
Computational Game Theory Spring Semester, 2005/6

Lecture 8: May 16, 2006
Lecturer: Yishay Mansour Scribe: Lior Shapira, Eyal David 1

8.1 Regret Minimization

Lecture 7 dealt with repited games, in which each action was dependent upon a previous
actions. In this Lecture, our goal is to build a strategy with good performance when dealing
with repeated games. Let us start with a simple model of regret. In this model a player
performs a partial optimization on his actions. Following each action he updates his belief
an selects the next actions, dependent on the outcome.

8.2 Full Information Model

The model is defined as follows:

• Single player

• Actions A={a1,..,aN}

• For each step t the player chooses an action ai (or a distribution pt over A)

• For each step t we receive a loss lt where lti ∈ [0, 1] is the loss of action i ∈ A

• A player’s loss at step t is
N∑

i=1

pt
il

t
i = ltON .

• Accumulative loss for a player is LT
ON =

T∑
t=1

~lt~pt =
T∑

t=1

ltON

Obviously the loss of a player can be maximized by choosing all losses to be 1. Therefore
we must define a way to measure the players achievements. One way is choosing the best

action at each step which results in a minimal loss OPT =
T∑

t=1

mini{lti}. This measure is

similar to competitive online analysis and in our setting no interesting bound can be achieved.

1These notes are based in part on the scribe notes of Eitan Yaffe and Noa Bar-Yosef from 2003/2004

1

2 Lecture 8: May 16, 2006

8.3 External Regret

Let

LT
i =

T∑
t=1

lti , and the accumulated loss of the best action

LT
∗ = miniL

T
i

We define the external regret R = LT
ON − LT

∗ as a way to measure the algorithm’s
performance and we wish to minimize R. This reflects our desire to achieve performance
close to the best static choice of action.

8.3.1 Minimizing External Regret - Greedy Algorithm

One way to minimize R is by using a greedy algorithm:

• For convenience we’ll assume lti ∈ {0, 1} (so cumulative loss values will be integers)

• For the t step, we will chose the best action until now, i.e.,

at = arg min
i

Lt−1
i

Theorem 8.1 LT
ON ≤ N · LT

∗ + (N − 1)

Proof: We define ck to be the loss of ON(the greedy algorithm) from time t, the first
time in which Lt

∗ = k and until time t′,the first time in which Lt′
∗ = k + 1. At time t there

are at most N actions with Lt
i = k. Each time ONLINE pays 1, the number of actions with

a loss of k is reduced by 1. Therefore

ck ≤ N which implies that LON =
LT
∗∑

k=0

ck ≤ N · LT
∗ + (N − 1)

2

Theorem 8.2 Each deterministic algorithm D has a series for which LT
D ≥ N · LT

∗

Proof: The opponent, at time t, defines a loss of 1 on at, the action that D selects at
time t and 0 on the other actions. Algorithm D pays exactly LT

D = T . However, by averaging
there is an action i, such that LT

i ≤ T
N

. This occurs because T ”losses” are divided between
N actions. And so LT

D ≥ N · LT
∗ 2

8.4. RANDOMIZED ALGORITHMS 3

8.4 Randomized Algorithms

8.4.1 MARK algorithm

Let Bt = {i|Lt
i = Lt

∗}. At time t + 1 we select at
i at random such that i ∈ Bt. I.e.

pt+1
i =

{
1
|Bt| if i ∈ Bt

0 otherwise

Claim 8.3 LMARK ≤ (ln N) · LT
∗ + ln N − 1

Proof: We define ck as before. We assume that the opponent choose to give a loss of
1 to one action out of Bt (it is always better for the opponent to select out of Bt, and in
addition it is obviously better to choose two actions in differing rounds rather than the same
round). The expected loss for a round therefore is 1

|Bt| and so

E[ck] =
N∑

i=1

1

i
≤ ln(N)

and therefore

LMARK = E[
LT
∗∑

k=0

ck] ≤ ln(N)LT
∗ + ln(N)−1 − 1

2

8.4.2 Weighted Majority algorithm

How can MARK be improved? we notice that performance suffers when Bt is small and so
we’ll try giving actions a positive probability, even if they aren’t in Bt.

