Computational Game Theory

Spring Semester, 2005/6

Lecture 8: May 16, 2006

Lecturer: Yishay Mansour

Scribe: Lior Shapira, Eyal David¹

8.1 Regret Minimization

Lecture 7 dealt with repited games, in which each action was dependent upon a previous actions. In this Lecture, our goal is to build a strategy with good performance when dealing with repeated games. Let us start with a simple model of regret. In this model a player performs a partial optimization on his actions. Following each action he updates his belief an selects the next actions, dependent on the outcome.

8.2 Full Information Model

The model is defined as follows:

- Single player
- Actions $A = \{a_1, \dots, a_N\}$
- For each step t the player chooses an action a_i (or a distribution p^t over A)
- For each step t we receive a loss l^t where $l_i^t \in [0, 1]$ is the loss of action $i \in A$
- A player's loss at step t is $\sum_{i=1}^{N} p_i^t l_i^t = l_{ON}^t$.
- Accumulative loss for a player is $L_{ON}^T = \sum_{t=1}^T \vec{lt} \vec{pt} = \sum_{t=1}^T l_{ON}^t$

Obviously the loss of a player can be maximized by choosing all losses to be 1. Therefore we must define a way to measure the players achievements. One way is choosing the best action at each step which results in a minimal loss $OPT = \sum_{t=1}^{T} \min_{i} \{l_i^t\}$. This measure is similar to competitive online analysis and in our setting no interesting bound can be achieved.

¹These notes are based in part on the scribe notes of Eitan Yaffe and Noa Bar-Yosef from 2003/2004

8.3 External Regret

Let

$$L_i^T = \sum_{t=1}^T l_i^t$$
, and the accumulated loss of the best action
 $L_*^T = min_i L_i^T$

We define the external regret $R = L_{ON}^T - L_*^T$ as a way to measure the algorithm's performance and we wish to minimize R. This reflects our desire to achieve performance close to the best static choice of action.

8.3.1 Minimizing External Regret - Greedy Algorithm

One way to minimize R is by using a greedy algorithm:

- For convenience we'll assume $l_i^t \in \{0, 1\}$ (so cumulative loss values will be integers)
- For the t step, we will chose the best action until now, i.e.,

$$a^t = \arg\min_i L_i^{t-1}$$

Theorem 8.1 $L_{ON}^T \le N \cdot L_*^T + (N-1)$

Proof: We define c_k to be the loss of ON(the greedy algorithm) from time t, the first time in which $L_*^t = k$ and until time t', the first time in which $L_*^{t'} = k + 1$. At time t there are at most N actions with $L_i^t = k$. Each time ONLINE pays 1, the number of actions with a loss of k is reduced by 1. Therefore

$$c_k \leq N$$
 which implies that $L_{ON} = \sum_{k=0}^{L_*^T} c_k \leq N \cdot L_*^T + (N-1)$

Theorem 8.2 Each deterministic algorithm D has a series for which $L_D^T \ge N \cdot L_*^T$

Proof: The opponent, at time t, defines a loss of 1 on a^t , the action that D selects at time t and 0 on the other actions. Algorithm D pays exactly $L_D^T = T$. However, by averaging there is an action i, such that $L_i^T \leq \frac{T}{N}$. This occurs because T "losses" are divided between N actions. And so $L_D^T \geq N \cdot L_*^T$

8.4 Randomized Algorithms

8.4.1 MARK algorithm

Let $B^t = \{i | L_i^t = L_*^t\}$. At time t + 1 we select a_i^t at random such that $i \in B^t$. I.e.

$$p_i^{t+1} = \begin{cases} \frac{1}{|B^t|} & \text{if } i \in B^t \\ 0 & \text{otherwise} \end{cases}$$

