pointers,
such as the shape invariants of the data structures depicted in Figure 1.1.
An example of shape property is the well-formedness of a singly linked
list or that of a binary tree without sharing. Such properties concern an
unbounded number of memory cells, and tightly constrain correlations
between an unbounded number of pointers fields. This allows them to
convey, for instance, the absence of cycles over arbitrarily long link
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chains. Such relations are intrinsically harder to define and reason about
than relations over finite sets of pointers or of regions.

Shape analyses have in common a much higher level of expressiveness
than the aforementioned pointer analysis and they rely on very different
basic logical predicates. In particular, each of them features some kinds
of basic predicates that are able to summarize memory regions of
unbounded size and in a compact manner while retaining some global
information about the shape properties of the summarized region. This
is absolutely required to express shape properties over unbounded data
structures such as lists, trees and graphs: indeed, abstractions that lack
the ability to summarize are either limited to keeping precision on finite
sets of memory cells, while losing precision on the rest, or require to
resort to a possibly unbounded number of disjuncts.

In addition to summarization, shape analyses need to calculate
precisely how program statements transform summaries. In practice,
they often need to temporarily refine summaries in order to reason
precisely over program statements that impact them. This process,
often called materialization or focus, allows the analysis to apply case
analysis regarding the layout of the heap part represented by a summary
predicate. Materialization allows to perform strong updates of heap
cells located deep in the heap as it enables the analysis to dynamically
refine its view of the parts of the heap that pointer variables refer to
when analyzing, e.g., the traversal of unbounded data structures.

The use of materialization implies that the analysis also needs to
be able to introduce summaries by a generalization process, from more
precise predicates. As a consequence, the analysis needs to go back
and forth between its base view of data structures and a more refined
one, that makes reasoning over local read and destructive update (field
mutation) operations possible.

Materializing and Non-Materializing Shape Analyses. In the follow-
ing, we distinguish between two families of shape analyses: the first
category is unable to do materialization at any time and thus can per-
form strong updates only when certain favorable conditions hold, and
the second category that is able to perform dynamic materialization
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(at any time during the analysis) and thus is able to perform strong
updates in more cases.

Non-Materializing Shape Analyses. As an example for the latter
kind of analyses, Ghiya and Hendren (1996) uses global predicates that
state that some structures are “tree like”, that is, acyclic and without
sharing, or simply “DAG like”, that is, acyclic, but possibly with some
amount of internal sharing. Unlike the pointer analyses mentioned above,
this analysis actually captures properties related to the shape of heap
data structures that are manipulated by programs.

Materializing Shape Analyses. Two notable examples for the kind
of shape analyses which use materialization are the three-valued logic
framework for shape analysis of Sagiv et al. (1999, 2002), and analyses
based on separation logic which was introduced by Reynolds (2002)
and Ishtiaq and O’Hearn (2001).

Three-valued logic relies on basic user-defined shape predicates (such
as local points-to predicates, global reachability predicates expresses by
transitive closure over the points-to predicates, and acyclicity predicates)
and summary nodes that stand for unbounded numbers of concrete
memory cells or addresses in order to describe large families of shape
properties of heap data structures. TVLA (Lev-Ami and Sagiv, 2000) is
a parametric system which can very precisely capture structures such
as lists or graphs, and it was applied to a wide range of shape analysis
problems.

Separation logic was proposed as a language to tie logical properties
to heap regions. As an example, it can naturally convey, thanks to the
so-called separating conjunction, that a memory region can be divided
into a finite set of pairwise disjoint regions that store specific data
structures, and that can be reasoned about in a separate manner. This
is the basis of local reasoning, which simplifies the analysis of atomic
program statements by letting it focus on the memory cells that they
may read or update. Coupled with inductive predicates, separation
logic can describe many interesting data structures of unbounded size,
and assert that a region stores, e.g., a well-formed singly linked list
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or a well-formed binary tree with no sharing. It has served as a basis
for several static analyses including those described in Distefano et al.
(2006), Berdine et al. (2007), Chang et al. (2007), Dudka et al. (2011),
or Holík et al. (2013).

Applications of Shape Analysis. Besides memory safety and the veri-
fication of correctness properties for sequential programs as outlined
above, we can cite many applications for shape analysis techniques.
An important example is the case of parallel programs, where several
threads may concurrently access and modify shared data-structures.
Among the many works that have attacked this problem, we can cite
Berdine et al. (2008), Manevich et al. (2008), and Vafeiadis (2010). In
general, the works rely on shape abstractions that are rather similar to
those used in the sequential case and compute information about the
thread interaction in terms of heap abstraction.

More surprisingly, shape analysis abstraction also have applications
far outside the world of program analysis. For instance, Srivastava et al.
(2011) reduces the search of solutions for planning problems to shape
analysis problems.

1.5 Summary and Survey Outline

The goal of this survey is to survey the main shape analysis techniques
and to convey a general understanding of the main characteristics of
these static analyses. As it is not possible to provide an exhaustive
recollection of all the works carried out on this topic, we adopt a more
modest approach and focus on the main principles related to abstraction
(namely, the relation between concrete stores and abstract predicates),
to the computation of post-conditions for atomic operations and to the
generalization of abstract predicates to enforce termination of analyses.
In this process, we intend to highlight similarities and differences among
the main approaches. Moreover, the principles underlying shape analysis
also inspired other static analyses aimed at programs manipulating other
classes of data structures such as arrays or dictionaries. Thus, we also
show the link between shape analyses and other families of abstractions
and static analysis.
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This survey has the following structure. Section 2 presents an intu-
itive overview of the main principles of shape analysis, without adopting
one specific formalism. In fact, it mostly only relies on a graphical pre-
sentation. Section 3 formalizes a concrete model of program states and
executions to be used in the rest of the survey. As often, the choice of the
concrete model of programs deeply influences the ensuing definition of
abstractions and static analysis algorithms. Section 4 integrates some of
the main approaches to shape analysis into this framework. This is the
core part of this survey, since it defines and formalizes the main abstrac-
tions and analysis algorithms. Section 5 presents important extensions
of shape analysis, so as to describe not only the shape of memory, but
also the content and the low level layout of data structures and to ana-
lyze programs with functions and procedures. Section 6 describes a few
abstractions and static analyses that rely on principles that are similar
to the main foundational techniques of shape analysis abstractions and
algorithms. Finally, Section 7 draws the main conclusions of our study.



2
Shape Analysis in a Nutshell

In this section, we discuss the main principles of shape analysis at a
high level, and mostly based on graphical and intuitive descriptions of
abstract states and analysis algorithms. These descriptions are not tied
to a specific set of logical predicates. In fact, we discuss the logical predi-
cates and their representation last and defer to Section 4 for an in-depth
discussion about them. Moreover, we focus on basic structures such as
acyclic singly-linked lists, for the sake of simplicity and readability.

2.1 Running Example

An acyclic singly-linked list is a chained structure, with a single pointer
field linking one element to the next. The last element of a singly-linked
list is marked with a special flag, or a special value stored in its pointer
field (typically null). Furthermore, each element contains a fixed set
of additional fields (these fields play no important role in this section,
thus we ignore them). Note that as we assume all lists are acyclic, no
element should have a link to one of its predecessors.

Figure 2.1 depicts three structures. It adopts the following graphical
conventions: a memory block is shown as a rectangle with a gray
background, and may be divided into different memory cells (e.g., in

13
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well-formed ill-formed
(cyclic)

?ill-formed
(dangling)

Figure 2.1: Well-formed singly-linked list (left) and ill-formed structures (middle
and right).

Figure 2.1, each block is divided into two cells that respectively store a
pointer and a value of some unspecified base type); a pointer to a regular
address (that is allocated or not) is drawn as an arrow; last, a null-valued
pointer field is marked as a crossed out cell. The leftmost structure is a
well-formed singly-linked list. The middle structure contains a cycle, and
is thus ill-formed. The next link from the last element of the rightmost
structure is a dangling pointer (i.e., its value is not null, but it does
not point to any allocated cell). In the following, we are interested in
programs that manipulate singly-linked lists (like the leftmost structure),
and we look for analyses that are able to prove that such programs
neither break the structural invariants of lists (i.e., produce ill-formed
lists) nor cause any memory runtime error.

As an example for a well-behaved list-manipulating program, Fig-
ure 2.2 shows a C procedure which inserts a new data element into a
singly linked-list. The procedure insert takes as arguments a value
and a pointer to a list (that is assumed to be well-formed); it then
traverses the list, searching for a node after which the new element
can be inserted; allocates a new list node; and, finally, it performs
the insertion via a pointer surgery which restores the singly-linked list
structure.1

Several semantic properties are of great interest here. First, memory
safety properties include the absence of crashes due to a null-valued
pointer dereference (null dereference, for short) and the absence of
memory leaks. Since, the program of Figure 2.2 dereferences and mutates
pointers, it may violate memory safety in several ways. For instance,

1Note that the insertion is not be performed if no insertion position is found, and
that the insertion cannot take place before the first element. These two assumptions
make the program simpler, for the sake of the example.
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Figure 2.2: A list insertion method.

if l is dangling, the program may crash. Moreover, when the program
destructively updates the link-field of the list element at the insertion
point (Line 13), the tail of the list may become unreachable, which
would mean some memory cells are leaked. Note that we consider a
rather simple instance of a C program here, and that we make no use of
pointer arithmetic. In the case where pointer arithmetic would be used,
additional errors may occur, for instance due to pointer cast issues. In
this section, we focus on a rather simple and well-behaved fragment
of the C language as it is sufficient to illustrate all the shape analysis
concepts that we intend to introduce. Second, structural preservation
states that the method insert does not return a structure that is not
a well-formed acyclic singly-linked list. At first, these two properties
do not seem strongly related, and memory safety seems simpler, as it
does not explicitly refer to a global invariant. In fact, this intuition is
incorrect. Indeed, to establish memory safety, one needs to observe that
the parameter l of insert initially points to a well-formed structure, in
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particular, that no pointer field is dangling. In other words, establishing
memory safety requires to reason over the assumption of a structural
invariant. In turn, this means that establishing memory safety for two
successive calls to insert requires to prove that the first call to it
returns a well-formed structure. Thus, we see that proving memory
safety requires to also prove structural preservation. In a wider set-up,
structural preservation and memory safety would also be required to
prove other properties, such as liveness (i.e., to establish that a call
to insert terminates, one needs to assume that the structure it is
applied to is acyclic) or security (i.e., memory safety is often required
to establish the absence of memory safety violations or information
leakage).

As we have observed here, structural preservation is the key property.
Therefore, in the rest of the subsection we sketch an analysis that can
verify preservation of structural invariants as well as memory safety.

2.2 Shape Abstraction for Lists

Before we dive into the specific aspects of the abstraction and analysis
algorithms that are required to reason over programs such as the code
in Figure 2.2, we briefly list a few important requirements. First, the
argument of the method is required to be a list, but the size of this list
is unknown. In fact, the list could be of any length. This means that the
analysis should be powerful enough to reason over the list whatever its
size is, and to represent properties such as “l points to a well-formed list”
without making any assumption related to the size of that structure.
Additionally, it should accurately reflect the effect of read and update
operations, otherwise the shape properties of the list will be lost. As a
consequence, the analysis should include a materialization mechanism
that lets it switch between a global view of the list and a local one, so
that it can both represent the list as a whole, independently from its
size, and accurately reflect basic operations on small fragments of it.
These observations significantly impact the abstraction and analysis
algorithms we now present.
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2.2.1 Abstraction and Summarization of Unbounded Regions

Based on the aforementioned observations, we set up an abstraction for
a static analysis able to reason over list data structures and programs
manipulating them.

To describe this abstraction, we still use the graphical representation
that we have introduced for concrete states. Indeed, we have noticed the
analysis sometimes needs to reason over operations that affect an indi-
vidual memory cell, thus we let it manipulate concrete predicates, with
the usual representation. Besides such very precisely described regions,
our abstraction should also feature predicates to represent unbounded
regions. Arguably, the most intuitive way to account for unbounded
regions is to let the analysis feature predicates that describe any number
of memory cells. We call such predicates summarizing predicates (or,
for short, summary predicates). In this section, we focus on the shape
analysis of programs that operate on singly-linked lists, thus we consider
summary predicates which describe fragments of singly-linked lists, but
we could imagine summary predicates that represent other kinds of
data structures. Note that we do not fix the specific representation
of summary predicates in any way. Instances of shape analyses differ
greatly in the way they represent summary predicates. Their actual
representations are discussed thoroughly in the next sections.

In the following, we are using the graphical representation below
to depict a memory region that stores a well-formed singly-linked list,
defined by a chain of elements without cycles or invalid pointers and
such that the last element is a null pointer:

list

Additionally, such a region together with a pointer to the first element
of the list will be represented as follows:

list

This graphical representation is called a list summary. Essentially,
this predicate describes well-formed lists of any length, as shown in
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listl represents

l

l

l

l

...
...

Figure 2.3: A list summary predicate and its meaning.

Figure 2.3: the left hand side of the picture describes a single abstract
state with a variable l and the right hand side depicts a few example
concrete states.

The list summary predicate that we have introduced above can
summarize a complete list, but for some programs this is not enough.
Indeed, it is common to compute or maintain pointers inside a given
singly-linked list. This is the case in Figure 2.2: t acts as a cursor in the
list in method insert. The list summary predicate cannot express the
relation between l and t. Therefore, our analysis will sometimes also
need to talk about list segments, that is series of list elements that do
not necessarily end with a last list element (marked by a null pointer
value in the n field). To this extent, we define the list segment summary
predicate that is represented by:

list

The list segment predicate represents a memory region that stores a
well-formed singly-linked list, with the incoming arrow depicting the
address of its first element and the out-going arrow the (non-NULL)
value stored in the pointer-field going out of the last node in the list.
For example, Figure 2.4 depicts an abstract state, that includes two
summary predicates. Intuitively, this state describes memory states
where l points to a list, and such that t points to some element of that
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list list
t
l

represents
t
l

Figure 2.4: Example abstract state and a concrete state it represents.

list (that is neither the first nor last). The concrete state in the right
hand side is one of the memory states that this abstract state describes.

2.2.2 From Abstract States to Concrete States and Back

Figure 2.3 describes informally the meaning of an abstract summary
predicate: the summary in the left stands for all the fully expanded
lists in the right hand side of the figure. Conversely, this remark also
means that when we know a memory state can be described by any of
the figures in the right side, it can also be described by the one in the
left. We can thus go from summaries to concrete memories and back,
while still preserving the same meaning. This remark is crucial for the
definition of analysis algorithms in the following paragraphs.

From this general observation, we can draw a more incremental tech-
nique to refine a summary predicate into a more precise description, or
to generalize an abstract state into a summary predicate, as depicted in
Figure 2.5. Intuitively, this picture states that a list inductive predicate
consists either of a single list element, or of a first element, with a link

Figure 2.5: Refinement and generalization of inductive predicates.
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that points to another list summary. In fact, this correspondence fully
defines list predicates by induction. Moreover, a similar consideration
would apply to segment summary predicates.

Materialization and Generalization. While Figure 2.3 describes the
meaning of a summary predicate in a very eager way, as an infinite set of
concrete memories, this new representation based on induction provides
a description of the meaning of the summary predicates that is both
local and algorithmic: it is possible to transform the abstract state shown
in the left into either of the abstract states shown in the right in a few
basic computation steps, and the converse transformation is equally easy
to implement. This remark is fundamental for the definition of the static
analysis algorithms in the next paragraphs. Essentially, the refinement
transformation allows to make abstract states easier to reason about,
and the generalization transformation is essential to let the analysis
compute invariants for loops or other iterative constructions.

In turn, the exhaustive description of Figure 2.3 can be replicated by
iteratively applying the local refinement principle that is shown above,
and can be used in order to prove the correctness of the analysis.

2.3 Shape Analysis for Lists

We now look at the computation of shape invariants using the informal
abstraction described in the previous subsection.

2.3.1 Abstract Post-Conditions

The analysis that we study here proceeds by forward abstract interpre-
tation (Cousot and Cousot, 1977): it inputs an abstract pre-condition
and computes a conservative abstract post-condition from it; moreover,
when a program contains a loop, it computes a loop invariant by iter-
ative analysis of the body, and using a widening operator in order to
enforce the convergence of the iterates. In the following, we illustrate
the main operations of this analysis based on the case of the program
of Figure 2.2. Intuitively, the analysis of this program starts with a pre-
condition that states that the parameter l points to a well-formed and
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(a) Abstract pre-condition

list

t

l
d ?

(b) Abstract post-condition

Figure 2.6: Analysis of the assignment ∗t = l.

non-empty list (described by a summary predicate), and that nothing is
known about the other parameter d or the local variable t. This state
is shown in Figure 2.6(a).

We start the description of this analysis by explaining the computa-
tion of abstract post-conditions for basic program statements, such as
a pointer assignment.

Copy Assignments

We first discuss the analysis of the first statement of the insert method,
t = l. At the concrete level, the effect of that operation boils down
to the update of the memory cell corresponding to variable t. In our
graphical abstract states, this boils down to a modification on the
outgoing edge of t: after the assignment, instead of pointing to an
indeterminate value, it points to the same list as l. The effect of that
operation is shown in Figure 2.6(b).

Pointer Dereferences

Not all assignment statements are so simple to analyze. As an example,
let us consider the analysis of the first iteration of the loop, starting from
the abstract pre-condition is shown in Figure 2.6(b). The first operation
is the condition test, which lets the execution proceed into the loop
when t is not null. In the abstract, we can deduce that the condition
is true because t, like l, points to the first element of a well-formed
singly-linked list. Then, there are two execution branches inside the
loop, depending on the random choice at the condition statement inside
the loop. We consider the second branch, which performs the assignment
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t = t→n. This statement reads the n field of t and then updates t
to this value. However, this field is not visible in the abstract state
shown in Figure 2.6(b): indeed, it is part of the summary predicate that
describes the memory region occupied by the list.

Materialization in Action: Adding Precision via Case Analysis

While the analysis cannot perform on that abstract state an update
similar to that shown in Figure 2.6, it can apply the refinement principle
presented in Figure 2.5 so as to substitute the summary predicate with
a more precise description of the list, and perform a simple update on
it. This process is shown in Figure 2.7. First, Figure 2.7(a) presents
the result of the refinement step, before the computation of a post-
condition for the assignment statement. We observe that the abstract
pre-condition of Figure 2.6(b) is replaced with a disjunction of two
abstract states, which are both more precise than the initial abstract
state (the one in the left accounts for cases where the list has length
one, and the one in the right accounts for cases where the list has
length strictly greater than one), and that account for all the memory
states represented by Figure 2.6(b) when put together. We remark
that these two disjuncts allow to evaluate precisely both sides of the
assignment t = t→n, since the field read by t→n is not impaired by

t

l
d ?

or list

t

l
d ?

(a) into a disjunctive abstract state

t = 0

l
d ?

or list

t

l
d ?

(b) Abstract post-condition

Figure 2.7: Analysis of the assignment t = t→n.
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the summary predicate anymore. Second, Figure 2.7(b) describes the
abstract post-condition of the statement t = t→n: it also consists of
two disjuncts, that are computed from those in Figure 2.7(a), and by
a straightforward update, which proceeds as in the case of the trivial
assignment shown in Figure 2.6.

The analysis of the first branch of the condition actually follows a
similar sequence of steps. Indeed, the assignment at line 11 requires
to access to the memory cell t→n, even though t is only described
as a pointer to a singly-linked list which is represented by a summary
predicate. This implies that the summary predicate should also be
materialized before the assignments at lines 11 and 13 can be analyzed
precisely. As above, the materialization process returns a disjunction of
two cases, and in each case, the memory cell t points to is described
precisely. Therefore, the assignments that read t→n (at line 11) and
modify it (at line 13) can be analyzed precisely in each case. Note that
the assignment at line 13 also modifies the structure pointed to by t,
yet the analysis successfully produces a post-condition. The result is
shown in Figure 2.8 (for the sake of clarity, we omit d).

More generally, the above approach allows to compute abstract
post-conditions for basic statements, such as assignment, condition test,
and memory allocation: first, the analysis needs to refine the abstract
pre-condition so that it can evaluate completely and accurately the
l-values contained in the statement to analyze; in general this phase,
produces a disjunction of abstract states; second, the analysis needs to
perform the operation on each case of the abstract disjunction.

t

l
fresh

or list

t

l
fresh

Figure 2.8: Analysis of the first branch inside the loop.
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2.3.2 The Need for Generalization: Ensuring Termination

We now consider the analysis of loops and other iterative control struc-
tures. As an example, the insert method shown in Figure 2.2 consists
of a loop that makes an unbounded number of steps before actually
performing the insertion. Repeatedly applying the above refinement
technique for the computation of abstract post-conditions would not let
the analysis terminate. Indeed, we show a few iterates on Figure 2.9.
To simplify the presentation, we only consider the executions that go
through the second branch of the condition statement, which means
they only iterate the statement t = t→n. We also omit variable d from
the representation, and we represent only the cases where the list tail
(pointed to by t) contains more than a single element. We first represent
the abstract state before the loop (iteration 0). Below, we represent
abstract states observed after one, two and three iterations, respectively.
We observe that the list elements from the beginning of the list to the
position pointed to by t are kept “concrete”, which means that the
abstract states in Figure 2.9 describe this portion in the structure very
precisely, and account for each element individually. Subsequent iterates
would show a similar structure with ever-growing fully-expanded initial

iteration 0
list

t

l

iteration 1
list

t

l

iteration 2
list

t

l

iteration 3
list

t

l

Figure 2.9: A few abstract iterates.
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part. As a consequence, this naive analysis approach will keep exploring
reachable abstract states forever.

Furthermore, the information that it accumulates is not really useful
for the sake of verifying the property of interest, namely memory safety
and structural invariants preservation. Indeed, we only need to know
that the beginning of the structure pointed to by l is a well-formed
singly-linked list region that ends with a pointer to the same address as
t (which is the tail of the structure).

Therefore, the analysis should perform some kind of generalization
over the abstract states observed across the first iterates over the
loop. Generalization over loop iterates is commonly associated with the
computation of loop invariants (e.g., using abstract union or widening
operators introduced by Cousot and Cousot, 1977). The generalization
transformation shown in Figure 2.5 allows to achieve just this: indeed,
it forms summary predicates from collections of concrete predicates,
provided they describe an instance of the summary property. In the
case of Figure 2.9, this generalization scheme should simply introduce
a segment summary predicate. The result is shown in Figure 2.10. We
can see that this abstract state captures all states where (1) l points to
a well formed list, and (2) t points to an element of that list.

Although we do not show all the cases here, this generalization
step allows to account for all the branches in the loop, and produces a
general loop invariant describing all states that can be observed at its
head. Following this generalization, the analysis of the loop can produce
both sound intermediate invariants inside the loop, and a sound loop
abstract post-condition.

The way of computing this generalization transformation depends
on the analysis, and we will discuss several approaches in the subsequent
sections.

list list

t

l

Figure 2.10: Generalization over abstract iterates.
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2.4 Instances of Shape Analyses

So far, we have presented a shape analysis based on generic graphical
predicates describing sets of memory states. We now briefly discuss the
definitions of a few salient families of memory abstract predicates so
as to highlight the main characteristics of each abstraction, and to tie
them with the graphical representation that we have used so far. In
this section, we keep the discussion rather informal (more thorough
definitions are given in Section 4). We restrict our discussion to a few
important families of abstractions that describe shape properties.

Abstractions of Shape Graphs

A first example is the abstraction of Ghiya and Hendren (1996), which
uses basic predicates to describe the points-to graphs in memory states.
This abstraction relies on three families of basic predicates:

• Shape attributes describe regions using high-level graph proper-
ties. For instance the predicate Tree(p) states that p points to a
structure where each location is reachable by exactly one access
path from p. Thus, it captures linear structures like lists and
trees. Other similar predicates capture DAG structures or cyclic
structures.

• Direction predicates express that there may exist (resp., must not
exist) an access path from a pointer variable p to another pointer
variable q.

• Interference predicates express that a pair of pointer variables p
and q may (resp., must not) have access paths to a common cell.

These predicates encode global shape properties using basic logical
predicates over pointer access paths in a storeless model, which express
whether a property does not hold or it may hold. Each basic predicate
describes graph properties of concrete memories. The encoding used
by Ghiya and Hendren (1996) is based on truth tables and truth matrixes
(i.e., that are indexed over pointer variables and store tables of 0 and
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1 values). Other works, e.g., Jones and Muchnick (1979), Chase et al.
(1990), utilize labeled graphs.

We discuss this family of abstractions in Subsection 4.2.

Three-Valued Logic Predicates

A second example is the abstraction based on three-valued logic predi-
cates (Sagiv et al., 1999, 2002). This abstraction also exploits the fact
that concrete memories can be viewed as graphs, to describe their prop-
erties. Abstract states consist of predicates over sets of nodes, where
each node stands for either a single memory location or a set of concrete
memory locations, and where the predicates describe pointer properties
over these locations. A node that represents a set of concrete memory
locations is called a summary node.

Three-valued logic analysis is parameterized by a set of predicates.
The predicates evaluate to truth values, which can be one of “true”,
“false”, and “maybe”. Typical predicates are as follows:

• basic points-to predicates (does a field n of a memory location p
point to another location q?);

• the summary status of nodes (is a node summary or does it
describe a single concrete cell?);

• global properties the definition of which relies on basic predicates
and transitive closure (to describe chains of pointers of unbounded
length), including reachability and acyclicity.

