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3.1 Lecture Overview

In this lecture we consider the problem of routing traffic to optimize the performance
of a congested and unregulated network. We are given a network, a rate of traffic
between each pair of nodes and a latency function specifying the time needed to
traverse each edge given its congestion. The goal is to route traffic while minimizing
the total latency. In many situations, network traffic cannot be regulated, thus each
user minimizes his latency by choosing among the available paths with respect to the
congestion caused by other users. We will see that this ”selfish” behavior does not
perform as well as an optimized regulated network.
We investigate the price of anarchy by exploring characteristics of Nash Equilibrium
and minimal latency optimal flow.
We prove that if the latency of each edge is a linear function, then the PoA is at most
4/3, while in unsplitable routing the PoA is bounded by 8/3. We also show that if
the latency function is only known to be continuous, nondecreasing and differentiable,
then there is no bounded coordination ratio.

3.2 Introduction

Last lecture we observed the problem of Job Scheduling (or Parallel Lines Routing)
where each player wants to send a particular amount of traffic along a path from
source to destination, and has to choose exactly one line to pass his traffic along.

Today, we shall investigate the problem of routing traffic in a network. The prob-
lem is defined as follows: Given a rate of traffic between pairs of nodes in the network,
find an assignment of the traffic to paths so that the total latency is minimized. Each
link in the network is associated with a latency function which is typically load-
dependent, i.e. the latency increases as the link becomes more congested.
In many domains (such as the internet or road networks) it is impossible to impose
regulation of traffic, and therefore we are interested in those settings where each user
acts according to his own selfish interests. We assume that each user will always
select the minimum latency path to its destination. In other words, we assume all
users are rational and nonmalicious. This can actually be viewed as a noncooperative
game where each user plays the best response given the state of all other users, and

1This scribe is based in part on the scribe notes of Anat Axelrod, Eran Werner 2004
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thus we expect the chosen routes to form a Nash equilibrium.

3.2.1 Motivation for the Model

Each edge in the network is assigned a latency function, that specifies the delay of
the edge as a function of the congestion on that edge.

• The Player Model

– Many users, where each user holds only a negligible portion of the total
traffic.

– A finite number of users that are allowed to split their load between dif-
ferent paths.

• The Global Target Function is to minimize the average (or total) latency
suffered by all users.

Let Nash denote the maximum latency among all feasible flows that are Nash Equi-
librium (NE).
Let OPT denote the minimum latency among all feasible flows.
The price of anarchy (PoA) is defined as the ratio PoA = Nash

OPT
.

Our goal is to bound the PoA.

S T

Figure 3.1: Routing on Parallel Lines

Example: Routing on Parallel Lines We use nearly the same model as in the
last lecture (see Figure 3.1): a set of n players with weights wi, i = 1, ..., n (wi > 0).
m lines (machines) with speeds si, i = 1, ...,m.
Our goal is to minimize the congestion on the lines. The players are allowed split
their flow between different lines.

Nash Equilibrium is achieved when the Load on each line is Li(a) =
Pn

i=1 wiPm
j=1 sj

= W
S

(this is NE because if there is a line with more than W
S

then there is a line with less
than W

S
so any player using the more loaded line will benefit from passing flow to the

less loaded line).
The Optimum is achieved (as seen in the last lecture) by dividing the flow equally

between the lines. Therefore we achieve PoA = 1.
Before we continue, let’s examine an example setting which has inspired much

of the work in this traffic model. Consider the network in Figure 3.2(a). There are
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Figure 3.2:

two disjoint paths from S to T. Each path follows exactly two edges. The latency
functions are labeled on the edges. Suppose one unit of traffic needs to be routed
from S to T. The optimal flow coincides with the Nash equilibrium such that half
of the traffic takes the upper path and the other half takes the lower path. In this
manner, the latency perceived by each user is 3

2
. In any other (unequal) distribution

of traffic among the two paths, there will be a difference in the total latency of the
two paths and users will be motivated to reroute to the less congested path.