Claim 8.3 $L_{MARK} \leq (\ln N) \cdot L_*^T + \ln N - 1$

Proof: We define c_k as before. We assume that the opponent choose to give a loss of 1 to one action out of B^t (it is always better for the opponent to select out of B^t , and in addition it is obviously better to choose two actions in differing rounds rather than the same round). The expected loss for a round therefore is $\frac{1}{|B^t|}$ and so

$$E[c_k] = \sum_{i=1}^N \frac{1}{i} \le \ln(N)$$

and therefore

$$L_{MARK} = E[\sum_{k=0}^{L_*^{I}} c_k] \le \ln(N)L_*^{T} + \ln(N)^{-1} - 1$$

8.4.2 Weighted Majority algorithm

How can MARK be improved? we notice that performance suffers when B^t is small and so we'll try giving actions a positive probability, even if they aren't in B^t .

- We define w such that $\overline{w_i^t} = (\frac{1}{2})^{L_i^{t-1}}$, when initially $\overline{w_i^1} = 1$ (since $L_0^i = 0$)
- The WM algorithm selects a distribution $p_i^t = \frac{w_i^t}{W^t}$ when $W^t = \sum_i \overline{w_i^t}$

The WM algorithm is an exponential smoothing of the greedy algorithm. An action for which the loss is greater than the minimal, receives a probability it would have gotten otherwise which falls exponentially in the difference.

If l_{WM}^t is WM's loss at time t then

•
$$\overline{w_i^t} = (\frac{1}{2})^{L_i^{t-1} - \frac{1}{2}L_{WM}^{t-1}}$$

• $\overline{w_i^{t+1}} = w_i^t (\frac{1}{2})^{l_i^t - \frac{1}{2} l_{WM}^t}$

Claim 8.4 $0 \le W^{t+1} \le W^t \le N$

Proof: By induction on t. It's clear that $W^1 \leq N$. We'll prove that $W^{t+1} \leq W^t$.

$$\begin{split} W^{t+1} &= \sum_{i=1}^{N} w_i^{t+1} \\ &= \sum_{i=1}^{N} w_i^t (\frac{1}{2})^{l_i^t} \cdot (\frac{1}{2})^{-\frac{1}{2}l_{WM}^t} \\ &= \sum_{i=1}^{N} w_i^t \cdot 2^{-l_i^t} \cdot 2^{\frac{1}{2}l_{WM}^t} \\ &\leq \sum_{i=1}^{N} w_i^t (1 - \frac{1}{2}l_i^t)(1 + \frac{1}{2}l_{WM}^t) \\ &\leq \sum_{i=1}^{N} w_i^t - \frac{1}{2}\sum_{i=1}^{N} w_i^t l_i^t + \frac{1}{2}\sum_{i=1}^{N} w_i^t l_{WM}^t - \dots \\ &= W^t - \frac{w^t}{2}\sum_{i=1}^{N} \frac{w_i^t}{w^t} l_i^t + \frac{1}{2}l_{WM}^t w^t \\ &= W^t - \frac{1}{2}w^t l_{WM}^t + \frac{1}{2}l_{WM}^t w^t = W^t \end{split}$$

We used the linear interpolation showing that $2^{-x} \leq (1 - \frac{1}{2}x)$ and $2^{\frac{1}{2}x} \leq (1 + \frac{1}{2}x)$ for $x \in [0, 1]$

Bound for WM

From claim 8.4:

$$w_k^t \leq W^t \leq N$$

therefore we choose the best k^* such that

$$2^{-L_k^* + \frac{1}{2}L_{WM}^t} = w_k^t \le N$$

and therefore

$$\frac{1}{2}L_{WM}^t \le L_{k^*}^T + \ln(N)$$
$$L_{WM}^t \le 2L_{k^*}^T + 2\ln(N)$$

Discussion

As discussed before our goal is to have $L_{ON} \leq L_* + R$ such that $\frac{R}{T} \underset{T \to \infty}{\longrightarrow} 0$. One option is to change the parameter in the WM algorithm $\frac{1}{2}$ with β and optimize its value. Using such an optimization we can achieve $R \sim \sqrt{T \log N}$

