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Abstract

We show that the existence of a coin-flipping protocol safe against any non-trivial constant
bias (e.g., .499) implies the existence of one-way functions. This improves upon a recent result of
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1 Introduction

A central focus of modern cryptography has been to investigate the weakest possible assumptions
under which various cryptographic primitives exist. This direction of research has been quite fruit-
ful, and minimal assumptions are known for a wide variety of primitives. In particular, it has been
shown that one-way functions (i.e., easy to compute but hard to invert) imply pseudorandom gene-
rators, pseudorandom functions, symmetric-key encryption/message authentication, commitment
schemes, and digital signatures [11, 12, 15, 14, 22, 23, 10, 25], where one-way functions were also
shown to be implied by each of these primitives [17].

An important exception to the above successful characterization is that of coin-flipping (-tossing)
protocols. A coin-flipping protocol [5] allows the honest parties to jointly flip an unbiased coin,
where even a cheating (efficient) party cannot bias the outcome of the protocol by very much.
Specifically, a coin-flipping protocol is δ-bias if no efficient cheating party can make the common
output to be 1, or to be 0, with probability greater than 1

2 +δ. While one-way functions are known to
imply negligible-bias coin-flipping protocols [5, 22, 15], the other direction is less clear. Impagliazzo
and Luby [17] showed that Θ(1/

√
m)-bias coin-flipping protocols imply one-way functions, where m

is the number of rounds in the protocol.1 Recently, Maji, Prabhakaran, and Sahai [19] extended the
above for (1

2 − 1/ poly(n))-bias constant-round protocols, where n is the security parameter. More

recently, Haitner and Omri [13] showed that the above implication holds for (
√

2−1
2 −o(1) ≈ 0.207)-

bias coin-flipping protocols (of arbitrary round complexity). No such implications were known for

any other choice of parameters, and in particular for protocols with bias greater than
√

2−1
2 with

super-constant round complexity.

1.1 Our Result

In this work, we make progress towards answering the question of whether coin-flipping protocols
also imply one-way functions. We show that (even weak) coin-flipping protocols, safe against any
non-trivial bias (e.g., 0.4999), do in fact imply such functions. We note that unlike [13], but like
[17, 19], our result also applies to the so-called weak coin-flipping protocols (see Section 2.3 for the
formal definition of strong and weak coin-flipping protocols). Specifically, we prove the following
theorem.

Theorem 1.1 (informal). For any c > 0, the existence of a (1
2 − c)-bias coin-flipping protocol (of

any round complexity) implies the existence of one-way functions.

Note that 1
2 -bias coin-flipping protocol requires no assumption (i.e., one party flips a coin and

announces the result to the other party). So our result is tight as long as constant biases (i.e.,
independent of the security parameter) are involved.

To prove Theorem 1.1, we observe a connection between the success probability of the best
(valid) attacks in a two-party game (e.g., tic-tac-toe) and the success of the biased-continuation
attack of [13] in winning this game (see more in Section 1.3). The implications of this interesting
connection seem to extend beyond the question at the focus of this paper.

1In [17], only neg(m)-bias was stated. Proving the same implication for Θ(1/
√
m)-bias follows from the proof

outlined in [17] and the result by Cleve and Impagliazzo [8].
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1.2 Related Results

As mentioned above, Impagliazzo and Luby [17] showed that negligible-bias coin-flipping protocols
imply one-way functions. Maji et al. [19] proved the same for (1

2 − o(1))-bias yet constant-round

protocols. Finally, Haitner and Omri [13] showed that the above implication holds for
√

2−1
2 −o(1) ≈

0.207)-bias (strong) coin-flipping protocols (of arbitrary round complexity). Results of weaker
complexity implications are also known.

Zachos [26] has shown that non-trivial (i.e., (1
2 − o(1))-bias), constant-round coin-flipping pro-

tocols imply that NP * BPP, where Maji et al. [19] proved the same implication for (1
4 −o(1))-bias

coin-flipping protocols of arbitrary round complexity. Finally, it is well known that the existence
of non-trivial coin-flipping protocols implies that PSPACE * BPP. Apart from [13], all the above
results extend to weak coin-flipping protocols. See Table 1 for a summary.

Implication Protocol type Paper

Existence of OWFs (1
2 − c)-bias, for some c > 0 This work

Existence of OWFs (
√

2−1
2 − o(1))-bias Haitner and Omri [13]2

Existence of OWFs (1
2 − o(1))-bias, constant round Maji et al. [19]

Existence of OWFs Negligible bias Impagliazzo and Luby [17]

NP * BPP (1
4 − o(1))-bias Maji et al. [19]

NP * BPP (1
2 − o(1))-bias, constant round Zachos [26]

PSPACE * BPP Non-trivial Common knowledge

Table 1: Results summary.

Information theoretic coin-flipping protocols (i.e., whose security holds against all-powerful
attackers) were shown to exist in the quantum world; Mochon [20] presented an ε-bias quantum

weak coin-flipping protocol for any ε > 0. Chailloux and Kerenidis [6] presented a
(√

2−1
2 − ε

)
-bias

quantum strong coin-flipping protocol for any ε > 0 (this bias was shown in [18] to be tight). A
key step in [6] is a reduction from strong to weak coin-flipping protocols, which holds also in the
classical world.

A related line of work considers fair coin-flipping protocols. In this setting the honest party is
required to always output a bit, whatever the other party does. In particular, a cheating party might
bias the output coin just by aborting. We know that one-way functions imply fair (1/

√
m)-bias

coin-flipping protocols [1, 7], where m is the round complexity of the protocol, and this quantity is
known to be tight for o(m/ logm)-round protocols with fully black-box reductions [9]. Oblivious
transfer, on the other hand, implies fair 1/m-bias protocols [21, 2] (this bias was shown in [7] to be
tight).

1.3 Our Techniques

The following is a rather elaborate, high-level description of the ideas underlying our proof.
That the existence of a given (cryptographic) primitive implies the existence of one-way functi-

ons is typically proven by looking at the primitive core function — an efficiently computable

2Only holds for strong coin-flipping protocols.
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function (not necessarily unique) whose inversion on uniformly chosen outputs implies breaking the
security of the primitive.3 For private-key encryption, for instance, a possible core function is the
mapping from the inputs of the encryption algorithm (i.e., message, secret key, and randomness)
into the ciphertexts. Assuming that one has defined such a core function for a given primitive,
then, by definition, this function should be one-way. So it all boils down to finding, or proving
the existence of, such a core function for the primitive under consideration. For a non-interactive
primitive, finding such a core function is typically easy. In contrast, for an interactive primitive,
finding such a core function is, at least in many settings, a much more involved task. The reason
is that in order to break an interactive primitive, the attacker typically needs, for a given function,
pre-images for many different outputs, where these outputs are chosen adaptively by the attacker,
after seeing the pre-images to the previous outputs. As a result, it is challenging to find a single
function, or even finitely many functions, whose output distributions (on uniformly chosen input)
match the distribution of the pre-images the attacker needs.4

The only plausible candidate to serve as a core function of a coin-flipping protocol would seem
to be its transcript function: the function that maps the parties’ randomness into the resulting
protocol transcript (i.e., the transcript produced by executing the protocol with this randomness).
In order to bias the output of an m-round coin-flipping protocol by more than O( 1√

m
), a super-

constant number of adaptive inversions of the transcript function seems necessary. Yet we managed
to prove that the transcript function is a core function of any (constant-bias) coin-flipping protocol.
This is done by designing an adaptive attacker for any such protocol whose query distribution is
“not too far” from the output distribution of the transcript function (when invoked on uniform
inputs). Since our attacker, described below, is not only adaptive, but also defined in a recursive
manner, proving that it possesses the aforementioned property was one of the major challenges we
faced.

In what follows, we give a high-level overview of our attacker that ignores computational issues
(i.e., assumes it has a perfect inverter for any function). We then explain how to adjust this attacker
to work with the inverter of the protocol’s transcript function.

1.3.1 Optimal Valid Attacks and The Biased-Continuation Attack

The crux of our approach lies in an interesting connection between the optimal attack on a coin-
flipping protocol and the more feasible, recursive biased-continuation attack. The latter attack
recursively applies the biased-continuation attack used by Haitner and Omri [13] to achieve their
constant-bias attack (called there, the random-continuation attack) and is the basis of our efficient
attack (assuming one-way functions do not exist) on coin-flipping protocols. The results outlining
the aforementioned connection, informally stated in this section and formally stated and proven in
Section 3, hold for any two-player full information game with binary common outcome.

Let Π = (A,B) be a coin-flipping protocol (i.e., the common output of the honest parties is
a uniformly chosen bit). In this discussion we restrict ourselves to analyzing attacks that, when

3For the sake of this informal discussion, inverting a function on a given value means returning a uniformly chosen
preimage of this value.

4If the attacker makes a constant number of queries, one can overcome the above difficulty by defining a set of
core functions f1, . . . , fk, where f1 is the function defined by the primitive, f2 is the function defined by the attacker
after making the first inversion call, and so on. Since the evaluation time of fi+1 is polynomial in the evaluation
time of fi (since evaluating fi+1 requires a call to an inverter of fi), this approach fails miserably for attackers of
super-constant query complexity.
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carried out by the left-hand party, i.e., A, are used to bias the outcome towards one, and when
carried out by the right-hand party, i.e., B, are used to bias the outcome towards zero. Analogous
statements hold for opposite attacks (i.e., attacks carried out by A and used to bias towards zero,
and attacks carried out by B and used to bias towards one). The optimal valid attacker A carries
out the best attack A can employ (using unbounded power) to bias the protocol towards one,
while sending valid messages — ones that could have been sent by the honest party. The optimal
valid attacker B, carrying out the best attack B can employ to bias the protocol towards zero, is
analogously defined. Since, without loss of generality, the optimal valid attackers are deterministic,
the expected outcome of (A,B) is either zero or one. As a first step, we give a lower bound on
the success probability of the recursive biased-continuation attack carried out by the party winning
the aforementioned game. As this lower bound might not be sufficient for our goal (it might be
less than constant) — and this is a crucial point in the description below — our analysis takes
additional steps to give an arbitrarily-close-to-one lower bound on the success probability of the
recursive biased-continuation attack carried out by some party, which may or may not be the same
party winning the aforementioned game.5

Assume that A is the winning party when playing against B. Since A sends only valid messages,
it follows that the expected outcome of (A,B), i.e., honest A against the optimal attacker for B,
is larger than zero (since A might send the optimal messages “by mistake”). Let OPTA(Π) be the
expected outcome of the protocol (A,B) and let OPTB(Π) be 1 minus the expected outcome of the
protocol (A,B). The above observation yields that OPTA(Π) = 1, while OPTB(Π) = 1 − α < 1.
This gives rise to the following question: what does give A an advantage over B?

We show that if OPTB(Π) = 1−α, then there exists a set SA of 1-transcripts, full transcripts in
which the parties’ common output is 1,6 that is α-dense (meaning that the chance that a random
full transcript of the protocol is in the set is α) and is “dominated by A”. The A-dominated set
has an important property — its density is “immune” to any action B might take, even if B is
employing its optimal attack; specifically, the following holds:

Pr〈A,B〉

[
SA
]

= Pr〈A,B〉

[
SA
]

= α, (1)

where 〈Π′〉 samples a random full transcript of protocol Π′. It is easy to see that the above holds
if A controls the root of the tree and has a 1-transcript as a direct descendant; see Figure 1 for a
concrete example. The proof of the general case can be found in Section 3. Since the A-dominated
set is B-immune, a possible attack for A is to go towards this set. Hence, what seems like a feasible
adversarial attack for A is to mimic A’s attack by hitting the A-dominated set with high probability.
It turns out that the biased-continuation attack of [13] does exactly that.

The biased-continuation attacker A(1), taking the role of A in Π and trying to bias the output
of Π towards one, is defined as follows: given that the partial transcript is trans, algorithm A(1)

samples a pair of random coins (rA, rB) that is consistent with trans and leads to a 1-transcript, and
then acts as the honest A on the random coins rA, given the transcript trans. In other words, A(1)

5That the identity of the winner in (A,B) cannot be determined by the recursive biased-continuation attack is
crucial. Since we show that the latter attack can be efficiently approximated assuming one-way functions do not exist,
the consequences of revealing this identity would be profound. It would mean that we can estimate the outcome of
the optimal attack (which is implemented in PSPACE) using only the assumption that one-way functions do not
exist.

6Throughout, we assume without loss of generality that the protocol’s transcript determines the common output
of the parties.
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takes the first step of a random continuation of (A,B) leading to a 1-transcript. (The attacker B(1),
taking the role of B and trying to bias the outcome towards zero, is analogously defined.) Haitner
and Omri [13] showed that for any coin-flipping protocol, if either A or B carries out the biased-

continuation attack towards one, the outcome of the protocol will be biased towards one by
√

2−1
2

(when interacting with the honest party).7 Our basic attack employs the above biased-continuation
attack recursively. Specifically, for i > 1 we consider the attacker A(i) that takes the first step of a
random continuation of (A(i−1),B) leading to a 1-transcript, letting A(0) ≡ A. The attacker B(i) is
analogously defined. Our analysis takes a different route from that of [13], whose approach is only

applicable for handling bias up to
√

2−1
2 and cannot be applied to weak coin-flipping protocols.8

Instead, we analyze the probability of the biased-continuation attacker to hit the dominated set we
introduced above.

Let trans be a 1-transcript of Π in which all messages are sent by A. Since A(1) picks a random
1-transcript, and B cannot force A(1) to diverge from this transcript, the probability to produce
trans under an execution of (A(1),B) is doubled with respect to this probability under an execution
of (A,B) (assuming the expected outcome of (A,B) is 1/2). The above property, that B cannot
force A(1) to diverge from a transcript, is in fact the B-immune property of the A-dominated set.
A key step we take is to generalize the above argument to show that for the α-dense A-dominated
set SA (which exists assuming that OPTB(Π) = 1− α < 1), it holds that:

Pr〈A(1),B〉
[
SA
]
≥ α

val(Π)
, (2)

where val(Π′) is the expected outcome of Π′. Namely, in (A(1),B) the probability of hitting the set
SA of 1-transcripts is larger by a factor of at least 1

val(Π) than the probability of hitting this set in
the original protocol Π. Again, it is easy to see that the above holds if A controls the root of the
tree and has a 1-transcript as a direct descendant; see Figure 1 for a concrete example. The proof
of the general case can be found in Section 3.