Summary nodes together with global properties allow to express
summary predicates such as the list summaries of Figure 2.3. Indeed,
a list boils down to a set of memory blocks that are chained together,
and without a cycle, therefore, if l points to a list, it is possible to
describe the elements of this list with a summary node, together with
predicates that assert that they are all reachable from l, and that they
contain no cycle. The refinement transformation of Figure 2.5 replaces a
summary node with a finer representation of a memory region, whereas
the generalization operation tends to introduce summary nodes.
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The representation of abstract states is based on truth tables, in
Kleene’s three-valued logic (that is, with truth values that may be either
“true”, or “false”, or “maybe”).

We describe this family of shape abstractions in detail in
Subsection 4.3.

Separation Logic and Inductive Predicates

A third family of shape analysis abstraction is based on fragments of
separation logic (O’Hearn et al., 2001; Reynolds, 2002). Separation logic
defines a set of logical predicates and connectors specifically tailored to
express properties of memory states. The most significant connector is
the separating conjunction, which is denoted as ∗ and ties together two
properties attached to disjoint sub-memories: a memory state satisfies
the separating conjunction of two formulas F0 and F1 if and only if it
can be partitioned into two memory regions that respectively satisfy F0
and F1. Common atomic separation logic predicates include:

• basic points-to predicates, which describe a single memory cell,
with its symbolic address and contents;

• summary predicates, which represent unbounded memory regions,
generally specified via inductive formulas in separation logic.

The refinement operation shown in Figure 2.5 replaces an inductive
summary predicate with a separating conjunction of other (points-to
or summary) atomic predicates that describe sub-regions, which means
that it partitions abstract memory states into abstract states describing
smaller memory regions. As in Figure 2.5, generalization performs the
converse action, and introduces inductive summary predicates that
replace separating conjunctions of basic memory predicates.

There exist several machine representations for abstract states based
on fragments of separation logic. Several works such as Distefano et al.
(2006), Berdine et al. (2007) use logical formulas. Others such as Chang
et al. (2007), Dudka et al. (2011) use graph structures encoding the
formulas, where each edge denotes an atomic predicate and a set of
edges stands for their separating conjunction. Finally, Holík et al. (2013)
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relies on specific forms of automata the semantics of which captures
disjoint heap regions. While it uses a formalism that is far from that
of separation logic, it inherits some of its principles and, in particular,
that of local reasoning.

We describe in detail abstractions based on separation logic in
Subsection 4.4 and abstractions based on automata in Subsection 4.5.

2.5 Summary: The Essence of Shape Analysis

We can now give an overall view of a shape analysis that is able to
compute invariants similar to the abstract state depicted in Figure 2.4.
It performs a forward abstract interpretation (Cousot and Cousot, 1977),
which means that it incrementally computes an over-approximation for
the behaviors of programs, ensuring global soundness of the results, by
making sure that each concrete execution step is over-approximated by
the analysis computation on abstract states. More precisely, it proceeds
as follows:

1. It inputs an abstract pre-condition that accounts for all the possi-
ble input states for a given procedure (in the case of a complete
program, this initial abstract state should simply account for the
empty memory state, where no variable or memory region has
been allocated yet).

2. It computes sound abstract post-conditions using basic operations
that account for atomic program execution steps; while doing so,
it refines abstract states when needed, so as to account precisely
for the memory locations that are read from or written to by basic
statements (assignments, tests, etc.).

3. It generalizes abstract states observed on execution paths that may
be iterated an unbounded number of times (such as loops, goto
edges or recursive function calls), so as to ensure the termination
of the analysis, and to make sure that general descriptions of
concrete states will be computed.



3
Generic Shape Analysis

This section describes the general structure of a shape analysis tool
based on a forward abstract interpretation of programs, and using a
generic memory abstraction. We do not fully define the abstractions
at this stage, and defer their study to Section 4, as each of them will
fit as an instance of the generic abstraction considered in this section.
We first define the semantics of a simple language in Subsection 3.1.
We then give the general form of a shape abstraction in Subsection 3.2.
Last, we set up a generic abstract interpreter in Subsection 3.3.

3.1 Programs and Semantics

In this survey, we focus on a toy language inspired by a subset of C, even
though the principles that we present would apply to other languages
as well, such as C++, Java, and Scala. For the sake of simplicity, we
consider a drastic simplification of the semantics of these languages.
For instance, we allow neither pointer arithmetic nor manual memory
reclamation, and we focus on the core pointer operations. On the other
hand, pointers may be null or invalid as in C, as newly created variables
or freshly allocated cells may initially contain any value. We also do
not introduce functions. We make these choices to keep the language

30
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e ::= expressions
| c constants
| x → f access to a field
| e� e binary operation �

s ::= statements
| x = new( ) memory allocation (malloc)
| x → f = e field update
| s; s sequence
| if (e){s} condition
| while(e){s} loop

Figure 3.1: Grammar of a subset of C.

syntax and semantics simple, and focus on the core aspects of shape
analysis. In this subsection, we formalize the language used throughout
the rest of the survey.

Syntax. The syntax of the language we use is shown in Figure 3.1.
Statements include the allocation of a new object, field updates, and
classic control structures such as conditional statements and loop state-
ments. Expressions are constants, accesses to object fields and binary
operations (such as arithmetic or comparison operators). We let vari-
ables be constant pointers to structures. Thus, a base type variable
would be described by a pointer to a structure with a single field ∅. We
let F denote the set of object fields (so that ∅ ∈ F). We write V for the
set of values, and A for the set of addresses (note that we keep addresses
symbolic since we do not deal with pointer arithmetics). We assume
A ⊆ V. Last, we let X stand for the set of program variables. We do
not explicitly formalize scoping (it would be easy but would make the
formalization heavier), thus we implicitly assume that all the variables
are globally accessible. In the following, programs are always assumed to
be well-typed even though we do not make the type system explicit here.

Memory States. Before we can define the semantics of programs, we
fix the notations and definitions for memory states. A memory state
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formalizes the status of the memory at a given time during program
execution. It defines the object pointed to by each variable, and the
value of each object field. Thus, it boils down to the combination of a
function from variables to symbolic addresses, and a partial function
from pairs made of a symbolic address and a field name into values. In
order to keep notations light, and given a memory state m, we write
m(x) for the contents of variable x, and m(a, f) for the contents of
the field f of the structure stored at symbolic address a. For instance,
the reading of x→f boils writes down m(m(x), f). Similarly, we write
m[x 7→ v] (resp., m[(a, f) 7→ v]) for the update of the value of the
variable x (resp., of the field f of the object stored at address a) in the
memory state m. We write M for the set of memory states.

Semantics. We now fix the definition of the semantics of expressions
and statements, which will be used as a reference point for the con-
struction of a parametric shape analysis. For the sake of simplicity, we
elect to use a form of denotational semantics, which boils down to a
compositional input–output relation.

The evaluation of an expression in a given memory state simply
returns a value (namely, a symbolic address or a base value such as a
numeric value). Therefore, we let the semantics JeK of an expression e
be a partial function from memory states to values. Indeed, it is not
defined when it encounters an error (e.g., due to a null or invalid address
dereference). It proceeds by induction over the syntax of expressions
and is shown in Figure 3.2(a). In the case of binary operations, we
assume that, for each operator �, there exists a function f� that defines
its semantics.

The semantics of a statement s boils down to a function that inputs
a pre-condition and returns a post-condition. Pre- and post-conditions
consist of sets of memory states. The semantics of statements is shown
in Figure 3.2(b). Its definition proceeds by induction over the syntax
of statements and is standard. Freshly allocated cells may contain any
possible value. Similarly, we make no assumption about the initial value
of variables. Note that the case of loops relies on a fixpoint iteration to
describe all states that can be observed after any number of iterations.
This semantics can easily be extended to a semantics that collects all
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Figure 3.2: Semantics.

the reachable states of a program, though its definition would become
slightly more complex; for this reason, we only study this compositional
semantics instead.

3.2 Shape Abstraction

We now set up a general shape abstraction. In this section, we do not
formalize a specific abstraction. Instead, we simply give the format of a
generic one and defer the definition of instances to Section 4.

An abstraction is defined by a set of logical predicates, with a
machine implementation, and a logical interpretation. In the following,
we formalize these as follows:

Definition 3.1 (Shape Abstraction). A shape abstraction is defined via
the following components:

• a set of abstract shapes D, and

• a concretization function γ: D −→ P(M).
An element d ∈ D is called abstract shape.
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Intuitively, if m is a memory and d ∈ D is an abstract shape, then
m ∈ γ(d) means that “m satisfies the abstract shape property expressed
by d”, which is sometimes noted as m � d.

An abstract shape d should simultaneously be viewed in two different
ways. First, it defines a logical formula that captures the properties of
the set of memory states γ(d), and that forms the logical interpretation
of the abstract shape. This view should be used for reasoning over
shape analyses, for assessing whether they are expressive enough, and
for proving their soundness. Second, it defines a machine representation
that should be efficient to manipulate. Indeed, manipulating logical
formulas directly is often not the best solution to derive fast algorithms
to compute analysis operations. Instead, D generally defines a machine
representation that is adapted to such computations. Therefore, a shape
abstraction is close to the implementation of a program logic that
provides predicates to reason over shape properties.

As an example, Section 2 discussed shape analysis in general terms
using a graphical shape abstraction depicted in Figure 2.3. In this
setup, abstract shapes are graphical objects using basic predicates and
summary predicates. Moreover, the concretization relation maps one
such drawing into the set of memory states that it represents, following
the high level definition of Figure 2.3. In the rest of that section, we
have shown how to compute shape abstract predicates that cover all
reachable states of a given program.

Later in Section 2, we have also alluded to several instances of
abstract shapes, based on shape graphs, on three-valued logic predicates
and on separation logic augmented with inductive predicates. Each of
these defines an instance of D and γ. In Section 4, we shall define these
more formally and describe their properties more in detail.

3.3 Abstract Interpretation

In this subsection, we sketch the definition of a shape analysis that is
based on the semantics presented in Figure 3.2 (Subsection 3.1), and
on a shape abstraction described as in Definition 3.1 (Subsection 3.2).
This analysis should return an over-approximation of the semantics of
a program, that is expressed using the shape abstraction. To do that,
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we proceed by abstract interpretation (Cousot and Cousot, 1977) of
the semantics of programs, and seek for an abstract semantics that
is defined following a structure very similar to the concrete semantics
shown in Figure 3.2, and that is computable.

At this stage, we have not fully fixed the shape abstraction, since
we left it as a parameter of the analysis. As a consequence, we will
not detail each of the operations that are required on shape predicates.
Instead, we will simply list the abstract operations that are required to
handle each program construction. These operations are fully defined
in Section 4.

Since the concrete semantics was modeled as a function that takes
as input sets of memory states and returns sets of memory states,
the abstract semantics of a statement s, denoted as JsK], adopts a
similar structure, and takes the form of a function that maps a shape
abstraction into another shape abstraction. Moreover, it should be sound
with respect to the concrete semantics, which means that it should not
“forget” any concrete behavior described by the concrete semantics as
conveyed in the inclusion below.

∀d ∈ D, JsK ◦ γ(d) ⊆ γ ◦ JsK](d)

As the structure of J·K] closely follows that of J·K, the underlying sound-
ness proof also proceeds by induction over the syntax. Therefore, as we
consider statement kinds one by one, we will also sketch the soundness
proof itself. As an example, the case of sequential composition is trivial,
and the analysis of a sequential composition should simply compose the
abstract meaning of the constituents statements.

Js0; s1K](d) = Js1K] ◦ Js0K](d)

Analysis of Fresh Object Creation Statements

To compute a sound abstract post-condition for memory allocation,
the analysis should provide a function newx: D→ D that satisfies the
inclusion below.

∀d ∈ D, ∀m ∈ γ(d),
{m[x 7→ a, (a,~f) 7→ ~v] | a fresh in m ∧ ~v are values} ⊆ γ(newx(d))



36 Generic Shape Analysis

Typically, such an operator should synthesize a representation for the
newly allocated block, and accurately take into account that the address
of the newly allocated memory block is unknown as well as its contents.

Once such an operator is defined, we may simply define
Jx = new( )K](d) = newx(d).

Analysis of Assignments

In the same way as for memory allocation statements, the analysis of
assignment statements is carried out by a shape abstraction specific ab-
stract operation assignx.f←e: D→ D, which should meet the following
soundness property.
∀d ∈ D, ∀m ∈ γ(d), m[(m(x), f) 7→ JeK(m)] ∈ γ(assignx.f←e(d))

Intuitively, assignx.f←e should account for the destructive update of
the field x.f with the value obtained when evaluating e. Therefore, its
full definition depends on the abstract shape predicates, and we discuss
several kinds of such operators in Section 4. Recall that in Section 2 we
have informally described such an operation for a simple graphical shape
abstraction. In fact, we encountered two cases: first, when the read and
updated cells are immediately visible, the analysis of assignment boils
down to an abstract pointer switch, as shown in Figure 2.6; second,
when either the read or the updated cell is summarized, the analysis
needs to refine abstract summaries before proceeding with the regular
assignment analysis.

Based on this abstract operator, we can simply define
Jx.f=eK](d) = assignx.f←e(d).

Analysis of Condition Tests

The analysis of a condition test requires two additional abstract oper-
ations. First, it requires an operation that accounts for the condition
itself, which should compute an over-approximation of the set of mem-
ory states such that a Boolean expression evaluates to true. We write
teste: D→ D for this operation. Furthermore, its soundness condition
boils down to the following inclusion.

∀d ∈ D, ∀m ∈ γ(d), JeK(m) = true =⇒ m ∈ γ(teste(d))
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Second, the semantics of a condition test comprises the union of the
behaviors from two branches, thus its analysis should compute an over-
approximation of this union. We write join: D×D→ D for this abstract
operation, which over-approximates concrete unions, as expressed by
the following inclusion.

∀d0, d1 ∈ D, γ(d0) ∪ γ(d1) ⊆ γ(join(d0, d1))

Intuitively, join returns an abstract shape that is weaker (less precise)
than both of its inputs. There exist several techniques to obtain such a
weakening. The most immediate one is to simply produce the symbolic
disjunction of the two arguments, if D can represent it. It is the most
precise answer, but it might be overly expensive, in terms of computa-
tional resources. A second technique proceeds by generalization over the
properties expressed by both arguments. In Section 2, we have observed
that such a generalization could be performed by generating summary
predicates, as shown in Figures 2.5 and 2.9. Based on these two abstract
operators, we can simply let the analysis of a condition test statement
be defined by Jif(e){s}K](d) = join(JsK](teste(d)), test!e(d)) (where
!e denotes the negation of e).

Analysis of Loops

We now consider the analysis of a loop while(e){s}, given an abstract
pre-condition d. The concrete semantics collects all the states observed
by iterating the composition of the effects of the condition and of
the loop body, using a least-fixpoint definition shown in Figure 3.2.
The states observed after exactly one iteration of the loop are over-
approximated by JsK](teste(d)), since teste accounts for the effect of the
condition and JsK] for that of the loop body. Thus, the abstract semantics
should also collect all the iterates of this function. In general, a naive
iteration sequence may not converge, thus the analysis should resort
to a fixpoint approximation technique, using some kind of widening
operation (Cousot and Cousot, 1977). Intuitively, all these fixpoint
approximation techniques need to generalize over the abstract iterates,
in the same sense as in Figure 2.10. Such a generalization typically
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introduces summary predicates. Works in shape analysis rely on different
techniques in order to achieve such a fixpoint approximation:

• Some works rely on a finite height lattice, which ensures the
convergence of naive iteration with an abstract union join.

• Some works use an infinite height lattice, but collapse abstract
states into a finite height lattice just for loop iteration (at the
expense of some precision).

• Finally, some works employ classical widening techniques.

To accommodate for this range of solutions, we adopt a rather gen-
eral description here, based on an extrapol operator, which takes
as arguments a function f : D → D and an argument d, and that
returns a sound over-approximation of all the iterates fn(d) (this
computation typically involves the abstract join or the widening of
the iterates of the analysis of the loop body). Using such an op-
erator, the analysis of a loop statement may simply be defined as
Jwhile(e){s}K](d) = test!e(extrapol(JsK] ◦ teste, d)).

3.4 Summary

The complete definition of the shape analysis is summarized in Figure 3.3.
It consists of a function J·K]: D → D, which maps an abstract pre-
condition to an abstract post-condition, assuming the shape abstract
domain is as defined in Definition 3.1. It is sound with respect to the
concrete semantics of Figure 3.2 in the following sense:

Figure 3.3: Shape analysis.
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Theorem 3.1 (Soundness). For any program s, the abstract semantics
JsK] satisfies the soundness property below.

∀d ∈ D, JsK ◦ γ(d) ⊆ γ ◦ JsK](d)

This soundness result follows from a straightforward induction over
the syntax of programs, and from the soundness of each of the basic
operations.

While the definition of actual shape analysis tools varies slightly, this
abstract semantics summarizes their overall structure. As an example,
the actual implementation of extrapol may boil down to a simple
iteration over a finite height lattice, or it may require a more complex
abstract iteration technique using a widening operator.

To conclude, the definition of a shape analysis for our example
language essentially relies on the following components:

• a set of abstract shapes D, with a machine representation and a
concretization function γ: D→ P(M);

• an operation newx: D→ D, which over-approximates the effect
of an object allocation;

• an operation assignx.f←e: D→ D, which over-approximates the
effect of an assignment;

• an operation teste: D→ D, which over-approximates the effect of
a condition test;

• an operation join: D×D→ D, which over-approximates the union
of concrete set;

• an extrapolation operation extrapol: (D→ D)× D→ D; and

• proofs of the soundness of newx, assignx.f←e, teste, join, and
extrapol, and of the termination property of extrapol.



4
Memory Layout Abstractions

This section presents the main families of shape analyses, and the under-
lying abstractions. For each of them, it describes the form of the shape
abstract states with their concretization and machine representation,
and it shows the main analysis operations so as to discuss the implemen-
tation of the operators listed in the end of Section 3. First, Subsection 4.1
identifies important features that shape abstractions should provide.
Subsection 4.2 reviews the classical shape analyses based on graph
abstractions (which are not necessarily able to dynamically materialize
or generalize summaries). The following three subsections discuss shape
analyses which are able to handle summaries in a dynamic way, and
decide at analysis time when to refine or generalize them. Subsection 4.3
presents the shape analyses based on three-valued logic. Subsection 4.4
discuss the shape analyses based on separation logic. Subsection 4.5
focus on shape analyses that rely on grammar-based abstractions.

4.1 Dividing Lines

Before we dive into specific shape abstractions, we attempt to draw
lines between those that try to preserve shape information and those
that may fully abstract it away. This is not by any measure an absolute

40
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rating of the strength of an analysis; it simply aims at recognizing how
information about shape can be inferred. Moreover, depending on the
situation, shape information may be useful to infer other properties of
interest, or completely irrelevant, thus we are not either trying to rate
analysis usefulness here.

Generally, shape information is about data structures the size and
the form of which are not statically known. It is thus up to the analysis
to characterize the size and the form of these data structures, and
possibly to abstract them.

Size of Data Structures. When the number of memory cells that
the analyzed program may use is fixed, finite, and small, the problem
of choosing an abstraction for memory states becomes much simpler,
even if the analysis should preserve accurate information. Indeed, it is
then possible to either enumerate all reachable configurations, or to
use abstractions that rely on the finiteness of the set of memory cells
(e.g., by keeping exact information about a well identified subset of the
memory cells).

On the other hand, when this number is unbounded or unknown
statically, all such finite abstractions are doomed to fail. Since an
abstract state may only consist of finitely many abstract predicates,
describing such memory states accurately requires using predicates
that can account for properties of unbounded numbers of concrete
memory cells. As observed in the previous sections, these correspond to
summary predicates. Note that such predicates may be required even
when analyzing programs that allocate a fixed, bounded number of
memory cells: indeed, even then, enumerating all possible configurations
may be prohibitively costly, and all abstractions based on the finiteness
of the memory layout may not apply.

Therefore the main point of this criterion here is to distinguish the
following two kinds of analyses:

• analyses that do not attempt to summarize memory re-
gions and that can exploit abstractions based on a finite set of
memory cells;
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• analyses that attempt to summarize memory regions using
global predicates.

By essence, shape analyses fit in the second category, and try to sum-
marize at least some kinds of unbounded data structures, whenever this
is possible. Pointer analyses which handle heap-manipulating programs
also fit the second category. For example, the popular allocation-site-
based abstraction summarizes the properties of all the objects allocated
at the same program point using a single abstract object, which, using
our nomenclature, is a summary predicate of a particular form. In
contrast, numerical analyses of variable-manipulating programs fit the
first category. For example, in the interval domain, the possible values
of every variable are captured by a unique interval.

Summarization Process. We now focus on static analyses that rely
on summary predicates, and further classify them. The next relevant
classification criteria should convey how powerful the summarization
process is, and how close it is to the semantic definition of the data
structures that are considered. As we have observed in Section 2, once
summary predicates are present, their refinement is generally rather
systematic, whereas their introduction is based on a generalization step,
which is often conceptually harder, since it requires to select pieces
of abstract information that should be retained whereas others get
discarded. When the definition of the summaries is trivial and fully
guided by the syntax of programs, the analysis process is simpler, as it
does not need to select partitions.

However, in languages such as C or Java, no information purely based
on the types, or more generally on the program text can distinguish
between structures that have very different properties, such as doubly-
linked lists, binary trees, or data structures that involve sharing like
graphs or DAGs. Indeed, for a given type definition where an object
has two pointer fields to elements of the same type, one may imagine
either that these pointers describe a local relation over a linear structure
(as in a doubly linked list), or refer to disjoint memory areas (as in a
binary tree). Intuitively, if such a structure comes with no comment (or
other implicit information such as well-chosen type or field names), a
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human reading the code would have to interpret carefully the whole
program so as to understand what kind of structure is actually built or
manipulated. The same goes for a static analysis. More generally, the
shape properties of such complex data structures are not correlated with
allocation sites or other such information. This means that a simple
and static definition of summaries should not be expected to work in
such cases.

To sum up, we can distinguish two important categories of analyses
that infer memory properties and rely on summary predicates:

• Analyses that can decide based on fully static criteria where
and how to introduce summary predicates; such analyses
typically handle summary predicates based on syntactic informa-
tion present in the program text, or using the results of simple
pre-analyses.

• Analyses that need to decide where and how to introduce
summary predicates dynamically (that is during the analysis)
and based on semantic properties (that is, on information
about the data structures, that are computed by the analysis
itself); such analyses cannot rely on a simple pre-analysis; instead,
they let the analysis intermediate results guide the choices of the
summary predicate introduction points, and of how they should
be synthesized.

In the following, while we also report on works that utilize other ab-
stractions, we restrict the use of the term “shape analysis” to analyses
of the second kind, that is, analyses which determine where and how to
introduce summary predicates dynamically, during the analysis process.
This implies that shape analyses need to come up with some seman-
tic criteria in order to trigger the refinement and the generalization
algorithms attached to summary predicates, as shown in Figure 2.5.

Division. To recapitulate the discussion so far, we identify shape anal-
yses as analyses that are able to describe some families of unbounded
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memory regions using summary predicates, and that can do so in a dy-
namic manner, namely at analysis time, and based on intermediate anal-
ysis results. The ability to summarize memory regions of unbounded size
without enumerating their elements is fundamental here, and requires
the use of high level shape predicates. The dynamic summarization is
also crucial, as it means that the analysis can handle some cases where
the shape information is not readily available in the program text.

As a consequence, we expect shape analyses to provide algorithms for
refining and generalizing abstract shapes involving summary predicates
over the course of the analysis. However, this definition does not make
any assumption regarding to the way these refinement and generalization
operations are carried out. For instance, we remarked in Subsection 3.3
that generalization is quite a challenging step and that it may be handled
in several rather different ways: a possible technique lossily collapses
abstract states into a finite height lattice (either incrementally, or at
specific points during the analysis—typically at loop heads) so as to
enforce convergence of abstract iterates, whereas another approach relies
on a classical widening operation applied to abstract iterates. In the
following of this section, we show shape analyses that rely on each of
these approaches.

4.2 Graph-Based Shape Abstractions

This subsection introduces abstractions based on shape-graphs and
which are able to summarize memory regions of unbound size, but
which do not support dynamic materialization during the course of the
analysis.

A Brief History of Shape Analysis. To the best of our knowledge,
Reynolds (1968) was the first to address the problem of shape analysis.
He considered a functional programming language (i.e., one without
destructive updates) and formalized the problem as solving a collection
of set equations. Jones and Muchnick (1979) describe two kinds of
shape analyses: One analysis also considers a Lisp-like language without
destructive updates and uses tree grammars to abstract the shape of
the heap. The second analysis supports destructive updates and utilizes
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shape-graphs with an a priori fixed bound on the length of paths. (The
analysis is discussed in depth in Subsection 4.2.1.)