Note Incidentally, we will soon realize that in any scenario in which the flow at
Nash Equilibrium is split over more than a single path, the latency of all the chosen
paths must be equal.

Now, consider Figure 3.2(b) where a fifth edge of latency zero is added to the network.
While the optimum flow has not been affected by this augmentation and stays 3

2
, Nash

will only occur by routing the entire traffic on the single S → V → W → T path,
hereby increasing the latency each user experiences to 2 (because if we split the flow
to the upper and lower paths, then the user will be motivated to reroute to the less
congested path, using the new edge. However, if the entire traffic is routed trough
S → V → W → T no user will benefit from a change, and therefore this is a Nash
Equilibrium).
Amazingly, adding a new zero latency link had a negative effect for all agents. This
counter-intuitive impact is known as Braess’s paradox.

Anecdote 1 Two live and well known examples of Braess’s paradox occurred when
42nd street was closed in New York City and instead of the predicted traffic gridlock,
traffic flow actually improved. In the second case, traffic flow worsened when a new
road was constructed in Stuttgart, Germany, and only improved after the road was
closed.
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3.2.2 Formal Definition of the Problem

The problem of routing flow in a network with flow dependent latencies is defined as
follows:

• We consider a directed graph G = (V,E).

• Input

– k pairs of source and destination vertices (si, ti).

– Demand ri (the amount of required flow between si and ti).
We may assume that ri > 0.

– Each edge e ∈ E is given a load-dependent latency function denoted by
`e(·). We restrict our discussion to nonnegative, differentiable and nonde-
creasing latency functions.

• Output
Flow f - A function that defines for each path p a flow fp.
f induces flow on edge e, fe =

∑
p:e∈p fp (a flow on an edge is the sum of flows

of all the paths that contains that edge).

• We denote the set of simple paths connecting the pair (si, ti) by Pi.
And let P =

⋃
iPi.

• A solution is feasible if ∀i, ∑
p∈Pi

fp = ri (for all i - the sum of the flow over all
paths between si to ti is equal to the demand ri).

• The latency of a path `p is defined as the sum of latencies of all edges in the
path. `p(f) =

∑
e∈p `e(fe).

• The total cost of a flow f , C(f) ,
∑

p∈P `p(f) · fp =
∑

e∈E `e(fe) · fe (the two
formulas express the same value, since they differ only in the summation order).

• (G, r, `) - A triple which defines an instance of the routing problem.

• Our goal is to find a feasible flow f that will minimize the total cost C(f) =∑
e `e(fe) · fe.

We denote this problem by GAME.

3.3 Characterizations of Nash & OPT Flows

3.3.1 Flows at Nash Equilibrium

Lemma 3.3.1 A feasible flow f for instance (G, r, `) is Nash Equilibrium if for every
i ∈ {1, ..., k} and p1 ∈ Pi
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• if fp1 > 0 then `p1(f) = minp∈Pi
`p(f) (equivalently ∀p2 ∈ Pi, `p1(f) ≤ `p2(f))

• if fp1 = 0 then `p1(f) ≥ minp∈Pi
`p(f)

From the lemma it follows that flow at Nash Equilibrium will be routed only through
best response (BR) paths. Consequently, all paths assigned with a positive flow
between (si, ti) have equal latency denoted by Li(f). Namely, Li(f) , minp∈Pi

`p(f).

Corollary 3.1 If f is a flow at a Nash Equilibrium for instance (G, r, `) then ∀i, C(f) =∑k
i=1 Li(f) · ri.

3.3.2 Optimal Solution - Flow

Our goal is to find the optimal solution, that is to find a feasible flow f that will
minimize the total cost C(f) =

∑
e∈E `e(fe)fe.