Consider now the protocol (A(1),B). In this protocol, the probability of hitting the set SA is at
least α

val(Π) , and clearly the set SA remains B-immune. Hence, we can apply Equation (2) again, to
deduce that

Pr〈A(2),B〉
[
SA
]

= Pr〈(A(1))(1),B〉
[
SA
]
≥

Pr〈A(1),B〉
[
SA
]

val(A(1),B)
≥ α

val(Π) · val(A(1),B)
. (3)

Continuing it for κ iterations yields that

val(A(κ),B) ≥ Pr〈A(κ),B〉
[
SA
]
≥ α∏κ−1

i=0 val(A(i),B)
. (4)

7They show that the same holds for the analogous attackers carrying out the biased-continuation attack towards
zero.

8A key step in the analysis of Haitner and Omri [13] is to consider the “all-cheating protocol” (A(1),1,B(1),1),
where A(1),1 and B(1),1 taking the roles of A and B respectively, and they both carry out the biased-continuation
attack trying to bias the outcome towards one (as opposed to having the attacker taking the role of B trying to bias
the outcome towards zero, as in the discussion so far). Since, and this is easy to verify, the expected outcome of
(A(1),1,B(1),1) is one, using symmetry one can show that the expected outcome of either (A(1),1,B) or (A,B(1),1) is
at least 1√

2
, yielding a bias of 1√

2
− 1

2
. As mentioned in [13], symmetry cannot be used to prove a bias larger than

1√
2
− 1

2
.
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A

1

α1

B

0

β1

A

1

α2

0

1− α2

1− β1

1− α1

Figure 1: Coin-flipping protocol Π. The label of an internal node (i.e., partial transcript) denotes
the name of the party controlling it (i.e., the party that sends the next message given this partial
transcript), and that of a leaf (i.e., full transcript) denotes its value — the parties’ common output
once reaching this leaf. Finally, the label on an edge leaving a node u to node u′ denotes the
probability that a random execution of Π visits u′ once in u.
Note that OPTA(Π) = 1 and OPTB(Π) = 1− α1. The A-dominated set SA in this case consists of
the single 1-leaf to the left of the root. The conditional protocol Π′ is the protocol rooted in the
node to the right of the root (of Π), and the B′-dominated set SB consists of the single 0-leaf to
the left of the root of Π′.

So, modulo some cheating,9 it seems that we are in good shape. Taking, for example, κ =
log( 1

α)/ log( 1
0.9), Equation (4) yields that val(A(κ),B) > 0.9. Namely, if we assume that A has

an advantage over B, then by recursively applying the biased-continuation attack for A enough
times, we arbitrarily bias the expected output of the protocol towards one. Unfortunately, if this
advantage (i.e., α = (1 − OPTB(Π))) is very small, which is the case in typical examples, the
number of recursions required might be linear in the protocol depth (or even larger). Given the
recursive nature of the above attack, the running time of the described attacker is exponential. To
overcome this obstacle, we consider not only the dominated set, but additional sets that are “close
to” being dominated. Informally, we can say that a 1-transcript belongs to the A-dominated set
if it can be generated by an execution of (A,B). In other words, the probability, over B’s coins,
that a transcript generated by a random execution of (A,B) belongs to the A-dominated set is
one. We define a set of 1-transcripts that does not belong to the A-dominated set to be “close to”
A-dominated if there is an (unbounded) attacker Â, such that the probability, over B’s coins, that
a transcript generated by a random execution of (Â,B) belongs to the set is close to one. These
sets are formally defined via the notion of conditional protocols, discussed next.

Conditional Protocols. Let Π = (A,B) be a coin-flipping protocol in which there exists an
A-dominated set SA of density α > 0. Consider the “conditional” protocol Π′ = (A′,B′), resulting
from conditioning on not hitting the set SA. Namely, the message distribution of Π′ is that induced

9The actual argument is somewhat more complicated than the one given above. To ensure the above argument
holds we need to consider measures over the 1-transcripts (and not sets). In addition, while (the measure variant of)
Equation (3) is correct, deriving it from Equation (2) takes some additional steps.
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by a random execution of Π that does not generate transcripts in SA.10 See Figure 1 for a concrete
example. We note that the protocol Π′ might not be efficiently computable (even if Π is), but this
does not bother us, since we only use it as a thought experiment.

We have effectively removed all the 1-transcripts dominated by A (the set SA must contain all
such transcripts; otherwise OPTB(Π) would be smaller than 1 − α). Thus, the expected outcome
of (A′,B′) is zero, where A′ and B′ are the optimal valid attackers of the parties in the conditi-
onal protocol Π′. Therefore, OPTB′(Π

′) = 1 and OPTA′(Π
′) = 1 − β < 1. It follows from this

crucial observation that there exists a B′-dominated SB of density β, over the 0-transcripts of Π′.
Applying a similar argument to that used for Equation (4) yields that for large enough κ, the
biased-continuation attacker B′(κ), playing the role of B′, succeeds in biasing the outcome of Π′

toward zero, where κ is proportional to log( 1
β ). Moreover, if α is small, the above yields that B(κ)

does almost equally well in the original protocol Π. If β is also small, we can now consider the
conditional protocol Π′′, obtained by conditioning Π′ on not hitting the B′-dominated set, and so
on.

By iterating the above process enough times, the A-dominated sets cover all the 1-transcripts,
and the B-dominated sets cover all the 0-transcripts.11 Assume that in the above iterated process,
the density of the A-dominated sets is the first to go beyond ε > 0. It can be shown — and this a
key technical contribution of this paper — that it is almost as good as if the density of the initial
set SA was ε.12 We can now apply the above analysis and conclude that for any constant ε > 0,
there exists a constant κ = κ(ε) such that val(A(κ),B) > 1− ε.13

1.3.2 Using the Transcript Inverter

We have seen above that for any constant ε, by recursively applying the biased-continuation attack
for constantly many times, we get an attack that biases the outcome of the protocol by 1

2 − ε.
The next thing is to implement the above attack efficiently, under the assumption that one-way
functions do not exist. Given a partial transcript u of protocol Π, we wish to return a uniformly
chosen full transcript of Π that is consistent with u and the common outcome it induces is one.
Biased continuation can be reduced to the task of finding honest continuation: returning a uniformly
chosen full transcript of Π that is consistent with u. Assuming honest continuation can be found
for the protocol, biased-continuation can also be found by calling the honest continuation many
times, until a transcript whose output is one is obtained. The latter can be done efficiently, as long
as the value of the partial transcript u — the expected outcome of the protocol conditioned on u,
is not too low. (If it is too low, too much time might pass before a full transcript leading to one
is obtained.) Ignoring this low value problem, and noting that honest continuation of a protocol
can be reduced to inverting the protocol’s transcript function, all we need to do to implement A(i)

10More formally, the conditional protocol Π′ is defined as follows. Let trans be a partial transcript, and let p be the
probability, in Π, that the message following trans is 0. Let α be the probability of generating a transcript in SA for
which trans is a prefix and similarly let α0 be the probability of generating a transcript in SA for which trans ◦ 0 is a
prefix (trans ◦ 0 is the transcript trans followed by the message 0). Then, the probability that the message following
trans is 0 in Π′ is p · (1− α0)/(1− α).

11When considering measures and not sets, as done in the actual proof, this covering property is not trivial.
12More accurately, let S̃A be the union of these 1-transcript sets and let α̃ be the density of S̃A in Π. Then

val(A(κ),B) ≥ Pr〈A(κ),B〉
[
S̃A
]
≥ α̃∏κ−1

i=0 val(A(i),B)
.

13The assumption that the density of the A-dominated sets is the first to go beyond ε > 0 is independent of the
assumption that A wins in the zero-sum game (A,B). Specifically, the fact that A(κ) succeeds in biasing the protocol
does not guarantee that A, which we only know how to implemented in PSPACE, is the winner of (A,B).

7



is to invert the transcript functions of the protocols (A,B), (A(1),B), . . . , (A(i−1),B). Furthermore,
noting that the attackers A(1), . . . ,A(i−1) are stateless, it suffices to have the ability to invert only
the transcript function of (A,B).

So attacking a coin-flipping protocol Π boils down to inverting the transcript function fΠ of Π,
and making sure we are not doing that on low value transcripts. Assuming one-way functions do not
exist, there exists an efficient inverter Inv for fΠ that is guaranteed to work well when invoked on
random outputs of fΠ (i.e., when fΠ is invoked on the uniform distribution; nothing is guaranteed
for distributions far from uniform). By the above discussion, algorithm Inv implies an efficient
approximation of A(i), as long as the partial transcripts attacked by A(i) are neither low-value nor
unbalanced (by low-value transcript we mean that the expected outcome of the protocol conditioned
on the transcript is low; by unbalanced transcript we mean that its density with respect to (A(i),B)
is not too far from its density with respect to (A,B)). Whereas the authors of [13] proved that
the queries of A(1) obey the two conditions with sufficiently high probability, we were unable to
prove this (and believe it is untrue) for the queries of A(i), for i > 1. Thus, we simply cannot argue
that A(i) has an efficient approximation, assuming one-way functions do not exist. Fortunately, we
managed to prove the above for the “pruned” variant of A(i), defined below.

Unbalanced and low-value transcripts. Before defining our final attacker, we relate the pro-
blem of unbalanced transcripts to that of low-value transcripts. We say that a (partial) transcript
u is γ-unbalanced if the probability that u is visited with respect to a random execution of (A(1),B)
is at least γ times larger than with respect to a random execution of (A,B). Furthermore, we say
that a (partial) transcript u is δ-small if the expected outcome of (A,B), conditioned on visiting
u, is at most δ. We prove (a variant of) the following statement. For any δ > 0 and γ > 1, there
exists c that depends on δ, such that

Pr`←〈A(1),B〉[` has a γ-unbalanced prefix but no δ-small prefix] ≤ 1

γc
. (5)

Namely, as long as (A(1),B) does not visit low-value transcript, it is only at low risk to signi-
ficantly deviate (in a multiplicative sense) from the distribution induced by (A,B). Equation (5)
naturally extends to recursive biased-continuation attacks. It also has an equivalent form for the
attacker B(1), trying to bias the protocol towards zero, with respect to δ-high transcripts — the
expected outcome of Π, conditioned on visiting the transcript, is at least 1− δ.

The pruning attacker. At last we are ready to define our final attacker. To this end, for protocol
Π = (A,B) we define its δ-pruned variant Πδ = (Aδ,Bδ), where δ ∈ (0, 1

2), as follows. As long as
the execution does not visit a δ-low or δ-high transcript, the parties act as in Π. Once a δ-low
transcript is visited, only the party B sends messages, and it does so according to the distribution
induced by Π. If a δ-high transcript is visited (and has no δ-low prefix), only the party A sends
messages, and again it does so according to the distribution induced by Π.

Since the transcript distribution induced by Πδ is the same as of Π, protocol Πδ is also a coin-
flipping protocol. We also note that Πδ can be implemented efficiently assuming one-way functions
do not exist (simply use the inverter of Π’s transcript function to estimate the value of a given

transcript). Finally, by Equation (5), A
(i)
δ (i.e., recursive biased-continuation attacks for Πδ) can

be efficiently implemented, since there are no low-value transcripts where A needs to send the next
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message. (Similarly, B
(i)
δ can be efficiently implemented since there are no high-value transcripts

where B needs to send the next message.)
It follows that for any constant ε > 0, there exists constant κ such that either the expected

outcome of (A
(κ)
δ ,Bδ) is a least 1 − ε, or the expected outcome of (Aδ,B

(κ)
δ ) is at most ε. Assume

for concreteness that it is the former case. We define our pruning attacker A(κ,δ) as follows. When

playing against B, the attacker A(κ,δ) acts like A
(κ)
δ would when playing against Bδ. Namely, the

attacker pretends that it is in the δ-pruned protocol Πδ. But once a low- or high-value transcript
is reached, A(κ,δ) acts honestly in the rest of the execution (like A would).

It follows that until a low- or high-value transcript has been reached for the first time, the

distribution of (A(κ,δ),B) is the same as that of (A
(κ)
δ ,Bδ). Once a δ-low transcript is reached, the

expected outcome of both (A(κ,δ),B) and (A
(κ)
δ ,Bδ) is δ, but when a δ-high transcript is reached,

the expected outcome of (A(κ,δ),B) is (1 − δ) (since it plays like A would), where the expected

outcome of (A
(κ)
δ ,Bδ) is at most one. All in all, the expected outcome of (A(κ,δ),B) is δ-close to

that of (A
(κ)
δ ,Bδ), and thus the expected outcome of (A(κ,δ),B) is at least 1 − ε − δ. Since ε and

δ are arbitrary constants, we have established an efficient attacker to bias the outcome of Π by a
value that is an arbitrary constant close to one.

1.4 Open Questions

Does the existence of any non-trivial coin-flipping protocol (i.e., bias 1
2−

1
poly(n)) imply the existence

of one-way functions? This is the main question left open. Answering it would fully resolve the
computational complexity of coin-flipping protocols.

Paper Organization

General notations and definitions used throughout the paper are given in Section 2. Our ideal
attacker (which has access to a perfect sampler) to bias any coin-flipping protocol is presented and
analyzed in Section 3, while in Section 4 we show how to modify the above attacker to be useful
when the perfect sampler is replaced with a one-way function inverter.
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2 Preliminaries

2.1 Notations

We use lowercase letters for values, uppercase for random variables, uppercase calligraphic letters
(e.g., U) to denote sets, boldface for vectors, and uppercase sans-serif (e.g., A) for algorithms (i.e.,
Turing Machines). All logarithms considered here are in base two. Let N denote the set of natural
numbers, where 0 is considered as a natural number, i.e., N = {0, 1, 2, 3, . . .}. For n ∈ N, let
(n) = {0, . . . , n} and if n is positive let [n] = {1, · · · , n}, where [0] = ∅. For a ∈ R and b ≥ 0,
let [a ± b] stand for the interval [a − b, a + b], (a ± b] for (a − b, a + b] etc. We let ◦ denote string
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concatenation. For a non-empty string t ∈ {0, 1}∗ and i ∈ [|t|], let ti be the i’th bit of t, and for
i, j ∈ [|t|] such that i < j, let ti,...,j = ti ◦ ti+1 ◦ . . . ◦ tj . The empty string is denoted by λ, and for a
non-empty string, let t1,...,0 = λ. We let poly denote the set all polynomials and let pptm denote
a probabilistic algorithm that runs in strictly polynomial time. Given a pptm algorithm A, we let
A(u; r) be an execution of A on input u given randomness r. A function ν : N→ [0, 1] is negligible,
denoted ν(n) = neg(n), if ν(n) < 1/p(n) for every p ∈ poly and large enough n.

