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ABSTRACT
Hypothetical reasoning is the iterative examination of the effect
of modifications to the data on the result of some computation
or data analysis query. This kind of reasoning is commonly per-
formed by data scientists to gain insights. Previous work has
indicated that fine-grained data provenance can be instrumental
for the efficient performance of hypothetical reasoning: instead
of a costly re-execution of the underlying application, one may
assign values to a pre-computed provenance expression. How-
ever, current techniques for fine-grained provenance tracking
are ill-suited for large-scale data due to the overhead they entail
on both execution time and memory consumption.

We outline an approach for hypothetical reasoning for large-
scale data. Our key insights are: (i) tracking only relevant parts
of the provenance based on an a priori specification of classes of
hypothetical scenarios that are of interest and (ii) the distributed
tracking of provenance tailored to fit distributed data processing
frameworks such as Apache Spark.We also discuss the challenges
in both respects and our initial directions for addressing them.

1 INTRODUCTION
Data analytics often involves hypothetical reasoning; repeatedly
modifying the database according to specific scenarios, and ob-
serving the effect of such modifications on the result of some
computation. A naive way to perform such an analysis is to
create a copy of the data, modify it, and recompute the results
for the inspected scenario. However, this approach can be very
costly when the computation involves access to large-scale data.
A more efficient method is to use provisioning [4, 6]: compute
a symbolic provenance expression (PE) which encodes the result
of the computation under any possible scenario. Then, the user
interacts with the PE for efficient exploration of the scenarios.
Creating the PE incurs a one-time overhead over the evaluation of
a specific query. However, if the analyst inspects multiple scenar-
ios, the creation of the PE may pay off in an inspection which is
orders-of-magnitude more efficient than a naive recomputation.

Example 1.1 (Running example). Consider a database of a tele-
phony company containing the number, name, zip code, and call
plan of every customer, the price per minute (ppm) of every plan,
and a log of the duration and date of every call (see Fig. 1). The
following query computes the company revenues (this example
is inspired by the one used in [6]):

SELECT Calls.Mo, SUM(Calls.Dur * Plans.Price)

FROM Calls , Cust , Plans

WHERE Cust.Plan = Plans.Plan

AND Cust.Num = Calls.Num

GROUP BY Calls.Mo

The query computes the monthly revenues by summing the per-
call-revenue, computed by multiplying the duration of every call
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Cust

Num Name Zip Plan

555-777 Bob 10001 Plan1
555-942 Alice 10002 Plan2
555-465 Dave 10003 Plan2

Plans

Plan Price

Plan1 0.1
Plan2 0.2

Calls

Num Mo Dur

555-777 Jan 21
555-777 Jan 8
555-777 Jan 14
555-777 Feb 7
555-777 Feb 17
555-777 Feb 33
555-942 Jan 28
555-942 Jan 20
555-942 Jan 23
555-942 Jan 21

Num Mo Dur

555-942 Feb 33
555-942 Feb 27
555-942 Feb 32
555-942 Feb 16
555-465 Jan 9
555-465 Jan 7
555-465 Jan 8
555-465 Feb 33
555-465 Feb 14
555-465 Feb 12

Figure 1: Example database

by the ppm of the customer’s plan and grouped by month. An
analyst may be interested in the effect of possible changes to the
call price on the company revenues. For example, the analyst
may wish to compute the revenues under (some combination of)
the following hypothetical scenarios:
HS1 What if the ppm is decreased by 10% in calling plan 1 and

set to $0.3 in calling plan 2?
HS2 What if all the customers with vanity phone numbers were

subscribed to plan 1?
HS3 What if the ppm for costumers in Boston is set to $0.3?
HS4 What if a 25% discount is given to calls which took less than

ten minutes?