We present a different online algorithm which achieves

$$L_{ON} \leq L_k + \sqrt{Q_k \ln(N)} + 2\ln(N)$$
$$Q_k = \sum_{t=1}^{t=1} T(l_k^t)^2 \leq L_k \leq T$$
$$Since \quad l_i^t \in [0, 1]$$

Upper Bound (finite)

Instead of losses we'll look at profits (which might be negative or positive). Therefore

$$g_i^t \in [-1, 1]$$

and

$$G_k^t = \sum_{t=1}^T g_k^t$$

and so

$$Q_k = \sum_{t=1}^T (g_k^t)^2$$

The weights determine the algorithm (same as WM)

$$w_i^{t+1} = w_i^t (1 + \eta g_i^t)$$

 $w_i^0 = 1$

The intuition behind this is such that the weight of an action will be exponential in it's profit. For instance if the profit is always 1, the weight will be $(1 + \eta)^T$ and if the profit is always -1 it will be $(1 - \eta)^T$.

Theorem 8.5

$$G_{ON}^T \ge G_k^T - \sqrt{Q_k \ln(N)} - 2\ln(N)$$

Proof: We bound $\ln \frac{W^T}{W^1}$ from both sides, where $w^t = \sum_{i=1}^N w_i^t$ for each k.

$$\begin{split} \ln \frac{w^{T}}{w^{1}} &\geq \ln \frac{w_{k}^{T}}{N} \\ &\quad (\text{From the recursive definition of weights}) \\ &= -\ln(N) + \sum_{t=1}^{T} \ln(1 + \eta g_{k}^{t}) \\ &\quad (\text{We use the inequality } \ln(1 + z) \geq z - z^{2} \text{ for } -\frac{1}{2} \leq z \leq \frac{1}{2}) \\ &\geq -\ln(N) + \sum_{t=1}^{T} \eta g_{k}^{t} - \sum_{t=1}^{T} (\eta g_{k}^{t})^{2} \\ &= -\ln(N) + \eta G_{k}^{T} - \eta^{2} Q_{k}^{T} \\ &\text{On the other hand...} \\ &\ln \frac{W^{T}}{W^{1}} &= \sum_{t=1}^{T-1} \ln \frac{W^{t+1}}{W^{t}} \\ &= \sum_{t=1}^{T-1} \ln [\sum_{i=1}^{N} \frac{w_{i}^{t}(1 + \eta g_{i}^{t})}{w^{t}}] \\ &= \sum_{t=1}^{T-1} \ln [\sum_{i=1}^{N} p_{i}^{t}(1 + \eta g_{i}^{t})] \\ &= \sum_{t=1}^{T-1} \ln [\sum_{i=1}^{N} p_{i}^{t}(1 + \eta g_{i}^{t})] \\ &= \sum_{t=1}^{T-1} \ln [1 + \eta \sum_{i=1}^{N} p_{i}^{t}g_{i}^{t})] \\ &= \sum_{t=1}^{T-1} \ln [1 + \eta g_{ON}^{t}] \\ &\ln(1 + z) \leq z) \\ &\leq \sum_{t=1}^{T-1} \eta g_{ON}^{t} \\ &= \eta G_{ON}^{T-1} \end{split}$$

Therefore, by combining the bounds, we get

$$\eta G_{ON}^T \geq \eta G_k^T - \eta^2 Q_k^T - \ln N \tag{8.1}$$

or alternatively,

(Inequality

$$G_{ON}^T \geq G_k^T - \eta Q_k^T - \frac{\ln N}{\eta}$$

We set $\eta = \min\{\sqrt{\frac{\ln N}{Q_k^T}}, \frac{1}{2}\}$ and then

$$G_{ON}^T \ge G_k^T - 2\sqrt{Q_k \ln N}$$

Or if Q_k is small

$$G_{ON}^T \ge G_k^T - 2Q_k - 2\ln N$$

Finally

$$R \le 2\sqrt{Q_k \ln N} \le \sqrt{T \ln(N)}$$

And therefore

$$\frac{R}{T} = \sqrt{\frac{\ln(N)}{T}} \mathop{\longrightarrow}\limits_{T \to \infty} 0$$