Given a random variable X, we write x← X to indicate that x is selected according to X. Simi-
larly, given a finite set S, we let s← S denote that s is selected according to the uniform distribution
on S. We adopt the convention that when the same random variable occurs several times in an
expression, all occurrences refer to a single sample. For example, Pr[f(X) = X] is defined to be the
probability that when x← X, we have f(x) = x. We write Un to denote the random variable distri-
buted uniformly over {0, 1}n. The support of a distribution D over a finite set U , denoted Supp(D),
is defined as {u ∈ U : D(u) > 0}. The statistical distance of two distributions P and Q over a finite
set U , denoted as SD(P,Q), is defined as maxS⊆U |P (S)−Q(S)| = 1

2

∑
u∈U |P (u)−Q(u)|.

A measure is a function M : Ω → [0, 1]. The support of M over a set Ω, denoted Supp(M), is
defined as {ω ∈ Ω: M(ω) > 0}. A measure M over Ω is the zero measure if Supp(M) = ∅.

2.2 Two-Party Protocols

The following discussion is restricted to no-input (possibly randomized), two-party protocols, where
each message consists of a single bit. We do not assume, however, that the parties play in turns
(i.e., the same party might send two consecutive messages), but only that the protocol’s transcript
uniquely determines which party is playing next (i.e., the protocol is well defined). In an m-round
protocol, the parties exchange exactly m messages (i.e., bits). The tuple of the messages sent so far
in any partial execution of a protocol is called the (communication) transcript of this execution.

We write that a protocol Π is equal to (A,B), when A and B are the interactive Turing Machines
that control the left- and right-hand party respectively, of the interaction according to Π. For a
party C interacting according to Π, let CΠ be the other party in Π, where if Π is clear from the
context, we simply write C.

If A and B are deterministic, then trans(A,B) denotes the uniquely defined transcript of the
protocol (A,B). If A and B are randomized, we let ρA and ρB be the (maximal) number of random
bits used by A and B respectively. For rA ∈ {0, 1}ρA , A(·; rA) stands for the variant of A when rA are
set as its random coins, and A(u; rA) is the message sent by A(·; rA) when given a partial transcript
u, for which the party A sends the next message. The above notations naturally extend for the party
B as well. The transcript of the protocol (A(·; rA),B(·; rB)) is denoted by trans(A(·; rA),B(·; rB)).
For a (partial) transcript u of a protocol Π = (A,B), let ConsisΠ(u) be the distribution of choosing
(rA, rB)← {0, 1}ρA × {0, 1}ρB conditioned on trans(A(·; rA),B(·; rB))1,...,|u| = u.

2.2.1 Binary Trees

Definition 2.1 (binary trees). For m ∈ N, let T m be the complete directed binary tree of height m.
We naturally identify the vertices of T m with binary strings: the root is denoted by the empty string
λ, and the left- and right-hand children of a non-leaf node u are denoted by u0 and u1 respectively.

• Let V(T m), E(T m), root(T m) and L(T m) denote the vertices, edges, root and leaves of T m
respectively.
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• For u ∈ V(T m) \ L(T m), let T mu be the sub-tree of T m rooted at u.

• For u ∈ V(T m), let descm(u) [resp., descm(u)] be the descendants of u in T m including u
[resp., excluding u], and for U ⊆ V(T m) let descm(U) =

⋃
u∈U descm(u) and descm(U) =⋃

u∈U descm(u).

• The frontier of a set U ⊆ V(T m), denoted by frnt(U), is defined as U \ descm(U).14

When m is clear from the context, it is typically omitted from the above notation. We will
make use of the following simple observations.

Proposition 2.2. For subsets A and B of V(T ), it holds that desc(A) ⊆ desc
(
A \ desc(B)

)
∪

desc(B \ A).

Proof. Let u ∈ desc(A) and let v ∈ frnt(A) be such that u ∈ desc(v). We show that
v ∈ desc

(
A \ desc(B)

)
∪ desc(B \ A). Clearly, if v /∈ desc(B) we are done. Assume that v ∈ desc(B),

namely, that there exists w ∈ B such that v ∈ desc(w). Since v is in the frontier of A it follows
that w /∈ A. Hence, v ∈ desc(B \ A), and proof follows. �

Proposition 2.3. For subsets A, B and C of V(T ), it holds that desc(A) ⊆
desc((A ∪ B) \ desc(C)) ∪ desc

(
C \ desc(B)

)
.

Proof. Let u ∈ desc(A) and let v ∈ frnt(A) be such that u ∈ desc(v). We show that
v ∈ desc((A ∪ B) \ desc(C)) ∪ desc

(
C \ desc(B)

)
. Clearly, if v /∈ desc(C) we are done. Assume

that v ∈ desc(C), and let w ∈ frnt(C) such that v ∈ desc(w). If w /∈ desc(B), then w ∈ C \ desc(B),
thus v ∈ desc(C \ desc(B)) and we are done. Otherwise, if w ∈ desc(B), then since w is on the
frontier of C it follows that w ∈ desc(B \ desc(C)) and thus also v ∈ desc(B \ desc(C)). The proof
follows. �

2.2.2 Protocol Trees

We naturally identify a (possibly partial) transcript of an m-round, single-bit message protocol with
a rooted path in T m. That is, the transcript t ∈ {0, 1}m is identified with the path λ, t1, t1,2, . . . , t.

Definition 2.4 (tree representation of a protocol). We make use of the following definitions with
respect to an m-round protocol Π = (A,B), and C ∈ {A,B}.

• Let round(Π) = m, let T (Π) = T m, and for X ∈ {V, E , root,L} let X(Π) = X(T (Π)).

• The edge distribution induced by a protocol Π is the function eΠ : E(Π) → [0, 1], defined as
eΠ(u, v) being the probability that the transcript of a random execution of Π visits v, conditi-
oned that it visits u.

• For u ∈ V(Π), let vΠ(u) = eΠ(λ, u1) · eΠ(u1, u1,2) . . . · eΠ(u1,...,|u|−1, u), and let the leaf distri-
bution induced by Π be the distribution 〈Π〉 over L(Π), defined by 〈Π〉(u) = vΠ(u).

• The party that sends the next message on transcript u is said to control u, and we denote
this party by cntrlΠ(u). We call cntrlΠ : V(Π)→ {A,B} the control scheme of Π. Let CtrlCΠ =
{u ∈ V(Π): cntrlΠ(u) = C}.

14This is the set of all “maximal” transcripts in U under the partial order subsequence relation.
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For S ⊆ V(Π), let Pr〈Π〉[S] be abbreviation for Pr`←〈Π〉[` ∈ S]. Note that every function
e : E(T m) → [0, 1] with e(u, u0) + e(u, u1) = 1 for every u ∈ V(T m) \ L(T m) with v(u) > 0,
along with a control scheme (active in each node), defines a two party, m-round, single-bit message
protocol (the resulting protocol might be inefficient). The analysis in Section 3 naturally gives
rise to functions over binary trees that do not correspond to any two-party execution. We identify
the “protocols” induced by such functions by the special symbol ⊥. We let E〈⊥〉[f ] = 0, for any
real-value function f .

The view of a protocol as an edge-distribution function allows us to consider protocols induced
by sub-trees of T (Π).

Definition 2.5 (sub-protocols). Let Π be a protocol and let u ∈ V(Π). Let (Π)u denote the protocol
induced by the function eΠ on the sub-tree of T (Π) rooted at u, if vΠ(u) > 0, and let (Π)u =⊥
otherwise.

Namely, the protocol (Π)u is the protocol Π conditioned on u being the transcript of the first |u|
rounds. When convenient, we remove the parentheses from notation, and simply write Πu. Two sub-
protocols of interest are Π0 and Π1, induced by eΠ and the trees rooted at the left- and right-hand
descendants of root(T ). For a measure M : L(Π) → [0, 1] and u ∈ V(Π), let (M)u : L(Πu) → [0, 1]
be the restricted measure induced by M on the sub-protocol Πu. Namely, for any ` ∈ L(Πu),
(M)u(`) = M(`).

2.2.3 Tree Value

Definition 2.6 (tree value). Let Π be a two-party protocol that at the end of any of its executions,
the parties output the same real value. Let χΠ : L(Π)→ R be the common output function of Π —
χΠ(`) is the common output of the parties in an execution ending in `.15 Let val(Π) = E〈Π〉[χΠ],
and for x ∈ R let Lx(Π) = {` ∈ L(Π): χΠ(`) = x}.

Throughout this paper we restrict ourselves to protocols whose common output is either one or
zero, i.e., the image of χΠ is the set {0, 1}. The following immediate fact states that the expected
value of a measure, whose support is a subset of the 1-leaves of some protocol, is always smaller
than the value of that protocol.

Fact 2.7. Let Π be a protocol and let M be a measure over L1(Π). Then E〈Π〉[M ] ≤ val(Π).

We will also make use of the following proposition, showing that if two protocols are close and
there exists a set of nodes whose value (the probability that the common output is one conditioned
on reaching these nodes) is large in one protocol but small in the other, then the probability of
reaching this set is small.

Proposition 2.8. Let Π = (A,B) and Π′ = (C,D) be two m-round protocols with χΠ ≡ χΠ′, and let
F ⊆ V(Π) be a frontier. Assume that SD(〈Π〉, 〈Π′〉) ≤ ε , that Pr〈Π〉[L1(Π) | desc(F)] ≤ α, and that

Pr〈Π′〉[L1(Π) | desc(F)] ≥ β, for some ε > 0 and 0 ≤ α < β ≤ 1. Then, Pr〈Π〉[desc(F)] ≤ ε · 1+β
β−α .

Note that since both Π and Π′ have m-rounds, it holds that V(Π) = V(Π′) and L(Π) = L(Π′).
Moreover, since χΠ ≡ χΠ′ , it also holds that L1(Π), the set of 1-leaves in Π, is identical to L1(Π′),
the set of 1-leaves in Π′.

15Conditioned that an execution of the protocol generates a transcript `, the parties’ coins are in a product
distribution. Hence, if the parties always have the same output, then the protocol’s output is indeed a (deterministic)
function of its transcript.
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Proof. Let µ = Pr〈Π〉[desc(F)], µ′ = Pr〈Π′〉[desc(F)] and S = L1(Π) ∩ desc(F). It follows that

Pr〈Π〉[S] = Pr〈Π〉[desc(F)] · Pr〈Π〉[L1(Π) | desc(F)] ≤ µ · α (6)

and that

Pr〈Π′〉[S] = Pr〈Π′〉[desc(F)] · Pr〈Π′〉[L1(Π) | desc(F)] ≥ µ′ · β. (7)

Moreover, since SD(〈Π〉, 〈Π′〉) ≤ ε, it follows that µ′ ≥ µ − ε and that Pr〈Π′〉[S] − Pr〈Π〉[S] ≤ ε.
Putting it all together, we get

ε ≥ Pr〈Π′〉[S]− Pr〈Π〉[S]

≥ µ′ · β − µ · α
≥ (µ− ε) · β − µ · α
= (β − α) · µ− β · ε,

which implies the proposition. �

2.2.4 Protocol with Common Inputs

We sometimes would like to apply the above terminology to a protocol Π = (A,B) whose parties get
a common security parameter 1n. This is formally done by considering the protocol Πn = (An,Bn),
where Cn is the algorithm derived by “hardwiring” 1n into the code of C.

2.3 Coin-Flipping Protocols

In a coin-flipping protocol two parties interact and in the end have a common output bit. Ideally,
this bit should be random and no cheating party should be able to bias its outcome to either
direction (if the other party remains honest). For interactive, probabilistic algorithms A and B,
and x ∈ {0, 1}∗, let out(A,B)(x) denote the parties’ output, on common input x.

Definition 2.9 ((strong) coin-flipping). A ppt protocol (A,B) is a δ-bias coin-flipping protocol if
the following holds.

Correctness: Pr[out(A,B)(1n) = 0] = Pr[out(A,B)(1n) = 1] = 1
2 .

Security: Pr[out(A∗,B)(1n) = c],Pr[out(A,B∗)(1n) = c] ≤ 1
2 + δ(n), for any pptm’s A∗ and B∗, bit

c ∈ {0, 1} and large enough n.

Sometimes, e.g., if the parties have (a priori known) opposite preferences, an even weaker
definition of coin-flipping protocols is of interest.

Definition 2.10 (weak coin-flipping). A ppt protocol (A,B) is a weak δ-bias coin-flipping protocol
if the following holds.

Correctness: Same as in Definition 2.9.

Security: There exist bits cA 6= cB ∈ {0, 1} such that

Pr[out(A∗,B)(1n) = cA],Pr[out(A,B∗)(1n) = cB] ≤ 1

2
+ δ(n)

for any pptm’s A∗ and B∗, and large enough n.
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Remark 2.11. Our result still holds when the allowing the common bit in a random honest execu-
tion of the protocol to be an arbitrary constant in (0, 1). In contrast, our proof critically relies on
the assumption that the honest parties are always in agreement.

In the rest of the paper we restrict our attention to m-round single-bit message coin-flipping
protocols, where m = m(n) is a function of the protocol’s security parameter. Given such a protocol
Π = (A,B), we assume that its common output (i.e., the coin) is efficiently computable from a (full)
transcript of the protocol. (It is easy to see that these assumptions are without loss of generality.)

2.4 One-Way Functions and Distributional One-Way Functions

A one-way function (OWF) is an efficiently computable function whose inverse cannot be computed
on average by any pptm.

Definition 2.12. A polynomial-time computable function f : {0, 1}n → {0, 1}`(n) is one-way if

Prx←{0,1}n;y=f(x)

[
A(1n, y) ∈ f−1(y)

]
= neg(n)

for any pptm A.

A seemingly weaker definition is that of a distributional OWF. Such a function is easy to
compute, but it is hard to compute uniformly random preimages of random images.

Definition 2.13. A polynomial-time computable f : {0, 1}n → {0, 1}`(n) is distributional one-way,
if ∃p ∈ poly such that

SD
(
(x, f(x))x←{0,1}n , (A(f(x)), f(x))x←{0,1}n

)
≥ 1

p(n)

for any pptm A and large enough n.

Clearly, any one-way function is also a distributional one-way function. While the other im-
plication is not necessarily always true, Impagliazzo and Luby [17] showed that the existence of
distributional one-way functions implies that of (standard) one-way functions. In particular, the
authors of [17] proved that if one-way functions do not exist, then any efficiently computable
function has an inverter of the following form.

Definition 2.14 (ξ-inverter). An algorithm Inv is an ξ-inverter of f : D → R if the following holds.

Prx←D;y=f(x)

[
SD
(
(x′)x′←f−1(y), (Inv(y))

)
> ξ
]
≤ ξ.