Computing a PE for the query of Example 1.1 and the scenario
HS1 is relatively straightforward for small-scale data [4, 6] (see
Section 2.1). Scenario HS2 is more challenging, since it involves
changes to the parts of data that is in a comparison in the query.
This may be handled in a c-table-like construction as mentioned
in [6] (see Section 2.2). The two other scenarios involve changes
that may not be directly applied to input data, but rather only to
some views over it; we discuss the semantics of such scenarios
and the questions that arise in Section 2.3. Further, for all scenar-
ios, there is the concern of space and time overhead incurred by
provenance tracking. We propose distributed provenance repre-
sentations to address this, in Section 3. Specifically, we present
two different methods for representing fine-grained provenance
in a distributed manner: a combined representation that stores
each polynomial as a single tuple in the output table comprised
of a collection of monomials, and a separated representation that
stores separately each monomial. Our preliminary results, based
on an implementation in Apache Spark [12, 14, 15], indicate that
the combined approach allows for more efficient exploration, pro-
vided that the provenance expression is relatively small, while
the separated approach scales better as it is more suitable to the



distributed model, however it incurs a non-negligible overhead
over the combined approach where the latter can be used.

Related Work. Data provenance has been studied for different
data transformation languages, from relational algebra to Nested
Relational Calculus, with different provenance models and appli-
cations and with different means for efficient storage. Particularly
relevant are systems that support provenance for distributed sys-
tems [3, 5, 9, 11, 13]. We note that the Spark framework already
supports a provenance-like logging mechanism that allows for
fault tolerance. Unlike those existing works, we focus on cell-
based provenance, where polynomials replace individual values,
which is necessary fo answering what-if questions. The use of
data provenance for hypothetical reasoning has also been studied
in e.g., [4, 6, 7], but without targeting big data and addressing
the scalability issues that consequently arise.

2 PROVISIONING IN A NUTSHELL
Provisioning, i.e., hypothetical reasoning using provenance, is a
two step process: First, the analyst parameterizes some entries
in the input database. Then, she explores the effect of hypotheti-
cal modifications by instantiating the parametrized entries with
specific values [4, 6]. Technically, parametrization entails instru-
menting entries using symbolic variables, e.g., by (symbolically)
adding or multiplying them with the original numerical values.
When the provisioning engine runs an SQL query, it treats the pa-
rameterized entries in a symbolic way, and creates a provenance
expression (PE); an output table which may contain symbolic val-
ues. The symbolic representation allows the analyst to explore
multiple scenarios by evaluating the PE using a specific assign-
ments of concrete values to symbolic variables. Different types of
scenarios lead to different challenges as we next explain.

2.1 Basic Provisioning
We start with the case where the parametrization involves a sin-
gle table and the program does not perform selection or join over
parameterized attributes. In this case, the semantics of provision-
ing is fairly straightforward. First, the parameterized data entries
are annotated with variables which, roughly speaking, replace
every parameterized data by a multivariate polynomial. Second,
a query Q is executed according to its standard semantics except
that summations and multiplications are executed symbolically
to produce polynomials instead of concrete values. As for aggre-
gation, we simply combine the polynomials in the provisioned
attributes using a symbolic plus (+) operator. The analyst uses
the generated provenance expression to explore a specific sce-
nario by providing an assignment ρ which defines a (concrete)
valuation for each symbolic variable and computing the value of
the polynomial under ρ. It is straightforward to observe that this
computation produces the same results as the re-execution of Q
on a correspondingly modified database.

Example 2.1. Reconsider our running example query and sce-
nario HS1 from the Introduction. To generate a PE for them
(where we wish to support a generalized version of HS1), we
first parameterize the input database as shown in the Plans table
of Figure 3. In this example, the price for plan 1 is multiplied
by a variable p1 and the price for plan 2 is both multiplied by
a variable p2 and added a variable s2, the latter allowing for its
replacement by a different value. Evaluating the running example
query using these symbolic values results in the output table and
provisioning expressions shown in Figure 2.

