RATCOP: Relational Analysis Tool for Concurrent
Programs

Suvam Mukherjee!, Oded Padon?, Sharon Shoham?, Deepak D’Souza', and
Noam Rinetzky?

! Indian Institute of Science, India
2 Tel Aviv University, Israel

Abstract. In this paper, we present RATCOP, a static analysis tool for efficiently
computing relational invariants in race free shared-variable multi-threaded Java
programs. The tool trades the standard sound-at-all-program-points guarantee for
gains in efficiency. Instead, it computes sound facts for a variable only at program
points where it is “relevant”. In our experiments, RATCOP was fairly precise
while being fast. As a tool, RATCOP is easy-to-use, and easily extensible.

1 Introduction

Writing efficient and correct multi-threaded programs is an onerous task, since a multi-
threaded program admits a large set of possible behaviors. As a result, such programs
provide fertile ground for many insidious defects: the bugs are difficult to detect, diffi-
cult to reproduce, and can result in unpredictable failures. Thus, developers are greatly
aided by tools which can automatically report such defects.

Unfortunately, designing algorithms which can automatically reason about behav-
iors of concurrent programs is also a very hard problem. Key to the difficulty lies in ac-
counting for the large set of inter-thread interactions. Static analysis algorithms, based
on the abstract interpretation framework [3], compute sound approximations of the set
of “concrete states” arising at each program point. With this notion of soundness, a
precise static analyzer does not usually scale, whereas a fast analysis is usually quite
imprecise [2].

In this paper, we describe RATCOP 3: Relational Analysis Tool for COncurrent
Programs, a tool to efficiently compute relational invariants in shared-memory data
race free multi-threaded Java programs. RATCOP does not handle procedure calls or
dynamic memory allocation. The abstract analyses implemented in RATCOP are based
on a novel thread-local semantics, called L-DRF [7]. Here, each thread maintains a local
copy of the global state. When a thread ¢ executes a non-synchronization command (an
assignment or an assume), it operates on its local state alone. Each release instruction
is associated with a “buffer”. When ¢ executes a release(m) command, it stores a copy
of its local state in the corresponding buffer. When a thread ¢ subsequently acquires m,
it is allowed to observe the states stored at a set of “relevant” buffers. ¢ then performs
a mix of these states to create a fresh local state. As [7] shows, for data race free (DRF)
programs, each trace in the standard semantics corresponds to some trace in the L-DRF

® The source code of RATCOP is available at https : //bitbucket.org/suvam/ratcop



semantics, and vice versa. Thus, the L-DRF semantics is a precise description of the

behaviors of DRF programs.

The L-DRF semantics allows one to rapidly port exist-
ing sequential analyses to analyses for race free programs.
Such analyses operate on a program graph called sync-
CFG (first introduced in [4]), which is a collection of the
control-flow graphs of each thread, augmented with syn-
chronization edges between the release of a lock m, and an
acquire of m. Consequently, the sync-CFG restricts inter-
thread propagations to synchronization points alone. The
resulting analyses satisfy a non-standard notion of sound-
ness: the computed facts for a variable are sound only at
program points where it is accessed. A more precise anal-
ysis is obtained by parameterizing L-DRF with a user-
defined partitioning of the program variables, resulting in
a semantics called R-DRF. Each partition is also called a
“region”. Assuming that the input program is free from re-
gion races [7], which is a stronger notion than data races,

l Input: Race Free Program P

‘ Jimple Representation of P

sync-CFG
construction

l sync-CFG Representation of P

Relational Data Flow Sequential
facts using Apron Analysis

l fixpoint solution

Fig.1. High-level overview
of RATCOP

the resulting abstract analyses are more precise than those derived from L-DRF.