Lemma 2.15 ([17, Lemma 1]). Assume one-way functions do not exist. Then for any polynomial-
time computable function f : {0, 1}n → {0, 1}`(n) and p ∈ poly, there exists a pptm algorithm Inv
such that the following holds for infinitely many n’s. On security parameter 1n, algorithm Inv is a
1/p(n)-inverter of fn (i.e., f is restricted to {0, 1}n).

Impagliazzo and Luby [17] only gave a proof sketch for the above lemma. The full proof can be
found in [16, Theorem 4.2.2].
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Remark 2.16 (Definition of inverter). In their original definition, Impagliazzo and Luby [17]
defined a ξ-inverter as an algorithm Inv for which it holds that

SD
(
(x, f(x))x←{0,1}n , (Inv(f(x)), f(x))x←{0,1}n

)
< ξ.

They also proved Lemma 2.15 with respect to this definition. By taking, for example, ξ′ = ξ2 and
applying their proof with ξ′, it is easy to see how our version of Lemma 2.15 follows with respect
to the above definition of a ξ-inverter.

Note that nothing is guaranteed when invoking a good inverter (i.e., a γ-inverter for some
small γ) on an arbitrary distribution. Yet the following lemma yields that if the distribution in
consideration is “not too different” from the output distribution of f , then such good inverters are
useful.

Lemma 2.17. Let f and g be two randomized functions over the same domain D ∪ {⊥} such that
f(⊥) ≡ g(⊥), and let {Pi}i∈[k] be a set of distributions over D ∪ {⊥} such that for some a ≥ 0 it
holds that Eq←Pi [SD(f(q), g(q))] ≤ a for every i ∈ [k]. Let A be a k-query oracle-aided algorithm
that only makes queries in D. Let Q = (Q1, . . . , Qk) be the random variable of the queries of Af in
such a random execution, setting Qi =⊥ if A makes less than i queries.

Assume that Pr(q1,...,qk)←Q[∃i ∈ [k] : qi 6=⊥ ∧ Qi(qi) > λ · Pi(qi)] ≤ b for some λ, b ≥ 0. Then

SD
(
Af ,Ag

)
≤ b+ kaλ.

To prove Lemma 2.17, we use the following proposition.

Proposition 2.18. For every two distributions P and Q over a set D, there exists a distribution
RP,Q over D ×D, such that the following hold:

1. (RP,Q)1 ≡ P and (RP,Q)2 ≡ Q, where (RP,Q)b is the projection of RP,Q into its b’th coordinate.

2. Pr(x1,x2)←RP,Q [x1 6= x2] = SD(P,Q).

Proof. For every x ∈ D, let M(x) = min{P (x), Q(x)}, let MP (x) = P (x) −M(x) and MQ(x) =
Q(x) − M(x). The distribution RP,Q is defined by the following procedure. With probability

µ =
∑

x∈DM(x), sample an element x according to M (i.e., x is returned with probability M(x)
µ ),

and return (x, x); otherwise return (xP , xQ) where xP is sampled according to MP and xQ is
sampled according to MQ. It is clear that Pr(x1,x2)←RP,Q [x1 6= x2] = SD(P,Q). It also holds that

(RP,Q)1(x) = µ · M(x)

µ
+ (1− µ) · MP (x)

µP

= M(x) +MP (x)

= P (x),

where µP :=
∑

x∈DMP = (1−µ). Namely, (RP,Q)1 ≡ P . The proof that (RP,Q)2 ≡ Q is analogous.
�

Proof of Lemma 2.17. Using Proposition 2.18 and standard argument, it holds that SD
(
Af ,Ag

)
is

at most the probability that the following experiment aborts.

Experiment 2.19.
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1. Start emulating a random execution of A.

2. Do until A halts:

(a) Let q be the next query of A.

(b) Sample (a1, a2)← Rf(q),g(q).

(c) If a1 = a2, give a1 to A as the oracle answer.

Otherwise, abort.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

By setting Si = {q : q ∈ Supp(Qi) ∧Qi(q) ≤ λ · Pi(q)} for i ∈ [k] and recalling that by assump-
tion f(⊥) ≡ g(⊥) (thus, when sampling (a1, a2) ← Rf(⊥),g(⊥), a1 always equals a2), we conclude
that

SD
(

Af ,Ag
)
≤ Pr(q1,...,qk)←Q[∃i ∈ [k] : qi /∈ Si ∪ {⊥}]

+ Pr(q1,...,qk)←Q
[
∃i ∈ [k] : a1 6= a2 where (a1, a2)← Rf(qi),g(qi) ∧ qi ∈ Si

]
≤ b+

∑
i∈[k]

∑
q∈Si

Qi(q) · Pr
[
a1 6= a2 where (a1, a2)← Rf(q),g(q)

]
(1)

≤ b+
∑
i∈[k]

∑
q∈Si

Qi(q) · SD(f(q), g(q))

(2)

≤ b+
∑
i∈[k]

∑
q∈Supp(Pi)

λ · Pi(q) · SD(f(q), g(q))

≤ b+ λ
∑
i∈[k]

Eq←Pi [SD(f(q), g(q))]

≤ b+ kaλ,

where (1) follows from Proposition 2.18 and (2) from the definition of the sets {Si}i∈[k]. �

2.5 Two Inequalities

We make use of following technical lemmas, whose proofs are given in Appendix A.

Lemma 2.20. Let x, y ∈ [0, 1], let k ≥ 1 be an integer and let a1, . . . , ak, b1, . . . , bk ∈ (0, 1]. Then
for any p0, p1 ≥ 0 with p0 + p1 = 1, it holds that

p0 ·
xk+1∏k
i=1 ai

+ p1 ·
yk+1∏k
i=1 bi

≥ (p0x+ p1y)k+1∏k
i=1(p0ai + p1bi)

.

Lemma 2.21. For every δ ∈ (0, 1
2 ], there exists α = α(δ) ∈ (0, 1] such that

λ · a1+α
1 · (2− a1 · x) + a1+α

2 · (2− a2 · x) ≤ (1 + λ) · (2− x),

for every x ≥ δ and λ, y ≥ 0 with λy ≤ 1, for a1 = 1 + y and a2 = 1− λy.
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3 The Biased-Continuation Attack

In this section we describe an attack to bias any coin-flipping protocol. The described attack,
however, might be impossible to implement efficiently (even when assuming one-way functions do
not exist). Specifically, we assume access to an ideal sampling algorithm to sample a uniform
preimage of any output of the functions under consideration. Our actual attack, the subject of
Section 4, tries to mimic the behavior of this attack while being efficiently implemented (assuming
one-way functions do not exist).

The following discussion is restricted to (coin-flipping) protocols whose parties always output
the same bit as their common output, and this bit is determined by the protocol’s transcript.
In all protocols considered in this section, the messages are bits. In addition, the protocols under
consideration have no inputs (neither private nor common), and in particular no security parameter
is involved.16 Recall that ⊥ stands for a canonical invalid/undefined protocol, and that E〈⊥〉[f ] = 0,
for any real value function f . (We refer the reader to Section 2 for a discussion of the conventions and
assumptions used above.) Although the focus of this paper is coin-flipping protocols, all the results
in this section hold true for any two-party protocol meeting the above assumptions. Specifically,
we do not assume that an honest execution of the protocol produces a uniformly random bit, nor
do we assume that the parties executing the protocol can be implemented by a polynomial time
probabilistic Turing machine. For this reason we omit the term “coin-flipping” in this section.

Throughout the section we prove statements with respect to attackers that, when playing the
role of the left-hand party of the protocol (i.e., A), are trying to bias the common output of the
protocol towards one, and, when playing the role of the right-hand party of the protocol (i.e., B),
are trying to bias the common output of the protocol towards zero. All statements have analogues
ones with respect to the opposite attack goals.

Let Π = (A,B) be a protocol. The recursive biased-continuation attack described below recur-
sively applies the biased-continuation attack introduced by Haitner and Omri [13].17 The biased-

continuation attacker A
(1)
Π – playing the role of A – works as follows: in each of A’s turns, A

(1)
Π picks

a random continuation of Π, whose output it induces is equal to one, and plays the current turn

accordingly. The i’th biased-continuation attacker A
(i)
Π , formally described below, uses the same

strategy but the random continuation taken is of the protocol (A
(i−1)
Π ,B).

Moving to the formal discussion, for a protocol Π = (A,B), we defined its biased continuator
BiasedContΠ as follows.

Definition 3.1 (biased continuator BiasedContΠ).

Input: u ∈ V(Π) \ L(Π) and a bit b ∈ {0, 1}
Operation:

1. Choose `← 〈Π〉 conditioned that

(a) ` ∈ desc(u), and

(b) χΠ(`) = b.18

16In Section 4, we make use of these input-less protocols by “hardwiring” the security parameter of the protocols
under consideration.

17Called the “random continuation attack” in [13].
18If no such ` exists, the algorithm returns an arbitrary leaf in desc(u).
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2. Return `|u|+1.

Let A
(0)
Π ≡ A, and for integer i > 0 define:

Algorithm 3.2 (recursive biased-continuation attacker A
(i)
Π ).

Input: transcript u ∈ {0, 1}∗.
Operation:

1. If u ∈ L(Π), output χΠ(u) and halt.

2. Set msg = BiasedCont
(A

(i−1)
Π ,B)

(u, 1).

3. Send msg to B.

4. If u′ = u ◦msg ∈ L(Π), output χΠ(u′).19

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The attacker B
(i)
Π attacking towards zero is analogously defined (specifically, the call to the biased

continuator BiasedCont
(A

(i−1)
Π ,B)

(u, 1) in Algorithm 3.2 is changed to BiasedCont
(A,B

(i−1)
Π )

(u, 0)).20

It is relatively easy to show that the more recursions A
(i)
Π and B

(i)
Π do, the closer their success

probability is to that of an all-powerful attacker, who can either bias the outcome to zero or to one.
The important point of the following theorem is that, for any ε > 0, there exists a global constant

κ = κ(ε) (i.e., independent of the underlying protocol), for which either A
(κ)
Π or B

(κ)
Π succeeds in its

attack with probability at least 1 − ε. This becomes crucial when trying to efficiently implement
these adversaries (see Section 4), as each recursion call might induce a polynomial blowup in the
running time of the adversary. Since κ is constant (for a constant ε), the recursive attacker is still
efficient.

Theorem 3.3 (main theorem, ideal version). For every ε ∈ (0, 1
2 ] there exists non-negative integer

κ ∈ Õ(1/ε) such that for every protocol Π = (A,B), either val(A
(κ)
Π ,B) > 1− ε or val(A,B

(κ)
Π ) < ε.

The rest of this section is devoted to proving the above theorem.
In what follows, we typically omit the subscript Π from the notation of the above attackers.

Towards proving Theorem 3.3 we show a strong (and somewhat surprising) connection between
recursive biased-continuation attacks on a given protocol and the optimal valid attack on this
protocol. The latter is the best (unbounded) attack on this protocol, which sends only valid
messages (ones that could have been sent by the honest party). Towards this goal we define
sequences of measures over the leaves (i.e., transcripts) of the protocol, connect these measures to
the optimal attack, and then lower bound the success of the recursive biased-continuation attacks
using these measures.

In the following we first observe some basic properties of the recursive biased-continuation
attack. Next, we define the optimal valid attack, define a simple measure with respect to this

19For the mere purpose of biasing B’s output, there is no need for A(i) to output anything. Yet doing so helps us
to simplify our recursion definitions (specifically, we use the fact that in (A(i),B) the parties always have the same
output).

20The subscript Π is added to the notation (i.e., A
(i)
Π ), since the biased-continuation attack for A depends not only

on the definition of the party A, but also on the definition of B, the other party in the protocol.
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attack, and analyze, as a warm-up, the success of recursive biased-continuation attacks on this
measure. After arguing why considering the latter measure does not suffice, we define a sequence
of measures, and then state, in Section 3.6, a property of this sequence that yields Theorem 3.3 as
a corollary. The main body of this section deals with proving the aforementioned property.

3.1 Basic Observations About A(i)

We make two basic observations regarding the recursive biased-continuation attack. The first gives
expression to the edge distribution this attack induces. The second is that this attack is stateless.
We’ll use these observations in the following sections; however, the reader might want to skip their
straightforward proofs for now.

Recall that at each internal node in its control, A(1) picks a random continuation to one. We
can also describe A(1)’s behavior as follows: after seeing a transcript u, A(1) biases the probability
of sending, e.g., 0 to B: it does so proportionally to the ratio between the chance of having output
one among all honest executions of the protocol that are consistent with the transcript u ◦ 0, and
the same chance but with respect to the transcript u. The behavior of A(i) is analogous where
A(i−1) replaces the role of A in the above discussion. Formally, we have the following claim.

Claim 3.4. Let Π = (A,B) be a protocol and let A(j) be according to Algorithm 3.2. Then

e(A(i),B)(u, ub) = eΠ(u, ub) ·
∏i−1
j=0 val((A(j),B)ub)∏i−1
j=0 val((A(j),B)u)

, 21

for any i ∈ N, A-controlled u ∈ V(Π) and b ∈ {0, 1}.

This claim is a straightforward generalization of the proof of [13, Lemma 12]. However, for
completeness and to give an example of our notations, a full proof is given below.

Proof. The proof is by induction on i. For i = 0, recall that A(0) ≡ A, and hence e(A(0),B)(u, ub) =
eΠ(u, ub), as required.

Assume the claim holds for i − 1, and we want to compute e(A(i),B)(u, ub). The definition of
Algorithm 3.2 yields that for any positive i ∈ N, it holds that

e(A(i),B)(u, ub) = Pr`←〈A(i−1),B〉
[
`|u|+1 = b

∣∣∣ ` ∈ desc(u) ∧ χ(A(i−1),B)(`) = 1
]

22 (8)

=
Pr`←〈A(i−1),B〉

[
`|u|+1 = b ∧ χ(A(i−1),B)(`) = 1

∣∣∣ ` ∈ desc(u)
]

Pr`←〈A(i−1),B〉
[
χ(A(i−1),B)(`) = 1

∣∣∣ ` ∈ desc(u)
]

= e(A(i−1),B)(u, ub) ·
val((A(i−1),B)ub)

val((A(i−1),B)u)
,

where the last equality is by a simple chain rule, i.e., since

e(A(i−1),B)(u, ub) = Pr`←〈A(i−1),B〉
[
`|u|+1 = b

∣∣ ` ∈ desc(u)
]
, and

val((A(i−1),B)ub) = Pr`←〈A(i−1),B〉
[
χ(A(i−1),B)(`) = 1

∣∣∣ ` ∈ desc(u) ∧ `|u|+1 = b
]
.

21Recall that for a protocol Π and a partial transcript u, we let eΠ(u, ub) stand for the probability that the party
controlling u sends b as the next message, conditioning that u is the transcript of the execution thus far.