Jones and Muchnick (1982) revisited the problem of shape analysis
for languages without destructive updates and improved upon their
earlier work by providing a more economical abstraction: they associ-
ated a grammar rule for every program point corresponding to a list
construction operation instead of associating one with every program
point. The idea of utilizing allocation sites as means for summarizing
multiple objects was later used for languages with destructive updates
in Chase et al. (1990) and Stransky (1992). Interestingly, the analysis of
Chase et al. (1990) can maintain multiple nodes corresponding to objects
allocated at the same site. For example, an object allocated at allocation
site A is not merged into the summary nodes corresponding to the ob-
jects allocated at A if it can be determined that it is definitely pointed
to by some variable. This refinement, together with an explicit record of
heap-sharing information, allows the analysis to perform strong-updates
in certain cases as well as to infer the preservation of “listness” and
“treeness” by certain procedures, e.g., top-down or bottom-up creation
of a list or a tree. However, the analysis, lacking materialization, often
fails to prove the preservation of these properties when a destructive
update occurs “deep in the heap”, e.g., the preservation of acyclicity
after inserting a node into the middle of an acyclic list.

Another innovation of Jones and Muchnick (1982) is the use of a
non-disjunctive domain. Roughly speaking, this amount to using a single
shape graph at every program point instead of utilizing a set of such
graphs. Other classical shape analyses which utilize a non-disjunctive
domain include (Chase et al., 1990; Larus and Hilfinger, 1988; Stransky,
1992). The latter, however, are applicable to languages with destructive
updates. The use of non-disjunctive domains leads to an interesting
phenomenon where the shape graph may contain nodes representing
memory objects which appear in one memory state but not in another
and that different nodes represent an object allocated at the same
address but coming from two different memory states.

These works were the precursors to the work of Sagiv et al. (1998)
which was the first to introduce the concept of materialization into shape
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analysis. The following two subsections discuss two modern techniques
for shape analysis.

In the rest of this subsection, we review one of the seminal works in
the field: The k-limiting based shape analysis of Jones and Muchnick
(1979).

Note 1. In the rest of this subsection, we assume that the analyzed
program P uses fixed arbitrary finite sets X ⊂ X and F ⊂ F of variables
and fields, respectively.

4.2.1 K-Limited Abstractions

Jones and Muchnick (1979) pioneered the use of shape graphs as means
for representing concrete memory states of heap-manipulating pro-
grams.1 Similarly to the informal graphical abstraction used in Sec-
tion 2, a shape graph conservatively represents an unbounded heap in
a bounded way by collapsing sub-heaps comprised of “similar” heap-
allocated objects into summary nodes. The analysis was designed to
aid programmers choose an effective memory management technique.
Specifically, it was intended to determine whether (i) a program can use
reference-counting (by discovering that there are no cyclic data struc-
tures), and (ii) an element can be deallocated once the program redirects
a pointer-field pointing to it (by establishing that the program does not
manipulate heap-shared data structures). Thus, in addition to the main-
taining a summary predicate distinguishing summary nodes from regular
(non-summary) nodes, the analysis records two graph-theoretical prop-
erties pertaining to the layouts of the collapsed subheaps: heap-sharing
and cyclicity.

More technically, a shape graph is a sextuple

sg = (N,SM , S, C, ρ, E)

where N is a set of nodes, SM ⊆ N records the set of summary nodes,
and S ⊆ SM and C ⊆ SM register which summary nodes may corre-
spond to subheaps containing a heap-shared node or a cycle, respectively.
The function ρ: X → N ∪ {NULL} is an abstract environment mapping

1Chase et al. (1990) coined the term (storage) shape graphs.
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each pointer variable either to the node that represents the object that
it points to, or to the special value NULL. The set E ⊆ N × F × N
collects directed edges abstracting the inter-object pointer-linked layout.

A shape graph sg = (N,SM , S, C,N, ρ,E) represents a memory
state m, i.e., m ∈ γ(sg), if there is a surjective function η from the
symbolic addresses of the reachable dynamically-allocated objects in m
to N such that the following holds:2

1. If two distinct objects are represented by the same node then this
node must be a summary node, i.e., if a 6= a′ and η(a) = η(a′)
then η(a) ∈ SM .

2. If objects a, a1, and a2 are part of the same collapsed subheap,
i.e., η(a) = n, η(a1) = n, and η(a2) = n for some n ∈ SM , and a
is pointed to by fields f1 and f2 of a1 and a2, respectively, i.e.,
m(a1, f1) = a, and m(a2, f2) = a, and either a1 6= a2 or f1 6= f2
then η(a) ∈ S.

3. If a collapsed subheap contains a cycle of pointer-linked objects
fields then the summary node representing it is marked as possibly
cyclic, i.e., if there are locations a0, . . . , ak and fields f0, . . . , fk and
a summary node n ∈ SM such that for any i = 0 . . . k, η(ai) = n

and, m(ai, fi) = a(i+1) mod k+1 then n ∈ C.

4. For any variable x ∈ X ,3

(a) if m(x) = a then ρ(x) = η(a), and, conversely,
(b) if ρ(x) = η(a) and η(a) 6∈ SM then m(x) = a.

5. For any field f ∈ F and locations a and a′,

(a) if m(a, f) = a′, then there is an f-labeled edge from the
node representing a to the node representing a′, i.e., (η(a), f,
η(a′)) ∈ E, and, conversely,

2An object at location a is reachable if it is accessible via a path of pointer fields
starting at an object pointed to by a variable.

3Recall that in our language, variables are in fact constants referring to structures
with a single field ∅. For clarity, we write m(x) instead of m(x.∅).
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(b) if there is an edge (η(a), f, η(a′)) ∈ E and neither η(a) nor
η(a′) are summary nodes then m(a, f) = a′.

For example, the shape graphs shown in Figures 4.1(a)–(d) represent
the concrete memory state depicted in Figure 2.4 with a decreasing
degree of accuracy (i.e., any memory state represented by Figure 4.1(a)
is also represented by Figure 4.1(b), etc.). We draw nodes of shape
graphs as rectangles with rounded corners and mark summary nodes
using double lines. We write shared resp. cyclic below summary nodes
representing possibly shared resp. possibly cyclic subheaps. We draw
edges emanating from non-summary nodes using solid arrows (indicating
they correspond to must-information) whereas those leaving a summary
node are dashed (indicating they correspond to may-information).4 We
depict the abstract environment by drawing edges from variable names
to the nodes they point to, using the same convention as above for
dashed and solid arrows. (NULL-valued variables and fields are not
shown in the diagram.) Each node is labeled by an identifier. These are
merely used for ease of reference, and take no part in the abstraction.

Note that any memory represented by the shape graph depicted
in Figure 4.1(a) must contain at least six elements and c must point
to a list containing exactly three elements. However, the shape graph

Figure 4.1: Shape graphs.

4The must information comes from conditions 4b and 5b of the abstraction
whereas the may information is due to conditions 4a and 5a.
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Figure 4.2: Possible concretizations of the shape graph shown in Figure 4.1(b).

depicted in Figure 4.1(c) may represent memory states with two or
more allocated objects and variable c may point to any element in a
list except the one pointed to by l.

As was the case in Section 2, these shape graphs also represent
memory states which are, intuitively, undesirable. Consider, for example,
the shape graph depicted in Figure 4.1(b). Its concretization contain
the memory states depicted in Figures 4.2(a)–(c):

• Figure 4.2(a) depicts a memory state in which the value of c is
NULL. This memory state is in the concretization because the
shape graph abstraction allows the value of any variable annotating
a summary node to be NULL.

• Figure 4.2(b) depicts a memory state in which the lists pointed to
by l and c are disconnected. Indeed, as the shape graph does not
record reachability information, a summary node may represent
an unbounded number of disconnected subheaps.

• Figure 4.2(c) depicts the memory state shown in Figure 2.4, but
with some unreachable (garbage) memory cells. Recall that the
nodes of a shape graph record explicitly only the reachable objects.
Thus, any memory state represented by a shape graph may contain
an unbounded number of garbage (i.e., unreachable objects).
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Figure 4.2(d) depicts a memory state in which the list ends with a
cycle. Thus, out of the four shape graphs depicted in Figure 4.1, only
shape graph (d) represents it. Figure 4.1(b) would have represented
this memory state too had its rightmost summary node been marked
as cyclic. Note that the latter does not need to be marked as shared
because every object in the subheap it corresponds to, namely the
ones participating in the cycle, is pointed to by exactly one field of
another object in that subheap. Interestingly, the summary node does
not need to be marked as shared because every object in the subheap it
corresponds to, namely the ones participating in the cycle, is pointed
to by exactly one field of another object in that subheap.

K-Limited Shape Graphs. The analysis ensures that the number of
possible shape graphs is bounded by employing k-limiting, for a given
arbitrary positive integer k: a shape graph is k-limited if every node
it contains can be reached by a field-labeled path of length at most
k starting at node pointed to by a variable. For example, the shape
graphs shown in Figures 4.1(c), (d) are 0-limited, but not 1-limited, the
shape graph shown in Figure 4.1(b) is 1-limited, but not 0-limited, and
the shape graph shown in Figure 4.1(a) is 2-limited, but not 1-limited.

K-Bounding. As we discuss shortly, the analysis may temporarily
produce non k-bounded shape graphs. To bound the resulting shape
graphs, Jones and Muchnick (1979) defines a clean function over shape
graphs which generalizes shape graphs by merging together nodes that
violate the k-limit restriction. Roughly speaking, the analysis utilizes
the following process to decide which nodes need to be merged together:
It removes from the shape graph all the nodes which are at distance
k − 1 or less from a node pointed to by a variable, partitions the
remaining nodes into weakly connected components, and merges every
component into a single summary node. The latter may be declared
shared (resp., cyclic) if one of the nodes merged into it is shared (resp.,
cyclic) or if this is indicated by the pointer layout connecting the
merged nodes. For example, applying 1-bounding to the shape graph
depicted in Figure 4.1(a) would generate the shape graph depicted in
Figure 4.1(b). The removal of nodes v1 and v4 results in two weakly
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connected components: one is made of nodes v2 and v3 (which are
merged into node v2) and nodes v5 and v6 (which are merged into
node v4). Note that subgraphs of shape graph (d) made of nodes v1 and
v4 and of v2 and v3 do not contain a cycle nor a shared node. Thus,
nodes v2 and v4 in Figure 4.1(b) are not marked as shared or as cyclic.

Note 2. The abstraction used by Jones and Muchnick (1979) is slightly
coarser than the one we present here as they do not label the edges
that stem from summary nodes. To simplify the presentation, we chose
to maintain the labels.

Shape Graph Abstract Domain. Since the number of k-bounded
shape graphs is finite (for given finite sets of variable names X ⊂ X and
fields F ⊂ F), the analysis defines D to be the powerset of all bounded
structures for P , i.e., every abstract element SG ∈ D is a set of k-limited
shape graphs, join is defined as set union, and extrapolation is defined
as identity.

Note 3. The above arguments holds only if we assume that node names
are irrelevant. Indeed, two shape graphs are considered equal if they
are homomorphic.

4.2.2 Computation of Post-Conditions

The abstract transformers, described below, are rather straightforward
with one exception: When a pointer-field emanating from a summary
node is traversed, the analysis considers all possible options according
to the outgoing (dashed) edges. After the transformer is executed, the
analysis removes any node which is not reachable from a variable and
bounds the resulting shape graphs using the clean function.

Here, and in the rest of this subsection, we use SG ∈ D to denote a
set of shape graphs and treat sg as a shorthand for (N,SM , S, C, ρ, E).

Post-Condition for Memory Allocation. The abstract transformer for
the memory allocation command adds a new node to each input graph
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and labels it with x.

newx(SG) ∈
{(N ∪ {n},SM , S, C,N, ρ[x 7→ n], E) | sg ∈ SG, n = alloc(N)}

We assume that alloc(N) acts as an abstract memory allocating function
which returns a node n 6∈ N .

Post-Condition for Pointer Assignments. We consider four kinds of
prototypical assignment operations:

Nullification and Copy Assignments. Setting a variable to NULL
and setting a pointer variable to the value of another variable merely
modifies the environment.

assignx←NULL(SG) = {(N,SM , S, C,N, ρ[x 7→ NULL], E) | sg ∈ SG}

assignx←y(SG) = {(N,SM , S, C,N, ρ[x 7→ ρ(y)], E) | sg ∈ SG}

Destructive Updates. Directing the f-field of the object pointed
by variable x to the object pointed to by y adds an appropriate edge
to the shape graph, provided that x points to some node in the shape
graph. In case x points to a non-summary node the analysis removes
the previous f-labeled edge, and thus performs strong-update. However,
this is not done in case x points to a summary node.

assignx.f←y(SG) = {(N,SM , S, C,N, ρ, (E ∪ E+) \ E−) | sg ∈ SG}
where E+ = {(ρ(x), f, ρ(x)) | ρ(x) ∈ N}

E− = {(ρ(x), f, n) ∈ E | ρ(x) ∈ N \ SM}

Recall, that a variable pointing to a summary node may still have a
NULL value. The analysis ignores this possibility, and thus it is not
sound to verify the absence of NULL-valued pointer dereferences using
this analysis.

Pointer Dereferences. Traversing the f-field of the object pointed
by variable x may lead to more than one node in case x points to a
summary node. Thus, the analysis performs a rather naive case analysis
based on the possible targets of the relevant f-labeled edges. This
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ensures that in the resulting graphs every variable labels at most one
node. Note that the analysis blocks if x does not point to any node in
the shape graph, however it does not raise an alarm.

assigny←x.f(SG) =
{(N,SM , S, C,N, ρ[y 7→ n], E) | sg ∈ SG ∧ (ρ(x), f, n) ∈ E}

Post-Condition for Condition Tests. We consider two prototypical
pointer-related condition tests x ./ y: checking whether the values of
variables x and y are equal (./ is =) or not (./ is 6=). If both variables
point to non-summary nodes then the test can be done by checking
whether they label the same node or not. Otherwise, the tests are
done rather conservatively because the value of the variable labeling a
summary node may be NULL.

testx./y(SG) =
{sg ∈ SG | ρ(x) ./ ρ(y) ∨

(ρ(x) = ⊥ ∨ ρ(x) ∈ SM ) ∧ (ρ(y) = ⊥ ∨ ρ(y) ∈ SM )}

4.3 Three-Valued Logic Shape Abstraction

Three-valued shape analysis (Sagiv et al., 2002) (3VSA for short) utilizes
logic in two important ways: (1) to represent concrete heaps and abstract
heaps, and (2) to express semantic operations.

This subsection is organized as follows: (i) We explain how logical
structures are used to represent concrete heaps, (ii) We explain how
3-valued logical structures are used to represent abstract heaps and
define a parametric abstract domain; (iii) We define a concrete semantics
using the concept of predicate updates; (iv) We define an instrumented
semantics as an intermediate step between the concrete semantics and
the abstract semantics. The instrumented semantics extends the concrete
semantics with information used to improve the precision of the abstract
semantics; (v) We define a vanilla abstract semantics, which is sound
but rather imprecise; and finally (vi) We define techniques for improving
the precision of the abstract semantics.
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First-Order Predicates. In 3VSA, we use the term predicate to refer
to a first-order relation symbol p, and write p(k) to explicitly indicate
that the rank of p is k. Nullary predicates (predicate of rank 0) are an
important special case of first-order predicates. Those are often referred
to as state predicates and are employed by model checkers and static
analyses based on predicate abstraction (Graf and Saïdi, 1997). We use
the term vocabulary to mean a non-empty set of first-order predicates.

4.3.1 A Logical Representation of Concrete Memory States

In 3VSA, concrete memory states are represented by 2-valued structures,
which we define next.

Definition 4.1. A 2-valued logical structure over a vocabulary V is a
pair S = 〈U, ι〉 where U is the universe (a finite set of individuals) of
the 2-valued structure, and ι is the interpretation function mapping
predicates to their truth-value in the structure: for every predicate
p(k) ∈ V, ι(p(k)): Uk → {0, 1} maps k-tuples of individuals to either 0
(false) or 1 (true).

We will use the notation US and ιS to refer to the universe and
interpretation of a structure S, respectively.

The main reason for using 2-valued structures is to provide a freedom
in choosing the desired implementation details in order to suit the
programming language and analysis goals. The analysis designer can
choose a set of individuals to represent, for example: objects, threads,
arrays, or stack frames. The analysis designer can also choose predicates
to represent properties of the concrete semantics, for example: pointer
values, less-than relation over the values of numerical fields, or order
of stack frames. Another reason for doing so is that it allows defining
the abstract semantics (analysis) using similar means, which greatly
simplifies the technical development and the proof of soundness, as we
show in the next subsections.

Typically, a 2-valued structure S = 〈U, ι〉 represents the set of
allocated objects in the heap by U and uses a vocabulary of core
predicates Vcore, consisting of unary predicates and binary predicates.5

5The reason for using the term core predicates will become clearer later.
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Specifically, unary predicates are used to represent the values of pointer
variables and binary predicates are used to capture the values of pointer
fields and for the equality predicate, eq(2):

Predicate Meaning

x(u) The pointer variable x ∈ X points to object u
f(u, v) The value of the pointer field f ∈ F of object u is v
eq(u, v) The individuals u and v are equal

Example 4.1. To represent the concrete heap shown in Figure 2.4, we
use the vocabulary {t(1), l(1), fresh(1), n(2), eq(2)} where t and l represent
the variables t and l, respectively, and n represents the list field. The
universe consists of the individuals u1..7 for each of the list cells in the
order of appearance in the list. The interpretation ι0 function is as
follows:

ι0(l) = λu ∈ u1..7.

{
1, if u = u1;
0, otherwise.

ι0(t) = λu ∈ u1..7.

{
1, if u = u5;
0, otherwise.

ι0(n) = λ(ui, uj) ∈ u1..7 × u1..7.

{
1, if j = i+ 1;
0, otherwise.

ι0(eq) = λ(ui, uj) ∈ u1..7 × u1..7.

{
1, if i = j;
0, otherwise.

The resulting structure, S0 = 〈u1..7, ι0〉 is shown in Figure 4.3; for
now ignore the labels appearing under the nodes, they will be explained
in Subsection 4.3.2. We depict unary predicates that correspond to
pointer variables by an arrow from the variable name to the individual
for which they hold. We depict binary predicates by edges labelled by
the name of the predicate, except for eq, which is understood from the
set of individuals.

Notice that the null value is represented implicitly by evaluating
predicates to 0. For example, ι0(n)(u7, u) = 0 for each u ∈ u1..7, which
means that the value of n of the object represented by u7 is null.
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Figure 4.3: The 2-valued structure S0. A label appearing under a node indicates
that the corresponding unary instrumentation predicate holds for that node.

4.3.2 A Logical Representation of Abstract Heaps

To be able to represent infinite sets of 2-valued structures in a finite
way, we now define the concept of abstract states used by 3VSA.

Consider the abstract state shown in Figure 2.4. How would we
represent it using a logical structure? One idea is to allow abstract
individuals (summary individuals) to represent more than a single
concrete individual. Specifically, our “abstract logical structure”, S]0 =
〈U ]0, ι

]
0〉, would have three summary individuals U ]0 = {v1, v2, v3} where

v1 represents u1..4, v2 represents u5, and v3 represents u6..7.
The question is how would we interpret the predicates over the

abstract individuals? For t, the answer is obvious, since v2 corresponds
exactly to u5:

ι]0(t) = λv ∈ v1..3.

{
1, if v = v2;
0, otherwise.

For l, the answer is obvious for v2 and v3, since l does not point to any
of u5..7, but for v1, which value should we choose as k1?

ι]0(l) = λv ∈ v1..3.

{
k1, if v = v1;
0, otherwise.

If we want the value of k1 to represent all the values {ι0(l)(ui)}4i=1
then we have a problem, since ι0(l)(u1) = 1 and ι0(l)(u2) = ι0(l)(u3) =
ι0(l)(u4) = 0. We need a way to represent the set of values {0, 1}.
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To achieve this, we utilize Kleene’s 3-valued logic (Kleene, 1952), which
uses the values 0, 1, and 1

2 to represent sets of Boolean values:

Kleene value Boolean values Description
0 {0} True
1 {1} False
1
2 {0, 1} Unknown

We equip the set of Kleene values {0, 1, 1
2} with the partial order

0 v 1
2 and 0 v 1

2 and the join operation defined as follows:

v1 t v2 =

v1, if v1 = v2;
1
2 , otherwise.

For example, ι0(l)(u1)tι0(l)(u2)tι0(l)(u3)tι0(l)(u4) = 1t0t0t0 = 1
2 .

To include Kleene values in logical structures, we generalize 2-valued
structures by 3-valued structures.

Definition 4.2. A 3-valued logical structure, also called an abstract
structure, over a finite set of predicates V is a pair S] = 〈U ], ι]〉 where
U ] is the universe of the 3-valued structure, and ι] is the interpretation
function mapping predicates to their truth-values in the structure: for
every predicate p ∈ V of rank k, ι](p): Uk → {0, 1, 1

2}.

Technically, the only difference between 2-valued and 3-valued struc-
tures is that the interpretation function in the latter might result in
an unknown (1

2) value while the former always return a definite value
(i.e., either true or false). Intuitively, however, the main difference be-
tween 2-valued and 3-valued structures in our context is that every
individual of the former is used to represent a single element of the con-
crete semantics, e.g., an heap-allocated object or an activation record,
where an individual of the latter might represent multiple concrete
elements.
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Example 4.2. We can represent the abstract state in Figure 2.4 by the
3-valued structure S]0 = 〈v1..3, ι

]
0〉 where ι

]
0 is given as follows:

ι]0(l) = λv ∈ v1..3.

{1
2 , if v = v1;
0, otherwise.

ι]0(t) = λv ∈ v1..3.

{
1, if v = v2;
0, otherwise.

ι]0(n) = λ(vi, vj) ∈ v1..3 × v1..3.



1
2 , if i = 1, j = 1;
1
2 , if i = 1, j = 2;
1
2 , if i = 2, j = 3;
1
2 , if i = 3, j = 3;
0, otherwise.

ι]0(eq) = λ(vi, vj) ∈ v1..3 × v1..3.



1
2 , if i = 1, j = 1;
1, if i = 2, j = 2;
1
2 , if i = 3, j = 3;
0, otherwise.

The 3-valued structure S]0 is shown in Figure 4.4. We depict 1
2 values

by dashed edges. A double-lined individual v means that ι]0(eq)(v, v) = 1
2 ,

which means that v may represent more than one concrete element. In
other words, v is a summary individual.

Since 2-valued structures are a special case of 3-valued structure,
we will often define operations directly over 3-valued structures, instead
of repeating the definition once for each type of structures.

We say that a 3-valued structure S] represents a 2-valued structure
S when S is embedded in S], as we define next.
Definition 4.3 (Embedding). Let S = 〈U, ι〉 and S] = 〈U ], ι]〉 be
3-valued structures. Further, let η: U → U ] be a surjective function.

We say that S is η-embedded in S], denoted by S vη S], if the
following condition holds for every k-arity predicate p ∈ V and k-tuple
(u1, . . . , uk) ∈ Uk:

ι(p)(u1, . . . , uk) v ι](p)(η(u1), . . . , η(uk)). (4.1)
We say that S is embedded in S], denoted S v S], if there exists an

embedding function η such that S vη S].
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Figure 4.4: The 3-valued structure S]
0.

Example 4.3. We can see that S0 vη S]0 holds where η is defined as
follows:6

η = λu ∈ u1..7.


v1, if u ∈ u1..4;
v2, if u = u5;
v3, if y ∈ u6..7.

Let 2-Struct[V ] and 3-Struct[V ] denote the set of 2-valued structures
and the set of 3-valued structures over a parametric vocabulary V,
respectively. The embedding relation induces the concretization function
γ: 3-Struct[Vcore]→ P(2-Struct[Vcore]), defined as follows:

γ(S]) = {S ∈ 2-Struct[Vcore] | S v S]}.

In our example, γ(S]0) includes S0 and, undesirably, the 2-valued
structures S1, S2, and S3 shown in Figure 4.5: S1 does not represent
a valid heap, since pointer variables and fields cannot point to more
than one object (note that in S]0, there is a dashed line from l to v1,
indicating that the unary predicate l may hold at none, some, or all the
concrete node mapped to v1 by the embedding function); S2 represents
a disconnected list; and S3 represents a list ending with a cycle.

These examples describe two general problems:

Invalid Structures. Abstract structures may represent concrete struc-
tures that do not correspond to any concrete state defined by the
operational semantics. To address this problem, 3VSA uses the
concept of integrity constraints.

Imprecise Structures. Abstract structures may represent concrete
structures that are unwanted from the perspective of analysis goals.

6The readers may want to check for themselves that (4.1) holds.
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Figure 4.5: {S1, S2, S3} ⊂ γ(S]
0).

To address this problem, 3VSA uses the concept of instrumentation
predicates.

In both cases mentioned above, 3VSA refines the concretization
function by employing formulas in first-order logic with transitive closure,
which we now discuss.
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First-Order Logic with Transitive Closure. The syntax of formulas in
first-order logic with transitive closure, or FOTC for short, is as follows:7

A → 0 | 1 | p(v1..k) | u = v

| A ∧ A | A ∨ A | ¬ A
| ∀v. A | ∃v. A | p+(u, v)
| p∗(u, v) | A ? A: A |

Let Node be the set of all individuals from which the universe of
each structure draws its elements from and let Var be an enumerable set
of logical variables. An assignment µ is a partial function Var⇀ Node.