• We define w such that wt
i = (1

2
)Lt−1

i , when initially w1
i = 1 (since Li

0 = 0)

• The WM algorithm selects a distribution pt
i =

wt
i

W t when W t =
∑

i

wt
i

The WM algorithm is an exponential smoothing of the greedy algorithm. An action
for which the loss is greater than the minimal, receives a probability it would have gotten
otherwise which falls exponentially in the difference.

If ltWM is WM’s loss at time t then

• wt
i = (1

2
)Lt−1

i − 1
2
Lt−1

WM

• wt+1
i = wt

i(
1
2
)lti−

1
2
ltWM

4 Lecture 8: May 16, 2006

Claim 8.4 0 ≤ W t+1 ≤ W t ≤ N

Proof: By induction on t. It’s clear that W 1 ≤ N . We’ll prove that W t+1 ≤ W t.

W t+1 =
N∑

i=1

wt+1
i

=
N∑

i=1

wt
i(

1

2
)lti · (1

2
)−

1
2
ltWM

=
N∑

i=1

wt
i · 2−lti · 2

1
2
ltWM

≤
N∑

i=1

wt
i(1−

1

2
lti)(1 +

1

2
ltWM)

≤
N∑

i=1

wt
i −

1

2

N∑
i=1

wt
il

t
i +

1

2

N∑
i=1

wt
il

t
WM − ...

= W t − wt

2

N∑
i=1

wt
i

wt
lti +

1

2
ltWMwt

= W t − 1

2
wtltWM +

1

2
ltWMwt = W t

We used the linear interpolation showing that 2−x ≤ (1− 1
2
x) and 2

1
2
x ≤ (1+ 1

2
x) for x ∈ [0, 1]

2

Bound for WM

From claim 8.4:

wt
k ≤ W t ≤ N

therefore we choose the best k∗ such that

2−L∗
k+ 1

2
Lt

WM = wt
k ≤ N

and therefore
1

2
Lt

WM ≤ LT
k∗ + ln(N)

Lt
WM ≤ 2LT

k∗ + 2 ln(N)

Randomized Algorithms 5

Discussion

As discussed before our goal is to have LON ≤ L∗ + R such that R
T
−→
T→∞

0. One option is to

change the parameter in the WM algorithm 1
2

with β and optimize its value. Using such an
optimization we can achieve R ∼

√
T log N

We present a different online algorithm which achieves

LON ≤ Lk +
√

Qk ln(N) + 2 ln(N)

Qk =
∑
t=1

T (ltk)
2 ≤ Lk ≤ T

Since lti ∈ [0, 1]

Upper Bound (finite)

Instead of losses we’ll look at profits (which might be negative or positive). Therefore

gt
i ∈ [−1, 1]

and

Gt
k =

T∑
t=1

gt
k

and so

Qk =
T∑

t=1

(gt
k)

2

The weights determine the algorithm (same as WM)

wt+1
i = wt

i(1 + ηgt
i)

w0
i = 1

The intuition behind this is such that the weight of an action will be exponential in it’s
profit. For instance if the profit is always 1, the weight will be (1 + η)T and if the profit is
always -1 it will be (1− η)T .

Theorem 8.5

GT
ON ≥ GT

k −
√

Qk ln(N)− 2 ln(N)

6 Lecture 8: May 16, 2006

Proof: We bound ln W T

W 1 from both sides, where wt =
N∑

i=1

wt
i for each k.

ln
wT

w1
≥ ln

wT
k

N
(From the recursive definition of weights)

= − ln(N) +
T∑

t=1

ln(1 + ηgt
k)

(We use the inequality ln(1 + z) ≥ z − z2 for − 1
2 ≤ z ≤ 1

2)

≥ − ln(N) +
T∑

t=1

ηgt
k −

T∑
t=1

(ηgt
k)

2

= − ln(N) + ηGT
k − η2QT

k

On the other hand...