22Recall that for a protocol Π, we let 〈Π〉 stand for the leaf distribution of Π.
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The proof is concluded by plugging the induction hypothesis into Equation (8). �

The following observation enables us to use induction when analyzing the power of A(i).

Proposition 3.5. For every protocol Π = (AΠ,BΠ), i ∈ N and b ∈ {0, 1}, it holds that
(

A
(i)
Π ,B

)
b

and
(

A
(i)
Πb
,BΠb

)
are the same protocol, where Πb = (AΠb ,BΠb).

Proof. Immediately follows from A
(i)
Π being stateless. �

Remark 3.6. Note that the party BΠb, defined by the subprotocol Πb (specifically, by the edge
distribution of the subtree T (Πb)), might not have an efficient implementation, even if B does have
one. For the sake of the arguments we make in this section, however, it matters only that BΠb is
well defined.

3.2 Optimal Valid Attacks

When considering the optimal attackers for a given protocol, we restrict ourselves to valid attackers.
Informally, we can say that, on each of its turns, a valid attacker sends a message from the set of
possible replies that the honest party might choose given the transcript so far.

Definition 3.7 (optimal valid attacker). Let Π = (A,B) be a protocol. A deterministic algo-
rithm A′ playing the role of A in Π is in A∗, if vΠ(u) = 0 =⇒ v(A′,B)(u) = 0 for any
u ∈ V(Π). The class B∗ is analogously defined. Let OPTA(Π) = maxA′∈A∗{val(A′,B)} and
OPTB(Π) = maxB′∈B∗{1− val(A,B′)}.

The following proposition is immediate.

Proposition 3.8. Let Π = (A,B) be a protocol and let u ∈ V(Π). Then,

OPTA(Πu) =


χΠ(u) u ∈ L(Π);
max{OPTA(Πub) : eΠ(u, ub) > 0}, u /∈ L(Π) and u is controlled by A;
eΠ(u, u0) · OPTA(Πu0) + eΠ(u, u1) · OPTA(Πu1), u /∈ L(Π) and u is controlled by B,

and the analog conditions hold for OPTB(Πu).23

The following holds true for any (bit value) protocol.

Proposition 3.9. Let Π = (A,B) be a protocol with val(Π) ∈ [0, 1]. Then either OPTA(Π) or
OPTB(Π) (but not both) is equal to 1.

The somewhat surprising part is that only one party has a valid winning strategy. Assume for
simplicity that OPTA(Π) = 1. Since A might accidentally mimic the optimal winning valid attacker,
it follows that for any valid strategy B′ for B there is a positive probability over the random choices
of the honest A that the outcome is not zero. Namely, it holds that OPTB(Π) < 1. The formal
proof follows a straightforward induction on the protocol’s round complexity.

23Recall that for a (possible partial) transcript u, Πu is the protocol Π, conditioned that u1, . . . , u|u| were the first
|u| messages.
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Proof of Proposition 3.9. The proof is by induction on the round complexity of Π. Assume that
round(Π) = 0 and let ` be the only node in T (Π). If χΠ(`) = 1, the proof follows since OPTA(Π) = 1
and OPTB(Π) = 0. In the complementary case, i.e., χπ(`) = 0, the proof follows since OPTA(Π) = 0
and OPTB(Π) = 1.

Assume that the lemma holds for m-round protocols and that round(Π) = m+ 1. If eΠ(λ, b) =
124 for some b ∈ {0, 1}, since Π is a protocol, it holds that eΠ(λ, 1−b) = 0. Hence, by Proposition 3.8
it holds that OPTA(Π) = OPTA(Πb) and OPTB(Π) = OPTB(Πb), regardless of the party controlling
root(Π). The proof follows from the induction hypothesis.

If eΠ(λ, b) /∈ {0, 1} for both b ∈ {0, 1}, the proof splits according to the following complementary
cases:

OPTB(Π0) < 1 and OPTB(Π1) < 1. The induction hypothesis yields that OPTA(Π0) = 1 and
OPTA(Π1) = 1. Proposition 3.8 now yields that OPTB(Π) < 1 and OPTA(Π) = 1, regardless
of the party controlling root(Π).

OPTB(Π0) = 1 and OPTB(Π1) = 1. The induction hypothesis yields that OPTA(Π0) < 1 and
OPTA(Π1) < 1. Proposition 3.8 now yields that OPTB(Π) = 1 and OPTA(Π) < 1, regardless
of the party controlling root(Π).

OPTB(Π0) = 1 and OPTB(Π1) < 1. The induction hypothesis yields that OPTA(Π0) < 1 and
OPTA(Π1) = 1. If A controls root(Π), Proposition 3.8 yields that OPTA(Π) = 1 and
OPTB(Π) < 1. If B controls root(Π), Proposition 3.8 yields that OPTA(Π) < 1 and
OPTB(Π) = 1. Hence, the proof follows.

OPTB(Π0) < 1 and OPTB(Π1) = 1. The proof follows arguments similar to the previous case.
�

In the next sections we show the connection between the optimal valid attack and recursive
biased-continuation attacks, by connecting them both to a specific measure over the protocol’s
leaves, called here the “dominated measure” of a protocol.

3.3 Dominated Measures

Let Π = (A,B) be a protocol with OPTA(Π) = 1 (and thus, by Proposition 3.8, OPTB(Π) < 1).
In such a protocol, the optimal attacker for A always has a winning strategy, regardless of B’s
strategy (honest or not). Our goal is to define a measure MA

Π : L(Π) → [0, 1] that will capture
the “1 − OPTB(Π)” advantage that party A has over party B. Specifically, we would like that
E〈Π〉

[
MA

Π

]
= 1− OPTB(Π).

Recall that OPTB(Π) is the expected outcome of the protocol (A,B′), where B′ is the optimal
attacker for B. To achieve our goal, MA

Π must “behave” similarly to the expected outcome of
(A,B′). Naturally, such measure will be defined recursively. On A-controlled nodes, its expected
value (over a choice of a random leaf in the original protocol Π) should be the weighted average of the
expected values of the lower-level measures — similarly to the expected outcome of (A,B′) which
is the weighted average of the expected outcomes of the sub-protocols. On B-controlled nodes,
the situation is trickier. B′ chooses to send the message that minimizes the expected outcome
of (A,B′). Assuming that the lower-level measures already behave like the expected outcome of

24Recall that λ is the string representation of the root of T (Π).
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(A,B′), B′ actually choose the message for which the expected value of the lower-level measure is
smaller. But, the expected value of MA

Π remains the weighted average of the expected values of
the lower-level measures. To fix this we lower the value of the lower-level measure whose expected
outcome is larger, so that the expected value of both lower-level measures is equal. The above
discussion leads to the following measure over the protocol’s leaves.

Definition 3.10 (dominated measures). The A-dominated measure of protocol Π = (A,B), denoted
MA

Π, is a measure over L(Π) defined by MA
Π(`) = χΠ(`) if round(Π) = 0, and otherwise recursively

defined by:

MA
Π(`) =



0, eΠ(λ, `1) = 0; 25

MA
Π`1

(`2,...,|`|), eΠ(λ, `1) = 1;

MA
Π`1

(`2,...,|`|), eΠ(λ, `1) /∈ {0, 1} ∧ (A controls root(Π) ∨ SmallerΠ(`1));

E〈Π1−`1〉
[
MA

Π1−`1

]
E〈Π`1〉

[
MA

Π`1

] ·MA
Π`1

(`2,...,|`|), otherwise,

where SmallerΠ(`1) = 1 if E〈Π`1〉
[
MA

Π`1

]
≤ E〈Π1−`1〉

[
MA

Π1−`1

]
. Finally, we let MA

⊥ be the zero
measure.

The B-dominated measure of protocol Π, denoted MB
Π, is analogously defined, except that

MB
Π(`) = 1− χΠ(`) if round(Π) = 0.

Example 3.11 (A-dominated measure)

Before continuing with the formal proof, we believe the reader might find the following con-
crete example useful. Let Π = (A,B) be the protocol described in Figure 2a and assume for
the sake of this example that α0 < α1. The A-dominated measures of Π and its subprotocols
are given in Figure 2b.

We would like to highlight some points regarding the calculations of the A-dominated me-
asures. The first point we note is that MA

Π011
(011) = 1 but MA

Π01
(011) = 0. Namely, the

A-dominated measure of the subprotocol Π011 assigns the leaf represented by the string 011
with the value 1, while the A-dominated measure of the subprotocol Π01 (for which Π011 is
a subprotocol) assigns the same leaf with the value 0. This follows since E〈Π010〉

[
MA

Π010

]
= 0

and E〈Π011〉
[
MA

Π011

]
= 1, which yield that SmallerΠ01(1) = 0 (recall that SmallerΠ′(b) = 0 iff

the expected value of the A-dominated measure of Π′b is larger than that of the A-dominated
measure of Π′1−b). Hence, Definition 3.10 with respect to Π01 now yields that

MA
Π01

(011) =
E〈Π010〉

[
MA

Π010

]
E〈Π011〉

[
MA

Π011

] ·MA
Π011

(011)

=
0

1
· 1 = 0.

The second point we note is that MA
Π1

(10) = 1 but MA
Π(10) = α0

α1
(recall that we assumed

that α0 < α1, so α0
α1
< 1). This follows similar arguments to the previous point; it holds that

25Recall that for transcript `, `1 stands for the first messages sent in `.
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B

A

1

α0

B

0

β01

1

1− β01

1− α0

β

A

1

α1

0

1− α1

1− β

(a) Protocol Π = (A,B). The label of an internal
node denotes the name of the party controlling it,
and that of a leaf denotes its value. The label on an
edge leaving a node u to node u′ denotes the proba-
bility that a random execution of Π visits u′ once in
u. Finally, all nodes are represented as strings from
the root of Π, even when considering subprotocols
(e.g., the string representations of the leaf with the
thick borders is 011).

Leaves

measures 00 010 011 10 11

MA
Π00

1

MA
Π010

0

MA
Π011

1

MA
Π01

0 0

MA
Π0

1 0 0

MA
Π10

1

MA
Π11

0

MA
Π1

1 0

MA
Π 1 0 0 α0/α1 0

(b) Calculating the A-dominated measure of Π. The
A-dominated measure of a subprotocol Πu, is only
defined over the leaves in the subtree T (Πu).

Figure 2: An example of a (coin-flipping) protocol is given on the left, and an example of how to
calculate its A-dominated measure is given on the right.

E〈Π0〉
[
MA

Π0

]
= α0 and E〈Π1〉

[
MA

Π1

]
= α1, which yield that SmallerΠ(1) = 0 (since α0 < α1).

Definition 3.10 with respect to Π now yields that

MA
Π(10) =

E〈Π0〉
[
MA

Π0

]
E〈Π1〉

[
MA

Π1

] ·MA
Π1

(10)

=
α0

α1
· 1 =

α0

α1
.

The third and final point we note is that E〈Π〉
[
MA

Π

]
= 1 − OPTB(Π). By the assumption

that α0 < α1, it holds that OPTB(Π) = 1−α0. Independently, let us calculate the expected
value of the A-dominated measure. Since Supp

(
MA

Π

)
= {00, 01}, it holds that

E〈Π〉

[
MA

Π

]
= vΠ(00) ·MA

Π(00) + vΠ(10) ·MA
Π(10)

= β · α0 · 1 + (1− β) · α1 ·
α0

α1

= α0.

Hence, E〈Π〉
[
MA

Π

]
= 1− OPTB(Π).

Note that the A-dominated measure is B-immune—if B controls a node u, the expected value
of the measure is that of the lowest measure of the subprotocols Πu0 and Πu1. Where if A controls
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a node u, the expected value of the A-dominated measure is the weighted average of the measures
of the same subprotocols (according to the edge distribution). In both cases, the A-dominated
measure indeed “captures” the behavior of the optimal attacker for B. This observation is formally
stated as the following lemma:

Lemma 3.12. Let Π = (A,B) be a protocol and let MA
Π be its A-dominated measure. Then

OPTB(Π) = 1− E〈Π〉
[
MA

Π

]
.

In particular, since OPTA(Π) = 1 iff OPTB(Π) < 1 (Proposition 3.8), it holds that OPTA(Π) = 1
iff E〈Π〉

[
MA

Π

]
> 0.

Towards proving Lemma 3.12, we first note that the definition of MA
Π ensures three important

properties.

Proposition 3.13. Let Π be a protocol with eΠ(λ, b) /∈ {0, 1} for both b ∈ {0, 1}. Then

1. (A-maximal) A controls root(Π) =⇒
(
MA

Π

)
b
≡MA

Πb
for both b ∈ {0, 1}.26

2. (B-minimal) B controls root(Π) =⇒
(
MA

Π

)
b
≡


MA

Πb
, SmallerΠ(b) = 1;

E〈Π1−b〉
[
MA

Π1−b

]
E〈Πb〉

[
MA

Πb

] ·MA
Πb
, otherwise.

3. (B-immune) B controls root(Π) =⇒ E〈Π0〉
[(
MA

Π

)
0

]
= E〈Π1〉

[(
MA

Π

)
1

]
.

Namely, if A controls root(Π), the A-maximal property of MA
Π (the A-dominated measure of

Π) ensures that the restrictions of this measure to the subprotocols of Π are the A-dominated
measures of these subprotocols. In the complementary case, i.e., B controls root(Π), the B-minimal
property of MA

Π ensures that for at least one subprotocol of Π, the restriction of this measure to
this subprotocol is equal to the A-dominated measure of the subprotocol. Finally, the B-immune
property of MA

Π ensures that the expected values of the measures derived by restricting MA
Π to the

subprotocols of Π are equal (and hence, they are also equal to the expected value of MA
Π).

Proof of Proposition 3.13. The proof of Items 1 and 2 (A-maximal and B-minimal) immediately
follows from Definition 3.10.

Towards proving Item 3 (B-immune), we will assume that B controls root(Π). If SmallerΠ(0) =
SmallerΠ(1) = 1, the proof again follows immediately from Definition 3.10. In the complementary
case, i.e., SmallerΠ(b) = 0 and SmallerΠ(1− b) = 1 for some b ∈ {0, 1}, it holds that

E〈Πb〉

[(
MA

Π

)
b

]
= E〈Πb〉

E〈Π1−b〉

[
MA

Π1−b

]
E〈Πb〉

[
MA

Πb

] ·MA
Πb


=

E〈Π1−b〉

[
MA

Π1−b

]
E〈Πb〉

[
MA

Πb

] · E〈Πb〉
[
MA

Πb

]
= E〈Π1−b〉

[
MA

Π1−b

]
= E〈Π1−b〉

[(
MA

Π

)
1−b

]
,

26Recall that for a measure M : L(Π) → [0, 1] and a bit b, (M)b is the measure induced by M when restricted to
L(Πb) ⊆ L(Π).
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where the first and last equalities follow from the B-minimal property of MA
Π (Item 2). �

We are now ready to prove Lemma 3.12.