The meaning of a formula ϕ ∈ A with free variables FV(ϕ) = v1..k
is given by the function JϕK: 2-Struct[V]→ (FV(ϕ)→ Node)→ {0, 1},
which is defined by structural induction as follows:8

J0K(S)(µ) ≡ 0
J1K(S)(µ) ≡ 1

Jp(v1..k)K(S)(µ) ≡ ι(p)(µ(v1), . . . , µ(v1))
JA1 ∧A2K(S)(µ) ≡ JA1K(S)(µ) ∧ JA2K(S)(µ)
JA1 ∨A2K(S)(µ) ≡ JA1K(S)(µ) ∨ JA2K(S)(µ)

J¬AK(S)(µ) ≡ ¬JAK(S)(µ)
J∃v. AK(S)(µ) ≡

∨
n∈U

JAK(S)(µ[v 7→ n])

J∀v. AK(S)(µ) ≡
∧
n∈U

JAK(S)(µ[v 7→ n])

Jp+(u, v)K(S)(µ) ≡
∨

k=1..|U |
J∃v1..k. u = v1∧

v = vk
∧

i=1..k
p(vi, vi+1)K(S)(µ)

Jp∗(u, vK(S)(µ) ≡ Jp+(u, v) ∨ u = vK(S)(µ)
JA1?A2: A3K(S)(µ) ≡ JA1 ∧A2 ∨ ¬A1 ∧A3K(S)(µ)

73VSA supports a more general form of transitive closure, which considers
arbitrary formulas with two free variables.

8The Boolean operations ∧,∨,¬ are, respectively, min, max, and λb ∈ {0, 1}. 1−b.
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When ϕ is a closed formula, i.e., FV(ϕ) = ∅, we can omit the
variable-to-node assignment and resort to the simpler meaning function
JϕK: 2-Struct[V]→ {0, 1}.

Example 4.4. The following formulas check whether there exist cells
that are unreachable from any program variable and whether there
exists a cycle, respectively:

exists_leak ≡ ¬
(
∀v.

∨
z∈{l,t}

∃u. z(u) ∧ n∗(u, v)
)

exists_cycle ≡ ∃v. n+(v, v).

Evaluating the formulas above on the previously shown structures,
yields the following results:

Jexists_leakK(S0) = 0
Jexists_leakK(S2) = 1

Jexists_cycleK(S0) = 0
Jexists_cycleK(S3) = 1

Ruling Out Invalid Structures via Integrity Constraints

An integrity constraint is a formula ψ ∈ FOTC that must hold for any
concrete structure that matches the operational semantics. For example,
to ensure that pointer variables reference at most one object, we use
the following set of constraints:

Xcons ≡ {∀u, v. x(u) ∧ x(v) =⇒ u = v | x ∈ X}

and to ensure that any pointer field (f ∈ F) of any given object (captured
by u below) references at most one object, we use the following set of
constraints:

Fcons ≡ {∀u, v, w. f(u, v) ∧ f(u,w) =⇒ v = w | f ∈ F}.

Let cons be the set of all constraints (cons = Xcons ∪ Fcons in our
example). We utilize the concretization function γcons: 3-Struct[Vcore]→
P(2-Struct[Vcore]), which filters out 2-valued structures that do not
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correspond to valid heaps, defined as follows:

γcons(S]) ≡ γ(S]) ∩
{
S ∈ 2-Struct[Vcore] | S |=

∧
ψ∈cons

ψ

}
.

With the pointer constraints defined above, S1 6∈ γcons(S]0) holds.

Ruling Out Imprecise Structures via Instrumentation

How would we rule out S2 and S3 from γcons(S]0)? Intuitively, we need a
means to convey the fact that the set of individuals represented by each
of the summary individuals v1 and v3 are not connected by arbitrary
n-links but rather that the links start from the node referenced by l
and then continue to reach each node, without closing a cycle.

We can convey this information by extending the initial set of pred-
icates used to define heaps, which we refer to as the core predicates
and denote as Vcore, by another set of predicates that convey proper-
ties deemed as important for the purpose of the analysis. The added
predicates are defined by FOTC formulas over the core predicates and
are therefore dubbed derived predicates (a synonym is instrumentation
predicates) and denoted as V inst.

In the sequel, we write V for Vcore ∪· V inst and denote the formula
defining an instrumentation predicate p as ϕp.

In our example, we are interested in proving the following properties:
(i) the list starts out as acyclic and remains acyclic, (ii) list cells are
not shared, (iii) cells are not taken out of the list, (iv) and the newly
allocated cell is part of the list upon termination. For this purpose, we
use the following instrumentation predicates:

Reachability from a Variable. We express that a cell v is reach-
able from a variable z via a sequence of f -links by the following
instrumentation predicate:

rz,f (v) ≡ ∃u. z(u) ∧ f∗(u, v).

In our example, we use rl,n(v), rt,n(v), and rfresh,n(v).
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Cycles. We express that a cell v resides on a cycle of f -links by the
following instrumentation predicate:

cf (v) ≡ f+(v, v).

In our example, we use cn(v).

Sharing. We express that a cell v is shared by two or more f -links by
the following instrumentation predicate:

isf (v) ≡ ¬(∀u1, u2. f(u1, v) ∧ f(u2, v) =⇒ u1 = u2).

In our example, we use isn(v).

Definition 4.4 (Instrumentation). Let µv,o ≡ {vi 7→ oi | i = 1..k}
denote the assignment defined via a tuple of logical variables v1..k and
a corresponding tuple of nodes o1..k.

The instrumentation function instrument: 2-Struct[Vcore] →
2-Struct[Vcore ∪· V inst] takes a structure 〈S, ι〉 over the core vocabu-
lary and extends it into a structure 〈S, ι′〉 over both the core predicates
and instrumentation predicates:

ι′(p(k)) ≡ λo ∈ Nodek.
{

JϕpK(S)(µv,o), p ∈ V inst, v = FV(ϕp);
ι(p)(o), p ∈ Vcore.

Example 4.5. The concrete structures {S0, . . . , S4} shown in Figures 4.3
and 4.5 depict the values of the unary instrumentation predicates defined
above as labels attached to the corresponding nodes. That is, a label
missing from a node indicates that the predicate does not hold for that
node. The abstract structure S] shown in Figure 4.4 similarly depicts
the values of instrumentation predicates. Notice that neither of v1, v2, v3
is labelled by cn or isn, which indicates that S] represents an acyclic
and unshared list. Also, since all nodes are labeled by rl,n, we know
that S] represents concrete states where all cells are on the list.

To formalize how instrumentation filters out undesirable structures,
we define the concretization function γinst: 3-Struct[Vcore ∪· V inst] →
P(2-Struct[Vcore]) as follows:

γinst(S]) ≡ γ(S) ∩ {S | instrument(S) v S]}.
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With the definition above, we have that S0 ∈ γinst(S]0) while
{S1, S2, S3, S4} 6⊆ γinst(S]0).

Finally, we combine both improvements to precision (due to con-
straints and due to instrumentation predicates) and define the concretiza-
tion γprecise: 3-Struct[Vcore ∪· V inst]→ P(2-Struct[Vcore]) as follows:

γprecise(S]) ≡ γcons(S) ∩ γinst(S).

Note 4. The predicates used to capture sharing and cyclicity have
a similar role to the properties tracked in the shape graph-based ab-
straction of Jones and Muchnick (1979) (see Subsection 4.2). However,
there is a subtle difference: In Jones and Muchnick (1979), a node was
marked as shared (resp., cyclic) if this property was true in the subheap
comprised of the objects that node represents. Here, in contrast, the
predicates have a global interpretation, for example, if the property cn
holds for an abstract individual then this means that one of the concrete
individuals that individual represents resides on a cycle, regardless of
the way the embedding function treats the other concrete individuals
comprising the cycle.

4.3.3 The Abstract Domain

Since the set of 3-valued structures is infinite, we now describe how to
abstract (possibly-infinite) sets of (2-valued or 3-valued) structures into
finite sets of 3-valued structures.

Bounded Structures

Definition 4.5. Let S]〈U ], ι]〉 be a 3-valued structure. The canonical
name of a node u ∈ U ], denoted cname(u) is defined as cname(u) ≡
λp(1) ∈ V. ι](p)(u).

Definition 4.6. Let S]〈U ], ι]〉 be a 3-valued structure. We say that
S] is bounded if a canonical name uniquely identifies a node: ∀u1,

u2 ∈ U ]. cname(u1) = cname(u2) =⇒ u1 = u2.

Example 4.6. The structure S]0 from Figure 4.4 is bounded. To see this
notice that nodes v1 and v2 are distinguished by the value of rt,n(v) (0
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for v1 and 1 for v2), nodes v1 and v3 are similarly distinguished by the
value of rt,n(v), and nodes v2 and v3 are distinguished by the value of t
(1 for v2 and 0 for v3).

We denote the set of all bounded structures over as BStruct[V].

Corollary 4.1. The size of the set of bounded structures is asymptoti-
cally bounded as follows: |BStruct[V]| ∈ O(23|V|).

The operation blur[V]: 3-Struct[V] → BStruct[V], which is param-
eterized by the vocabulary V, maps a 3-valued structure 〈U, ι〉 into
a bounded structure 〈U ], ι]〉 by conflating individuals with the same
canonical name and over-approximating the interpretation function
using the Kleene join operation:

blur[V](〈U, ι〉) ≡ 〈U ], ι]〉
U ] ≡ {cname(u) | u ∈ U}

ι] ≡ λp(k) ∈ V. u]1..k ∈ U
]k.

t {ι(p)(u1..k) | cname(ui) = u]i , i = 1..k}.

In the sequel, we write blur instead blur[V], when confusion is likely.

Example 4.7. Considering S0 in Figure 4.3 and S]0 in Figure 4.4, we
have the following: blur(S0) = S]0.

We define the 3VSA abstract domain over the vocabulary V ≡
Vcore ∪· V inst as follows:

D ≡ BStruct[V] ∪ ⊥ ∪ >.

The value ⊥ is somewhat artificial, and used to denote the result
of partial functions on structures (for example, checking whether a
condition holds). The value > is intuitively used to signal that a possible
error in the program has been detected.

We extend concretization to operate over ⊥,> as follows:

γprecise(⊥) ≡ ∅
γprecise(>) ≡ BStruct[V].
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We define the join operation as union join ≡ ∪. Since the abstract
domain is finite, there is no need for extrapolation, which we define as
identity.9

4.3.4 Concrete Semantics

We now describe how the concrete semantics of basic statements is
implemented for 2-valued structures using a predicate update mechanism.
This semantics forms the basis for the abstract semantics.

The semantics is defined for individual statements over individual
elements of the abstract domain, d ∈ D. More specifically, we will define
the semantics for individual structures as JstK(S) = S′ where st is a
basic statement, S is a 2-valued structure or ⊥, and S′ is either a
2-valued structure, ⊥, or >. Then, we extend the semantics to be strict
in ⊥ and >, as follows:

JstK(d) ≡


⊥, if d = ⊥;
>, if d = >;
JstK(S) if d = S ∈ 2-Struct[V].

Since the concrete domain consists of sets of abstract elements, we
lift the semantics to sets of structures as follows:

JstK(X) = {d | JstK(d), d ∈ X} \ {⊥}.

We remove all occurrences of ⊥, since it is used to signify a missing
structure.

A Simplifying Transformation. We employ the following source-to-
source semantics-preserving transformations to simplify our semantics:

• We use the transformation x->f=y->g t=y->g; x->f=t, where
t is a fresh temporary variable. In our example, the statement
at line 11 is rewritten to tn=t->n; fresh->n=tn where tn is the
newly added temporary variable.

9Technically, it is possible to apply the blur operation only at loop cut-points,
thereby trading efficiency for increased precision.
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• We separate memory safety checks from statements that derefer-
ence memory. Specifically, we use the following transformations:
x->f=y  assert x!=null; x->f=y, and x=y->f  
assert y!=null; x=y->f.

Predicate Updates

An update formula for a predicate p(k) has the form p′(v)↔ ϕ(v), where
v is a k-tuple of (distinct) variables and ϕ(v) is an FOTC formula such
that whose set of free variables is exactly v.

The semantic effect of an update is defined as follows:

Jp′(v)↔ ϕ(v)K(S) ≡ 〈U, ι[p 7→ λo. JϕK(S)(µv,o)]〉.

That is, the values of the predicate p in the resulting structure are
computed, for each tuple of individuals o (matching the variables v),
based on the value of the formula ϕ, as it is evaluated on the input
structure S. The values of the other predicates remain unchanged.

We can extend updates to a set {p′i(vi)↔ ϕi(vi)}ki=1 as follows:

J{p′i(vi)↔ ϕi(vi)}ki=1K(S) ≡
〈U, ι[p1 7→ λo1. Jϕ1K(S)(µv1,o1), . . . , pk 7→ λok. JϕkK(S)(µvk,ok

)]〉.

Modeling Assertions and Conditionals

The semantics of an assertion of the form assert e and a conditional
expression e is obtained by first representing e by a corresponding
expression formula ê ∈ FOTC. For example, we employ the following
expression formulas:

x̂==y ≡ ∀v. x(v)↔ y(v)
x̂!=y ≡ ¬∀v. x(v)↔ y(v)

̂x==null ≡ ¬∃v. x(v)
̂x!=null ≡ ∃v. x(v).

We model an assertion as follows:

Jassert ϕK(S) ≡
{
S, if JϕK(S) = 1;
>, otherwise.
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We model a conditional as follows:

JeK(S) ≡
{
S, if JeK = 1;
⊥, otherwise.

Modeling Allocation: x=malloc()

To model allocation, we add a fresh individual to the input structure
and mark it with the dedicated predicate isNew. Technically, we define
the operation alloc: 3-Struct[V]→ 3-Struct[V ∪ {isNew}] as follows:

alloc(〈U, ι〉) =
〈
U ∪ {u}, ι

[
isNew 7→ λv.

{
1, if v = u;
0, otherwise.

]〉
where u 6∈ U.

The isNew predicate temporarily extends the vocabulary to enable
an update formula to reference the newly-allocated individual:

x′(v)↔ isNew(v).

The predicate isNew is dropped immediately following the update.
That is, isNew is not taken into consideration by the abstraction function.
Let drop(p): 3-Struct[V ]→ 3-Struct[V \{p}] be the operation that drops
the predicate p from the interpretation function of the input structure.

The overall allocation is then given by the composition of the oper-
ations defined above:

Jx=malloc()K = alloc ◦ Jx′(v)↔ isNew(v)K ◦ drop(isNew).

Example 4.8. We now demonstrate the application of Jfresh=malloc()K
to S0, which models the allocation statement in Figure 2.2. The reader
may ignore the application of instrument and the values of the instru-
mentation predicates, which will be explained when describing the
instrumented semantics. The analysis is shown in Figure 4.6.

Modeling Simple Reference Assignment: x=y and x=NULL

Jx=yK ≡ Jx′(v)↔ y(v)K
Jx=NULLK ≡ Jx′(v)↔ 0K.
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Figure 4.6: Analysis of memory allocation.
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Modeling Field Loads: x=y->f

The semantics of field loading, which assumes that y!=NULL holds,
updates the interpretation of x to hold for (the single) objects linked
by f to the object referenced by y:

Jx=y->fK(S) ≡ Jx′(v)↔ ∃u. y(u) ∧ f(u, v)K.

Modeling Field Stores: x->f=y and x->f=NULL

The semantics of field storing, which assumes that x!=NULL holds, up-
dates the predicate f by first removing any f -links from x by conjoining
f(u, v) with ¬x(u) and then adding a new link from the object ref-
erenced by x (given by x(u)) to the object referenced by y (given by
y(v)):

Jx->f=yK(S) ≡ Jf ′(u, v)↔ (f(u, v) ∧ ¬x(u)) ∨ (x(u) ∧ y(v))K
Jx->f=NULLK(S) ≡ Jf ′(u, v)↔ (f(u, v) ∧ ¬x(u))K.

Example 4.9 (Continuing Example 4.8). We demonstrate the execution
of the statements tn=t->n; fresh->n=tn; t->n=fresh on S4

0 . For
simplicity, we do not show the intermediate structures resulting from
assertions (these are all successful in this example). We show the results
in Figure 4.7.

4.3.5 Vanilla Instrumented Semantics

As shown earlier, instrumentation predicates are essential for improving
the precision of the abstraction. The question is, how should the analysis
maintain their interpretation across statements? More precisely, given
a concrete semantics JstK: 2-Struct[Vcore] → 2-Struct[Vcore] ∪ {⊥,>},
for a statement st, we are interested in an instrumented semantics
JstK\: 2-Struct[Vcore ∪· V inst] → 2-Struct[Vcore ∪· V inst] ∪ {⊥,>}. The
correctness requirement for such a semantics is the following:

∀S ∈ 2-Struct[Vcore].
JstK(S) = S′ =⇒ JstK\(instrument(S)) = instrument(S′).

(4.2)
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Figure 4.7: Execution of a series of assignment statements.

A straightforward approach is to define JstK\ = JstK ◦ instrument.
This is well defined, since JstK(S) ignores the instrumentation predicates
and instrument simply re-evaluates their interpretation from the inter-
pretation of the core predicates resulting from the concrete semantics.
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Examples 4.8 and 4.9 show the result of applying instrumentation to
each structure.

Unfortunately, as we shall see in a later example, this approach leads
to poor precision. The drastic loss of precision is due to the application
of (an abstract version of) instrument to 3-valued structures.

4.3.6 Vanilla Abstract Transformers

We start by detailing a basic implementation of the abstract semantics
of basic statements, which is sound yet often imprecise.

Interpreting FOTC Formulas Over Abstract Structures

We define the meaning of an FOTC formula ϕ over a 3-valued structure
using the evaluation function JϕK]: 3-Struct[V]→ (FV(ϕ)→ Node)→
{0, 1, 1

2}, which is defined the same way as J·K, except that Boolean
operations are interpreted over Kleene values as follows:

∧ 0 1 1
2

0 0 0 0
1 0 1 1

2
1
2 0 1

2
1
2

∨ 0 1 1
2

0 0 1 1
2

1 1 1 1
1
2

1
2 1 1

2

0 1 1
2

¬ 1 0 1
2

Theorem 4.2 (Embedding Theorem). Let S and S] be a 2-valued struc-
ture and a 3-valued structure, respectively, such that S vη S]. Then,
for every formula ϕ where FV(ϕ) = v1..k and tuple u1..k ∈ Uk and
matching tuple η(u1), . . . , η(uk) ∈ U ], the following holds:

JϕK(S)(u1, . . . , uk) v JϕK](S])(η(u1), . . . , η(uk)).

The embedding theorem allows us to soundly evaluate assertions
and conditionals, as we demonstrate in the next example.

Example 4.10. Evaluating the formulas in Example 4.4 on S]0 yields
the following results:

Jexists_leakK(S]0) = 1
2

Jexists_cycleK(S]0) = 1
2 .
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This is disappointing, since for every 2-valued structure
S∈γprecise(S]0), we have that

Jexists_leakK(S) = 0
Jexists_cycleK(S) = 0.

To fix this situation, we re-write the formulas using instrumentation
predicates:

exists_leakinst ≡ ¬
(
∀v.

∨
z∈{l,t}

rz,n(v)
)

exists_cycleinst ≡ ∃v. cn(v).

Evaluating the instrumentation-based formulas yields precise results:

Jexists_leakinstK(S]0) = 0
Jexists_cycleinstK(S

]
0) = 0

The embedding theorem allows us to lift predicate updates to
3-valued structures as follows (the extension to sets of updates is straight-
forward):

Jp′(v)↔ ϕ(v)K](S]) ≡ 〈U, ι[p 7→ λo. JϕK](S])µv,o]〉. (4.3)

Theorem 4.3 (Soundness of Naive Updates). Let S and S] be a 2-valued
structure and a 3-valued structure, respectively, such that S v S]. Then,
for every set of predicate updates {p′i(vi) ↔ ϕi(vi)}ki=1, the following
holds:

J{p′i(vi)↔ ϕi(vi)}ki=1K(S) v J{p′i(vi)↔ ϕi(vi)}ki=1K](S]).

We define the vanilla abstract semantics as follows:

Jassert ϕK](S) ≡
{
S, if Jϕ̂K](S) = 1;
>, otherwise.

JϕK](S) ≡
{
S, if Jϕ̂K] 6= 0;
⊥, otherwise.

Jx=malloc()K] ≡ blur ◦ instrument ◦ drop(isNew)
◦ Jfresh′(v)↔ isNew(v)K] ◦ alloc
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Jx=NULLK] ≡ blur ◦ instrument ◦ Jx′(v)↔ 0K]

Jx=yK] ≡ blur ◦ instrument ◦ Jx′(v)↔ y(v)K]
Jx=y->fK] ≡ blur ◦ instrument ◦ Jx′(v)↔ ∃u. y(u) ∧ f(u, v)K]

Jx->f=NULLK] ≡ blur ◦ instrument ◦
Jf ′(u, v)↔ (f(u, v) ∧ ¬x(u))K]

Jx->f=yK] ≡ blur ◦ instrument ◦
Jf ′(u, v)↔ (f(u, v) ∧ ¬x(u)) ∨ (x(u) ∧ y(v))K]

The semantics is similar to the concrete semantics, except for the
following differences: (i) the core predicate updates are carried out
directly over 3-valued structures as explained above; (ii) instrumenta-
tion predicates are updated using instrument, which re-evaluates their
interpretations once the values of the core predicates have been up-
dated; (iii) blur ensures that the returned structures are bounded; and
(iv) the transformers for conditionals consider the condition to hold if
the formula evaluation returns a value different from 0, meaning either
1 or 1

2 .10 Notice that the semantics of conditionals and assertions does
not apply instrument nor blur. This is an optimization, as the input
structure is assumed to be bounded and the statement does not modify
the interpretations of any predicates.

The following example makes it clear why we refer to the semantics
above as naive.

Example 4.11. Applying the abstract semantics of the statements
fresh=malloc(); tn=fresh->n; fresh->n=tn; t->n=fresh to S]0
yields the structures shown in Figure 4.8 (again, dropping the interme-
diate structures due to successful assertions).

The resulting structures are quite imprecise, as can be seen by the
1
2 values assigned to the instrumentation predicates. Specifically, we
cannot determine whether they represent heaps containing garbage cells,
whether the list is cyclic, and whether there is sharing.

10A more precise semantics would abstractly conjoin the information from the
formula expression with the input structure.
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Figure 4.8: Structures arising from the application of naive abstract transformers.

4.3.7 Improving the Precision of Abstract Transformers

We now describe three techniques for increasing the precision of abstract
transformers: (i) incrementally updating instrumentation predicates,
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(ii) applying the focus partial concretization operation, and (iii) applying
the coerce operation to sharpen structures.

Incremental Instrumented Semantics

Recall our previous comment about the vanilla instrumented semantics
and consider S]1. Notice that the concrete semantics of fresh=malloc()
affects neither of the predicates n, l, t, on which the instrumentation
predicates isn, rl,n, rt,n, cn depend. Therefore, we would expect that
their interpretation would remain the same as in S]0. However, since we
update the instrumentation predicates by re-evaluating them directly
over (the core predicate interpretations of) the 3-valued structure S]0,
we obtain sound yet imprecise results.

The solution we take is to update the instrumentation predicates
directly by supplying update formulas. Intuitively, if the update formulas
re-use the values of the predicates in the input structure, avoiding
quantification and transitive closure, their interpretation should be at
least as precise. With the added predicate updates, we can use (4.3) to
update all predicates and drop the use of instrument.

We now define incremental update formulas for instrumentation
predicates, which in our example are {isn, rl,n, rt,n, rfresh,n, cn}.

For memory allocation statement, we employ the following update
formulas:

x=malloc():{r′z,f (v)↔ rz,f (v) | z 6≡ x ∈ X, f ∈ F} ∪
{r′x,f (v)↔ isNew(v) | f ∈ F} ∪
{is′f (v)↔ isf (v) ∧ ¬isNew(v) | f ∈ F} ∪
{c′f (v)↔ cf (v) ∧ ¬isNew(v) | f ∈ F}.

(The syntactic predicate z 6≡ x holds if z and x are different variables.)
With the updates above, applying abstract predicate updates to

S]0 yields the following structure (we explicitly depict some of the
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0-valued interpretations, to contrast with S]1 from the previous
example):

While instrument is guaranteed to satisfy (4.2), the update formulas
to instrumentation predicates may not. Reps et al. (2003) developed an
algorithm based on finite differencing of logical formulas to automatically
derive update formulas for instrumentation predicates. The updates are
guaranteed to be precise under reasonable conditions (see the paper for
details).

We continue by providing update formulas specific for singly-linked
lists. That is, we assume the existence of a single field n.

x=NULL: {r′z,n(v)↔ rz,n(v) | z 6≡ x ∈ X} ∪
{r′x,n(v)↔ 0} ∪
{is′n(v)↔ isn(v)} ∪
{c′n(v)↔ cn(v)}

x=y: {r′z,n(v)↔ rz,n(v) | z 6≡ x ∈ X} ∪
{r′x,n(v)↔ ry,n(v)} ∪
{is′n(v)↔ isn(v)} ∪
{c′n(v)↔ cn(v)}

x=y->n: {r′z,n(v)↔ rz,n(v) | z 6≡ x ∈ X} ∪
{r′x,n(v)↔ ry,n(v) ∧ (cn(v) ∨ ¬y(v))} ∪
{is′n(v)↔ isn(v)} ∪
{c′n(v)↔ cn(v)}
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Figure 4.9: Structures arising from the application of abstract transformers em-
ploying incremental updates to instrumentation predicates.