In RATCOP, we instantiate abstractions of L-DRF and R-DRF to create several
relational analyses with varying degrees of precision. Our objective was two-fold: (i.)
to investigate the ease of porting a sequential relational analysis to an analysis for race
free concurrent programs (ii.) to investigate the efficiency and precision of the resulting
analysis. The base-line is an interval analysis derived from an earlier work [4]. RATCOP
makes use of the Soot [8] and Apron [5] libraries. RATCOP intelligently leverages the
race freedom property of the input program to minimize the number of inter-thread data
flow propagations, while retaining a fair degree of precision. As shown in [7], on the
benchmarks, RATCOP was able to prove upto 65% of the assertions, in comparison to
25% achieved by the base-line analysis. On a separate set of benchmarks, RATCOP was
upto 5 orders of magnitude faster than Batman, a recent static analyzer for concurrent
programs [6]. Finally, RATCOP is easy-to-use, quite robust, and easily extensible. In

this paper, we detail the architecture of RATCOP.

2 Architecture of RATCOP

RATCOP comprises around 4000 lines of Java code, and implements a number of re-
lational analyses with varying degrees of precision and scalability. Through command
line arguments, the tool can make use of the following three abstract domains provided
by Apron: convex polyhedra, octagons and intervals. It takes only a few lines of code
to extend RATCOP to use additional numerical abstract domains.

RATCOP assumes that the input program is free from data races, and does not
perform any explicit checks for the same. To detect region-level races, RATCOP imple-
ments the scheme outlined in [7], which reduces the problem of checking for region-
level races to that of checking for data races on specific “auxiliary” variables.



““ S e — ““
0=x=y=z 0=x=y=2z x=y 0=x=y=z 0=x=y=z 0=x=y=2z

=z
1: acquire (m); 8: z+4;
x=y, 0<x 0 <x x=0, 0=x=y, 0=x=y,
0=y, 0<y, 0=y, y=0, z=1 z=1
0<z<1 0<z<1 0<z<1 0<z<1
9: assert (z=1);
x=y, x=y, 0 < x, x=0, 0=x=y, 0=x=y,
0<y, 0=y, 0<y y=0, z=1 z=1
0<z<1 0<z<1 0<z<1 0<z<1

10: acquire (m);

2 quire (m)

4 0 <x, 0 <x, x
0=y, 0<y, 0=y,
0<z<1 0<z<1 0<z<1

11: assert (x = y);

x=y, x=y, 1<x 0 <x, 0<x, x=
1<y, 1<y, 1<y, 0<y, 0<y, 0=y,
0<z<1 0<z<1 0<z<1 0<z<1 0<z<1 0<z<1
5:assert(x =
x=y, x=y, 1<x
1<y, 1<y, 1<y
0<z<1 0<z<1 0<z<1 i
6: release(m'i;
7:

Fig.2. An example from [7] illustrating the relational analyses implemented in RATCOP. The
sync-CFG representation of the program is given at the center: infer-thread communication is
restricted to synchronization points alone. All the variables are shared and initialized to 0. The
Value-Set column shows the facts computed using an interval analysis derived from [4]. The L-
DRF and R-DRF columns show the facts computed by polyhedral abstractions of the thread-local
semantics, and its region-parameterized version. The R-DRF analysis is able to prove all the 3
assertions, the L-DRF proves 2, while the Value-Set analysis only proves 1 assertion.

RATCOP re-uses the code to construct the sync-CFG representation of a program
from the implementation of [4]. The sync-CFG construction makes use of a pointer-
analysis, coupled with a may-happens-in-parallel analysis.

The tool now performs a sequential analysis, with the only additional operator being
the inter-thread join. Once the fixpoint is reached, RATCOP automatically tries to prove
the assertions in the program, which amounts to checking whether the computed facts
at a program point imply the condition being asserted. If the tool fails to prove the
implications, the assertion condition and the corresponding data flow fact is logged for
further manual investigation.

For the non-synchronization instructions, RATCOP performs some light parsing,
followed by re-using the existing sequential transformers exposed by Apron. The only
operator we define afresh is the infer-thread join, which is used at the acquire points.
However, this turns out to be simple as well, being a combination of operations pro-
vided by Apron. Thus, porting a sequential relational analysis based on Apron to an
analysis for a race free concurrent program, using our framework, turns out to be quite
straightforward. Fig. 1 summarizes the set of operations in RATCOP.