Proof of Lemma 3.12. The proof is by induction on the round complexity of Π.
Assume that round(Π) = 0 and let ` be the only node in T (Π). If χΠ(`) = 1, then by

Definition 3.10 it holds that MA
Π(`) = 1, implying that E〈Π〉

[
MA

Π

]
= 1. The proof follows since

in this case, by Proposition 3.9, OPTB(Π) = 0. In the complementary case, i.e., χ(`) = 0, by
Definition 3.10 it holds that MA

Π(`) = 0, implying that E〈Π〉
[
MA

Π

]
= 0. The proof follows since in

this case, by Proposition 3.9, OPTB(Π) = 1.
Assume that the lemma holds for m-round protocols and that round(Π) = m+1. For b ∈ {0, 1}

let αb := E〈Πb〉

[
MA

Πb

]
. The induction hypothesis yields that OPTB(Πb) = 1−αb for both b ∈ {0, 1}.

If eΠ(λ, b) = 1 for some b ∈ {0, 1} (which also means that eΠ(λ, 1 − b) = 0), the proof follows
since Proposition 3.8 yields that OPTB(Π) = OPTB(Πb) = 1−αb, where Definition 3.10 yields that

E〈Π〉
[
MA

Π

]
= E〈Πb〉

[
MA

Πb

]
= αb.

Assume eΠ(λ, b) /∈ {0, 1} for both b ∈ {0, 1} and let p := eΠ(λ, 0). The proof splits according to
who controls the root of Π.

A controls root(Π). Definition 3.10 yields that

E〈Π〉

[
MA

Π

]
= p · E〈Π0〉

[(
MA

Π

)
0

]
+ (1− p) · E〈Π1〉

[(
MA

Π

)
1

]
= p · E〈Π0〉

[
MA

Π0

]
+ (1− p) · E〈Π1〉

[
MA

Π1

]
= p · α0 + (1− p) · α1,

where the second equality follows from the A-maximal property of MA
Πb

(Proposition 3.13(1)).
Using Proposition 3.8 we conclude that

OPTB(Π) = p · OPTB(Π0) + (1− p) · OPTB(Π1)

= p · (1− α0) + (1− p) · (1− α1)

= 1− (p · α0 + (1− p) · α1)

= 1− E〈Π〉

[
MA

Π

]
.

B controls root(Π). We assume that α0 ≤ α1 (the complementary case is analogous). Proposi-
tion 3.8 and the induction hypothesis yield that OPTB(A,B) = 1 − α0. Hence, it is left to
show that E〈Π〉

[
MA

Π

]
= α0. The assumption that α0 ≤ α1 yields that SmallerΠ(0) = 1. Thus,

by the B-minimal property of MA
Π (Proposition 3.13(2)), it holds that

(
MA

Π

)
0
≡ MA

Π0
. It

follows that E〈Π0〉
[(
MA

Π

)
0

]
= α0, and the B-immune property of MA

Π (Proposition 3.13(3))

yields that E〈Π1〉
[(
MA

Π

)
1

]
= α0. To conclude the proof, we compute

E〈Π〉

[
MA

Π

]
= p · E〈Π0〉

[(
MA

Π

)
0

]
+ (1− p) · E〈Π1〉

[(
MA

Π

)
1

]
= p · α0 + (1− p) · α0

= α0.
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Lemma 3.12 connects the success of the optimal attack to the expected value of the dominated
measure. In the next section we analyze the success of the recursive biased-continuation attack
using this expected value. Unfortunately, this analysis does not seem to suffice for our goal. In
Section 3.5 we generalize the dominated measure described above to a sequence of (alternating)
dominated measures, where in Section 3.6 we use this new notion to prove that the recursive biased
continuation is indeed a good attack.

3.4 Warmup — Proof Attempt Using a (Single) Dominated Measure

As mentioned above, the approach described in this section falls too short to serve our goals. Yet
we describe it here as a detailed overview for the more complicated proof, given in following sections
(with respect to a sequence of dominated measures). Specifically, we sketch a proof of the following
lemma, which relates the performance of the recursive biased-continuation attacker playing the role
of A, to the performance of the optimal (valid) attacker playing the role of B. The proof (see below)
is via the A-dominated measure of Π defined above.27

Lemma 3.14. Let Π = (A,B) be a protocol with val(Π) > 0, let k ∈ N and let A(k) be according to
Algorithm 3.2. Then

val(A(k),B) ≥ 1− OPTB(Π)∏k−1
i=0 val(A(i),B)

.

The proof of the above lemma is a direct implication of the next lemma.

Lemma 3.15. Let Π = (A,B) be a protocol with val(Π) > 0, let k ∈ N and let A(k) be according to
Algorithm 3.2. Then

E〈A(k),B〉
[
MA

Π

]
≥

E〈Π〉
[
MA

Π

]∏k−1
i=0 val(A(i),B)

.

Proof of Lemma 3.14. Immediately follows Lemmas 3.12 and 3.15 and Fact 2.7 (we can use Fact 2.7
since by Definition 3.10, MA

Π(`) = 0 for every ` ∈ L0(Π)). �

We begin by sketching the proof of the following lemma, which is a special case of Lemma 3.15.
Later we explain how to generalize the proof below to derive Lemma 3.15.

Lemma 3.16. Let Π = (A,B) be a protocol with val(Π) > 0 and let A(1) be according to Algo-

rithm 3.2. Then E〈A(1),B〉
[
MA

Π

]
≥ E〈Π〉[MA

Π]
val(Π) .

Proof sketch. The proof is by induction on the round complexity of Π. The base case (i.e.,
round(Π) = 0) is straightforward. Assume that the lemma holds for m-round protocols and that

round(Π) = m+ 1. For b ∈ {0, 1} let αb := E〈Πb〉

[
MA

Πb

]
and let p := eΠ(λ, 0).

27The formal proof of Lemma 3.14 follows its stronger variant, Lemma 3.25, introduced in Section 3.6.
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If root(Π) is controlled by A, the A-maximal property of MA
Π (Proposition 3.13(1)) yields that

E〈Π〉
[
MA

Π

]
= p · α0 + (1− p) · α1. It holds that

E〈A(1),B〉
[
MA

Π

]
= e(A(1),B)(λ, 0) · E〈(A(1),B)

0
〉
[(
MA

Π

)
0

]
+ e(A(1),B)(λ, 1) · E〈(A(1),B)

1
〉
[(
MA

Π

)
1

]
(9)

= p · val(Π0)

val(Π)
· E〈(A(1),B)

0
〉
[(
MA

Π

)
0

]
+ (1− p) · val(Π1)

val(Π)
· E〈(A(1),B)

1
〉
[(
MA

Π

)
1

]
,

where the second equality follows from Claim 3.4. Since A(1) is stateless (Proposition 3.5), we can
write Equation (9) as

E〈A(1),B〉
[
MA

Π

]
= p · val(Π0)

val(Π)
· E〈

A
(1)
Π0
,BΠ0

〉[(MA
Π

)
0

]
+ (1− p) · val(Π1)

val(Π)
· E〈

A
(1)
Π1
,BΠ1

〉[(MA
Π

)
1

]
.

(10)

The A-maximal property of MA
Π and Equation (10) yield that

E〈A(1),B〉
[
MA

Π

]
= p · val(Π0)

val(Π)
· E〈

A
(1)
Π0
,BΠ0

〉[MA
Π0

]
+ (1− p) · val(Π1)

val(Π)
· E〈

A
(1)
Π1
,BΠ1

〉[MA
Π1

]
. (11)

Applying the induction hypothesis on the right-hand side of Equation (11) yields that

E〈A(1),B〉
[
MA

Π

]
≥ p · val(Π0)

val(Π)
· α0

val(Π0)
+ (1− p) · val(Π1)

val(Π)
· α1

val(Π1)

=
p · α0 + (1− p) · α1

val(Π)

=
E〈Π〉

[
MA

Π

]
val(Π)

,

which concludes the proof for the case that A controls root(Π).
If root(Π) is controlled by B, and assuming that α0 ≤ α1 (the complementary case is analogous),

it holds that SmallerΠ(0) = 1. Thus, by the B-minimal property of MA
Π (Proposition 3.13(2)), it

holds that
(
MA

Π

)
0
≡ MA

Π0
and

(
MA

Π

)
1
≡ α0

α1
MA

Π1
. Hence, the B-immune property of MA

Π (Proposi-

tion 3.13(3)) yields that E〈Π〉
[
MA

Π

]
= α0. In addition, since B controls root(Π), the distribution of

the edges (λ, 0) and (λ, 1) has not changed. It holds that

E〈A(1),B〉
[
MA

Π

]
= p · E〈(A(1),B)

0
〉
[(
MA

Π

)
0

]
+ (1− p) · E〈(A(1),B)

1
〉
[(
MA

Π

)
1

]
(12)

(1)
= p · E〈

A
(1)
Π0
,BΠ0

〉[(MA
Π

)
0

]
+ (1− p) · E〈

A
(1)
Π1
,BΠ1

〉[(MA
Π

)
1

]
= p · E〈

A
(1)
Π0
,BΠ0

〉[MA
Π0

]
+ (1− p) · E〈

A
(1)
Π1
,BΠ1

〉[α0

α1
MA

Π1

]
= p · E〈

A
(1)
Π0
,BΠ0

〉[MA
Π0

]
+ (1− p) · α0

α1
· E〈

A
(1)
Π1
,BΠ1

〉[MA
Π1

]
,

where (1) follows since A(1) is stateless (Proposition 3.5). Applying the induction hypothesis on
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the right-hand side of Equation (12) yields that

E〈A(1),B〉
[
MA

Π

]
≥ p · α0

val(Π0)
+ (1− p) · α0

α1
· α1

val(Π1)

= α0

(
p

val(Π0)
+

1− p
val(Π1)

)
(1)

≥
E〈Π〉

[
MA

Π

]
val(Π)

,

which concludes the proof for the case that B controls root(Π), and where (1) holds since

p

val(Π0)
+

1− p
val(Π1)

≥ 1

val(Π)
. (13)

�

The proof of Lemma 3.15 follows from similar arguments to those used above for proving
Lemma 3.16.28 Informally, we proved Lemma 3.16 by showing that A(1) “assigns” more weight to
the dominated measure than A does. A natural step is to consider A(2) and to see if it assigns
more weight to the dominated measure than A(1) does. It turns out that one can turn this intuitive
argument into a formal proof, and prove Lemma 3.14 by repeating this procedure with respect to
many recursive biased-continuation attacks.29

The shortcoming of Lemma 3.14. Given a protocol Π = (A,B), we are interested in the
minimal value of κ for which A(κ) biases the value of the protocol towards one with probability of
at least 0.9 (as a concrete example). Following Lemma 3.14, it suffices to find a value κ such that

val(A(κ),B) ≥ 1− OPTB(Π)∏κ−1
i=0 val(A(i),B)

≥ 0.9. (14)

Using worst case analysis, it suffices to find κ such that (1 − OPTB(Π))/(0.9)κ ≥ 0.9, where the
latter dictates that

κ ≥
log
(

1
1−OPTB(Π)

)
log
(

1
0.9

) . (15)

Recall that our ultimate goal is to implement an efficient attack on any coin-flipping protocol,
under the mere assumption that one-way functions do not exist. Specifically, we would like to do so
by giving an efficient version of the recursive biased-continuation attack. At the very least, due to
the recursive nature of the attack, this requires the protocols (A(1),B), . . . , (A(κ−1),B) be efficient
in comparison to the basic protocol. The latter efficiency restriction together with the recursive
definition of A(κ) dictates that κ (the number of recursion calls) be constant.

Unfortunately, Equation (15) reveals that if OPTB(Π) ∈ 1 − o(1), we need to take κ ∈ ω(1),
yielding an inefficient attack.

28The proof sketch given for Lemma 3.16 is almost a formal proof, lacking only consideration of the base case and
the extreme cases in which eΠ(λ, b) = 1 for some b ∈ {0, 1}.

29The main additional complication in the proof of Lemma 3.14 is that the simple argument used to derive Equa-
tion (13) is replaced with the more general argument, described in Lemma 2.20.
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3.5 Back to the Proof — Sequence of Alternating Dominated Measures

Let Π = (A,B) be a protocol and let M be a measure over the leaves of Π. Consider the variant of Π
whose parties act identically to the parties in Π, but with the following tweak: when the execution
reaches a leaf `, the protocol restarts with probability M(`). Namely, a random execution of the
resulting (possibly inefficient) protocol is distributed like a random execution of Π, conditioned on
not “hitting” the measure M .30 The above is formally captured by the definition below.

3.5.1 Conditional Protocols

Definition 3.17 (conditional protocols). Let Π be an m-round protocol and let M be a measure
over L(Π) with E〈Π〉[M ] < 1. The m-round M -conditional protocol of Π, denoted Π|¬M , is defined
by the color function χ(Π|¬M) ≡ χΠ, and the edge distribution function e(Π|¬M) is defined by

e(Π|¬M)(u, ub) =

0, E〈Πu〉[M ] = 1; 31

eΠ(u, ub) ·
1−E〈Πub〉[M ]

1−E〈Πu〉[M ] , otherwise.
,

for every u ∈ V(Π) \ L(Π) and b ∈ {0, 1}. The controlling scheme of the protocol Π|¬M is the
same as in Π.

If E〈Π〉[M ] = 1 or Π =⊥, we set Π|¬M =⊥.

Example 3.18 (Conditional Protocol)

Once again we consider the protocol Π from Figure 2a. In Figure 3 we present the conditional
protocol Π′ = Π|¬MA

Π , namely the protocol derived when protocol Π is conditioned not to
“hit” the A-dominated measure of Π. We would like to highlight some points regarding this
conditional protocol.

The first point we note is the changes in the edge distribution. Consider the root of Π0

(i.e., the node 0). According to the calculations in Figure 2b, it holds that E〈Π00〉
[
MA

Π

]
=

MA
Π(00) = 1 and that E〈Π0〉

[
MA

Π

]
= α0. Hence, Definition 3.17 yields that

e(Π|¬MA
Π)(0, 00) = α0 ·

1− E〈Π00〉
[
MA

Π

]
1− E〈Π0〉

[
MA

Π

]
= α0 ·

0

1− α0

= 0.

