
Computational Game Theory Spring Semester, 2009/10

Lecture 10: Mechanism Design
Lecturer: Yishay Mansour Scribe: Vera Vsevolozhsky, Nadav Wexler

10.1 Mechanisms with money

10.1.1 Introduction

As we have seen in the previous lesson, Mechanism Design is challenging. We chose two
reasonable conditions:

1. Unanimity - If everyone agrees on a choice, it is accepted.

2. Strategy Proof - no player can alter the outcome to his favor by reporting a vote
different than his actual preference.

As we’ve seen, The results of Arrow’s Impossibility Theorem for social welfare functions
and Gibbard-Satterthwaite theorem for social choice functions, showed us that the resulting
function will always be dictatorial. In this lesson we’ll try to solve this problem by adding
the concept of ”Money”. The utility of a player will be divided into two parts: the value of
the result and the payments.

10.1.2 A Quasi-Linear Model

Definition: A model for n players is given by:

• N - a group of n Players

• A - a group of the Alternative options (products)

• Each player i ∈ N has a value function vi ∈ Vi, for each a ∈ A

• Each player i ∈ N is given mi worth of money

• Utility function for player i is ui(a,mi) = vi(a) +mi

The utility function is quasi-linear, and the money is added to the utility of the products.
The money given can be a negative or positive, depending on the game played.
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Example: Selling a single item

• N - a group of n Players

• A = {”i− wins”|i ∈ N}

• for each player i, vi(a) =

{
wi, if a=”i-wins”
0, else

• for each player i, if a = ”i− wins”,mi = p

• Therefore, each player i ∈ N has a utility function ui =

{
wi − p, if a=”i-wins”
0, else

Our goal: give the product to the player with the highest value for it. If we just ask them
to report their valuation, and give the product to the player with the highest valuation, the
players will just say high values and try to win.
More practical options:

• first-price auction

• second-price auction

Theorem 10.1 A second-price auction is Strategy Proof.

Proof: We separate into cases, depending on the player. We fix the player i as the
winner.
Player i has no incentive to change his bid:

• Changing above second bid - Won’t change the outcome as he will still win and pay
the second bid.

• Lowering below second bid - player i will lose the auction, making his profit 0.

For player j 6= i:

• Raising above vi - raising his bid above his value to vi will result in a loss: uj = vj−vi <
0, since vj < vi. Player j will pay at least as the actual winner bid and that is more
than the value he gives for the product.

• Changing under vi - he can’t win, and his profit will stay 0, as before.

Thus, player j has no incentive to change his bid. �



Mechanisms with money 3

10.1.3 General Models

Definition: A Mechanism is called Direct if it defines the following:

• f : V1 × V2 × ...× Vn −→ A - social choice function

• pi : V1 × V2 × ...× Vn −→ R - price for each player i

Definition: A mechanism (f, p1, p2, ..., pn) is called Strategy Proof (or Incentive Compati-
ble, or Truthfull) if:

∀i ∈ N, ∀vi ∈ Vi : a = f(vi, v−i), a
′ = f(v′i, v−i), then:

vi(a)− pi(vi, v−i) ≥ vi(a
′)− pi(v′i, v−i)

In words: A SP Mechanism ensures that for any value function a player in the game has,
he cannot gain from reporting a different function. Thus, it promotes the players to report
their real value.

10.1.4 VCG Mechanism

Definition: A mechanism (f, p1, p2, ..., pn) is called Vickery-Clarke-Grove (VCG) if:

• f(v1, .., vn) = arg max
a∈A

∑
i∈N

vi(a)

• pi(v1.., vn) = hi(v−i) −
∑
j 6=i

vj(f(v1, ..., vn)), for any function hi that does not depend

on vi.

Theorem 10.2 for any hi, a VCG mechanism is Strategy Proof.

Proof: We shall fix a player i and a value vector v−i for the other players. we shall also
define vi as the real value for the player and v′i as the false reported value. we also define
a = f(v1, ..., vn), a′ = f(v′i, v−i). the player’s utility when he reports the true value is:

ui = vi(a) +
∑
j 6=i

vj(a)− hi(v−i) =
∑
k∈N

vk(a)− hi(v−i)

while in a false report the utility is:

u′i = vi(a
′) +

∑
j 6=i

vj(a
′)− hi(v−i) =

∑
k∈N

vk(a
′)− hi(v−i)

Since a maximizes the social welfare,
∑

k∈N vk(a
′) ≤

∑
k∈N vk(a). we conclude that ui ≥ u′i

and thus a VCG mechanism is SP. �
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Grove’s Mechanism

We would like to choose a function hi. As we’ve seen, this can be done by any function, but
we’d like to choose function that complies with certain reasonable conditions.
Definition:

1. Individual Rationality - if a player participates, his utility cannot be negative:
ui = vi(f(v1, ..., vn))− pi(v1, ..., vn) ≥ 0.