Observation 3.2 The following (possibly non-linear) program solves the minimum
latency flow problem:

Let ce(x) = `e(x) · x, and then C(f) =
∑

e∈E ce(fe)

min
∑

e∈E ce(fe)

s.t. ∑
p∈Pi

fp = ri ∀i ∈ {1, ...k}
(SYSTEM) fe =

∑
p∈P:e∈p fp ∀e ∈ E

fp ≥ 0 ∀p ∈ P

The optimal solution for (SYSTEM) is the same as the optimal solution for (GAME),
therefore we will refer to them both as (GAME).

Note For simplicity the above formulation of (SYSTEM) is given with an expo-
nential number of variables (there can be an exponential number of paths). This
formulation can be easily modified with decision variables only on edges giving a
polynomial number of variables and constraints.

The program (SYSTEM) has linear constrains, however, it’s objective function may
be too general to allow an efficient algorithm for optimal solution. We therefore con-
sider a restricted case of, called convex programming.

Convex Programming
Let F (x) be a convex function, and S a convex set.
A convex Programming is of the form: min F (x), s.t. x ∈ S.

Lemma 3.3.2 If F (·) is strictly convex then the solution is unique.
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Proof. Assume that x 6= y are both minimum solutions. Let z = 1
2
x + 1

2
y.

Because S is a convex set, z ∈ S.
Since F (·) is strictly convex: F (z) < 1

2
F (x) + 1

2
F (y), contradicting the minimality of

F (x) and F (y). 2

Lemma 3.3.3 If F (·) is convex then the solution set U is convex.

Lemma 3.3.4 If F (·) is convex and y is not optimal (∃x : F (x) < F (y)) then y is
not a local minimum. Consequently, any local minimum is also a global minimum.

Proof. Assume that y is not optimal, i.e. ∃x : F (x) < F (y). Let Z = λx + (1−
λ)y. Since F (·) is convex F (z) ≤ λF (x) + (1− λ)F (y) < F (y), for every 0 < λ < 1.
2

Note Lemma 3.3.4 implies that the ”gradient method” converges to an optimal
solution in convex programming.

In our case of network routing, we assume that for each edge e ∈ E the function
ce(x) = `e(x) · x is a convex function, and therefore, our target function C(f) is also
convex.

Our assumption on `e(x) implies that ce(x) is differentiable for every x.

Let c′e(x) = d
dx

ce(x)
Let c′p(x) =

∑
e∈p c′e(x)

Lemma 3.3.5 (The optimality condition) A flow f is optimal for (GAME) iff

∀p1, p2 ∈ Pi, fp1 > 0 ⇒ c′p1
(f) ≤ c′p2

(f)

Notice the resemblance between the characterization of optimality conditions
(Lemma 3.3.5), and Nash Equilibrium (Lemma 3.3.1). In fact, an optimal flow can be
interpreted as a Nash equilibrium with respect to a different edge latency functions.
We will use this resemblance to reach the bound on PoA.

Let
`∗e(x) , c′e(x) = (`e(x) · x)′ = `e(x) + x · `′e(x)

`∗p(x) ,
∑

e∈p `∗e(x)

Corollary 3.3 Flow f is an optimal flow for (G, r, `) iff f is a Nash Equilibrium for
the instance (G, r, `∗).

Proof. Flow f is OPT for ` ⇔ (optimallity conditions) ∀p1, p2∀fp1 > 0, c′p1
(f) ≤

c′p2
(f) ⇔ (by def.) ∀p1, p2∀fp1 > 0, `∗p1

(f) ≤ `∗p2
(f) ⇔ f is Nash Eq. for `∗

(∀i ∀p1, p2 ∈ Pi). 2
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3.3.3 Existence of Flows at Nash Equilibrium

We exploit the similarity between the characterizations of Nash and OPT flows to
establish that a Nash equilibrium indeed exists and its cost is unique.
For the outline of the proof we define an edge cost function he(x) ,

∫ x

0
`e(t)dt.