Note that the above change makes the leaf 00 inaccessible in Π′. This occurs since MA
Π(00) =

1. Similar calculations yield the changes in the distribution of the edges leaving the root of
Π1 (i.e., the node 1).

The second point we note is that the conditional protocol is in fact a protocol. Namely, for
every node, the sum of the probabilities of the edges leaving it is one. This is easily seen
from Figure 3.

30For concreteness, one might like to consider the case where M is a set.
31Note that this case does not affect the resulting protocol, and is defined only to simplify future discussion.
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0

β01
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1− β01

1

β

A

1

α1−α0
1−α0

0

1−α1
1−α0

1− β

Figure 3: The conditional protocol Π′ = Π|¬MA
Π of Π from Figure 2a. Dashed edges are such

that their distribution has changed. Note that due to this change, the leaf 00 (the leftmost leaf,
marked by a thick border) is inaccessible in Π′. The B-dominated measure of Π′ assigns a value of
1 to the leaf 010, and value of 0 to all other leaves.

The third point we note is that the edge distribution of the root of Π does not change at
all. This follows from Definition 3.17 and the fact that

E〈Π0〉

[
MA

Π

]
= E〈Π1〉

[
MA

Π

]
= E〈Π〉

[
MA

Π

]
= α0.

The fourth point we note is that in the conditional protocol, an optimal valid attacker
playing the role of B can bias the outcome towards zero with probability one. Namely,
OPTB

(
Π|¬MA

Π

)
= 1. Such an attacker will send 0 as the first message, after which A must

send 1 as the next message, and then the attacker will send 0. The outcome of this interaction
is the value of the leaf 010, which is 0.

In the rest of the section we show that the above observations can actually be generalize to
statements regarding any conditional protocol.

The next proposition shows that the M -conditional protocol is indeed a protocol. It also shows
a relation between the leaf distribution of the M -conditional protocol and the original protocol.
Using this relation we conclude that the set of possible transcripts of the M -conditional protocol
is a subset the original protocol’s possible transcripts and that if M assigns a value of 1 to some
transcript, then this transcript is inaccessible by the M -conditional protocol.

Proposition 3.19. Let Π be a protocol and let M be a measure over L(Π) with E〈Π〉[M ] < 1.
Then

1. ∀u ∈ V(Π) \ L(Π): v(Π|¬M)(u) > 0 =⇒ e(Π|¬M)(u, u0) + e(Π|¬M)(u, u1) = 1;

2. ∀` ∈ L(Π): v(Π|¬M)(`) = vΠ(`) · 1−M(`)

1− E〈Π〉[M ]
;

3. ∀` ∈ L(Π): v(Π|¬M)(`) > 0 =⇒ vΠ(`) > 0; and

4. ∀` ∈ L(Π): M(`) = 1 =⇒ v(Π|¬M)(`) = 0.
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Proof. The first two items immediately follow from Definition 3.17. The last two items follow the
second item. �

In addition to the above properties, Definition 3.17 guarantees the following “locality” property
of the M -conditional protocol.

Proposition 3.20. Let Π be a protocol and let M be a measure over L(Π). Then (Π|¬M)u =
Πu|¬(M)u for every u ∈ V(Π) \ L(Π).

Proof. Immediately follows from Definition 3.17. �

Proposition 3.20 helps us to apply induction on conditional protocols. Specifically, we use it
to prove the following lemma, which relates the (dominated measure)-conditional protocol to the
optimal (valid) attack.

Lemma 3.21. Let Π = (A,B) be a protocol with val(Π) < 1. Then OPTB

(
Π|¬MA

Π

)
= 1.

This lemma justifies yet again the name of the A-dominated measure. Not only that this
measure give a precise quantity to the advantage of the optimal attacker when taking the role of
A over the one taking the role of B (Lemma 3.12), but when we condition on not “hitting” this
measure, the optimal attacker taking the role of A no longer wins with probability one.

As an intuitive explanation, assume that OPTA

(
Π|¬MA

Π

)
= 1. By Proposition 3.9, it holds that

OPTB

(
Π|¬MA

Π

)
< 1, and so there exists an A-dominated measure M in the conditional protocol

Π|¬MA
Π . Let the measure M ′ be the “union” of MA

Π and M . It holds that M ′ (like MA
Π itself)

is A-maximal, B-minimal and B-immune in Π, and that E〈Π〉[M
′] > E〈Π〉

[
MA

Π

]
. Following similar

arguments to those in the proof of Lemma 3.12, it also holds that E〈Π〉[M
′] = 1 − OPTB(Π).

But Lemma 3.12 already showed that 1 − OPTB(Π) = E〈Π〉
[
MA

Π

]
, a contradiction (in essence,

Lemma 3.12 shows that MA
Π is the “only” A-maximal, B-minimal and B-immune measure in Π).

Proof of Lemma 3.21. First, we note that Fact 2.7 yields that E〈Π〉
[
MA

Π

]
≤ val(Π) < 1, and hence

Π|¬MA
Π 6=⊥ (i.e., is a protocol). The rest of the proof is by induction on the round complexity of

Π.
Assume that round(Π) = 0 and let ` be the only node in T (Π). Since it is assumed that

val(Π) < 1, it must be the case that χΠ(`) = 0. The proof follows since MA
Π(`) = 0, and thus

Π|¬MA
Π = Π, and since OPTB(Π) = 1.

Assume the lemma holds for m-round protocols and that round(Π) = m+ 1. If eΠ(λ, b) = 1 for
some b ∈ {0, 1}, Definition 3.10 yields that

(
MA

Π

)
b

= MA
Πb

. Moreover, Definition 3.17 yields that
e(Π|¬MA

Π)(λ, b) = 1. It holds that

OPTB

(
Π|¬MA

Π

)
(1)
= OPTB

((
Π|¬MA

Π

)
b

)
(16)

(2)
= OPTB

(
Πb|¬

(
MA

Π

)
b

)
= OPTB

(
Πb|¬MA

Πb

)
(3)
= 1,

where (1) follows from Proposition 3.8, (2) follows from Proposition 3.20, and (3) follows from the
induction hypothesis.
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In the complementary case, i.e., eΠ(λ, b) /∈ {0, 1} for both b ∈ {0, 1}, the proof splits according
to who controls the root of Π.

A controls root(Π). The assumption that val(Π) < 1 dictates that val(Π0) < 1 or val(Π1) < 1.
Consider the following complimentary cases.

val(Π0), val(Π1) < 1: Proposition 3.8 yields that

OPTB

(
Π|¬MA

Π

)
(1)
= e(Π|¬MA

Π)(λ, 0) · OPTB

((
Π|¬MA

Π

)
0

)
+ e(Π|¬MA

Π)(λ, 1) · OPTB

((
Π|¬MA

Π

)
1

)
(2)
= e(Π|¬MA

Π)(λ, 0) · OPTB

(
Π0|¬

(
MA

Π

)
0

)
+ e(Π|¬MA

Π)(λ, 1) · OPTB

(
Π1|¬

(
MA

Π

)
1

)
(3)
= e(Π|¬MA

Π)(λ, 0) · OPTB

(
Π0|¬MA

Π0

)
+ e(Π|¬MA

Π)(λ, 1) · OPTB

(
Π1|¬MA

Π1

)
(4)
= 1,

where (1) follows from Proposition 3.8, (2) from Proposition 3.20, (3) follows from by the A-
maximal property of MA

Π (Proposition 3.13(1)), and (4) follows from the induction hypothesis.

val(Π0) < 1, val(Π1) = 1: By Definition 3.17, it holds that

e(Π|¬MA
Π)(λ, 1) = eΠ(λ, 1) ·

1− E〈Π1〉
[(
MA

Π

)
1

]
1− E〈Π〉

[
MA

Π

]
(1)
= eΠ(λ, 1) ·

1− E〈Π1〉
[
MA

Π1

]
1− E〈Π〉

[
MA

Π

]
(2)
= 0,

where the (1) follows from the A-maximal property of MA
Π , and (2) follows since val(Π1) = 1,

which yields that E〈Π1〉
[
MA

Π1

]
= 1. Since Π|¬MA

Π is a protocol (Proposition 3.19), it holds
that e(Π|¬MA

Π)(λ, 0) = 1. The proof now follows from Equation (16).

val(Π0) = 1, val(Π1) < 1: The proof in analogous to the previous case.

B controls root(Π). Assume for simplicity that SmallerΠ(0) = 1, namely that E〈Π0〉
[
MA

Π0

]
≤

E〈Π1〉
[
MA

Π1

]
(the other case is analogous). It must hold that val(Π0) < 1 (otherwise, it holds that

E〈Π0〉
[
MA

Π0

]
= E〈Π1〉

[
MA

Π1

]
= 1, which yields that val(Π1) = 1, and thus val(Π) = 1). Hence,

E〈Π0〉
[
MA

Π0

]
< 1, and Definition 3.17 yields that e(Π|¬MA

Π)(λ, 0) > 0. By Proposition 3.8, it holds

that

OPTB

(
Π|¬MA

Π

)
≥ OPTB

((
Π|¬MA

Π

)
0

)
(1)
= OPTB

(
Π0|¬

(
MA

Π

)
0

)
(2)
= OPTB

(
Π0|¬MA

Π0

)
(3)
= 1,
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where (1) follows from Proposition 3.20, (2) follows from the B-minimal property of MA
Π (Proposi-

tion 3.13(2)), and (3) follows from the induction hypothesis. �

Let Π = (A,B) be a protocol in which an optimal adversary playing the role of A biases the
outcome towards one with probability one. Lemma 3.21 shows that in the conditional protocol
Π(B,0) := Π|¬MA

Π , an optimal adversary playing the role of B can bias the outcome towards zero
with probability one. Repeating this procedure with respect to Π(B,0) results in the protocol

Π(A,1) := Π(B,0)|¬MA
Π(B,0)

, in which again an optimal adversary playing the role of A can bias the

outcome towards one with probability one. This procedure is stated formally in Definition 3.23.

3.5.2 Sequence of Dominated Measures

Given a protocol (A,B), order the pairs {(C, j)}(C,j)∈{A,B}×N according to the sequence
(A, 0), (B, 0), (A, 1), (B, 1) and so on.

Notation 3.22. Let (A,B) be a protocol. For j ∈ Z let pred(A, j) = (B, j − 1) and pred(B, j) =
(A, j), and let succ be the inverse operation of pred (i.e., succ(pred(C, j)) = (C, j)). For pairs
(C, j), (C′, j′) ∈ {A,B} × Z, we write

• (C, j) is less than or equal to (C′, j′) , denoted (C, j) � (C′, j′), if ∃{(C1, j1), . . . , (Cn, jn)} such
that (C, j) = (C1, j1), (C′, j′) = (Cn, jn) and (Ci, ji) = pred(Ci+1, ji+1) for any i ∈ [n− 1].

• (C, j) is less than (C′, j′), denoted (C, j) ≺ (C′, j′), if (C, j) � (C′, j′) and (C, j) 6= (C′, j′).

Finally, for (C, j) � (A, 0), let [(C, j)] := {(C′, j′) : (A, 0) � (C′, j′) � (C, j)}.

Definition 3.23. (dominated measures sequence) For a protocol Π = (A,B) and (C, j) ∈ {A,B}×N,
the protocol Π(C,j) is defined by

Π(C,j) =

{
Π, (C, j) = (A, 0);

Π(C′,j′)=pred(C,j)|¬
(
MC′

Π(C′,j′)

)
, otherwise.32

Define the (C, j) dominated measures sequence of Π, denoted (C, j)-DMS(Π), by{
MC′

Π(C′,j′)

}
(C′,j′)∈[(C,j)]

. Finally, for z ∈ N, let LC,z
Π ≡

∑z
j=0M

C
Π

(C,j)

∏j−1
t=0

(
1−MC

Π
(C,t)

)
.

We show that LA,z
Π is a measure (i.e., its range is [0, 1]) and that its support is a subset of the

1-leaves of Π. We also give an explicit expression for its expected value (analogous to the expected
value of MA

Π given in Lemma 3.12).

Lemma 3.24. Let Π = (A,B) be a protocol, let z ∈ N, and let LA,z
Π be as in Definition 3.23. It

holds that

1. LA,z
Π is a measure over L1(Π):

(a) LA,z
Π (`) ∈ [0, 1] for every ` ∈ L(Π), and

32Note that if E〈
Π

(C,j)

〉[MC
Π

(C,j)

]
= 1, Definition 3.17 yields that Πsucc(C,j) =⊥. In fact, since we defined ⊥ |¬M =⊥

for any measure M (also in Definition 3.17), it follows that Π(C′,j′) =⊥ for any (C′, j′) � (C, j).
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(b) Supp
(
LA,z

Π

)
⊆ L1(Π).

2. E〈Π〉

[
LA,z

Π

]
=
∑z

j=0 αj ·
∏j−1
t=0 (1 − βt)(1 − αt), where αj = 1 − OPTB

(
Π(A,j)

)
, βj = 1 −

OPTA

(
Π(B,j)

)
and OPTA(⊥) = OPTB(⊥) = 1.

Proof. We prove the above two items separately.

Proof of Item 1. Let ` ∈ L0(Π). Since MA
Π

(A,j)
(`) = 0 for every j ∈ (z), it holds that LA,z

Π (`) = 0.

Let ` ∈ L1(Π). Since LA,z
Π (`) is a sum of non-negative numbers, it follows that its value is

non-negative. It is left to argue that LA,z
Π (`) ≤ 1. Since MA

Π
(A,z)

is a measure, note that

MA
Π

(A,z)
(`) ≤ 1. Thus

LA,z
Π (`) =

z∑
j=0

MA
Π

(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π
(A,t)

(`)
)

≤
z−1∏
t=0

(
1−MA

Π
(A,t)

(`)
)

+
z−1∑
j=0

MA
Π

(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π
(A,t)

(`)
)

=

 ∑
I⊆(z−1)

(−1)|I| ·
∏
t∈I

MA
Π

(A,t)
(`)

+
z−1∑
j=0

MA
Π

(A,j)
(`) ·

 ∑
I⊆(j−1)

(−1)|I| ·
∏
t∈I

MA
Π

(A,t)
(`)


=

 ∑
I⊆(z−1)

(−1)|I| ·
∏
t∈I

MA
Π

(A,t)
(`)

+

 ∑
∅6=I⊆(z−1)

(−1)|I|+1 ·
∏
t∈I

MA
Π

(A,t)
(`)


= 1.

Proof of Item 2. By linearity of expectation, it suffices to prove that

E〈Π〉

[
MA

Π(A,j)
·
j−1∏
t=0

(
1−MA

Π(A,t)

)]
= αj ·

j−1∏
t=0

(1− βt)(1− αt) (17)

for any j ∈ (z). Fix j ∈ (z). If Π(A,j) =⊥, then by Definition 3.10 it holds that MA
Π(A,j)

is the

zero measure, and both sides of Equation (17) equal 0.