With the update formulas above, we obtain the structure shown in
Figure 4.9(b) for tn=t->n.

Updating reachability for field updates is more complicated. Intu-
itively, the “shape” of the heap is being mutated, which affects the set
of n-paths in a non-trivial way, and in turn affects any predicate defined
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via transitive closure (cn and the rz,n family of predicates). We there-
fore use the simplifying transformation x->n=y x->n=NULL; x->n=y.
This has the effect that the field updates either only remove a sin-
gle n-link—via x->n=NULL—or add a single n-link—via x->n=y (since
x->n=NULL was just executed and therefore x->n==NULL holds).

The updates formulas are then as follows:

x->n=NULL:
{r′z,n(v)↔ cn(v) ∧ rx,n(v) ? ϕrx,n(v) :
rz,n(v) ∧ ¬(∃v′. rz,n(v′) ∧ x(v′) ∧ rx,n(v) ∧ ¬x(v)) | z 6≡ x ∈ X} ∪
{r′x,n(v)↔ x(v)} ∪
{is′n(v)↔ ∃v′. x(v′) ∧ n(v′, v) ? ϕisn(v) : isn(v)} ∪
{c′n(v)↔ cn(v) ∧ ¬(∃v′. x(v)′ ∧ cn(v′) ∧ rx,n(v))}
x->n=y: (assuming x==NULL holds)
{r′z,n(v)↔ rz,n(v) ∨ ∃v′. rz,n(v′) ∧ x(v′) ∧ ry,n(v) | z ∈ X} ∪
{is′n(v)↔ ∃v′. y(v) ∧ n(v′, v) ? ϕisn(v): isn(v)} ∪
{c′n(v)↔ cn(v) ∨ ∃v′. x(v′) ∧ ry,n(v′) ∧ ry,n(v)}

With the update formulas above, we obtain the structures shown
in Figures 4.9(c) and (d), for t->n=NULL and t->n=fresh, respectively.
Notice that these structures are more precise than the ones in Figure 4.8.
Specifically, all reachability predicates are precise, which allows us to
prove that no list cells have been lost. The same holds for the cyclicity
predicate, which lets us prove that the resulting list is acyclic. However,
the sharing predicate is imprecise for v3 of S∆

6 . This is because at S∆
4 ,

the individual linked to v4 is indeed shared, while the succeeding ones
are not. Resolving this imprecision requires separating the summary
individual in v3 into two individuals—the “head” (the one linked to v4)
and the “tail” (the succeeding ones). We continue by defining the
abstract operations to achieve this.

Bringing Structures into Focus

One way to improve the precision of an abstract transformer is by
refining the input structure into a set of more precise structures. This
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is done via the operation

focus: (3-Struct[V]× FOTC)→ P(3-Struct[V]) ∪ {>}.

focus uses the defining formula of an instrumentation predicate p, ϕp,
to convert a 3-valued structure to a set of structures where the evalu-
ation of ϕp is always definite (that is, for every assignment to its free
variables):

∀p(k). 〈U ′, ι′〉 ∈ focus(ϕp)(S) =⇒ ∀u ∈ U ′k. ι′(ϕp)(u) ∈ {0, 1}. (4.4)

After the refinement, the (incremental) abstract transformer is applied
to each of the resulting structures.

The focus operation either succeeds or returns > to indicate failure.
If the operation succeeds, it preserves the meaning of the input structure,
which is sometimes referred to as semantic reduction:

γprecise(focus(ϕp)(S)) = γprecise(S). (4.5)

A failure by focus indicates a set of structures satisfying both (4.4) and
(4.5) may be infinite.

A detailed description of the focus operation appears in Sagiv et al.
(2002) and a full algorithm appears in Lev-Ami and Sagiv (2000). The
algorithm in Lev-Ami and Sagiv (2000) can statically detect a useful
subset of the situations where focus may fail and detects the rest of the
failing situations at runtime.

Coming up with a focus predicate is somewhat of an art, but
usually they are derived from sub-formulas of the update formulas.
Also, the focus predicate is usually chosen such that its free variables
can be bound to at most a constant number of individuals in any
structure.

Two useful focus predicates correspond to a variable dereference
and a field dereference:

VarDerefz(v) ≡ z(w)
FieldDerefz,n(v) ≡ ∃w. z(w) ∧ n(w, v).
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A common practice, which we follow in our example, is to include
the following focus predicates for the following types of statements:

Statement Focus Predicates
x=malloc() ∅
x=NULL {VarDerefx(v)}
x=y {VarDerefy(v)}
x=y->f {FieldDerefy,f (v)}
x->f=NULL {VarDerefx(f)}
x->f=y ∅

In our example, the abstract transformer for tn=t->n resulted in tn
pointing to a summary node. To separate the first individual represented
by the tail of the list, we use the focus predicate FieldDereft,n(v). Notice
that this matches the right-hand side of the formula used to update
tn and that, since t(v) may hold for at most one individual so does
FieldDereft,n(v).

Example 4.12. The result of focus(FieldDereft,n(v))(S∆
2 ) is shown in

Figure 4.10.
Intuitively, the focus algorithm operates as follows: The formula

FieldDereft,n(v) is evaluated on every individual of S∆
2 and it is deter-

mined that its interpretation is 1
2 only for v3. The algorithm then checks

whether v3 is a summary node, which happens to be the case in our
example. Therefore, the algorithm creates three versions of S∆

2 :

S∆
2.1: A structure where FieldDereft,n(v) must not hold for all concrete

individuals represented by v3. To achieve this, the algorithm checks the
interpretation of the formula ∃w. z(w)∧n(w, v) where v is bound to v3.
This is done by binding w to each individual, which yields 1

2 only in
the case where w is bound to v2. Therefore, to falsify the formula, the
algorithm sets ιS∆

2.1(n)(v2, v3) to 0.

S∆
2.2: A structure where FieldDereft,n(v) must hold for all concrete

individuals represented by v3. This is achieved in a similar way to the
process for S∆

2.1, except that ιS
∆
2.2(n)(v2, v3) is set to 1.
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Figure 4.10: The structures resulting from focus(FieldDereft,n(v))(S∆
2 ).

S∆
2.3: A version where the predicate FieldDereft,n(v) definitely holds

for a subset of the concrete individuals represented by v3 and definitely
does not hold for another subset. To achieve the property stated above
for S∆

2.3, v3 is bifurcated into v5 (representing the subset of the indi-
viduals for which the predicate definitely holds) and v6 (representing
the subset of the individuals for which the predicate definitely does not
hold). Finally, ιS∆

2.3(n)(v2, v5) is set to 1 and ιS∆
2.3(n)(v2, v6) is set to 0.

Here are some observations about these results and causes of im-
precision: (1) S∆

2.1 does not represent any concrete structure as v3 is
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unreachable from l and t, while rn,l rn,t indicate that it should be as
both predicates evaluate to 1. (2) Intuitively, S∆

2.2 should represent the
case where the tail of the list, represented by v3 contains exactly one
element. This is reflected by the definite n-edge on (v2, v3), but not by
the fact that v3 is a summary individuals. (3) Intuitively, S∆

2.3 should
represent the case where the tail of the list contains one or more element
where v5 is its first element. However, v5 is a summary individual and
there is an indefinite n edge (v6, v5). These sources of imprecision can
be corrected by sharpening, as we explain next.

Sharpening Structures via Coercing

To further improve precision, 3VSA employs the operation coercecons:
3-Struct[V]→ 3-Struct[V] ∪ {⊥}, which is parameterized by the set of
integrity constraints cons.

The coerce operation accepts a 3-valued structure and returns either
another, more precise, 3-valued structure or ⊥, which indicates that
the input structure is inconsistent with the integrity constraints. More
specifically, coerce applies a forward inference algorithm in order to
turn indefinite predicate values to definite predicate values. To achieve
this, integrity constraints must be expressed in a specific form.

The Form of Integrity Constraints. To be useful in the context of a
coerce operation, an integrity constraint must have the form ϕb(v) =⇒
ϕh(v) where the following conditions hold: (i) ϕb(v), ϕh(v) ∈ FOTC,
(ii) FV(ϕb(v)) = FV(ϕh(v)) = (v), and (iii) ϕh(v) has the form p(v)
or ¬p(v) (where p ∈ V). We refer to the left-hand side of an integrity
constraint as the body and to the right-hand side of the constraint as
the head.

Similar to focus, coerce is also a semantic reduction and satisfies the
following properties:

coercecons(S) v S. (4.6)
γprecise(coercecons(S)) = γprecise(S). (4.7)
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To understand how coerce achieves this, consider an integrity con-
straint ϕb(v) =⇒ p(v) where v = k (the details are symmetric for ¬p(v)),
a 3-valued structure S] = 〈U ], ι]〉, and a node tuple o ∈ U ]k.

Situation Action
Jϕb(v)K](S])(µv,o) = 1 and Jp(v)K](S])(µv,o) = 1

2 ι][p 7→ ι](p)[o 7→ 1]]
Jϕb(v)K](S])(µv,o) = 0 and Jp(v)K](S])(µv,o) = 1

2 ι][p 7→ ι](p)[o 7→ 0]]
Jϕb(v)K](S])(µv,o) = 1 and Jp(v)K](S])(µv,o) = 0 return ⊥
Jϕb(v)K](S])(µv,o) = 0 and Jp(v)K](S])(µv,o) = 1 return ⊥

Figure 4.11 shows the effect of coerce in our example and its syner-
gistic interaction with focus. Specifically, notice how S∆

2.1 is filtered out,
how the summary individual v3 in S∆

2.2 and v5 in S∆
2.3 are made into

non-summary individuals, and how the indefinite edges around these
individuals are removed.

4.3.8 Summary

In this subsection, we reviewed the key elements of the 3VSA approach
for shape analysis, focusing on the way logical structures are used to
represent and abstract concrete heaps and on the key reason for the
precision of the analysis: explicitly recording key information using

Figure 4.11: The structures resulting from coerce(focus(FieldDereft,n(v))(S∆
2 )).
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instrumentation predicates. The salient semantic elements and the
relationships between them are illustrated in the following diagram:

TVLA. The TVLA tool (Lev-Ami and Sagiv, 2000) implements the
3VSA approach discussed here, along with other extensions. TVLA was
used to generate different shape analysis and applied to solve different
program analysis problems (Dor et al., 2005). More recently, TVLA was
extended with automatic termination reasoning (Manevich et al., 2016)
(automatic in the sense of not requiring any hints from the developers
or users), allowing it to prove total correctness for a range of programs
such as the running example used throughout this subsection. Moreover,
Loginov et al. (2005) proposed a framework to compute the predicates
to be used in order to describe structures using inductive learning.

Applications of Reachability Predicates. Reachability predicates have
been used not only in shape analysis but also in other program verifica-
tion contexts. Indeed, the notion of reachability is natural to capture
information about the layout of linked structures of unbounded length.
For instance, reachability has also been used in approaches based on
predicate abstraction (Balaban et al., 2007; Podelski and Wies, 2005).
Such works typically lack the dynamic materialization used in shape
analysis. Several works proposed solvers for logics that involve predi-
cates similar to points-to predicates and reachability predicates (Itzhaky
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et al., 2013; Nelson, 1983). Finally, Madhusudan et al. (2011) proposed
a decidable logics to reason over families of inductive data-structures
and to express constraints over data.

4.4 Separation Logic-Based Shape Abstraction

In this subsection, we focus on shape analyses that are based on separa-
tion logic and either manipulate logical formulas abstract syntax trees,
or other data structures that actually encode some family of separation
logic formulas. We first recall the main definitions of separation logic
in Subsection 4.4.1, then we set up a shape abstraction based on in
Subsection 4.4.2, and then we show the construction of a shape analysis
based on these principles.

4.4.1 Separation Logic

In general, reasoning over programs that perform complex pointer
operations over sophisticated data structures is very difficult, for many
reasons. One of these reasons is that a pointer update deeply alters
the shape of data structures. Furthermore, it is often hard to resolve
precisely which concrete memory cell gets read or modified, especially
when looking at abstract logical predicates describing complex memory
states.

Let us consider the case of an update to a cell designated by a
complex pointer expression. When the memory cell that is modified
cannot be resolved precisely at all, a sound static analysis tool must
assume that any cell could be modified, which amounts to losing all
information, about all structures stored in memory. By contrast, when
the modified cell can be localized, the analysis will easily conclude that
many cells are not modified, so that the data structures that are stored
in those cells are not impacted by the update.

Separation Logic: The Essence of Local Reasoning. This observa-
tion that reasoning over memory updates is easier when the modified
cells can be determined precisely is at the foundation of the logics of
bunched implications (Ishtiaq and O’Hearn, 2001; O’Hearn and Pym,
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1999) and separation logic (Reynolds, 2002). A separation logic formula
describes a set of memory states, using a set of basic logical predicates
and connectors, some of which are specific to separation logic. The
definition below presents a basic fragment of separation logic, that is
adapted to present its main principles and characteristics.

Definition 4.7 (Separation Logic Formulas). We let address expressions
(or heap location expressions) be defined by:

l ::= x where x ∈ X is a program variable
| a · f where a is an address and f a field

We let separation logic formulas (or heap expressions) be defined by:

h ::= emp (empty store)
| l 7→ a (atomic memory cell, where a is an address)
| h ∗ h (separating conjunction)
| h ∧ h (non separating, or classical conjunction)
| . . . (other constructions, to be defined)

The denotation of a separation logic formula is defined by a relation `
over pairs made of a memory state and a formula. In the following, we
write Tl0 7→ a0, . . . , ln 7→ anU for the partial function that maps location
li into ai (so that T U is the partial function with empty domain), and
we also write m0 ] m1 for the partial function obtained by joining two
partial functions m0,m1 with disjoint domains. Then, the definition of
` proceeds as follows:

T U ` emp Tl 7→ aU ` l 7→ a

m0 ` h0 m1 ` h1
m0 ] m1 ` h0 ∗ h1

m ` h0 m ` h1
m ` h0 ∧ h1

As an example, the formula x 7→ a ∗ a 7→ 7 describes memory states
where a single variable x is defined and stores a pointer to another cell
that contains integer value 7. The formula a 7→ a ∗ a 7→ 3 does not
describe any memory state, as it is not possible to build two memory
partial functions that are both defined over a and that have disjoint
supports. The formula a 7→ b ∗ b 7→ a describes memory states that
comprise exactly two cells, storing pointers to each other. On the other
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hand, the formula a 7→ b ∧ b 7→ a describes only memory states made
of a single cell, that stores a pointer to itself: indeed, the classical, non
separating conjunction operator asserts that two sub-formulas describe
the same memory state, namely the same range of addresses, and
corresponding values, so that, in this case, it implies that a and b are
equal. This example illustrates the fundamental difference between ∗
and ∧: the former divides memory into disjoint blocks whereas the
second provides no separation.

We remark that separating conjunction is commutative and asso-
ciative, in the sense that changing the order of terms does not modify
the meaning of formulas. Therefore, we do not distinguish separation
logic formulas that are derived from each other by rewriting based on
commutativity and associativity of ∗. Moreover, for the sake of clarity,
we abbreviate a0 · ∅ 7→ a1 into a0 7→ a1.

Local Reasoning. One great advantage of separation logic is that it
enables local reasoning, which means that many program statements can
be reasoned about while considering only a small part of the memory
states, namely only the part that they read or update. More precisely,
it supports the Frame rule, which expresses that an observation which
can be made on an execution with a local memory context can still be
made when adding a global memory context. Based on the semantics
introduced in Subsection 3.1, it writes down as follows:

if s is such that
∀m0,m1, m0 ` h0 ∧ m1 ∈ JsK(m0) =⇒ m1 ` h1

if m ` h,
and s does not write in any location that is a free variable in h

then, we also have
∀m0,m1, m0 ` h0 ∗ h ∧ m1 ∈ JsK(m0) =⇒ m1 ` h1 ∗ h.

This property is equivalent to the more common presentation of the
Frame rule, based on Hoare triples:

{h0}s{h1} write(s) ∩ freevar(h) = ∅
{h0 ∗ h}s{h1 ∗ h}
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where {h0}s{h1} means that whenever s starts in a state that satisfies
h0 and terminates, it does so in a final state that satisfies h1, write(s)
denotes the set of memory locations that s may write to, and freevar(h)
denotes the free variables in the formula h.

As an example, let us consider the formula h = x 7→ a ∗ y 7→ b ∗
z 7→ c and the assignment x = y. Then, variable z plays no role at all.
Considering only x and y, we can observe the triple below is clearly
satisfied:

{x 7→ a ∗ y 7→ b}x = y{x 7→ b ∗ y 7→ b}.

By the frame rule, we derive that:

{x 7→ a ∗ y 7→ b ∗ z 7→ c}x = y{x 7→ b ∗ y 7→ b ∗ z 7→ c}.

This example illustrates the principle of local reasoning and would
generalize to the case where a part of the separation logic formula that
is assumed as a pre-condition is a symbolic formula h′:

{x 7→ a ∗ y 7→ b ∗ h′}x = y{x 7→ b ∗ y 7→ b ∗ h′}.

This form of local reasoning is one of the most important foundations
of the family of shape analyses that we describe here, since the abstract
operations (Subsection 4.4.3) extensively rely on it.

4.4.2 Abstractions Based on Separation Logic

We now construct a shape abstraction based on separation logic.

Abstract Memory States and Their Concretization. The logical frag-
ment shown in Definition 4.7 does not feature any support for summa-
rization, thus we now add summary predicates based on separation logic.
The definition of these predicates follows the usual form of inductive
predicates, except that they are based on separation logic connectors
introduced in Definition 4.7, which means that they use separating con-
junction, emp and points-to memory predicates. As summary predicates
describe memory regions of variable size, therefore, we also need to ac-
count for a variable set of addresses, which is the reason why we need to
introduce a notion of abstract address. These abstract address describe
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the addresses used in address expressions (Definition 4.7). The refine-
ment of summary predicates often results in case splits among abstract
facts, thus we also include disjunctive abstract shapes. Moreover, the
non-separating conjunction of heap expressions that was mentioned
in Definition 4.7 is not supported by most shape analyses (or only in
a very local and specialized way) so we omit it in the shape abstract
domain definition. The following definition accounts for these changes:

Definition 4.8 (Abstract Shapes Based on Separation Logic). We assume
a set S of symbolic addresses (which are noted a, a0, a1, . . .). The D set
of abstract shapes (noted d), the set H of abstract heaps (noted h), the
inductive separation logic predicates (noted ind), and the set P of pure
predicates (noted p) are defined by the grammar below:

d ::= h ∧ p
| ⊥ unsatisfiable abstract shape
| d ∨ d disjunctive abstract shape

h ::= emp
| a0 · f 7→ a1
| h ∗ h
| ind(a0, . . . , an) inductive summary instance

ind ::= ∃a′0, . . . , a′k · d0 ∨ · · · ∨ dn inductive summary definition
p ::= a = &x | a = 0 | a 6= 0 | . . .

The body of an inductive predicate uses a bunch of local variables,
that are intuitively quantified existentially.

We now need to set up the concretization of these abstract shapes.
Fortunately, the definition of the concretization mostly follows the `
relation that was set up in Definition 4.7. There are only two differences:
first, the symbolic addresses need to be turned into normal addresses as
part of the concretization process; second, inductive summary predicates
need to be eliminated, which is achieved by unfolding into non-summary
predicates. Assuming some fixed set of inductive predicates, we define
the meaning of abstract shapes as follows:

Definition 4.9 (Unfolding Relation, Valuation, Abstract Substitution and
Concretization of Abstract Shapes). The unfolding relation ; describes
how an abstract heap can be rewritten into another one by replacing
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one of the inductive predicates it contains with one of its inductive
cases (note that the existentially quantified variables may need to be
renamed by α-equivalence in the definition of inductive predicates in
order to avoid collisions):

ind(a0, . . . , an) = ∃a′0, . . . , a′k · d0 ∨ · · · ∨ dk 0 ≤ i ≤ k
a′0, . . . , a

′
k are fresh in d di = hi ∧ pi

(h ∗ ind(a0, . . . , an)) ∧ p ; (h ∗ hi) ∧ (p ∧ pi) .

We write ;∗ for the iterated application of ;, and Hf for the set of flat
abstract heaps, that is abstract heap that do not contain any inductive
predicate.

A valuation is a function ν: S −→ A that maps symbolic addresses
into addresses. The address substitution function Φ takes a valuation
and an abstract shape with no inductive predicate (resp., a flat abstract
heap or pure predicate) as arguments, and replaces symbolic addresses
with addresses, based on the image of ν:

Φ(ν,⊥) = ∅

Φ(ν, d0 ∨ d1) = Φ(ν, d0) ∨ Φ(ν, d1)

Φ(ν,h ∧ p) = Φ(ν,h) ∧ Φ(ν,p)

Φ(ν, a0 · f 7→ a1) = ν(a0) · f 7→ ν(a1)

Φ(ν, emp) = emp

Φ(ν,h0 ∗ h1) = Φ(ν,h0) ∗ Φ(ν,h1)

Then, we let the concretization of an abstract shape be defined by

γ(d) = {m ∈ M | ∃(h ∧ p), ν, d ;∗ (h ∧ p) ∧ m ` Φ(ν,h ∧ p) ∧ ν ` p}

where ν ` p if and only the valuation ν satisfies the pure
predicate p.

The following paragraphs present a few common inductive predicates,
and examples of such abstract shapes, and detail how value abstraction
may be combined with separation logic based shape abstraction, and
how the shape abstract states may be represented.
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A Few Inductive Structures and Their Abstraction. Linked struc-
tures such as singly linked lists and binary trees can be described by
simple inductive predicates in separation logic:

list(a) = ∃a0, a1 ·
{

emp ∧ a = 0
∨ a · n 7→ a0 ∗ a · f 7→ a1 ∗ list(a0)

tree(a) = ∃a0, a1, a2 ·


emp ∧ a = 0

∨ (a · l 7→ a0 ∗ a · r 7→ a1
∗ a · f 7→ a2 ∗ tree(a0) ∗ tree(a1))

The inductive predicate list(a), where the symbolic address a denotes
the address of the head node distinguishes two cases: a singly linked
list is either empty, or non empty; in the second case, it can be divided
into a node with (at least two) fields, including a n field, and the list
tail that is pointed to by the field n of the first node, and that can also
be described by induction. The inductive predicate tree is very similar.

It is also often useful to describe an incomplete fragment of an
inductive data structures. As an example, the singly linked list depicted
in Figure 2.4 is naturally divided into two parts, which respectively
consist of the list nodes between l and the cursor pointer c, and of
the list nodes beyond the cursor pointer c. The above list inductive
predicate can only describe a complete singly linked list. It is however
also possible to describe such an incomplete “segment” of a structure
using an inductive predicate, provided a second parameter symbolic
address a′ denotes the value of the n pointer of the last element:

lseg(a, a′) = ∃a0, a1 ·
{

emp ∧ a = a′

∨ a · n 7→ a0 ∗ a · n 7→ a1 ∗ lseg(a0, a′)

This inductive predicate is very similar to list. Actually, we remark, the
only difference occurs in the base case, as an empty segment consists of
an empty region, where both symbolic variables a, a′ describe the same
address.

Using the above inductive predicates, we can now give a few examples
of abstract shapes using our separation logic based abstraction. First,
we consider the case of the memory states shown in Figure 2.3, and
where the variable l stores the address of the first node of a singly
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linked list. These memory states can all be described by the abstract
shape below:

a0 7→ a1 ∗ list(a1)
∧

a0 = &l
In the above formula, the first like presents the abstract heap, and
the second line the pure predicates. It uses two symbolic addresses a0
and a1 which respectively stand for the address and the content of the
variable l.

In the case of the memory states shown in Figure 2.4, we need two
summary predicates, where the first one represents the segment formed
of the elements of the list that occur before the element pointed to by
c, and the second one represents the tail of the list:

a0 7→ a1 ∗ a2 7→ a3 ∗ lseg(a1, a3)
∗ a3 · n 7→ a4 ∗ a3 · f 7→ a5 ∗ list(a4)

∧
a0 = &l ∧ a2 = &c

The next two paragraphs briefly discuss the machine representation
of abstract shapes in separation logic.

Representation of Abstract Heaps. We first discuss the representa-
tion of abstract heaps.

Based on Definition 4.8, the most straightforward representation
relies on the abstract syntax tree of logical formulas. This representation
is intuitive as it closely follows the definition. However, a drawback of
this presentation is that formulas are equivalent modulo commutativity
and associativity of ∗. Even representing an abstract heap as a list of
terms does not fully solve this issue, since the order of terms does not
change the meaning of the formula. This means that locating a term
(e.g., to resolve the value of a given variable) is likely to be more costly
than it should be.

An alternate approach relies on a form of shape graph, where nodes
stand for symbolic variables, and basic edges correspond to points-to
predicates, or structure segments. Such a representation eases the search
for the term that describes a variable or other location as it makes the
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structure of abstract shapes even closer to the layout of concrete heaps.
This structure comes at the cost of more complicated algorithms, but
also allows efficiency gains. This approach has been implemented in Xisa
(Chang et al., 2007) and in Predator (Dudka et al., 2011). To illustrate
this approach, we show an abstract shape described by a separation
logic formula in Figure 4.12(a) and its representation as a shape graph
in Figure 4.12(b). In this picture, thin edges denote basic cells and
thick edges stand for summarized regions. This representation shows
the backbone of the inductive structure and the overall layout of the
corresponding concrete states.