By definition h′e(x) = d
dx

he(x) = `e(x) thus he is differentiable with non decreasing
derivative `e and therefore convex.
Next, we consider the following convex program:

(GAME∗) min
∑

e∈E he(fe) s.t. f feasible

Observation 3.4 The optimal solution for GAME∗ is Nash GAME.

Proof. The proof follows directly from Lemma 3.3.1 and the optimality condition
in Lemma 3.3.5 where `e(x) = h′e(x). 2

Since Nash is an optimal solution for a different convex setting we conclude that:

• Nash equilibrium exists.

• The cost at Nash equilibrium is unique.

• The cost of all the paths used in a Nash equilibrium jave the same cost.

3.3.4 Bounding the Price of Anarchy

The relationship between Nash and OPT characterizations provide a general method
for bounding the price of anarchy PoA = C(f)

C(f∗) = Nash
OPT

.

`e(·) is non-decreasing, therefore he(x) =
∫ x

0
`e(t)dt ≤ x`e(x) = ce(x)

Theorem 3.5 If there exists a constant α > 0 such that ∀x, αhe(x) ≥ ce(x) then
PoA ≤ α.

Proof.

Nash = C(f) =
∑

e∈E ce(fe)

≤ α
∑

e∈E he(fe)

≤ α
∑

e∈E he(f
∗
e )

≤ α
∑

e∈E ce(f
∗
e )

= α · C(f ∗) = α ·OPT

The first inequality follows from the hypothesis, the second follows from the fact that
Nash flow f is optimal for the function he(fe) and the final inequality follows from
he(x) ≤ ce(x). 2

Corollary 3.6 If the latency function `e(·) is a polynomial function of degree d,
`e(x) =

∑d
i=0 ae,ix

i, then PoA ≤ d + 1.
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Note From the corollary, an immediate coordination ratio of 2 is established for
linear latency functions. Later, we will show a tighter bound of 4

3
.
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Figure 3.3: bounded and unbounded PoA

Figure 3.3(a) shows an example for which Nash flow will only traverse in the lower
path, and reach the value 1, while OPT will divide the flow equally among the two
paths. The target function is 1 · (1 − x) + x · x and it reaches minimum with value
3
4

when x = 1
2
, giving a coordination ratio of 4

3
for this example. Combining the

example with the tighter upper bound to be shown, we demonstrate a tight bound of
4
3

for linear latency functions.

In Figure 3.3(b) the flow at Nash will continue to use only the lower path, with the
value 1, but OPT will minimize the cost function x · xd + (1− x) · 1. at x = 1− 1√

d+1

OPT ≤ (1− 1√
d+1

)d+1+ 1√
d+1

≤ e−
√

d+1+ 1√
d+1

→d→∞ 0. This is not the x that reaches
OPT but it gives an upper bound. This implies that limd→∞ PoA = ∞ meaning, PoA
cannot be bounded from above for any polynomial latency function, independent of
the degree.

3.4 A Tight Bound for Linear Latency Functions

We will now focus on a scenario where all edge latency functions are linear
`e(x) = aex + be, for constants ae, be ≥ 0. A fairly natural example for such a model
is a network employing a congestion control protocol such as TCP. We have already
seen in Figure 3.3(a) an example where the coordination ratio was 4

3
. We have also

established an upper bound of 2 according to Corollary 3.6. We shall now show that
the 4

3
ratio is also a tight upper bound.

Prior to this result, we examine a simple case where `e(x) = be. In this case both
OPT and Nash will route all the flow to the shortest paths. Thus, Nash = OPT .

Lemma 3.4.1

xy ≤ x2 +
y2

4
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Proof. See Appendix. 2

Theorem 3.7 If the latency functions are all of the form `e(x) = aex + be then
PoA ≤ 4

3
.

Proof. Let f be a flow at Nash equilibrium and f ∗ an optimal flow.
Given a flow f , we define `f

e = aefe + be, and Cf (x) =
∑

`f
exe.