 _	_
_	

Lower Bound

We will discuss 2 aspects of the lower bounds for regret minimization:

1. For N Actions and time $T = \frac{1}{2} \log N$ we will show a lower bound of $R = \Omega (\log N)$. We will assume that for each action we have a cost of 1 with probability $\frac{1}{2}$ and a cost of 0 with probability $\frac{1}{2}$.

The probability to have at time T an action i with $L_i^T = 0$ (an action with 0 loss) is:

 $1 - (1 - (\frac{1}{2})^T)^N = 1 - (1 - \frac{1}{\sqrt{N}})^N \approx 1 - e^{-\sqrt{N}}$

For a very large N, the expected loss of L_x is boundedly,

$$E[L_*^T] \le e^{-\sqrt{N}\frac{1}{2}}\log N$$

And since for every ONLINE we have $E[L_{ON}] = \frac{1}{2}T$ we get for any algorithm R:

$$E[L_R^T] = \frac{1}{4}\log N$$

2. For two actions and time T we choose a cost of (1,0) with probability $\frac{1}{2}$ and a cost of (0,1) with probability $\frac{1}{2}$.

The ONLINE algorithm loses $\frac{T}{2}$ on average. Because the probabilities are set in advance and are constant over time, when we choose the best possible action the result is around the expected value: $\frac{T}{2} - \Theta(\sqrt{N})$ and we get:

$$Regret = \Omega(\sqrt{T})$$

8.5 Partial Information Model

In this game the player chooses a **single action** a^t based on some distribution p^t . The opponent then sets the prices l^t based on p^t . The player then pays l_{a^t} .

8.5.1 A simple reduction

We will divide our game into T/k blocks of size k, denoted by $X^1...X^{T/k}$. Within each group or block of actions X^j we will sample every action i once.

At the end of block X^j , we gather the loss of the N sampled actions $l_i^j \cdots l_n^j$ and give it to a full information algorithm ER. The algorithm returns a distribution p^{j+1} , which we use in block X^{j+1} during the non-sampling steps. Namely,

$$ER(X^1...X^t)\longmapsto p^{t+1}$$

The ER algorithm will give us for every action $i \in A$,

$$\sum_{\tau=1}^{T/k} p^{\tau} \cdot X^{\tau} \le \sum_{\tau=1}^{T/k} X_i^{\tau} + \sqrt{\frac{T}{k} \log N}$$

Now we compute the expected value of X:

$$E[X_i^{\tau}] = \frac{1}{k} \sum_{t \in X^{\tau}} l_i^t$$

And therefor we have:

$$E[\sum_{\tau=1}^{T/k} p^{\tau} \cdot X^{\tau}] \leq E[\sum_{\tau=1}^{T/k} X_i^{\tau}] + \sqrt{\frac{T}{k} \log N}$$
$$\bigvee_{\tau=1}^{T/k} \frac{1}{k} \sum_{t \in k_{\tau}} l^t \cdot E[p^{\tau} (x^1 \cdots x^{t-1})] \leq \frac{1}{k} \sum_{t=1}^{T} l_i^t + \sqrt{\frac{T}{k} \log N}$$
$$\bigvee_{E[ONLINE]} \leq L_i^T + \sqrt{KT \log N} + \frac{T}{k} \cdot N.$$

We have an $\frac{T}{k} \cdot N$ sampling cost.

We can optimize this result over k and have:

$$k \cong T^{\frac{1}{3}} N^{\frac{2}{3}}$$
, and
Regret $\sim T^{\frac{2}{3}} N^{\frac{2}{3}}$