Representation of Pure Constraints and Combination with a Value
Abstraction. We have observed that abstract shapes embed so called
pure predicates, which may represent numerical constraints or other
constraints on the values of the symbolic addresses. In the above exam-
ples, these pure predicates denote modest pointer properties (equality
or disequality to null, equality to the address of a variable . . .), but
we can imagine considering much more involved constraints (Chang
and Rival, 2008). In this view, pure predicates are elements of a value
abstract domain, which is typically a numerical domain (Cousot and
Cousot, 1977, 1978). The dimensions of this domain range over sym-
bolic variables in the abstract heap. The machine representation of
the pure predicates boils down to the existing value abstract domain
representation. From the static analysis point of view, this abstraction
supports both the reduced product approach, where both shape and
numerical predicates are computed in the same analysis (Chang and

Figure 4.12: Separation logic formula and shape graph representation.
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Rival, 2008), and the design of separate shape and numerical analyses,
where the shape analysis phase outputs not only shape invariants but
also a purely numerical program, that can be analyzed in a second
phase (Magill et al., 2010). These combinations are discussed in detail
in Subsection 5.1.

4.4.3 Computation of Post-Conditions

In the following paragraphs, we detail the definition of abstract oper-
ators to compute post-conditions for basic program statements such
as assignments condition tests using separation logic based abstract
shapes (Berdine et al., 2005b). As several abstract operations need to
refine abstract states so as to reason about memory regions described
by summary predicates, we start with the presentation of an unfolding
scheme for inductive predicates, which will be used in the following
paragraphs.

Refinement Based on the Unfolding of Inductive Summaries. To
illustrate the need for refinement, we consider a basic example. We
let d be the abstract shape a0 7→ a1 ∗ list(a1) ∧ a0 = &l, which was
presented in the previous paragraph, and assume it as an abstract
pre-condition. Intuitively, l points to a well-formed singly-linked list.
Moreover, we consider the computation of a post-condition for a state-
ment which reads or writes into either of the fields of the memory cell
pointed to by l. Before the effect of this operation can be computed, the
analysis needs to materialize the fields of the cell points to by l. This is
not immediately doable here are this cell is part of the memory region
that is summarized by list(a1). As we have defined list by induction,
and as the disjunction of two cases, we can simply replace list(a1) with
this disjunction (this is actually how we defined the concretization of
inductive predicates in Definition 4.9), and the reorganize the terms, so
as to produce a disjunctive abstract shape:

a0 7→ a1 ∗ emp ∧ a0 = &l = 0
∨ a0 7→ a1 ∗ a1 · n 7→ a2 ∗ a1 · f 7→ a3 ∗ list(a2) ∧ a0 = &l 6= 0

In the first disjunct, l is actually a null pointer, so trying to access
either of its fields would yield a runtime error or null pointer exception
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depending on the language. In the second disjunct, l points to a block,
the address of which is a1, and the two fields of this block are materialized
explicitly. We also observe that pure predicates in both disjuncts take
into account the pure predicates of the inductive definition list. In fact,
pure predicates may even rule out some disjuncts, if the pure predicates
are not compatible. This would happen in the above example if we
started with a pre-condition that expresses l 6= 0; in that case, only the
disjunct that corresponds to a non-empty list is possible.

The purpose of the refinement operation is to make this unfolding
step automatically. Given an abstract shape h ∧ p, and a symbolic
address a, the unfolding operator unfold should:

1. locate the term of h that describes the memory block pointed to
by a;

2. if this term is an inductive predicate, proceed to the unfolding of
this predicate following the relation ;, and produce a possibly
disjunctive abstract shape.

The precise definition of unfold, and the way it achieves the localization
of the term to unfold depend on the inductive predicates that are
considered. When this term cannot be localized precisely, unfold may
fail to refine the abstract shape it is applied to. The soundness of unfold
boils down to:

∀d, a, γ(d) ⊆ γ(unfold(d, a))

Post-Condition for Memory Allocation. We consider the abstract
operator newx, for the analysis of memory allocation statement
x = new( ) (Figure 3.3). As observed in Figure 3.2, this statement
allocates a fresh memory block, and assigns its address to the variable
x. Obviously, it assumes that the variable x is already defined, thus
the abstract pre-condition of newx should reflect that. Let us denote
by d this abstract pre-condition, and first assume that it consists of a
single term h ∧ p (the case of empty or disjunctive abstract shapes are
discussed afterwards). Since x is defined, d should be of the form:

(a0 7→ a1 ∗ h′) ∧ (a0 = &x ∧ p′)
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Given such a pre-condition, the analysis should first build up the ab-
straction of the new allocated block, and secondly update the value
of x with the address of this new block. This amounts to producing
the abstract shape below, where a′0, a

′
1, . . . are fresh symbolic variables,

and where f0, f1, . . . are the names of the fields of the newly allocated
block:

newx((a0 7→ a1 ∗ h′) ∧ (a0 = &x ∧ p′))
= (a0 7→ a2 ∗ a2 · f0 7→ a′0 ∗ a2 · f0 7→ a′1 ∗ · · · ∗ h′) ∧ (a0 = &x ∧ p′)

We remark that symbolic variable a1 may be dropped if it is not referred
to in h′ or p′.

The case of empty or disjunctive abstract shapes is straightforward:

newx(⊥) = ⊥
newx(d0 ∨ d1) = newx(d0) ∨ newx(d1)

Post-Condition for Assignments. We now consider the operator
assignx.f←e for the computation of an abstract post-condition for an
assignment statement x.f = e. As shown in Figure 3.2, the concrete
semantics of such a statement carries out three successive steps: (1) it
evaluates the l-value x.f into a memory cell, (2) it evaluates the r-value
e into a value, and (3) it stores this value in the cell produced at step (1).
The definition of the analysis follows this sequence of operations. The
evaluation of the l-value should produce the abstraction of a cell, which
is thus a points-to predicate a0 · f 7→ a1. The evaluation of the r-value
should produce the abstraction of a value, which is thus a symbolic
variable a2. Last, the update step (3) replaces the points-to predicate
a0 · f 7→ a1 with the new points-to predicate a0 · f 7→ a2. To sum up, if
e boils down to just a variable y:

assignx.f←y((a0 7→ a1 ∗ a1 · f 7→ a2 ∗ a3 7→ a4 ∗ h′)
∧ (a0 = &x ∧ a3 = &y ∧ p′))

= (a0 7→ a1 ∗ a1 · f 7→ a4 ∗ a3 7→ a4 ∗ h′) ∧ (a0 = &x ∧ a3 = &y ∧ p′))

This definition follows the structure of separation logic formulas in a
straightforward manner, and relies on the notion of local reasoning that
was presented in Subsection 4.4.1 (Reynolds, 2002). The cases where



4.4. Separation Logic-Based Shape Abstraction 99

the r-value e is another, more complex pointer expression are similar,
when all the fields that need to be read are exposed, as in the above
example. This gives a straightforward definition of assignx.f←e(d) for
a wide family of expressions e and abstract shape d.

However, this definition obviously does not work when either the
l-value or the r-value is summarized as part of an inductive summary
predicate. As we remarked in the beginning of the subsection, such
cases require the unfolding of inductive summaries before applying the
standard analysis algorithms. As an example:

assignx.f←y((a0 7→ a1 ∗ list(a1) ∗ a3 7→ a4 ∗ h′)
∧ (a0 = &x ∧ a3 = &y ∧ p′))

= assignx.f←y(unfold((a0 7→ a1 ∗ list(a1) ∗ a3 7→ a4 ∗ h′)
∧ (a0 = &x ∧ a3 = &y ∧ p′)), a1)

This principle generalizes to the case where both the l-value and the
r-value refer to memory cells that are part of memory regions which are
summarized by inductive predicates. In this case, the computation of a
post-condition for an assignment statement leads to several disjuncts.

Finally, the cases where d is either ⊥ or a disjunctive abstract shape
are handled as usual:

assignx.f←y(⊥) = ⊥
assignx.f←y(d0 ∨ d1) = assignx.f←y(d0) ∨ assignx.f←y(d1)

Post-Condition for Condition Tests. Given a condition e, the abstract
operator teste maps an abstract shape d to an over-approximation of
the set of memory states in γ(d) that satisfy condition e. Intuitively,
it should simply refine the pure constraints in d, so as to express as
precisely as possible the condition e. As an example:

testl=0((a0 7→ a1 ∗ h′) ∧ (a0 = &l ∧ p′))
= (a0 7→ a1 ∗ h′) ∧ (a0 = &l ∧ a1 = 0 ∧ p′)

Just like assignx.f←e, teste may need to unfold inductive summary pred-
icates, when any of the locations that are read in e is part of such a sum-
mary. Moreover, when unsatisfiable constraints arise, abstract shapes
can be reduced to ⊥ as part of the computation of teste. For instance,
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in the case below, l is implicitly known to be a non null pointer because
it points to the address of a regular memory cell as witnessed by the
points-to predicate, therefore, the condition is unsatisfiable:

testl=0((a0 7→ a1 ∗ a1 7→ a2) ∧ (a0 = &l)) = ⊥

The extension to the case of ⊥ or disjunctive abstract shapes is similar
as well.

Analysis of Straight Line Code. To conclude this subsection, we
consider the analysis of a short program that consists only of conditions
and assignments. We assume that the program below is ran from a state
where l points to a well-formed singly linked list:

1 i f ( l != null ){
2 List c = new List ( ) ;
3 c . n = l . n ;
4 l . n = c ;
5 }

Essentially, this program allocates a new element and inserts it in the
first position in the list pointed to by l when this list is not empty, and
does nothing otherwise.

The analysis successively computes the abstract states shown in
Figure 4.13. The abstract shapes computed for each program point are
interleaved between the statements of the program. The initial abstract
shape describes the list pointed to by l by an inductive summary
predicate. At line 1, the condition operator adds predicates related to
the nullness of l. At line 2, the memory allocation abstract operator
synthesizes the representation of a new list element, and updates c with
it. At line 3, the analysis of the assignment requires reading fields of the
list pointed to by l, so the inductive summary needs to be unfolded;
note that this unfolding produces a single disjunct as l is known to
be non null at this point. At line 4, the analysis of the assignment is
straightforward as all fields read or modified are already materialized.

4.4.4 Lattice Operations

The abstract operators shown in Subsection 4.4.3 allow to handle the
analysis of straight line code, but cannot support loops. In the following,
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Figure 4.13: Analysis of a code fragment.

we set up operations that approximate the classical lattice operations,
such as inclusion check, join, and extrapolation of abstract iterates.
From the shape analysis point of view, the operations defined in the
following subsection accomplish a role dual to that of the refinement
presented in Subsection 4.4.3: while refinement tends to unfold inductive
summaries, these operations attempt to synthesize new summaries.

Abstract Inclusion Checking. We first consider inclusion checking.
Given two abstract shapes d0 and d1, the inclusion checking algorithm
attempts to decide whether γ(d0) ⊆ γ(d1). It boils down to a conserva-
tive function incl: D× D −→ B, where B stands for the set of booleans
{true, false}, and which is conservative in the sense that:

incl(d0, d1) = true =⇒ γ(d0) ⊆ γ(d1)
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The definition of incl depends on the nature of the inductive summary
predicates that are used in the definition of D. To make the presentation
easier to follow, we provide the definition of a set of logical rules,
which describe conditions under which the inclusion γ(d0) ⊆ γ(d1)
may be derived. Indeed, we can prove by induction on the derivation
that, whenever the predicate ` d0 v d1 is derived, the inclusion of
concretization holds. The main logical rules are shown in Figure 4.14:

• the rules (v⊥), (v∨−l), (v∨−r) and (v∨−r′) show how to derive
inclusion over disjunctive and possibly ⊥ abstract shape, using
classical disjunctive reasoning principles;

• the rule (vpure) separates inclusion checking over pure predicates
(to be discharged using abstract operators from the numerical
domain) and inclusion checking over abstract heaps;

• the rule (v∗) allows to derive inclusion by local checking, consid-
ering disjoint regions;

• the rule (vId) expresses that inclusion is reflexive;

• last, the rule (v;) allows to compare inductive summary predi-
cates with unfolded regions.

The precise definition of the inductive predicates may define additional
rules to establish inclusion. As an example, we have defined in Sub-
section 4.4.2 the inductive predicates list and lseg, that respectively
describe singly linked list and segments of singly linked lists. Using these
predicates, the rule below is sound, and expresses that a list segment
appended to a list forms another list:

� lseg(a0, a1) ∗ list(a1) v list(a0)

While the rules of Figure 4.14 show how to derive inclusion, they
do not fully specify how to implement an operator incl that takes
two abstract shapes as arguments and attempts to determine whether
inclusion holds. The full definition of incl requires to set up a proof
search strategy using the rules presented in Figure 4.14, that attempts
to apply the rules in a specific order. An ideal such order is difficult to
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Figure 4.14: Logical rules for inclusion checking.

choose, and may depend on the specific inductive predicates that are
used, so we do not fully make it explicit here.

To conclude this paragraph, we show an example inclusion derivation,
where we assume, for the sake of clarity, that list defines singly linked
lists where elements have a single field n, which points to the next
element:

� a0 · n 7→ a1 ∧ a1 = 0 v a0 · n 7→ a1

list(a1) ; emp ∧ a1 = 0
� emp ∧ a1 = 0 v list(a1)

� a0 · n 7→ a1 ∧ a1 = 0 v a0 · n 7→ a1 ∗ list(a1)
� a0 · n 7→ a1 ∧ a1 = 0 v list(a0)

Typical algorithms for incl carry out a proof search that is similar to
that shown in the above proof tree.

The design of entailment checkers and theorem provers for separation
logic has attracted a lot of interest beyond the shape analysis research
field. In particular, Piskac et al. (2013) and Le et al. (2016) have
proposed solvers modulo theory (SMT) for fragments of separation logic.
Likewise, Qiu et al. (2013) and Pek et al. (2014) designed provers for
fragments of separation logic. The inclusion checking described above
may be viewed a specialized counterpart for such tools, that is aimed at
performing well on entailment problems typically encountered in static
analysis.
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The next paragraphs put the inclusion rules of Figure 4.14 to work
so as to define several forms of weakening algorithms.

Weakening of Abstract Shapes. First, we consider a unary weakening
operator weaken: D −→ D, such that:

∀d ∈ D, γ(d) ⊆ γ(weaken(d))

The purpose of such an operator is to carry out some generalization
over a single input abstract shape. As opposed to incl, it does not start
with two abstract shapes that it tries to compare. Instead, it takes just
one abstract shape, and it should compute another one, that is weaker.
Unary weakening operators have been employed in many shape analysis
tools based on separation logic (Berdine et al., 2005a, 2007).

The identity function satisfies the above soundness condition, yet
it does not achieve any interesting weakening, so that it is not useful.
Useful weakening operators should recognize memory regions that can
be described in a more abstract manner, for instance by synthesizing new
inductive summary predicates, and where doing so will not deteriorate
too much the analysis precision.

The rules shown in Figure 4.14, that define v form a natural starting
point to define an operator weaken. However, just like in the case of
incl, the definition of weaken should rely on an adequate strategy to
efficiently weaken abstract shapes, for instance by identifying portions
of abstract heaps that could be weakened into an inductive summary.
As an example, the following excerpt of an weaken operator performs
such a folding:

weaken(a0 · n 7→ a1 ∧ a1 = 0) = list(a0)

Abstract Union of Abstract Shapes. The abstract union operator
join introduced in Subsection 3.3 also produces an over-approximation
of its inputs, except that it takes two abstract shapes as arguments
instead of one in the case of weaken. We remark that producing d0 ∨ d1
as a result for join(d0, d1) is possible, though it does not accomplish any
effective generalization. In practice, such a join operator may be used to
analyze sequences of condition statements (as shown in Subsection 3.3),
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yet it would not allow to cut down the size of symbolic disjunctions, so
that it would let the logical formulas of the abstract shapes grow larger
and larger. Shape analysis of non trivial programs require a smarter
join operator to be used, at least for the analysis of loops.

The principle to design an join operator is similar to the construction
of weaken. In particular, the most important step is to synthesize novel
inductive summary predicates in order to over-approximate memory
regions. However, contrarily to weaken, join may use two arguments
to guide this summary synthesis process, which allows to define more
powerful and simpler generalization schemes. For instance, we show a
couple of commonly used join rules:

join(d, d) = d

join(d0, d1) = d join(d′0, d′1) = d′

join(d0 ∗ d′0, d1 ∗ d′1) = d ∗ d′

incl(d0, ind(a)) = true
join(d0, ind(a)) = ind(a)

The first of these rule simply expresses that join does not need to
perform any weakening when both of its arguments are already equal.
The second of these two rules asserts that join can be computed locally
(as all analysis operations that we have seen so far). The third one
invites to weaken abstract shapes into inductive summaries, whenever
either argument of join already contains a summary. We remark that
this weakening rule relies on the inclusion checking algorithm to make
sure that the rule applies.

As an example, we assume we consider the tree inductive predicate
defined in Subsection 4.4.2, show only the fields for the pointers to left
and right tree sub-trees, and consider the following two abstract shapes:

d0 = a0 · l 7→ a1 ∗ a0 · r 7→ a2 ∗ a1 · l 7→ a3 ∗ a1 · r 7→ a4

∗ tree(a2) ∗ tree(a3) ∗ tree(a4)

d1 = a0 · l 7→ a1 ∗ a0 · r 7→ a2 ∗ a2 · l 7→ a3 ∗ a2 · r 7→ a4

∗ tree(a1) ∗ tree(a3) ∗ tree(a4)
Intuitively, both d0 and d1 describe well-formed binary trees, but there is
a slight difference between the structures that they describe: d0 describes
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binary trees with at least two nodes, namely the root and a left child,
whereas d1 describes binary trees with at least two nodes, namely the
root and a right child. The three rules shown above are sufficient to
compute the abstract shape below:

join(d0, d1) = a0 · l 7→ a1 ∗ a0 · r 7→ a2 ∗ tree(a1) ∗ tree(a2)

We note that this result is slightly less precise than d0 ∨ d1, since it
includes any binary tree with at least one node, including the case where
both pointers to sub-trees are null and the tree has a single node.

Many shape analysis tools based on separation logic rely on the use
of join operators (Chang et al., 2007; Yang et al., 2008).

Extrapolation Techniques. In the previous paragraphs, we have intro-
duced several approaches to weaken abstract shapes. We now show how
an operator extrapol can be defined from these, so as to compute in fi-
nite time sound loop invariants. We recall that extrapol (Subsection 3.3)
applies to an abstract shape d that defines the pre-condition of a loop,
and to a function f : D→ D that describes the effect of one iteration of
the body of the loop on abstract shapes. Remark that computing a series
of abstract shapes of the form dk = d ∨ f(d) ∨ f ◦ f(d) ∨ · · · ∨ fk(d)
would not terminate, and would produce ever weaker (or more general)
abstract shapes.

A first way to build an operator extrapol is to use a unary weaken-
ing operator weaken, with the additional constraint that the image of
weaken should be a finite height sub-lattice of D. Then, the sequence
of abstract shapes defined below is increasing thus stationary, and it
computes a sound loop invariant:

d0 = d

dk+1 = weaken(dk ∨ f(dk))

In practice, to ensure that the weaken operator returns in a finite
height sub-lattice of D, one simply needs to guarantee that it returns
summary predicates often enough. Weakening rules that enforce this
depend on the inductive predicates that are considered.

A second way to define extrapol is to require join to be a widening
operator (Cousot and Cousot, 1977), which means that any sequence



4.4. Separation Logic-Based Shape Abstraction 107

computed by applying join as follows is ultimately stationary:

d0 = d

dk+1 = join(dk, f(dk))

This sequence also over-approximates the iterations over the loop in the
concrete semantics, hence produces a sound loop invariant, provided
it converges. The definition of a join operator that has the widening
property also requires to make sure that it synthesizes summary predi-
cates often enough so as to avoid growing chains of precise shapes only
based on points-to predicates.

Last, while this extrapol operator requires join to be a widening,
it is also possible to let the analysis use two kinds of join, including
one that is not necessarily a widening for the analysis of statements
other than loops.

To conclude this paragraph, we show an example extrapolation. We
consider a loop that constructs a singly linked list of arbitrary length,
by initializing a null pointer and repeating a random number of times
the addition of an element at the head of the structure. The abstract
shapes synthesized over the first iterates are of the form below (all fields
except pointers to next elements are omitted):

d0 = emp ∧ a = 0

d1 = a · n 7→ a0 ∧ a0 = 0

d2 = a · n 7→ a0 ∗ a0 · n 7→ a1 ∧ a1 = 0

Using either approaches to extrapolation mentioned above will produce
the abstract shape below:

list(a)

4.4.5 Example Analysis

To conclude this subsection, we show the results produced by a shape
analysis based on separation logic. We consider the insertion of a node
in a singly-linked list, at a random position as shown in Figure 4.15.
We assume that:

• l initially points to a non-empty, well-formed singly-linked list;



108 Memory Layout Abstractions

• t points to a single list element (the n field is assumed to be
uninitialized);

• c is uninitialized.

The intermediate abstract shapes that are computed during the analysis
are inserted between the program statements. For the sake of clarity,
we omit the fields other than n and we use the following shortcuts:

h = a0 7→ a1 ∗ a4 7→ a5

p = a0 = &l ∧ a2 = &c ∧ a4 = &t ∧ a1 6= 0

The abstract shape shown at the entry point simply formalizes the above
assumptions. The abstract shapes attached to the other control states
are computed by the algorithms described earlier in this subsection.
In particular, the loop invariant comprises a list segment inductive
predicates that is synthesized during the extrapolation process, and
that was not initially present. It is a straightforward exercise to check
that it is inductive. The other invariants are derived systematically from
those at the previous point, using the transfer functions for assignments.

4.4.6 Applications and Extensions

The scope of separation logic based shape analyses is very wide, and
many tools or analyses rely on this approach. Thus, to conclude this
subsection, we mention a few shape analysis tools that rely on separation
logic, and some analysis features that we could not discuss in detail.

A first application is the inference of the footprint of a piece of code,
which is defined as the memory area that it may read or modify. The
Smallfoot tool (Berdine et al., 2005a; Calcagno et al., 2007) relies on
separation logic formulas to compute such information.

A second application is the verification of memory safety, including
the absence of dereferences of null or invalid pointers. Many tools have
been designed so as to infer a superset of the possible safety violations,
including Slayer (Berdine et al., 2011) or Facebook Infer (Calcagno and
Distefano, 2011). Interesting results have been reported regarding to
the analysis of pieces of system code and device drivers (Yang, 2007;
Yang et al., 2008). Another way to make separation logic analysis tools
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Figure 4.15: Example shape analysis.

is to support a form of genericity with respect to structure contents so
as to describe nested structures like lists of lists of lists (Berdine et al.,
2007). While some tools operate on whole programs, Facebook Infer
performs modular analysis, and uses bi-abduction technique (Calcagno
et al., 2009) to infer procedure summaries.

Several tools have also incorporated support for numerical abstrac-
tions, which means that they can infer invariants about programs that
manipulate both complex data structures and numerical properties. The
Xisa approach (Chang and Rival, 2008) relies on a reduced product of
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memory and value abstraction and allows them to exchange information
during the analysis. The Thor approach (Magill et al., 2010) composes
two analyses that respectively focus on the shape part, and on the
numerical part.

Separation logic based analyses have also served as a basis for shape
abstraction composition operations. The motivation of this kind of
techniques is the analysis of programs manipulating overlaid data struc-
tures (Lee et al., 2011). This approach can be made more systematic
thanks to general memory abstract domain composition operations
such as reduced product (Toubhans et al., 2013) and separating prod-
uct (Toubhans et al., 2014). The MemCAD tool (Li et al., 2017)
relies on such abstract domain construction to provide a wide set
of logical predicates, without requiring an overly complex abstract
domain.

While we consider the inductive predicates used for summaries a
parameter of the separation logic abstraction, several works have pro-
posed ways to compute them. In particular, Rival and Chang (2011) set
up a widening operator which infers candidates of inductive predicates
to be used for the summarization of the stack frame and the heap
region that it points to; in this set up, the analysis assumes no inductive
predicate and proceeds with summarization and predicate inference
in the same time. More recently, Brockschmidt et al. (2017) rely on
statistical machine learning to infer inductive predicates to be used for
verification based on conventional techniques.

4.5 Automata-Based Shape Abstractions

In this subsection, we give an overview of another family of shape
analyses that view data-structures stored in the heap as collections of
trees, and rely on automata to describe these trees. After we set up
the main intuitions in Subsection 4.5.1, we present the abstraction in
Subsection 4.5.2. Finally, Subsection 4.5.3 sketches the main analysis
algorithms and Subsection 4.5.4 the computation of lattice operations.
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4.5.1 Heaps as Collections of Trees

As we have observed previously, we can intuitively view memory states
graphs of pointers. At first, let us assume that only non shared structures
are used. Then, we observe that each program variable may point to
an arborescent structure such as a tree or just a list. Since many
relevant sets of trees can be described precisely using tree automata,
this observation invites considering tree automata do abstract the heap
regions pointed to by each variable. In the more involved case where
structures involving sharing (such as doubly linked lists) are considered
or structures are pointed to by several variables, this approach requires
a bit more care in the sense that heaps first need to be split before tree
automata can be applied to the abstraction of memory regions.