2. No Positive Transfer - we sell an item, therefore the players cannot gain money. The
prices that players pay cannot be negative:
pi(v1, ..., vn) ≥ 0

Definition: Grove’s function
We define the function hi(v−i) = max

b∈A

∑
j 6=i

vj(b).

The payments associated with this functions are: pi(v1, ..., vn) = max
b∈A

∑
j 6=i

vj(b) −
∑
j 6=i

vj(a),

where a = f(v1, ..., vn).
The payment function is defined so that the payments are the difference between the value
when player i is participating in the game and the value without player i.

Lemma 10.3 A VCG mechanism with hi as defined above is Individual Rational and has
No Positive Transfers.

Proof: As before, a = f(v1, ..., vn). We shall assume that vi(a) ≥ 0, which is reasonable,
since a player will not participate if the value is negative.

• Individual Rationality:
ui(a) = vi(a)− pi = vi(a) +

∑
j 6=i vj(a)−

∑
j 6=i vj(b) ≥

∑
j∈N vj(a)−

∑
j∈N vj(b) ≥ 0

For the first inequality, we only added a negative term, thus reducing the value. For
the second inequality from the definition of a: it is the choice that maximizes the social
welfare - the sum of values.

• No Positive Transfer:
pi =

∑
j 6=i vj(b)−

∑
j 6=i vj(a) ≥ 0.

This inequality is obvious by looking at the definition of b: it is the choice that maxi-
mizes the function hi.

�
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10.1.5 VCG Examples

Single Item Auction

We define a single item auction by:

• A = {”i− wins”|i ∈ N}

• vi(a) =

{
wi, a=”i-wins”
0, else

In this case, f is reduced into
∑

j∈N vj(”k−wins”) = wk, f will choose player i that has the
maximum value of wi.
If i has the maximum of wi, then

∑
j 6=i vj(”i − wins”) = 0 and

∑
j 6=i vi(b) = ws, where ws

is the second highest value. Therefore pi = ws and this model is identical to a second-price
Auction.

Trade

• A = {”trade”, ”no− trade”}

• Seller - has value vs for the product

• Buyer - has value vb for the product

• (pb, ps) - the price of trade

We would like to have a trade iff vb > vs. We also define: ub(”trade”) = vb−pb, us(”trade”) =
ps − vs, ub(”no-trade”) = us(”no-trade”) = 0. If vb > vs bringing f to maximum can be
achieved only by ”trade”. The prices associated are: pb = vs, ps = −vb. In this results that
the mechanism is subsidizing the Trade in the amount of vb − vs ≥ 0.

Auction with Several Identical Items

We have an auction with k identical items.

• A = {”S − wins”|S ⊆ N, |S| = k}

• vi(”S − wins”) =

{
wi, i ∈ S
0, else

The maximum value of f means that S includes the k players with the highest values. We
fix a player i and calculate his price: pi = maxS′

∑
j 6=i vj(S

′)−
∑

j 6=i vj(S) = wk+1, where S ′

includes all players from S except i and also the ”k + 1” player which is the player with the
k + 1 value. So each winning player pays a price of wk+1.
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Public Project

In a public project like a bridge, the players benefit from building. The problem is how to
divide the cost of building.

• A = {”build”, ”no− build”}

• A total build cost of C.

• Each player has value wi from the project.

The social utility is
∑
wi − C. If

∑
wi > C ⇒ the project will be built.

What will the payments be?
Each player will pay only if wi > C −

∑
j 6=iwj. Therefore, pi = C −

∑
j 6=iwj. It is clear that∑

i∈N pi < C.

Assume we want to enforce that the project would be budget balanced. The following
example will show that in this case there will be payments even if the project is not built.
Example:
Let’s assume C = 3 and w1 = w2 ∈ {0, 2}.