Provenance expression
Mo Revenues
Jan 43 · (0.1 · p1) + 116 · (0.2 · p2 + s2)
Feb 57 · (0.1 · p1) + 167 · (0.2 · p2 + s2)

Output
Mo Rev.
Jan 38.67
Feb 55.23

Figure 2: A PE and the results of its evaluation according
to scenario HS1 (i.e., ρ = [p1 7→ 0.9,p2 7→ 0, s2 7→ 0.3])

2.2 Conditional Provisioning
Hypothetical scenario HS2 in Example 1.1 is a particular member
in a family of scenarios which enable computing the company’s
monthly revenues under different reassignments of customers to
plans. A PE which allows inspecting the scenarios in this family
can be generated by the techniques of [4, 6]. In our example, this
entails parameterizing the Plan attribute in table Cust by replac-
ing its content in every entry by a customer-unique symbolic
variable, and then representing the join of Cust and Plans over
the parameterized attribute using a c-table [10].

Example 2.2. Reconsider Figure 3, and now note that the Cust
table is also parameterized, adding the parameters n777, n942 and
n465 for HS2. Each of these may be assigned to Plan1 or Plan2.
The resulting PE for January in this example is
43 · (0.1 · p1) · [n777 = Plan1] + 43 · (0.2 · p2 + s2) · [n777 = Plan2] +
92 · (0.1 · p1) · [n942 = Plan1] + 92 · (0.2 · p2 + s2) · [n942 = Plan2] +
24 · (0.1 · p1) · [n465 = Plan1] + 24 · (0.2 · p2 + s2) · [n465 = Plan2]

Expressions in brackets are mapped to 1 or 0 based on their
truth value upon assignment of values to the variables. If we
are still interested in exploring HS1, we simply assign to the
n variables their original values, and proceed to assigning the
other variables as in the previous example. But we can also, e.g.,
assign Plan2 to n777, intuitively switching the plan of Bob to be
Plan2; then the expression [n777 = Plan1] is evaluated to 0 and
[n777 = Plan2] to 1, so that Bob is given the price of Plan2.

2.3 View-Based Provisioning
The parameterization of the database in Examples 2.1 and 2.2 is
done over a single table for each hypothetical scenario. However,
the symbolic representation needed for capturing scenarios HS3
and HS4 require the pre-generated views produced by joining
tables Cust and Plans and tables Cust and Calls, respectively.
The view is required because Price is parameterized based on
the customer’s Zip code in HS3 and the call’s duration (Dur) in
HS4. We can parameterize a view as if it is a single (albeit joined)
table, and use it to generate a provenance expression as described
in Section 2.1. However, the use of a parameterized view may
render some queries as undefined for hypothetical reasoning as
the following example shows.

Example 2.3. Retrieving the ppm of Plan1, using the param-
eterized view generated for scenario HS3 does not make sense
because the price of the plan depends on the customer’s zip code.
Conversely, determining the monthly revenues over this view is

Cust

Num Name Zip Plan

555-777 Bob 10001 n777
555-942 Alice 10002 n942
555-465 Dave 10003 n465

Plans

Plan Price

Plan1 0.1 · p1
Plan2 0.2 · p2 + s2

Figure 3: Data with provenance annotation



well defined, and can be computed using, e.g., a rewrite of the
query shown in Example 2.1.

The problem of using views for hypothetical reasoning is
highly related to the problem of answering queries using views [8].
One notable difference between the two problems is that a query
may be well defined under an hypothetical scenario also if it only
relies on tables that are not used in the views; the problem arises
only when the query uses the same pieces of data affected by the
parameterization, but does so in a “different" way. Formalizing
and studying the properties that make a query answerable under
a definition of hypothetical scenarios over views is an intriguing
problem for investigation.

3 DISTRIBUTED BASIC PROVISIONING
Provisioning large-scale data is challenging: computing andmain-
taining provenance expressions may lead to large overheads in
terms of both memory and time. We propose a partial remedy
to this problem via an adaptation of basic provisioning to the
distributed setting, and report on initial promising experimental
results obtained in the context of Apache Spark [12, 14, 15].