In fact, building upon such intuitions, automata-based approaches
have been proposed early in a verification context (i.e., to verify user
provided program invariants by Habermehl et al., 2006). Other works
have suggested using automata in order to describe the effect of programs
manipulating heap data-structures and to verify them. For instance,
Bouajjani et al. (2006) abstract programs that operate over singly
linked lists using automata with counters and show that it is possible
to use this abstraction as a step towards verification. Automata-based
abstraction of program states have also been applied to the design of
shape analyses that are able to infer precise invariants for programs
manipulating complex data-structures such as lists and trees. In the
rest of this subsection, we formalize an abstraction that is closed to
that used in the Forester tool (Habermehl et al., 2012) (though it is
actually drastically simplified).

In the following, we consider the example shown in Figure 4.16(a)
and give the intuition of its abstraction based on automata. This example
was also considered in Figure 2.4, and served as a basis to illustrate the
principles of other shape abstractions. It consists of two variables l and
t that respectively point to the head of a complete singly linked list and
to an element of that list. In the concrete heap shown in Figure 4.16(a),
we mark two cells C0 and C1. These two cells are pointed directly by
the variables l and t and the regions that spread in-between are pure
singly linked list segments. Except for these, no cell is pointed to from
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Figure 4.16: Heap splitting into trees.

two different places or by a variable. These two cells can be used as a
boundary to perform a splitting of the concrete heap into four regions,
as shown in Figure 4.16(b):

• the two regions in the left respectively correspond to variables l
and t;

• the region in the top right corner of Figure 4.16(b) is a list segment
starting in C0 and ending in C1;
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• the region in the bottom right corner of Figure 4.16(b) is a list
tail starting in C1.

Note that these four regions overlap only in C0 and C1. While they
are not quite separated in the sense of separation logic (Reynolds, 2002),
we can notice some similarity. Indeed, the only shared cells are known
and explicitly marked.

We give a second representation of these four heap regions in
Figure 4.16(c), using the same conventions as for the shape graphs
introduced in Figure 4.12(b). In this representation, we do not duplicate
the shared cells marked by C0 and C1 (only the nodes which stand for
these addresses appear multiple times). This figure uses nodes to depict
addresses and edges to denote memory cells.

As we can observe in this second representation each of these four
regions is quite simple. The two regions in the left boil down to a
single pointer. The two regions in the right can be viewed an iterated
repetition of some specific pattern. The interesting point is that these
patterns can be described using some techniques inspired by formal
languages. Indeed, the top right region boils down to a number (that
we may disregard, for the sake of the abstraction) of repetition of the
pattern “a single list cell”, that starts in C0 and ends in C1. The case of
the bottom rig th region is similar. We remark that automata play here
a role similar to that of inductive predicates shown in Subsection 4.4.

In the rest of this subsection, we formalize this abstraction in more
detail.

4.5.2 Abstraction Based on Forest Automata

We first consider the abstraction of a single heap region, such as any of
the four shown in Figure 4.16(c). As remarked above, such a pattern
may be described using techniques generally used in order to study
formal languages. Therefore, we first recall the definition of a finite, non-
deterministic, bottom up tree automaton (or, for short, tree automaton—
since we are not considering any other kind of automata).

Definition 4.10 (Trees and Tree Automata). A node constructor N is
defined by an arity n and sequence of field names f1, . . . , fn. Heap
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trees (or for short, when there is no ambiguity, trees) are constructed
recursively by applying node constructors to sequences of trees such that
the length of the sequence of arguments of each constructor matches its
arity. A tree automaton A over an alphabet of node constructors Σ is
a triple (Q,F,∆) where Q is a finite set of states, F ⊆ Q denotes the
set of final states, and ∆ is a finite set of transitions, such that each
transition is a tuple ((q1, . . . , qn), f, q), where (q1, . . . , qn) is a (possibly
empty) sequence of states, f a node constructor of arity n, and q is the
target state of the transition. We say that a heap tree t is recognized by
state q of the tree automaton A (and write A ` t: q) if and only if t is
of the form f(t1, . . . , tn) and there exists a transition ((q1, . . . , qn), f, q)
such that for all i ∈ {1, . . . , n}, heap tree ti is recognized by state qi
in A. Moreover, a heap tree t is recognized by the automaton A (which
we write A ` t) if and only if there exists a final state q of A such that
A ` t : q.

Note that the base case of the definition of the tree recognition
property is the case of leaves, i.e., of node constructors with no argument
(with arity n = 0).

As an example, we consider the heap region shown in the bottom
right corner of Figure 4.16(c), which can be viewed as a tree. Indeed, a
regular list element boils down to a constructor L = (n, f), and the null
pointer at the end of the structure can be viewed a node constructor of
arity 0. A heap region containing singly-linked list fragment such as the
one shown in that figure can be recognized by a tree automaton with
the following states:

• q0, that describes a value stored in an element, with a single
transition (( ), ·, q0);

• q1 (final state), that describes a possibly empty singly linked list,
with two transitions (( ),0, q1) (empty list) and ((q1, q0), L, q1)
(non-empty list, constructed recursively).

This tree automaton is represented graphically in Figure 4.17. The heap
region in the bottom right corner of Figure 4.16(c) boils down to a tree
recognized by this tree automaton, and such that the root is C1. The
heap region in the top right corner of the figure is quite similar, with
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Figure 4.17: Tree automaton.

the only difference that the empty case for the second state corresponds
to the node C1 itself. Instead, we thus include a special state in the
automaton to denote C1 and unroll the list segment. We derive an
automaton with three states:

• C1, that describes only the tree consisting of a single node C1,
with a single transition describing this tree;

• q0, that describes a value stored in an element, with a single
transition (( ), ·, q0);

• q1 (final state), that describes a possibly empty singly linked
list, with two transitions ((C1, q0), L, q1) (empty segment) and
((q1, q0), L, q1) (non-empty segment).

The case of the two regions in the left is simpler as they involve no
induction and can be depicted with trivial automata.

From these examples, we can derive a more general definition of an
abstraction relation where abstract shapes boil down to collection of
automata, with conditions on the roots. This definition is a simplified
version of the one proposed by Habermehl et al. (2011).

Definition 4.11 (Abstraction of Heaps Based on Automata). An abstract
shape a is defined by a set of symbols S that is made of variable
addresses (noted &x) and of cutpoint names (noted Ci), and a finite
set T = {(s0,A0), . . . , (sn,An)} of pairs (si,Ai) where si ∈ S and Ai is
a tree automaton.
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Given an abstract shape a = (S, T ) and m ∈ M, m ∈ γ(a) if and
only if there exists m0, . . . ,mn such that m = m0 ] · · · ] mn and for
all i ∈ {0, . . . , n}, mi is isomorphic to a tree ti such that Ai ` ti.

As we remarked above, regions storing inductive structures boil
down to tree automata with cyclic transitions whereas basic edges boil
down to tree automata that recognize a single tree. As an example,
the combination of tree automata describing each of the four regions
in Figure 4.16(b) provides an abstract shape that over-approximates
concrete states such as the memory depicted in Figure 4.16(a).

Additionally, the abstraction can be extended with disjunctions of
abstract shapes as in previous subsections.

4.5.3 Computation of Post-Conditions

Algorithms follow a structure similar to those shown in Subsection 4.4
therefore, we follow a less formal presentation here, and only sketch the
main principles of the algorithms.

Unrolling of Tree Automata. First, we have observed in previous
subsections that the computation of post-conditions often requires to
materialize the memory cells that are read or written, when these are
described by summary predicates. In particular, we have shown in
Subsection 4.4.3 an algorithm to perform this operation on separation
logic shape graphs. In the case of the shape abstraction introduced in
Definition 4.11, summary predicates are described by tree automata, and
it is also possible to refine tree automata. As an example, Figure 4.17
depicts an automaton that recognizes heap trees denoting possibly empty
singly-linked lists. By duplicating state q1 and the transition labeled by
L to state q1, it is possible to turn it into an automaton that recognizes
non empty singly linked lists. The result of this transformation is shown
in Figure 4.18. The materialization operation is more complex than a
mere unrolling of a specific state/transition. Indeed, it also needs to
perform disjunctive reasoning (to account for cases where the list is
empty).
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Figure 4.18: Unfolding a tree automaton.

Analysis of Updates. We consider the most general case of a de-
structive update of the form x.f = y.g and assume an abstract shape
a = (S, T ) as a pre-condition. Before a post-condition can be computed,
the locations of x.f and y.g need to be determined among the automata
in T . Second, materialization needs to be performed whenever either of
the cells corresponding to x.f and y.g cannot be mapped into a unique
transition, representing exactly that cell. Third, the affected transition
needs to be updated. We remark that the heap partition S may also
have to be modified when the assignment introduces sharing.

4.5.4 Lattice Operations and Analysis

To complete the design of an analysis based on the abstract shapes de-
fined in Definition 4.11, we now need to provide algorithms for inclusion
testing and union in the abstract level.

Inclusion Testing and Join. Tree automata support standard algo-
rithms for operations such as inclusion testing and union, and these
algorithms can be put to work almost directly for the computation of
abstract operations. As an example, given two automata A0,A1, we
can easily construct one that recognizes the union of the tree languages
recognized by A0 and A1, by joining the sets of states, transitions and
final states of these two automata. The application of this principle to
abstract shapes also requires to combine only shapes with comparable
heap partitions. Furthermore, Forester (Habermehl et al., 2012) applies
an abstraction to tree automata to enforce convergence.
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Analysis and Extensions. Using the operations defined in Subsec-
tion 4.5.3 and in the previous paragraph, the full definition of a shape
analysis follows the structure shown in Section 3. The Forester tool
(Habermehl et al., 2012) implements an analysis based on this approach
using an abstraction that extends that shown in Definition 4.11.

In this subsection, we described only a simplified version of the
analysis. In particular, the abstraction underlying Forester features
hierarchical boxes (Habermehl et al., 2011), which allow to express
nested structures such as lists of lists. Furthermore, a scheme to infer
boxes has been proposed so as to let the analysis require no user
annotations in order to infer that a program fragment constructs, e.g., a
binary tree. Last, an extension with data reasoning has been proposed
by Abdulla et al. (2016).

In this subsection, we have alluded to a connection between the
separation logic view and the representation based on automata. This
connection has been further studied by Iosif et al. (2014).



5
Extension of Shape Abstractions

In Section 4, we have described several families of memory abstractions,
and focused on the way they describe the layout of memory states.
However, the correctness of programs typically relies on more than just
the layout of the data structures that they manipulate. For instance,
a function that operates on sorted singly-linked lists not only depends
on the layout of these lists, but also on the fact that the values that
they store satisfy some other constraints. It may need to deal with the
low-level implementation of the high-level singly-linked list structure.
It may also call other functions, to perform auxiliary tasks. Therefore,
shape analyses also need to reason about other features of the semantics
of programs than just the shape. Very often, one can derive accurate
and useful abstractions for such program by combining or extending
memory abstractions such as those presented in Section 4.

This section presents some of these extensions. Subsection 5.1 focuses
on the extension of memory abstractions with value abstractions. Sub-
section 5.2 studies the abstraction of low-level memory operations.
Subsection 5.3 lists the main approaches to interprocedural shape
analysis.

119
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5.1 Abstraction of Values Stored into Dynamic Structures

Programs rarely only manipulate pointer values, and their correctness
generally not only depends on the memory layout but also on its
contents, that is the base type values (integers, characters, floating point,
or boolean values) that are stored in memory. Moreover, correctness
may also rely on the preservation of some memory property that is
parameterized by base type values, such as constraints over the length of
a list, over the height of a tree, or like sortedness. Therefore, deploying
shape analysis on real programs generally requires to describe not only
the shape of data structures, but also their contents.

Difficulties Related to Shape Analysis in the Presence of Content
Properties. Static analyses able to discover properties related to nu-
meric or boolean values have been known long before shape analyses
were proposed, and a very large number of value abstractions have been
introduced to deal with all sorts of value analysis problems. However,
the combination of shape and value analyses is challenging in terms of
expressiveness. Indeed, a combined analysis should not only infer both
shape and content properties, but also manage interactions between
two very different sorts of abstract information, over the course of the
invariant computation. Moreover, value analyses work in a rather differ-
ent manner compared to shape analyses, and typically do not have a
notion of refinement operation as shape analyses do, in order to unfold
summaries.

To illustrate the intricacy of these issues, we briefly discuss a couple
of examples:

• List length information. We consider the function below, that
respectively compute the length of a list:

int list_length(list l);

When it is applied to a well-formed non-empty list, this function
will always return a positive integer. Furthermore, it may be
used to compute the length of several lists, and relations among
these will induce certain numerical properties. For instance, if
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p points to a successor of l, then list_length(l) will return
a value that is greater than the result of list_length(p). This
example illustrates dependency of numerical information onto
shape information.

• List initialization. We consider the functions below, that perform
the initialization of all the numeric fields of a list to zero and test
the elements of a list for equality to a given numerical value:

int list_init_zero(list l);
int list_check_equal(list l, int n);

These functions ensure or depend on properties of the contents
of the data structures. In fact, even the control flow of their
implementation depends both on the shape of the data structures
and on their content. For instance, if a list is initialized to zero
by a call to list_init_zero, the value of a subsequent call to
list_check_equal can be precisely determined based on content
information.

A first issue is to design an expressive combined abstraction and
adequate analysis algorithms. This is challenging since shape analyses
partition memory cells in a dynamic manner, thus, the domain value
abstraction should apply to is necessarily dynamic. Therefore, the
control of the dynamic partitioning of the memory, the operations over
summaries and the information exchange between the shape and value
components of the analysis all impact the expressiveness.

A second issue is the description of the content of summarized
region, with accurate predicates, and the integration of such summary
predicates into the analysis. The way these summary predicates are
defined impacts not only the expressiveness of the analysis, but also the
way shape and content information can be managed over the course of
the abstract interpretation.

The following paragraph discuss the main approaches to combined
shape and content analysis, and how they address these two main issues.

Structure of the Combined Abstraction and Analysis. As remarked
above, a combined analysis should not only infer shape properties and
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numeric properties, but it should also aggregate information of both
sorts and manage the summarization of memory cells. We can cite two
main techniques to achieve this.

The pipeline approach splits the combined analysis into two succes-
sive stages, one dealing with shape and the other with values. As an
example, an instance of such an analysis could first perform a shape
analysis as shown in Section 4, use the results of this analysis to trans-
form the input program into a purely numerical program, and then
carry out a value analysis in the last stage (Magill et al., 2007, 2010).
In this scheme the shape analysis phase should not only infer accurate
partitions of memory cells and summaries for unbounded regions, but
it should also reduce the inference of the value properties of interest to
a pure value analysis. As an example the analysis proposed in the Thor
tool (Magill et al., 2007) considers list inductive predicates augmented
with length information, and attempts to verify preservation and consis-
tency of this length information. The first phase of this analysis infers
shape properties and produces a purely numerical program, with asser-
tions encoding the impact over list length of all operations in the initial
program. To achieve that, it resolves all dynamic memory locations,
and it also synthesizes additional numerical variables that stand for the
length of each list. It would be possible to envision a similar process,
where the value analysis occurs in the first stage, though we are not
aware of any such analysis. We remark that, in both cases, the order
in which the two static analyses are performed conditions the kind
of dependencies between memory and value information that can be
precisely reasoned about.

The product approach combines shape and value reasoning into a
single analysis, and relies on the classical abstract interpretation product
and reduced product operations (Cousot and Cousot, 1979). This means
that the abstract interpretation relies on a single iterative abstract post-
fixpoint computation, as part of which both shape predicates (including
summaries) and value predicates are inferred. As an example, this
approach has been implemented in the Xisa tool (Chang and Rival,
2008, 2013), which relies on user supplied inductive definitions that
describe both shape invariants and content properties. It has also been
implemented in the Celia tool (Bouajjani et al., 2011, 2012). In the
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product approach, information can be exchanged between the memory
abstract domain and the value abstract domain at any time during the
abstract interpretation, which means that in theory, such an analysis
can cope with any kind of dependency between shape properties and
value properties. This information exchange defines a specific case of
reduction in abstract interpretation (Cousot and Cousot, 1979). As
an example, reduction may put in evidence inconsistencies between
shape and value predicates, and derive that certain abstract states
are not reachable, as a consequence of the reduction. Moreover, as the
product approach tightly ties the shape analysis and the value analysis,
it also lets the former infer partitions of the set of memory cells that
should be used by the latter. As an example, it is possible that different
memory partitions and heap summaries get used at different stages of
the analysis even in the same program location.

These two approaches are radically different.
The pipeline approach allows to reuse a value analysis with little

modification, and even the shape analysis does not need deep changes
as it does not need to explicitly deal with value invariants.

On the other hand, the product approach offers more expressiveness.
Indeed, in the pipeline approach, one analysis precedes the other, so
that the former cannot make use of semantic information computed
by the latter. As an example, if the shape analysis is performed first,
it cannot exploit value information, that is not available at this stage.
For instance, this is problematic in the case of the list initialization
example given above, since that example requires content information
to infer properties on the control flow of list_check_equal. In the case
of the product approach, this issue does not arise, since both shape and
value analyses are performed in the same time, thus they can exchange
information at any point. Due to this, the product approach is more
expressive and powerful in general.

Furthermore, we also observed in the previous sections that a core
feature of shape analysis is to manage the partitioning of memories in
a dynamic manner, so that it can create or delete summary cells over
the course of the analysis. This means that, in the product approach,
the set of abstract memory cells handled in the value abstract domain
is also dynamic, and benefits from all the information computed by the
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shape analysis, and by the value analysis too since both progress in the
same time. By contrast, in the pipeline approach, the abstract cells to
be handled by the value analysis are fixed once and for all as soon as
the shape analysis phase is over, thus the partitioning of memory cells
and the definition of abstract summaries are performed without taking
into account any value information. This shows another reason why the
product approach is more expressive in general.

Abstraction of the Contents of Summarized Memory Regions. We
now discuss considerations related to the way summary predicates are
extended so as to describe value and content properties of summarized
regions. We can cite two main techniques.

Encapsulated inductive predicates embed both the shape and the
value properties into composite predicates. This means that a single
inductive predicate summarizes both the structure of the data and
information about their contents. As an example, the inductive predicate
below describes lists data structures made of elements with a numeric
data field, that lies in a range defined by a pair of parameters a−, a+:

list(a, a−, a+) =


emp ∧ a = 0

∨ ∃a0, a1 ·
{

a · n 7→ a0 ∗ a · f 7→ a1 ∗ list(a0)
∧ a 6= 0 ∧ a− ≤ a1 ≤ a+

Split inductive predicates separate the specification of the shape
properties and of the contents properties. Most often, they take the
form of shape predicates that can be parameterized with specific contents
predicates. As an example, the list summary predicate describes well-
formed singly linked lists. When it is used to describe lists of, e.g.,
scalars, it is natural to add additional annotations to convey the fact
that the list is sorted or that its elements all lie in a given range.

Nature of Basic Values. In the previous paragraphs, we did not
discuss in depth the type of the values we were considering, although
we presented a series examples of examples based on integer values. The
main reason why we did not start this subsection with a discussion of
value types is that value types have no impact on the techniques and
issues that were studied in the previous paragraphs (structure of the
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combined analysis and structure of the summary predicates). Obviously,
the cases of other kinds of scalar values (integers, characters, floating
point, and boolean values) is similar. Content properties related to other
kinds of base values such as strings do not bring radical differences.

On the other hand, it is possible to also treat as values elements that
are not explicitly part of the concrete memory states. As an example, set
properties are often most useful in order to verify properties of programs.
For instance, to verify the preservation of the shape invariants and of
the contents of a container data structure, one needs to check that the
set of elements is also preserved. To achieve this, the semantics of the
program should be augmented with some auxiliary variables of type
set, and the tracking of information related to the sets boils down to a
basic value static analysis. This approach has been used both in shape
analysis tools like Celia (Bouajjani et al., 2011, 2012) and in verification
tools that use similar sets of abstract predicates (Chin et al., 2007).
In these tools, the handling of sets is similar to that of scalar values
in the previous paragraphs. Moreover, set abstraction may be applied
to pointer values as well, so as to capture sharing properties in data
structures described in separation logic (Li et al., 2015): in that view,
the structure of graphs in adjacency list representation can be captured
with inductive definitions that fix the backbone of the structure, and
auxiliary set predicates that express the additional shared pointers.

5.2 Abstraction of Low-Level Memory Models

The previous sections have presented the foundations of the main families
of shape analyses, using as a starting point a fairly simple memory
model. Compared to the memory model of many real programming
languages, this language model restricts the way memory accesses are
carried out. In particular, structure fields were simply assumed to be
defined by names of type string. By contrast, C or C++ are very
commonly used, and feature a much more complex semantics regarding
to memory access and management. In this subsection, we study how
shape analyses discussed in Section 4 can be extended so as to cope
with such semantics.
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Full Featured Memory Access and Management Concrete Semantics.
Before we discuss the extension of shape abstractions, we list the main
issues related to full featured memory access and management, and how
they impact reasoning over programs.

• Existence of pointers to object fields. In the previous sec-
tions, we assumed the value of a pointer may only be the address
of an object. However, some languages feature nested objects, and
allow a pointer to store the address of a field of an object, which
complicates the operations on pointers. Indeed, to reason over
such programs, one needs to keep track of the internal structure
of objects.

• Type of pointer values. While Java pointers are purely sym-
bolic, C and C++ support numerical pointers that can be com-
puted directly, or converted into or from integers. In that case,
a pointer should be seen as a pair (b, o) formed by the base ad-
dress b of a memory block (typically, the address of a statically
or dynamically allocated object), and of an offset o inside that
block, which means that numerical properties may be involved
in the computation of indexes. Furthermore, when the physical
representation of aggregate data-types (structure and union types)
is fully exposed, memory cell sizes and padding bits also need to
be considered. In such models, pointer arithmetics operations are
also allowed. For instance, the sum of a pointer value (b, o) and
of an integer n is the pointer value (b, o+ n) defined by the same
base address and the sum of the offsets. Similarly, the difference
of two pointer values (b, o0) and (b, o1) that lie in the same block
can be defined as the difference o0 − o1 of the offsets.

• Management of allocated blocks.When memory management
is fully explicit, and when pointers may store numerical values or
the address of the field of an object, several complications arise.
In particular, a pointer in a deallocated block may become invalid
if this block is freed. Moreover, only pointers to the base address
of an object may be safely deallocated.
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• Nesting and overlaying of structures. General purpose pro-
gramming languages offer a rich type system that allows to define
nested structures. As an example, an element of a singly linked
list may in turn store pointers to other dynamic data structures
besides the next element in the list. These may include other lists
or trees. For instance a “forest” data structure is defined as a
linked list each element of which refers to a tree data structure,
and where trees corresponding to distinct elements are disjoint.

• Arrays and string buffers. So far, we studied only recursive
structures such as lists and trees. By contrast, arrays and buffers
have no recursive structures. They may be statically or dynami-
cally allocated, and their size may not be known before run-time.
Furthermore, they may also be combined with recursive structures
either by nesting or by overlaying.

• Procedures and stack frame. Procedures bring many impor-
tant issues. Nested procedure calls may maintain pointers to
different nodes of a same structure, which makes shapes very
complicated. They also imply that an update to a structure from
a callee may completely modify the structure the callers operate
on. Last, programming language with higher-order procedures
and closures rely on a much more involved notion of environment
as well.

The issues related to procedures and stack frame are discussed in the
subsection on interprocedural shape analysis (Subsection 5.3) whereas
the other aforementioned points are considered further in this subsection.

Abstraction of Complex Memory Access Features, and Applications
to Shape Analysis. We first consider the static analysis of program-
ming languages that feature a low-level semantics for pointer and data-
types, like C or C++ do. The semantics of memory accesses (read or
write) is fundamentally more complex than in the basic model that
we have used in Section 3 and used as a basis in Section 4. Indeed,
this semantics also takes into account the numerical offset and size of
memory cells and it allows numerical arithmetic operations on pointers.
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However, it does not change the high-level shape of pointer structures
such as lists, trees, or graphs. As an example, a list data structure is
made of objects with two fields that respectively store a pointer to the
next element, and some data. Using an inductive definition in separation
logic, and assuming that fields are symbolic names, we used the following
inductive summary predicate in Section 4:

list(a) = ∃a0, a1 ·
{

emp ∧ a = 0
∨ a · n 7→ a0 ∗ a · f 7→ a1 ∗ list(a0)

If we take numerical offsets into account, assume a 64-bits architecture
(a pointer or a base value is 8 bytes long), and assume that the compiler
allocates the n field first, and the f second, we obtain the following
inductive predicate:

list(a) = ∃a0, a1 ·
{

emp ∧ a = 0
∨ a · 0 7→8 a0 ∗ a · 8 7→8 a1 ∗ list(a0)

The only differences are that field names are replaced with field offsets
(0 for n and 8 for f), and the fact that points-to predicates are annotated
with memory cell sizes (as arrow subscripts).

This observation implies that the shape abstractions and analysis
algorithms presented in Section 4 remain relevant, but need to be
extended so as to deal with addresses that are numerical values, and
not mere symbolic values. This extension is fairly independent from
the core principles of shape analysis, and it relies on techniques known
outside of shape analysis. In particular, Miné (2006) extends a static
analysis for C programs, so as to handle pointer arithmetics, pointer
casts, and union data-types. More recently, Sotin et al. (2010) classifies
the classes of concrete semantics of pointers so as to make the extension
required for static analysis more salient.