RATCOP implements 5 relational analyses: A1 — A4, are derived from the L-DRF
and R-DRF semantics, and use the octagon domain. The fifth, A5 (which is also our
baseline), is an interval analysis derived from [4]. The analyses differ in the degree of
abstraction from the L-DRF and R-DRF semantics, with A4 using the most precise
abstract domain, and A5 being the least.

3 Experiments

We illustrate the operation of RATCOP on a simple program from [7], shown in Fig. 2.
The program is free from data races. If the regions are defined to be ({z, y}, {z}), then
the program is free from region races as well 4. The results of A5 are shown under the
column “Value-Set”. Since an interval based analysis is the best we can do using [4], the
resulting analysis is quite imprecise: it is only able to prove the assertion at line 9. The
analysis cannot track any relational properties. We do better with A2, derived from
L-DRF, which uses octagons. This analysis does track the correlation between x and
1y, which allows it to be additionally prove the assertion at line 5. However, the inter-
thread mixing (at the acquire points) is done at the granularity of individual variables.
This keeps A2 from inferring x = y at line 12, for example, even though the two
incoming edges clearly maintain this invariant. The analysis A4 performs this mixing
at the granularity of the specified regions. Thus, it is able to prove all 3 assertions.

In our experiments in [7], we used a subset of concurrent programs from the SV-
COMP 2015 suite [1], after porting them to Java and introducing locks appropriately
to remove races. We ran our experiments in a virtual machine with 16GB RAM and 4
cores which, in turn, ran on a machine with 32 RAM and a quad-core Intel i7 processor.
Unsurprisingly, A4 was the most precise, being able to prove 65% of the assertions. It
was also the slowest, the average time being 406ms. A5 was the least precise, having
proved 25% of the assertions with an average time of 204ms.

We compared RATCOP with a current abstract interpretation based tool for multi-
threaded programs [6], called Batman. Unlike RATCOP, which handles a large subset of
multi-threaded Java programs, Batman handles a toy language with limited constructs.
Moreover, Batman does not automatically check the validity of assertions, which ren-
ders it difficult to use with even small programs. We evaluated the two tools on multi-
threaded programs with little inter-thread communication. RATCOP leveraged the lack
of inter-thread communication intelligently to perform up to 5 orders of magnitude
faster than Batman. The key difference between the two tools is that Batman tries to
compute sound facts at every program point, whereas RATCOP computes sound facts
for variables only at program points where they are accessed.

4 Conclusion

In this paper, we presented RATCOP: a static analysis tool which efficiently computes
relational invariants for race free concurrent programs, with a non-standard notion of
soundness. We hope that RATCOP will serve as a stepping stone for future static anal-
yses for the class of race free programs.

* The interested reader may refer to [7] for the exact definition of region races.



References

1. Dirk Beyer. Software verification and verifiable witnesses. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 401-416. Springer,
2015.

2. Ravi Chugh, Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Dataflow analysis for concurrent
programs using datarace detection. In Proceedings of the ACM SIGPLAN 2008 Conference
on Programming Language Design and Implementation, pages 316-326, 2008.

3. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the
4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pages
238-252. ACM, 1977.

4. Arnab De, Deepak D’Souza, and Rupesh Nasre. Dataflow analysis for datarace-free pro-
grams. In Programming Languages and Systems - 20th European Symposium on Program-
ming, ESOP 2011, pages 196-215, 2011.

5. Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract domains for
static analysis. In International Conference on Computer Aided Verification, pages 661-667.
Springer, 2009.

6. Raphaél Monat and Antoine Miné. Precise thread-modular abstract interpretation of con-
current programs using relational interference abstractions. In International Conference on
Verification, Model Checking, and Abstract Interpretation, pages 386—404. Springer, 2017.

7. Suvam Mukherjee, Oded Padon, Sharon Shoham, Deepak D’Souza, and Noam Rinetzky.
Thread-local semantics and its efficient sequential abstractions for race-free programs. In
Static Analysis - 24th International Symposium, SAS 2017, New York, NY, USA, August 30 -
September 1, 2017, Proceedings, pages 253-276, 2017.

8. Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sun-
daresan. Soot-a java bytecode optimization framework. In Proceedings of the 1999 conference
of the Centre for Advanced Studies on Collaborative research, page 13. IBM Press, 1999.