Simplifying assumptions. We focus on basic provisioning and
further assume that only numerical attributes may be parameter-
ized and that the parameterization is performed on each record
separately—parameterization based on information located at
multiple tables requires creating an appropriate (unparameter-
ized) view at a preliminary stage.

3.1 Apache Spark
Apache Spark is a popular framework for writing large scale data
processing applications. Spark provides operations such as map,
filter and fold which can be seen as extensions to the standard
database operations project, select and aggregation, respectively,
with arbitrary UDFs applied. In addition, Spark provides a natural
join operation between multisets indexed by a common (possibly
non-unique) key and foldByKey operations which, analogously
to the groupByKey operation in databases, aggregates together
the values pertaining to the same key.

Spark programs are executed on a cluster comprised of a sin-
gle master node, which coordinates one or more worker nodes.
Roughly speaking, a spark program operates as follows: It first
partitions the data across the cluster nodes. map and filter opera-
tions are executed by each node, and on each partition in parallel.
fold operations are executed in two stages: Every worker node
aggregates the values in its partitions and sends the partial result
to the master node which aggregates them together. foldByKey
and join operations may require a preliminary (expensive) shuf-
fle stage where records are exchanged between working nodes
according to a strategy determined by the driver. At the end of
the shuffle stage, all the records pertaining to any key are located
in the same partition. This allows to compute the (by-key) fold
and join operations by every working node separately.

3.2 Distributed Provenance Expressions
Representing and interacting with a provenance expression can
be computationally expensive when it is generated from large-
scale data. Specifically, two challenges may arise: (i) the table may
contain many polynomials, thus representing it would consume
a lot of space, and (ii) every polynomial may be comprised of
a large number of monomials, thus designing efficient ways to
represent and evaluate large polynomials is required.

Key Value
(Jan, p1) 43 · 0.1
(Jan, p2) 116 · 0.2
(Jan, s2) 116
(Feb, p1) 57 · 0.1
(Feb, p2) 167 · 0.2
(Feb, s2) 167

Figure 4: Separated provenance representation.

Handling challenge (i). Using a polynomial-level distributed rep-
resentation, which we refer to as the combined representation. In
this representation, the provenance expression is spread across
the cluster so that different nodes manage different polynomials
(and each node manages a whole polynomial). Technically, the
combined representation stores every polynomial as an additional
attribute of each relation. The attribute is an array of monomials,
where every monomial is a pair comprised of a coefficient and an
array of symbolic variables. The symbolic execution of an aggre-
gation operation amounts to combining the monomials coming
from different polynomials by performing algebraic simplifica-
tions to compute the coefficients. For example, the provenance
expression shown in Figure 2 is in the combined representation.
Evaluating the provenance expression is done by an invocation
of a map operation that evaluates every polynomial for the given
assignment in the standard way.

Handling challenge (ii). Using monomial-level distributed rep-
resentation, which we refer to as the separated representation: We
split every polynomial into its constituent monomials and store
each monomial in its own record. Technically, every monomial is
represented as a key-value pair, where the value is themonomial’s
coefficient and the key is a combination of a unique identifier
of the polynomial that the monomial belongs together with the
product of its variables. For example, Figure 4 depicts a separated
representation of the PE shown in Figure 2. Under the separated
representation, the (symbolic) execution of an aggregation oper-
ation does not combine different symbolic values into a single
polynomial. Instead, when evaluating the provenance expression,
a map operation evaluates the value of every monomial and a
foldByKey operation computes the value of every polynomial.

3.3 Experimental Evaluation
We have performed a preliminary evaluation of our approach,
and show two basic experiments based on our running example
and a synthetically generated database. In the first experiment,
we have joined the Cust and Plans tables, and parameterized
the Price attribute of every customer record by multiplying it
with a unique customer-unique variable. We ran the query using
a Cust table that contained 218 (262,144) customers, identified
by their unique phone number, and uniformly distributed across
the 41,668 US zip codes, and eight call plans. This resulted in
a provenance expression comprised of 1536 polynomials. We
considered different sizes of the input data by populating the
Calls table with either 128, 256, 512, 1024, or 2048 calls for every
customer. The resulting sizes of the Calls tables are in the range
of 500MB to 9.1GB.