1. If w1 = w2 = 2: The cost must be covered by the payments so p1(2) + p2(2) ≥ 3.

2. If w1 = w2 = 0: Since the mechanism has NPT, p1(0) + p2(0) ≥ 0.

From the two inequalities we conclude that either p1(2) + p2(0) ≥ 3
2

or p1(0) + p2(2) ≥ 3
2
. In

both cases, the project is not built. Therefore, we conclude that although the project is not
built, at least one player is paying.

Buying Edges in Network

We define a graph G = (V,E). Our goal is to build a path from s to t.

• e ∈ E are the players

• ve(a) =

{
−ce, e is used in the network
0, else

the solution for f is the shortest solution in respect to values. the payments for player e will
be: pe = ”cost of shortest path without e”− ”path’s cost without e’s cost”
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10.1.6 The revelation principle

We are now ready to formalize the notion of a general - nondirect revelation mechanism.
Definition: A mechanism for n players is given by:

• Players’ type spaces T1, T2..., Tn. Each player i ∈ N has some private information
ti ∈ Ti that captures his preference over a set of alternatives A.

• Players’ action spaces X1, X2..., Xn

• Each player i ∈ N has some strategy si(ti), where si : Ti −→ Xi

• Each player i ∈ N has utility function ui(ti, s1(t2), s1(t2), ..., sn(tn))

At first sight it seems that the more general definition of mechanisms will allow us to do
more than is possible using strategy proof direct revelation mechanisms. But as we will see
shortly this turns out to be false.

Theorem 10.4 Revelation principle
If there exists a strategy proof mechanism that implements f then there exists a direct strategy
proof mechanism that implements f. The payments of the players in the new direct strategy
proof mechanism and original one are identical.

Proof: The new direct mechanism will simply simulate the original mechanism. That
is, let si(ti) be a dominant strategy of the original mechanism for some player i with type
ti. Now player i reveals his private information ti. And the new direct mechanism will
play strategy si(ti) for player i. But, because si(ti) is a dominant strategy in the original
mechanism, then ti is a dominant action in the new direct mechanism. And the payments
of the players are identical (according to the simulation). �

10.1.7 Bayesian - Nash Equilibrium

Now we will talk about equilibrium models in mechanisms.Each of the participants is familiar
with his private information, but not the others’. However, he can derive the expected value
of the others’ private information knowing their distribution.

Definition: A game with independent private values and incomplete information on a set

of n players is given by the following ingredients:

1. For every player i, a set of actions Xi, where X = X1 ×X2 × ...×Xn.
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2. For every player i, a set of types Ti, and a distribution Di ∼ 4(Ti). A value ti ∈ Ti is
the private information that i has, and ti ∼ Di where Di(ti) is the a probability that
i gets type ti.

3. For every player i, a utility function ui : Ti ×X −→ R, where ui(ti, x1, x2..., xn) is the
utility achieved by player i, if his type (private information) is ti, and the profile of
actions taken by all players is x1, x2, ..., xn.

The main idea that we wish to capture with this definition is that each player i must choose
his action xi when knowing ti but not the other tj

′s (j 6= i), but rather only knowing the
prior distribution Dj on each other tj (partial information).
The behavior of player i in such a setting is captured by a function si : Ti −→ Xi that
specifies which action xi is taken for every possible type ti - this is termed a strategy. It is
these strategies that we would want to be in equilibrium.

Definition: Bayesian - Nash Equilibrium

s1, s2..., sn is a Bayesian−Nash equilibrium if for every player i and every ti ∈ Ti we have
as follows:

∀xi ∈ Xi : ED−i [ui(ti), si(ti), s−i(t−i)] ≥ ED−i [ui(ti), s
′
i(ti), s−i(t−i)]

(si(ti) is the best response that i has to s−i() when his type is ti, in expectation over the
types of the other players. And ED−i [ ] denotes the expectation over the other types t−i
being chosen according to distribution D−i).

This now allows us to define implementation in the Bayesian sense.

Definition: A Bayesian mechanism for n players is given by:

• Players’ action spaces X1, X2..., Xn

• Players’ type spaces T1, T2..., Tn and distributions on them D1, D2..., Dn

• An alternative set A

• Players’ valuations functions vi : Ti × A −→ R

• An outcome function f : X −→ A

• Payment functions p1, p2, ..., pn, where pi : X −→ R
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Definition: A direct Bayesian mechanism

A mechanism is direct in the Bayesian sense if two conditions are held:

• The type spaces are equal to the action spaces – Ti = Xi

• The truthful strategies si(ti) = ti are a Bayesian-Nash equilibrium.