ln
W T

W 1
=

T−1∑
t=1

ln
W t+1

W t

=
T−1∑
t=1

ln[
N∑

i=1

wt
i(1 + ηgt

i)

wt
]

=
T−1∑
t=1

ln[
N∑

i=1

pt
i(1 + ηgt

i)]

=
T−1∑
t=1

ln[1 + η
N∑

i=1

pt
ig

t
i)]

=
T−1∑
t=1

ln[1 + ηgt
ON]

(Inequality ln(1 + z) ≤ z)

≤
T−1∑
t=1

ηgt
ON

= ηGT−1
ON

Therefore, by combining the bounds, we get

ηGT
ON ≥ ηGT

k − η2QT
k − ln N

(8.1)

or alternatively,

GT
ON ≥ GT

k − ηQT
k −

ln N

η

Randomized Algorithms 7

We set η = min{
√

ln N
QT

k
, 1

2
} and then

GT
ON ≥ GT

k − 2
√

Qk ln N

Or if Qk is small

GT
ON ≥ GT

k − 2Qk − 2 ln N

Finally

R ≤ 2
√

Qk ln N ≤
√

T ln(N)

And therefore

R

T
=

√
ln(N)

T
−→
T→∞

0

2

Lower Bound

We will discuss 2 aspects of the lower bounds for regret minimization:
1. For N Actions and time T = 1

2
log N we will show a lower bound of R = Ω (log N).

We will assume that for each action we have a cost of 1 with probability 1
2

and a cost of 0
with probability 1

2
.

The probability to have at time T an action i with LT
i = 0 (an action with 0 loss) is:

1− (1− (1
2
)T)N = 1− (1− 1√

N
)N ≈ 1− e−

√
N

For a very large N , the expected loss of Lx is boundedly,

E[LT
∗] ≤ e−

√
N 1

2
log N

And since for every ONLINE we have E[LON] = 1
2
T we get for any algorithm R:

E[LT
R] = 1

4
log N

2. For two actions and time T we choose a cost of (1, 0) with probability 1
2

and a cost of
(0, 1) with probability 1

2
.

The ONLINE algorithm loses T
2

on average. Because the probabilities are set in advance
and are constant over time, when we choose the best possible action the result is around the
expected value: T

2
−Θ(

√
N) and we get:

Regret = Ω(
√

T)

8 Lecture 8: May 16, 2006

8.5 Partial Information Model

In this game the player chooses a single action at based on some distribution pt. The
opponent then sets the prices lt based on pt. The player then pays lat .

8.5.1 A simple reduction

We will divide our game into T/k blocks of size k, denoted by X1...XT/k. Within each group
or block of actions Xj we will sample every action i once.

k k k k k k

l1 lk l1 lk l1 lk l1 lk l1 lk l1 lk

X1 XT/k

At the end of block Xj, we gather the loss of the N sampled actions lji · · · ljn and give it
to a full information algorithm ER. The algorithm returns a distribution pj+1, which we use
in block Xj+1 during the non-sampling steps.
Namely,

ER(X1...X t) 7−→ pt+1

The ER algorithm will give us for every action i ∈ A,

T/k∑
τ=1

pτ ·Xτ ≤
T/k∑
τ=1

Xτ
i +

√
T

k
log N

Now we compute the expected value of X:

E[Xτ
i] =

1

k

∑
t∈Xτ

lti

And therefor we have:

E[
T/k∑
τ=1

pτ ·Xτ] ≤ E[
T/k∑
τ=1

Xτ
i] +

√
T

k
log N

⇓
T/k∑
τ=1

1

k

∑
t∈kτ

lt · E[pτ (x1 · · ·xt−1)] ≤ 1

k

T∑
t=1

lti +

√
T

k
log N

⇓
E[ONLINE] ≤ LT

i +
√

KT log N + T
k
·N .

We have an T
k
·N sampling cost.

We can optimize this result over k and have:

k ∼= T
1
3 N

2
3 ,and

Regret ∼ T
2
3 N

2
3