Creating the provenance expressions was up to ×2.1 slower
than the computation of the non-provisioned query. Evaluating
the queries, on the other hand, up to ×385 time faster than a naive
recomputation. Figure 5 depicts the provenance evaluation time
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Figure 5: Experiment 1 (Assignment time)
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Figure 6: Experiment 2 (PE generation time)

for the smallest database1. We made sure that changing the size
of the data only affected the value of the coefficients, specifically,
it did not change the number of monomials in any of the poly-
nomials. As a result, the time it took to evaluate the provenance
expression was independent of the size of the database.

In the second experiment, we evaluated the efficacy of the
different representations using polynomial of different sizes by
generating a provenance expression that comprised of a single
polynomial with different number of monomials. We joined the
Cust and Plans tables, and parameterized the Price attribute of
every customer by multiplying it with a symbolic variable. We
used the same database as in the first experiment using a Calls
table with 32 calls for every customer. We ran the experiment
nine times, where in the ith experiment, for i = 0..8, we used the
same variable for all the customers whose phone numbers ended
with the same 10+i bits. Thus, the smallest polynomial contained
1024 monomials, and the biggest one had 262144. Figure 6 depicts
the time it took to generate the provenance expressions. It shows
that the Combined approach has the upper hand for small poly-
nomials, yet it quickly becomes much slower than the Separated
approach, up to the point of being prohibitively expensive.

Analysis. The Separated representation has an advantage for
big polynomial whereas the Combined approach is better when
the polynomials are small. We believe that the reason for this is
that the Separated representation allows to store and evaluate a

1We ran our experiments on Amazon EC2 public cloud [2] using a cluster comprised
of nine m4.xlarge virtual machines. Eight machines were used as workers and one
as the cluster’s driver. Each virtual machine has four virtual CPUs, 16GB memory.
(The physical CPU used for an m4.xlarge virtual machine is a 2.4GHz Intel Xeon
E5-2676 v3 processor, where every virtual CPU is a hyperthread of an Intel Xeon
core.) We ran Spark version 1.62 over Amazon Linux AMI 2016.03, with Linux kernel
4.4.11, Java runtime 1.8.0_101, and Scala version 2.10.5. The UDFs were implemented
in Scala, and the data was stored in Amazon Simple Storage Service (S3) [1].

single polynomial concurrently using multiple nodes. Further-
more, this representation is particularly beneficial in the con-
text of Spark which handles tables containing a large number of
records very efficiently, but struggles when it is asked to process
large records due to its in-memory representation of the data and
its single-threaded record processing.

4 OPEN PROBLEMS AND FUTUREWORK
We briefly discussed in this paper the problem of provisioning
for big data, highlighting semantic and scalability issues, and
proposing partial solutions in the context of Apache Spark. Both
facets of the problem require extensive investigation, which is
the subject of our on-going work. On the semantic side, a no-
table omission in the current literature is a formal language for
specifying hypothetical scenarios (the need for such language
is also mentioned in [4]); then, given a formal specification, can
we efficiently decide whether an hypothetical is “answerable"
(as in the view-based examples we have shown, this is not a
given) and if so efficiently generate the PE? In terms of efficiency,
we plan to extend our Spark-based implementation to allow for
conditional provisioning. In addition, we are interested in explor-
ing the benefits of a hybrid method for representing distributed
provenance which combines the methods Separated and Com-
bined we have presented by maintaining every polynomial as a
table of sub-polynomial instead of single monomials. Last, we
plan to investigate possibilities of “approximate provisioning",
where we lose some granularity of the possible assignments to
variables but gain in performance.
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