Analysis of Bayesian–Nash Equilibrium in First–Price Auction
As an example of Bayesian analysis we study the standard first price auction in a simple
setting: a single item is auctioned between two players, Alice and Bob. Each has a private
value for the item: tAlice = a is Alice’s value and tBob = b is Bob’s value; the distribution Da

over a and Db over b. Every player will announce a value smaller than his real value. Let x
denote the announced value of Alice(where x is a function of a). Let y denote the announced
value of Bob(where y is a function of b). If x > y Alice wins, otherwise Bob wins.

While we already saw that a second price auction will allocate the item to the one with
higher value, here we ask what would happen if the auction rules are the usual first–price
ones: the highest bidder pays his own bid. Certainly Alice will not bid her value a since if
she does, even if she wins her utility will be 0. She will thus need to bid some x < a, but
how much lower? If she knew that Bob would bid y, she would certainly bid x = y + ε (as
long as x ≤ a). But she does not know y or even b which y would depend on - she only
knows the distribution Db over b.

Let us observe what happen in the Bayesian – Nash equilibrium. In general, finding Bayesian-
Nash equilibria is not an easy thing. However, for the symmetric case where Da = Db, the
situation is simpler and a closed form expression for the equilibrium strategies may be found.
We will prove it for the special case where the private information, tAlice and tBob, is uniformly
distributed on the interval [0, 1] (Da = Db = U([0, 1])).

Lemma 10.5 In a first price auction among two players with distributions Da = Db of the
private values a, b uniform over the interval [0, 1], the strategies x(a) = a/2 and y(b) = b/2
are in Bayesian-Nash equilibrium.

Proof: Let us consider which bid x is Alice’s optimal response to Bob’s strategy y = b/2,
when Alice has value a. The utility for Alice is 0 if she loses and a− x if she wins and pays
x. Then, uAlice(x) = Pr[Alice wins with bid x]∗ (a−x), where Pr[Alice wins with bid x] =
Prb∼Db [x > y(b)]. Note, that if Alice chooses to bid x ≤ 0 then she never wins. If she chooses
to bid x ≥ 1/2 then she always wins. Therefore we need to consider only x ∈ [0, 1/2]. Let
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us calculate Prb∼Db [x > y(b)] for y(b) = b/2, where b is uniform over the interval [0, 1] and
x ∈ [0, 1/2]:
Prb∼Db [x > b/2] = Prb∼Db [2x > b] = 2x. Hence, uAlice(x) = 2x(a−x). Thus, to optimize the
value of x, we need to find the maximum of the function uAlice(x) over the range x ∈ [0, 1/2].
For the maximization we compute:

∂uAlice(x)

∂x
= 2a− 4x = 0,

and derive x = a/2 as required. Note, that Alice and Bob are symmetric players. Then
Bob’s optimal response to Alice’s strategy, x = a/2, will be y = b/2. �

10.1.8 Revenue Equivalence

Let us now attempt comparing the first price auction and the second price auction. The
social choice function implemented is exactly the same: giving the item to the player with
highest private value. How about the payments? Where does the auctioneer get a higher
revenue?
–The revenue of the first–price auction is max(a/2, b/2).
–The revenue of the second–price auction is min(a, b).
Then, for a first–price auction we get that Ea,b[max(a/2, b/2)] = 1

2
Ea,b[max(a, b)] = 1

2

∫
a

∫
b
max(a, b)

= 1
2

∫
a
[ab|a0 + b2

2
|1a] = 1

4

∫
a
(1 + a2) = 1

4
(a + a3

3
)|10 = 1

3
, where a and b are chosen uniformly in

[0, 1]. Similarly calculations for a second–price auction will reveal that Ea,b[min(a, b)] = 1
3
.

Thus, both auctions generate equivalent revenue in expectation! This is no coincidence.

Theorem 10.6 The Revenue Equivalence Principle
Under certain weak assumptions(to be detailed in the proof body), for every two Bayesian-
Nash mechanisms that implement the same social choice function f , we have:

1. If for some type t0i of player i, the expected payment of player i is the same in the two
mechanisms, then it is the same for every value of ti.

2. If for each player i there exists a type t0i where the two mechanisms have the same ex-
pected payment for player i, then the two mechanisms have the same expected payments
from each player and their expected revenues are the same.