The shape analyses of Section 4 can be extended using similar
approaches, by simply letting the abstract elements and analysis algo-
rithms reflect for the manipulation of numerical addresses. For instance,
Kreiker et al. (2010) proposed a version of three-valued logic based shape
analysis (Subsection 4.3) that supports numerical pointers and accesses
to memory cells of various sizes. It encodes the structure of memory
blocks with numeric offsets, nested structures and pointers to fields
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into the general three-valued logic framework. Moreover, Calcagno et al.
(2006) set up a shape analysis based on separation logic (Subsection 4.4)
that is able to reason about memory blocks of variable size (as in lists of
structures where the size of each element is specified by one of its fields),
and to reason on pointer accesses within such a block. Also, Laviron
et al. (2010) extended a separation logic-based shape analysis so as
to deal with pointers to fields, pointer casts, pointer arithmetic, and
union types. It relies on an encoding of the separation logic formulas
based on shape graphs that contains full numerical pointer information
including offsets, memory cell sizes, and padding bits. These shape
analyses all utilize the same fundamental abstractions and algorithms
as the analyses presented in Section 4: they also rely on summaries (that
also account for pointer properties), and on refinement/generalization
operations.

Abstraction of Nested and Overlaid Dynamic Data Structures, and
of Combinations of Data Structures. Shape abstractions presented
in Section 4 focus on rather standard data structures, yet programmers
often construct their own advanced structures, by nesting or overlaying
basic structures.

Nested structures are collections of structures of different types
(lists, trees . . .), and such that one of these types contains fields storing
pointers to elements of another type. As an example, a forest is a list
of trees. The abstraction of such structures relies on several distinct
kinds of summary predicates that account for each of the kinds of
elements of the overlaid structure. Such predicates are defined in the
same way as in Section 4 although they may require several mutually
inductive predicates. When several structures share the same pattern,
it is also possible to define more general parametric predicates (Berdine
et al., 2007), that can be used in order to summarize lists, lists of lists,
etc. Moreover, sharing relations found in structures such as graphs in
adjacency list representation can be captured using constraints over
pointers, such as set constraints (Li et al., 2015).

Overlaid structures are collections made of a single kind of objects,
that are elements of several distinct structures (such as a list and a
tree) with the same footprint. Such structures require significantly
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more sophisticated summary predicates. For instance, Lee et al. (2011)
provide an abstraction for a tree such that nodes are also chained (using
a different field) so as to form a list. In some cases, it is possible to
implement a product of shape domains, where the product implements
the non-separating conjunction of separation logic. This approach has
been implemented by Toubhans et al. (2013).

The combination of arrays and recursive dynamic structures is also
relevant. Array and string buffer data structures also require abstrac-
tions that are able to describe memory regions of unbounded size, and
operations over numerical indexes. Therefore, many techniques inherited
from shape analyses may be employed to build array abstractions. We
discuss array specific abstractions in detail in Subsection 6.1 and focus
here on combination of arrays and recursive structures. Calcagno et al.
(2006) consider arrays nested into dynamic structures, and propose a
shape analysis based on separation logic, that is able to reason over list
elements of varying size. Memory allocators and process tables often
resort to dynamic structures stored in static arrays. To abstract such
structures, Liu et al. (2018) proposes a coalescing abstraction that ties
shape abstract predicates to array regions.

5.3 Interprocedural Shape Analysis

We consider in this subsection analysis techniques for programs with
procedure calls. The language in Figure 3.1 allows only one procedure
call, namely new(), which implements an object creation. In the follow-
ing, we consider an extended language, that allows any user defined
procedure to be called.

Naive Approach. The analysis techniques discussed so far are appli-
cable to any program with procedure calls, as long as these procedures
are not recursive. A naive way to reuse them consists in inlining the
code of the called procedures. This method reduces the analysis of an
inter-procedural program to the analysis of an intra-procedural program,
that is a program without procedure calls. However, this naive technique
is not applicable to programs with recursive procedures, because the
number of recursive calls is potentially unbounded. Even in the absences
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of recursive procedures, inlining might cause scalability problems as it
blows up the program.

There are two main approaches to reason about inter-procedural
programs introduced by Sharir and Pnueli (1981): the call stack approach
and the relational approach.

Call Stack. The call stack approach helps overcoming the precision
loss due to invalid paths. The context of the call is recorded, by keeping
a string that simulates the call stack, and so the analysis distinguishes
between different function calls. However, call strings have bounded
depth and recursion creates an unbounded number of calling contexts.
Therefore the call string approach in the presence of recursive functions
loses accuracy. Several approaches were developed to improve the pre-
cision of the call string approach, developing abstractions of the call
stack (Jeannet et al., 2004). As we discuss a bit further in this survey
the call stack itself is amenable to shape abstractions techniques.

Relational Procedure Summaries. The relational approach computes
procedure summaries, that is a relation between the procedure’s input
and output parameters. These relations can be computed bottom-up, by
propagating the summaries of individual statements, or top-down, using
tabulation to associate input entries with the corresponding output
values. Either way the summary is computed in isolation, taking into
account only the values of the variables local to the procedure (w.l.o.g.
we assume that global variables are input and output parameters of
any procedure). The challenge of this approach consists in finding
abstractions that are precise enough to re-establish eventual connections
with the context of the call (i.e., with variables recorded in the call
stack when returning from a call).

The two approaches presented so far are general methods to reason
about programs with procedures. They were rather successfully applied
on numeric programs however applying them on programs with pointers
and dynamically allocated data structures poses new challenges to
inter-procedural analysis.
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Difficulty. Achieving a precise inter-procedural analysis requires un-
derstanding the relation between the parameters of a call and the call
stack.

In numeric programs, procedures have no side effects except those
captured by the output parameters of the call. Therefore, precise analy-
ses try to capture the relation between the parameters of the analyzed
procedure and the top most entry record of the call stack.

In the presence of pointers side effects are much harder to localize.
The actual parameters of a call might be related (by the points-to or the
alias relation) to any variables in the call stack, not just the top most
entry. In the presence of recursive functions the number of program
variables grows unboundedly, each entry of the call stack storing the
state of one recursive call. Therefore, in the worst case, a precise analysis
needs to maintain the relation between the procedure’s local variables
and unboundedly many variables recorded in the call stack.

For example, free-ing an allocated object in a procedure, would
invalidate all variables in the call stack pointing to the memory region
of the object that is being freed. In the case of pointer analysis, the
properties that an analysis tracks are typically equality predicates
between the procedure’s local variables and call stack entries. In case of
shape analysis, the problem is more complicated, the analysis needs to
track predicates that describe data structures, i.e., summary predicates.

Consider the example in Figure 5.1. Procedure main allocates a
list of size one, pointed to by l and calls insert on this list. Function
insert does more than “adding” a new element pointed to by x to
the beginning of list l; it also calls foo which modifies the second
element in the new list pointed to by x (the only element of the original
list). This modification could be a free instruction, in which case this
information needs to be propagated all the way to the main function,
to detect double free which might be possible if ll is freed. Another
more difficult situation is when the modification creates a cyclic list,
by executing x->next->next=x for example. In this case the entire
summary predicate stating the circularity of the list pointed to by ll
needs to be propagated to the main function.
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Figure 5.1: Example interprocedural program.

Call String Approaches. Call-String based approaches explicitly main-
tain the relation with between the procedure’s parameters and the call
stack up to a certain precision. Such techniques are fairly orthogonal the
abstraction of program memories, and can thus be readily applied to any
of the shape analysis techniques discussed in Section 4. Moreover, clas-
sical techniques to tune the level of sensitivity apply straightforwardly
(Shivers, 1991).

Relational Approaches. Designing a relational shape analysis inter-
procedural approach is possible if one can ensure that all side effects
are captured by the output parameters of the call. The definition of a
relational analysis relies on the design of an abstraction for the effect
of a function (Reps et al., 1995). While a simple way is to use table
of input/output states abstractions, more specific forms of abstract
predicates can often be defined. For instance, Jeannet et al. (2004) and
Jeannet et al. (2010) define procedure summaries using a variant of
the three-valued logic shape abstraction described in Subsection 4.3, by
letting distinct individuals describe entities before and after a function
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call. Also, Illous et al. (2017) define a set of novel logical connectors that
are inspired by separation logic and allow to express what a function has
modified and how it has modified it, and build an abstract domain to
describe relations using these connectors. Rinetzky et al. (2005a,b) intro-
duce the notion of cutpoints, where the absence of cutpoints guarantees
that all side effects are captured by the output parameters. Gotsman
et al. (2006) study an interprocedural shape analysis that characterizes
regions of the heap that have been preserved, so as to deal with only
finitely many cutpoints.

The computation of function summaries can be tacked either in
top-down or bottom-up manners. The bi-abduction approached defined
by Calcagno et al. (2009) allows to analyze procedures out of context,
and build tables of input/output abstraction pairs using a powerful
combination of forward and backward reasoning.

Shape Abstraction of the Call Stack Frame. When recursive proce-
dures are applied to an inductive structure such as a list or a tree, the
combination of the stack frame, and of the heap form a very complex
structure. As an example, at any point of the execution of a recursive
infix binary tree traversal procedure, the stack contains a series of point-
ers into the tree, that follow a (possibly incomplete) branch in that tree.
Such combined structures can also be viewed more complex recursive
data structures, which means that the stack frame itself is amenable
to shape analysis techniques, either using a Three-Valued Logic-based
abstraction (Rinetzky and Sagiv, 2001) or a separation logic-based
abstraction (Rival and Chang, 2011): in both of these analyses, not
only the inductive summarization of the shape abstraction follows the
structure of the call stack, but also the characteristic operations of
shape analysis also support the analysis of function calls and returns.
In fact, the summarization of call stacks observed by repeated recursive
calls relies on the generalization mechanism, whereas the retrieval of
the caller stack region during the return from the callee relies on the
local refinement operation.

We can also remark that less expressive pointer analyses have also
been applied to the abstraction of the call stack (as for instance by
Sotin and Jeannet, 2011).
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Higher-order procedures (procedures that take other procedures as
arguments) and closures (partial application of a procedure with several
arguments) also result in intricate call states, where the environment
layout can be viewed an inductively defined structure. Therefore, shape
analysis techniques also apply in such cases, as remarked in Might
(2010).



6
Abstractions Exploiting Shape Analysis Principles

In the previous sections, we have shown shape analysis aims at describ-
ing memory regions of unknown and unbounded size, that require the
computation of summaries during the analysis, as no purely syntac-
tic criteria will provide a reasonable partitioning of the memory into
summaries. The fundamental techniques to achieve this comprise the
definition of expressive inductive summaries and of operations to decom-
pose and recompose summaries during the analysis. These fundamental
techniques have been used in other forms of static analysis, that aim
at computing invariants for programs that manipulate very different
kinds of structures than the basic, inductively defined structures seen
so far, like singly-linked lists or binary trees. This section presents at a
very high-level two examples of such analyses: Subsection 6.1 focuses
on the abstraction of array structures and Subsection 6.2 studies the
abstraction of dictionary structures.

6.1 Abstraction of Arrays

Although array structures may seem simpler to deal with than the
pointer structures that were considered in the previous section, they
allow to express complex algorithms, that rely on sophisticated index

136
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relations. Moreover, programs may manipulate arrays the size of which
is either very large, or even unbounded. This observation entails that the
abstraction of array states is also a very difficult problem in general. In
the following of this subsection, we discuss a range of array abstractions,
including some that share many of the principles of the shape analyses
exposed in Section 4.

Basic Array Abstractions. In this paragraph, we detail a few basic
array abstractions that do not require any technique from shape analysis.
We assume a program that manipulates an array a of fixed, and known
length. Figure 6.1(a) depicts a few concrete states, under the assumption
that a is of length 5 and contains numerical values.

Since the array has a known number of cells, it is possible to represent
its structure precisely, by considering each cell a separate variable. This
extension abstraction collects the values that can be read in each cell, as
shown in the top of Figure 6.1(b). From that point, classical numerical
abstractions may easily be applied to each component, as shown in the
bottom of the figure. In general, this approach incurs a resource usage
(both in terms of analysis time and memory consumption) when arrays
are large. Furthermore, it does not work when the size of arrays cannot
be determined statically. On the other hand, it is quite precise. As an
example, it can accurately characterize the fact that the first two cells
of the array store value 0.

The collapsing abstraction goes the opposite route, and merges all
the values that can be observed in all the cells of the array into a single
set, before applying a value abstraction. This abstraction is depicted in
Figure 6.1(c). We remark that this abstraction is much less precise than

Figure 6.1: Basic array abstractions.
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the previous one, as it does not allow to say that the cells of indexes 0
and 1 store value 0, and that the cell of index 3 stores value 3. On the
other hand, it results in more scalable analyses and still applies even
when the array size cannot be determined statically.

Array Abstractions Based on Dynamic Summaries. Neither of the
two abstractions described in the previous paragraph can abstract
precisely arrays of unbounded size. As an example, we consider the Java
function shown in Figure 6.2 that performs the creation and initialization
of an array of integers. It takes two arguments n and c that respectively
fix the length of the array and the initial value to be stored in each
cell. The Java semantics states that the array allocation performed at
line 2 produces an array all the cells of which are initialized to zero.
The initialization of each cell to c takes place in the loop.

To verify the correctness of this program, we need to infer a non
trivial loop invariant. Indeed, at the beginning of the i-th iteration, the
first i cells of the array store value c, whereas the cells beyond that
position still store zeroes. A few such states are shown in Figure 6.3(a),
under the assumption that c = 7, and for various values of n. When
the execution exits the loop, i is equal to the length of the array,
which implies that all cells contain value c. The extension abstraction
of Figure 6.1(b) does not apply here, since the length of the array is
unknown statically, and could be any positive integer (note that even
enriching it with disjunctions would not work, as we would still need
infinitely many case splits). The collapsing abstraction of Figure 6.1(c)
also fails, since it abstracts together the two groups of cells mentioned
above, and can thus only express that any cell in the array stores either

Figure 6.2: An array creation and initialization program.
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Figure 6.3: Array abstraction with dynamic summaries.

0 or c, which is not sufficient to express the loop invariant required to
verify the correctness of the program.

To achieve this verification task, we need to a use an abstraction
that is both expressive enough to deal with arrays of unknown length,
and able to segment the array into two parts the size of which depends
on the executions. This is very similar to what shape abstractions
achieve. The principle of this per-segment abstraction is depicted in
Figure 6.3(b), and relies on the partitioning of the array into two zones,
that respectively span over the already updated cells, and the cells left
to update. The size of each zone varies depending on the concrete state,
but the general shape invariant holds true for all stores observed at the
loop head point. Unlike the shape abstractions of Section 4, all the cells
of the array occupy a contiguous memory region, that can be accessed
using numerical indexes. However, the abstraction also utilizes summary
array predicates to describe array zones of unknown and unbounded
size. Furthermore, it also needs to partition an unbounded size memory
area (the array) in a way that depends on the memory states that are
considered, and on the executions.

There exist several instances of array abstractions based on this
principle. As an example, Halbwachs and Péron (2008) relies on a
semantic pre-analysis to choose array segments, and then utilizes the
abstraction shown in Figure 6.3(b) so as to prove properties such as
sorting. Moreover, Cousot et al. (2011) uses a similar array abstraction,
but infers both array segments as part of the analysis that utilizes
them, which makes this approach more precise than the previous one.
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The difference between these two analyses is rather similar to the
dividing line found in Subsection 4.1, between static analyses with
fixed summaries and shape analyses that infer summaries. The analysis
proposed in Liu and Rival (2015) and Liu et al. (2018) uses a variant of
the abstraction of Cousot et al. (2011), where the partition of the array
consists of groups of cells that are not necessarily contiguous. It also
infers the array partition as part of the array analysis.

Example Array Analysis Using Dynamic Partitions. We now discuss
the main static analysis algorithms to support an abstraction of arrays
with summary predicates. In fact, these are very close the shape analysis
algorithms that were presented in Section 2.

First, post-condition for operations such as the reading of the update
of an array cell are easy to compute when that cell is fully exposed
(i.e., not accounted for by a summary predicate). This means, that the
computation of a post-condition for the statement t[i] = c boils down
to the update of the value stored in t[i] provided this cell is described
precisely in the abstract memory.

Second, let us consider the computation of a post-condition for
such a statement, in the case where the cell that is read or updated is
described by a summary predicate. For instance, this situation arises
at line 4, in the program shown in Figure 6.2: the statement t[i] = c
operates on a cell that is described by a segment of unknown length,
depicted in Figure 6.3(b). Attempting to analyze it directly would result
in a week-update, and the loss of any precise information over the whole
segment [i, n− 1]. The solution is similar to that used in shape analysis:
the summary predicate should first be refined before a strong update
can be achieved on a single cell. Indeed, we can turn the summary
predicate over [i, n− 1] into the conjunction of two separate predicates,
over the cell of index i, and over the segment [i + 1, n− 1]. Then, the
assignment operates over a precisely known, single cell array region.

Last, the inference of summary predicates proceeds by the general-
ization over abstract states. Let us intuitively show how this process
works, on the example program of Figure 6.3(b). Before the loop is
executed, the whole array is initialized to zero and i is equal to 0. After
the first iteration, the first cell stores value c, whereas the rest is still
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equal to zero, and i is equal to 1. At this stage, the abstract state of
Figure 6.3(b) can be produced by generalization, as it says all cells of
index ranging from 0 to i-1 are set to c, whereas the other cells are
still set to 0.

6.2 Abstraction of Dictionary Structures

In this subsection, we consider dictionary data structures, that map
unsorted keys into values. Like arrays, they consist of a set of fields
that can be accessed from a same base address. However, they present
several important differences: first, the set of indexes is not ordered;
second, this set is most often not static, so that it is possible to add or
remove keys at any time of the execution of programs. On one hand,
the impossibility to do arithmetic operations over indexes somewhat
simplifies their semantics. On the other hand, it also means that the
notions of segments presented in Subsection 6.1 does not apply here.
Besides, the extensibility property of these structures significantly com-
plicates reasoning. Moreover, keys are often designated by strings, that
can be computed dynamically, which is in fact even harder to deal with
than numerical indexes.

In practice, dictionary data structures are either native features of
the programming languages, as is the case of open objects in JavaScript,
or implemented in standard libraries. In the latter case, they are typically
implemented as standard containers such as balanced trees or hash-
tables. Practical uses for dictionary data structures range from the
storage of collections of homogeneous data such as data-bases (then
the elements usually all have the same type) to the description of
higher-level programming languages constructs such as objects (in the
sense of object oriented programming). This entails that they analysis
of programs using such structures cannot rely on a single solution,
and that a wide range of abstractions may be used depending on the
applications.

Basic Abstractions for Dictionaries and Open Objects. Basic ab-
stractions similar to those previously applied to arrays may be used
to abstract memory states containing dictionary structures as well.
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In particular, the extension abstraction, where all the elements that are
present are enumerated explicitly applies in a straightforward manner,
when the set of keys is finite.

The case of the collapsing abstraction, where a single piece of abstract
information is used to represent all the elements in the structure, is
more subtle: indeed, unlike arrays, dictionary structures have a dynamic
set of keys, and abstract states need to characterize this set precisely
as well. The most simple way to achieve that is to describe a dictionary
with two elements:

1. an abstraction of the set of keys in the dictionary;

2. an abstraction of the set of values associated to these keys.

Dictionary Abstractions Based on Summaries. The limitations of
these basic abstractions are the same as in the case of arrays. The
extension abstraction fails whenever the set of keys that may appear in
dictionaries is not bounded within a finite set. The collapsing abstraction
makes it hard to precisely describe the updates to individual fields.

To overcome these issues, a similar form of summarization is required
as in the case of array abstractions. More precisely, a precise analysis
of programs that manipulate dictionary data structures should be able
to express constraints over unbounded sets of keys/contained elements,
and to single out an entry being read or written. As we have shown in
Section 4, this is exactly what all shape analyses aim at, thus dictionary
data structures make similar kinds of abstractions necessary. In the
following paragraphs, we comment on two such abstractions.

The abstraction proposed by Dillig et al. (2011) expresses constraints
over the set of keys and over the mapping from keys to contained
values, so as to abstract dictionary data structures. This abstraction
is agnostic to the representation of the dictionary data structures that
are considered. It also relies on a graph-based representation.

The abstraction proposed by Cox et al. (2014) partitions JavaScript
open objects in disjoint regions, and maintains constraints over the sets
of keys corresponding to each region. It is thus very similar to shape
analyses based on separation logic (Reynolds, 2002): the analysis of
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updates requires the refinement of abstract states to single out fields,
and the analysis of loops is based on a widening, the purpose of which is
to generalize partitions and set constraints. Furthermore, this analysis
also supports attribute trackers (Cox et al., 2015) in order to identify
properties that were copied from one object to another and reinforce
the initial abstraction with relations across distinct objects.



7
Conclusion

The main contribution of this survey is to identify the common charac-
terizing features of a wide range of shape analyses and static analyses
inspired by them.

Characterization. Among other static analyses that compute semantic
properties of pointer manipulating programs, shape analyses can be
characterized by their ability to partition heaps containing data struc-
tures of unbounded size based on semantic criteria and to summarize
them.

Summarization is essential in order to describe precisely structures
that can be arbitrarily large, such as variants of lists, trees, and graphs. It
deeply impacts the abstraction underlying shape analyses, as it requires
specific and expressive summary predicates. Summary predicates may
describe structural properties either as a whole (e.g., “this structure is
a list”), or using a collection of local predicates (e.g., “this structure is
connected, acyclic, and made of a elements reachable from a common
root”).
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The inference of summary predicates is very challenging for several
reasons. First, it requires to identify the memory footprint of each sum-
mary predicate (i.e., which relation can be characterized by it). Second,
it requires to select the appropriate predicate. A fundamental character-
istic of shape analyses is to achieve this based on information available
in the abstract states themselves. Intuitively, the decision to introduce a
summary predicate that abstracts a well-formed singly-linked list should
emerge from the other abstract information. Therefore, shape analyses
should be more robust than syntactic analyses, or semantic analyses
that exploit mainly syntactic information such as allocation sites.

On the other hand, this increased expressiveness comes at the cost of
sophisticated analysis algorithms that are able to perform static analysis
on complex abstract states, containing summary predicates. Intuitively,
the two main analysis operations respectively refine summary predicates
into more precise descriptions and synthesize summary predicates by
generalization. The refinement of summary predicates should take place
whenever analyzing some operations (such as reads and writes) that
affect a memory region described by a summary predicate, and that
cannot be reasoned over in a precise manner at the summary level. On
the other hand, the synthesis of summary predicates aims at inferring
higher level abstract information, at keeping abstract states finite (even
though they describe unbounded regions), and enforcing termination of
the analysis. While shape analyses typically proceed like fairly standard
abstract interpretation based analyses, their design and implementation
depends heavily on the way these two fundamental operations are carried
out. Refinement typically occurs in operators for the computation of
abstract post-conditions, whereas generalization may be performed
either step-by-step, or as a widening operation, or both.

We observe that these fundamental features characterize not only
shape analyses based on radically different abstractions, but also static
analyses aimed at non recursive data structures. The main shape anal-
yses aimed at recursive data structures utilize reachability predicates
in three valued logic or some fragment of separation logic (possibly
with a different representation of abstract predicates, based on graphs
or automata). Similar ideas (including summarizing abstractions and
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analysis algorithms based on refinement and generalization of sum-
mary predicates) allow to analyze precisely programs manipulating
non-recursive structures such as arrays or dictionaries (like, for instance,
open objects).

Perspectives. Even though shape analysis has received a lot of at-
tention from the research community and a large number of results
already achieved, many outstanding and important research problems
remain unsatisfactorily resolved as of today. In the following, we list a
few salient such issues, even though one could identify many more open
questions.

First, shape analyses are heavily based on inductive summary predi-
cates, and perform a large amount of reasoning over inductive properties.
This incurs a number of difficulties that are not fully resolved as of now.
In particular, static analyses may need to compare inductive predicates
of different forms, which is still hard in general (even outside the specific
context of a shape analysis issue). As an example, there exist many
ways to define the property that a list is well-formed and sorted for
some order over its elements. The comparison of such definitions is
undecidable in general.

A second issue is the very wide spectrum of combined data structures.
While existing shape analyses deal reasonably well with basic structures
such as lists or trees, there is still a gap to close in order to handle
the full complexity of memory states constructed by complex programs
such as operating systems. When basic structures are mixed together
with several levels of nesting and overlaying, or are combined with non
recursive structures such as arrays, memory states are well-beyond what
existing shape analyses can compute reasonably well.

Programming languages that lack a static typing discipline such as
Python or JavaScript raise a third range of problems. This complicates
the inference of shapes, since it makes it harder to even identify what
data structures programmers actually intend to build. On the other
hand, shape analysis is adapted to such issues, since it naturally tries
to use the semantic information that it computes to select summaries
in order to describe memory regions.
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More generally, as static analysis techniques are increasingly pop-
ular, and are applied to a wide range of programming languages of
various paradigms (object oriented, functional, . . .), we believe that
shape abstractions are very relevant and that one can expect novel
shape analysis research problems to emerge.
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