Cf (x) =
∑

(aefe + be)xe

=
∑

(aefexe + bexe)

≤ ∑
(aex

2
e + bexe) +

∑
aef

2
e

1
4

since (xy ≤ x2 + y2

4
)

≤ C(X) + 1
4
C(f)

Since ∀x Cf (f) ≤ Cf (x) we can set xe = f ∗e and derive,

Cf (f) = C(f) ≤ C(f ∗) + 1
4
C(f)

3
4
C(f) ≤ C(f ∗)

C(f) ≤ 4
3
C(f ∗)

PoA ≤ 4
3

2

3.5 Unsplitable Routing

Recall that each pair (si, ti) has the demand ri. In this case we have to route all the
demand ri on exactly one path pi ∈ Pi.
Let Pj be the the path assignment in Nash Equilibrium solution, and P ∗

j the optimal
solution.

If `e(x) = aex + be, then from NE we obtain:

∑
e∈Pj

(aefe + be) ≤
∑

e∈P ∗j

[ae(fe + rj) + be]

This inequality is correct ∀j, so we can multiply by rj and sum up all inequalities:

∑
j

∑
e∈Pj

(aefe + be)rj ≤ ∑
j

∑
e∈P ∗j

(ae(fe + rj) + be)rj
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Let J(e), J∗(e) be the set of flows that use edge e in the assignment Pj and P ∗
j re-

spectively. Changing the accumulation order:

∑
e

∑
j∈J(e)(aefe + be)rj ≤ ∑

e

∑
j∈J∗(e)(ae(fe + rj) + be)rj

∑
e

∑
j∈J(e)(aefe + be)rj ≤ ∑

e

∑
j∈J∗(e)[(aefe + be)rj + aer

2
j ]

note that
∑

j∈J(e) rj = fj, and
∑

j∈J∗(e) rj = f ∗j and therefore
∑

j∈J∗(e) r2
j ≤ f ∗j

2

∑
e(aefe + be)fe ≤ ∑

e(aefe + be)f
∗
e +

∑
e aef

∗
e

2

∑
e(aefe + be)fe ≤ ∑

e(aef
∗
e + be)f

∗
e +

∑
e aefef

∗
e

The left side is Nash and the first sum in the right side is OPT:

Nash ≤ OPT +
∑

e aefef
∗
e

Using xy ≤ x2+y2 · 1
4
, we have

∑
e aefef

∗
e ≤

∑
e aef

∗
e

2+
∑

e aef
2
e · 14 ≤ OPT +Nash · 1

4
.

Therefore,

Nash ≤ OPT + OPT + 1
4
·Nash

3
4
Nash ≤ 2 ·OPT

Nash ≤ 8
3
·OPT

PoA ≤ 8
3
∼ 2.66

Note We can reach a bound of 2.61 by using Cauchy-Schwarz inequality instead of
xy ≤ x2 + y2 1

4
.

3.6 FIN

All good things must come to an end.

3.7 APPENDIX A

Convex Set

Definition 3.7.1 A set S is called a convex set if ∀A,B ∈ S, 0 ≤ λ ≤ 1, λA + (1−
λ)B ∈ S.
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S

Figure 3.4: Convex Set

Intuitively, a set S is convex if the linear segment connecting two points in the set, is
entirely in the set.
(see Figure 3.4)

Convex Function

λx + (1 − λ)yx

f(x)

λf(x) + (1 − λ)f(y)
f(y)

f(λx + (1 − λ)y)

y

Figure 3.5: Convex Set

Definition 3.7.2 Function f is called a convex function if ∀x, y, 0 ≤ λ ≤ 1, f(λx+
(1− λ)y) ≤ λf(x) + (1− λ)f(y).

(see Figure 3.5)

3.8 APPENDIX B
Lemma 3.8.1

xy ≤ x2 +
y2

4
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Proof.
xy ≤ x2 + y2

4

4xy ≤ 4x2 + y2

0 ≤ 4x2 − 4xy + y2

0 ≤ (2x− y)2

2