Intuition - we can choose t0i for player i to be zero value for the product. Thus, the
expected payment of player i will be zero.

Corollary 10.7 Every mechanism that allocates the item to the player with highest value
will have identical expected revenue(under mild assumption).
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Proof: Using the revelation principle, we can first limit ourselves to mechanisms that
are direct in the Bayesian-Nash sense. Let us denote by Vi the space of valuation functions
vi(ti, ·) over all ti.
Assumption 1: Each Vi is a convex set.
Take any type t1i ∈ Ti . We will derive a formula for the expected payment for this type that
depends only on the expected payment for type t0i ∈ Ti and on the social choice function f .
Thus any two mechanisms that implement the same social choice function and have identical
expected payments at t0i ∈ Ti will also have identical expected payments at t1i ∈ Ti. For this,
let us now introduce some notations:

• v0 is the valuation vi(t
0
i , ·)(i.e., v0=vi(t

0
i , ·)). Similar, v1 = vi(t

1
i , ·). We will look at

these as vectors in Vi ⊆ RA. Their convex combinations is vλ = λv0 + (1 − λ)v1.
The convexity of Vi implies that vλ ∈ Vi and thus there exists some type tλi such that
vλ = vi(t

λ
i , ·).

• pλi is the expected payment of player i at type tλi : p
λ
i = Et−i [pi(t

λ
i , t−i)].

• wλ is the probability distribution of f(tλi , ·), i.e., for every a ∈ A,
wλ(a) = Prt−i [f(tλi , t−i) = a].

Assumption 2: wλ is continuous and differentiable in λ. (This assumption is not really
needed, but allows us to simply take derivatives and integrals as convenient.)
Then, we have:

1. The expected utility of player i with type tλi that declares tλ
′

i is given by vλ ·wλ
′
− pλ

′
.

2. Since a player with type tλi prefers reporting the truth rather than tλ+εi

⇒ vλ · wλ − pλ ≥ vλ · wλ+ε − pλ+ε

3. Similarly, a player with type tλ+εi prefers reporting the truth rather than tλi .
⇒ vλ+ε · wλ+ε − pλ+ε ≥ vλ+ε · wλ − pλ.

Note, that 2 and 3 follow from strategy proof property.
Re–arranging and combining, we get: vλ(wλ+ε − wλ) ≤ pλ+ε − pλ ≤ vλ+ε(wλ+ε − wλ). Now
divide throughout by ε and let ε approach 0.

⇒ vλ(wλ+ε−wλ)
ε

≤ pλ+ε−pλ
ε
≤ vλ+ε(wλ+ε−wλ)

ε

⇒ vλ+ε → vλ; wλ+ε−wλ
ε

→ ∂wλ(λ)
∂λ

= w
′
(λ)

and thus the derivative of pλ is defined and is continuous and equal to w
′
(λ)vλ. Integrating,

we get p1 = p0 +
∫ 1

0
vλw

′
(λ)dλ.

�
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The revenue equivalence theorem tells us that we cannot increase revenue without chang-
ing appropriately the allocation rule (social choice function) itself. However, if we are willing
to modify the social choice function, then we can certainly increase revenue.

Example: Assume two players(bidders) with valuations distributed uniformly in [0, 1].
Put a reservation price of 1/2, and then sell to the player with maximum bid for a price that
is the maximum of the low bid and the reservation price, 1/2. If both players bid below the
reservation price, then none of them wins. Otherwise, the player with maximum bid wins
and pays the maximum between 1/2 and a second price. Then a quick calculation will reveal
that the expected revenue of this auction is 5/12 which is more than the 1/3 obtained by
the regular second price or first price auctions. Let us calculate the expected revenue of this
auction. Let us analyze three cases:

1. Two players bid below 1/2. This happens with probability 1/4 and the revenue is 0.

2. Both bids greater than or equal 1/2. This happens with probability 1/4 and the
expected revenue is the expected value of the lowest bid assuming that both are
greater than 1/2 - E(min(x, y) | x, y ∈ [0.5, 1]). Then the expected revenue is
1/2+1/3*1/2=2/3(second price).

3. One player bids above 1/2 and second bids below 1/2. This happens with probability
1/2 and the revenue is 1/2.
Putting all this together, we get that expected revenue of this auction is:
1/4*0+1/4*2/3+1/2*1/2=5/12.
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