In the following we assume that Π(A,j) 6=⊥. We first note that E〈Π(C,t)〉
[
MC

Π(C,t)

]
< 1 for any

(C, t) ∈ [pred(A, j)] (otherwise, it must be that Π(A,j) =⊥). Thus, Lemma 3.12 yields that
αt, βt < 1 for every t ∈ (j − 1). Hence, recursively applying Proposition 3.19(2) yields that

v(Π(A,j))(`) = vΠ(`) ·
j−1∏
t=0

1−MA
Π(A,t)

(`)

1− αt
·

1−MB
Π(B,t)

(`)

1− βt
(18)

for every ` ∈ L(Π). Moreover, for ` ∈ Supp
(
Π(A,j)

)
, i.e., v(Π(A,j))(`) > 0, we can manipulate

Equation (18) to get that

vΠ(`) = v(Π(A,j))(`) ·
j−1∏
t=0

1− αt
1−MA

Π(A,t)
(`)
· 1− βt

1−MB
Π(B,t)

(`)
(19)
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for every ` ∈ Supp
(
Π(A,j)

)
.

It follows that

E〈Π〉

[
MA

Π(A,j)
·
j−1∏
t=0

(
1−MA

Π(A,t)

)]

=
∑

`∈L(Π)

vΠ(`) ·

(
MA

Π(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π(A,t)
(`)
))

(1)
=

∑
`∈Supp(Π(A,j))∩L1(Π)

vΠ(`) ·

(
MA

Π(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π(A,t)
(`)
))

(2)
=

∑
`∈Supp(Π(A,j))∩L1(Π)

v(Π(A,j))(`) ·
j−1∏
t=0

1− αt
1−MA

Π(A,t)
(`)
· 1− βt

1−MB
Π(B,t)

(`)

·

(
MA

Π(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π(A,t)
(`)
))

(3)
=

∑
`∈Supp(Π(A,j))∩L1(Π)

v(Π(A,j))(`) ·MA
Π(A,j)

(`) ·
j−1∏
t=0

(1− αj)(1− βj)

= αj ·
j−1∏
t=0

(1− βt)(1− αt),

concluding the proof. (1) follows since Definition 3.10 yields that MA
Π(A,j)

(`) = 0 for any

` /∈ Supp
(
Π(A,j)

)
∩L1(Π), (2) follows from Equation (19) and (3) follows since MB

Π(B,t)
(`) = 0

for every ` ∈ L1(Π) and t ∈ (j − 1). �

Using dominated measure sequences, we manage to give an improved bound for the success
probability of the recursive biased-continuation attacks (compared to the bound of Lemma 3.16,
which uses a single dominated measure). The improved analysis yields that a constant number of
recursion calls of the biased-continuation attack is successful in biasing the protocol to an arbitrary
constant close to either 0 or 1.

3.6 Improved Analysis Using Alternating Dominated Measures

We are finally ready to state two main lemmas, whose proofs – given in the next two sections – are
the main technical contribution of Section 3, and then show how to use them to prove Theorem 3.3.

The first lemma is analogous to Lemma 3.14, but applied on the sequence of the dominated
measures, and not just on a single dominated measure.

Lemma 3.25. For a protocol Π = (A,B) with val(Π) > 0 and z ∈ N, it holds that

val(A(k),B) ≥ E〈A(k),B〉
[
LA,z

Π

]
≥

E〈Π〉

[
LA,z

Π

]
∏k−1
i=0 val(A(i),B)

·

1−
z−1∑
j=0

βj

k
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for every k ∈ N, where βj = 1− OPTA

(
Π(B,j)

)
, letting OPTA(⊥) = 1.

The above states that the recursive biased-continuation attacker biases the outcome of the
protocol by a bound similar to that given in Lemma 3.14, but applied with respect to LA,z

Π , instead

of MA
Π in Lemma 3.14. This is helpful since the expected value of LA,z

Π is strictly larger than that

of MA
Π . However, since LA,z

Π is defined with respect to a sequence of conditional protocols, we must

“pay” the term
(

1−
∑z−1

j=0 βj

)k
in order to get this bound in the original protocol.

The following lemma states that Lemma 3.25 provides a sufficient bound. Specifically, it shows
that if we take a long enough sequence of conditional protocols, the expected value of the measure
LA,z

Π will be sufficiently large, while the payment term mentioned above will be kept sufficiently
small.

Lemma 3.26. Let Π = (A,B) be a protocol. Then for every c ∈ (0, 1
2 ] there exists z = z(c,Π) ∈ N

(possibly exponential large) such that:

1. E〈Π〉

[
LA,z

Π

]
≥ c · (1− 2c) and

∑z−1
j=0 βj < c; or

2. E〈Π〉

[
LB,z

Π

]
≥ c · (1− 2c) and

∑z
j=0 αj < c,

where αj = 1− OPTB

(
Π(A,j)

)
and βj = 1− OPTA

(
Π(B,j)

)
.

To derive Theorem 3.3, we take a sequence of the dominated measures that is long enough so
that its accumulated weight will be sufficiently large. Furthermore, the weight of the dominated
measures that precede the final dominated measure in the sequence is small (otherwise, we would
have taken a shorter sequence), so the parties are “missing” these measures with high probability.
The formal proof of Theorem 3.3 is given next, and the proofs of Lemmas 3.25 and 3.26 are given
in Sections 3.7 and 3.8 respectively.

3.6.1 Proving Theorem 3.3

Proof of Theorem 3.3. If val(Π) = 0, Theorem 3.3 trivially holds. Assume that val(Π) > 0, let z be

the minimum integer guaranteed by Lemma 3.26 for c = ε/2, and let κ =

⌈
log( 2

ε)
log
(

1−ε/2
1−ε

)
⌉
∈ Õ(1/ε).

If z satisfies Item 1 of Lemma 3.26, assume towards a contradiction that val(A(κ),B) ≤ 1 − ε.
Lemma 3.25 yields that

val(A(κ),B) ≥
E〈Π〉

[
LA,z

Π

]
∏κ−1
i=0 val(A(i),B)

·

1−
z−1∑
j=0

βj

κ

>
ε(1− ε)

2
·
(

1− ε/2
1− ε

)κ
≥ 1− ε,

and a contradiction is derived.
If z satisfies Item 2 of Lemma 3.26, an analogous argument to the above yields that val(A,B(κ)) ≤

ε. �
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3.7 Proving Lemma 3.25

3.7.1 Outline

We would like to follow the proof’s outline of Lemma 3.16, which is a special case of Lemma 3.25
for k = 1 and z = 0 (i.e., only a single dominated measure instead of a sequence).

The proof of Lemma 3.16 was done through the following steps: (1) we applied the induction
hypothesis to the sub-protocols Π0 and Π1 with respect to their A-dominated measures, MA

Π0
and

MA
Π1

; (2) we related, using Proposition 3.13, MA
Π0

and MA
Π1

to
(
MA

Π

)
0

and
(
MA

Π

)
1
, were the latter

are the restrictions of the A-dominated measure of Π to Π0 and Π1; (3) if A controls the root, then
we used the properties of A(1) (specifically, the way it changes the edges distribution) to complete
the proof; (4) if B controls the root, then we used a convexity-type argument to complete the proof.

Lets try to extend the above outline for a sequence of two dominated measures. It will be
useful to consider a specific protocol, presented in Figure 4a (this protocol is an instantiation of
the protocol we have been using thus far for the examples). Recall that the A-dominated measure
of Π = Π(A,0) assigns MA

Π(00) = 1 (the left-most leaf), MA
Π(10) = 1/2 (the second to the right-most

leaf), and zero to the rest of the leaves. Using MA
Π , we can now compute Π(B,0), presented in

Figure 4b. Now, consider the sequence of two dominated measures for Π1, presented in Figure 5a.
The A-dominated measure of Π1 = (Π1)(A,0) assigns MA

Π1
(10) = 1 and MA

Π1
(11) = 0, and using it

we can compute (Π1)(B,0), presented in Figure 5b.
The first step of the outline above is to apply the induction hypothesis to the sub-protocol Π1.

When trying to extend this outline for proving Lemma 3.25 we face a problem, since (Π1)(B,0) is not

the same protocol as
(
Π(B,0)

)
1
. The latter is a consequence of the fact that

(
MA

Π

)
1
6= MA

Π1
. In fact,

we implicitly faced the same problem in the proof of Lemma 3.16, where we used Proposition 3.13
to show that

(
MA

Π

)
1

= (1/2) ·MA
Π1

, and thus still enabling us to use the induction hypothesis.
At this point we observe that the proof of Lemma 3.16 can also be viewed differently. Instead of
applying the induction hypothesis on MA

Π1
and use Proposition 3.13, we can apply the induction

hypothesis directly to the measure (1/2) ·MA
Π1

. This requires strengthening of the statement of the
lemma to consider submeasures of of dominated measures, namely, measures of the form η ·M , for
0 ≤ η ≤ 1 and M being some dominated measure.

Using sequence of dominated submeasures is the path we take for proving Lemma 3.25. The
outline of the proof is as follows:

1. Define (Π,η)-dominated submeasures sequence, where η is a vector of real values in [0, 1]
(Definition 3.27).

2. Extend the statement of Lemma 3.25 to handle dominated submeasures sequences
(Lemma 3.28).

3. Given η, carefully define η0 and η1 such that the restrictions of the (Π,η)-dominated subme-
asures sequence are exactly the measures used in (Π0,η0)-dominated submeasures sequence
and in (Π1,η1)-dominated submeasure sequence (Definition 3.29 and Claim 3.30).

4. Apply the induction hypothesis to the (Π0,η0)-dominated submeasures sequence and the
(Π1,η1)-dominated submeasures sequence.

5. If A controls the root, then use the properties of A(1) to complete the proof.
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(b) Protocol Π(B,0).

Figure 4: An example of a coin-flipping protocol to the left and its conditional protocol tp the
right, when conditioning not to “hit” the A-dominated measure.
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(a) Protocol Π1 = (Π1)(A,0).
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1

0

0
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(b) Protocol (Π1)(B,0).

Figure 5: The sub-protocol Π1 of the protocol from Figure 4 and its conditional protocol.

6. If B controls the root, then use a convexity-type argument to complete the proof.

The formal proof, given below, follows precisely this outline. Unlike in the proof of Lemma 3.16,
the last two steps are not trivial, and require careful analysis.

3.7.2 Formal Proof of Lemma 3.25

The proof of Lemma 3.25 is an easy implication of Lemma 3.24 and the following key lemma,
defined with respect to sequences of submeasures of the dominated measure.

Definition 3.27. (dominated submeasure sequence) For a protocol Π = (A,B), a pair (C∗, j∗) ∈
{A,B} × N and η =

{
η(C,j) ∈ [0, 1]

}
(C,j)∈[(C∗,j∗)]

, define the protocol Π̂η
(C,j) by

Π̂η
(C,j) :=

{
Π, (C, j) = (A, 0);

Π̂η
(C′,j′)=pred(C,j)|¬

(
M̂Π,η

(C′,j′)

)
, otherwise.

,

where M̂Π,η
(C′,j′) ≡ η(C′,j′) · MC′

Πη

(C′,j′)
. For (C, j) ∈ [(C∗, j∗)], define the (C, j,η)-dominated me-

asure sequence of Π, denoted (C, j,η)-DMS(Π), as
{
M̂Π,η

(C′,j′)

}
(C′,j′)∈[(C,j)]

, and let µ̂Π,η
(C,j) =

E〈
Π̂η

(C,j)

〉[M̂Π,η
(C,j)

]
.33

Finally, let L̂C,η
Π ≡

∑
j : (C,j)∈[(C∗,j∗)] M̂

Π,η
(C,j) ·

∏j−1
t=0

(
1− M̂Π,η

(C,t)

)
.

33Note that for η = (1, 1, 1, . . . , 1), Definition 3.27 coincides with Definition 3.23.
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Lemma 3.28. Let Π = (A,B) be a protocol with val(Π) > 0, let z ∈ N and let η ={
η(C,j) ∈ [0, 1]

}
(C,j)∈[(A,z)]

. For j ∈ (z), let αj = µ̂Π,η
(A,j), and for j ∈ (z − 1), let βj = µ̂Π,η

(B,j).

Then

E〈A(k),B〉
[
L̂A,η

Π

]
≥
∑z

j=0 αj ·
∏j−1
t=0 (1− βt)k+1(1− αt)∏k−1
i=0 val(A(i),B)

for any positive k ∈ N.

The proof of Lemma 3.28 is given below, but we first use it to prove Lemma 3.25.

Proof of Lemma 3.25. Let η(C,j) = 1 for every (C, j) ∈ [(A, z)] and let η =
{
η(C,j)

}
(C,j)∈[(A,z)]

. It

follows that L̂A,η
Π ≡ LA,z

Π . Applying Lemma 3.28 yields that

E〈A(k),B〉
[
LA,z

Π

]
≥
∑z

j=0 αj ·
∏j−1
t=0 (1− βt)k+1(1− αt)∏k−1
i=0 val(A(i),B)

, (20)

where αj = µ̂Π,η
(A,j) and βj = µ̂Π,η

(B,j). Multiplying the j’th summand of the right-hand side of

Equation (20) by
∏z−1
t=j (1− βj)k ≤ 1 yields that

E〈A(k),B〉
[
LA,z

Π

]
≥
∑z

j=0 αj ·
∏j−1
t=0 (1− βt)(1− αt)∏k−1

i=0 val(A(i),B)
·
z−1∏
t=0

(1− βt)k (21)

≥
∑z

j=0 αj ·
∏j−1
t=0 (1− βt)(1− αt)∏k−1

i=0 val(A(i),B)
·

(
1−

z−1∑
t=0

βt

)k
,

where the second inequality follows since βj ≥ 0 and (1− x)(1− y) ≥ 1− (x+ y) for any x, y ≥ 0.

By Lemma 3.12 and the definition of η it follows that µ̂Π,η
(A,j) = 1 − OPTB

(
Π(A,j)

)
and µ̂Π,η

(B,j) =

1− OPTA

(
Π(B,j)

)
. Hence, plugging Lemma 3.24 into Equation (21) yields that

E〈A(k),B〉
[
LA,z

Π

]
≥

E〈Π〉

[
LA,z

Π

]
∏k−1
i=0 val(A(i),B)

·

(
1−

z−1∑
t=0

βt

)k
. (22)

Finally, the proof is concluded, since by Lemma 3.24 and Fact 2.7 it immediately follows that

val(A(k),B) ≥ E〈A(k),B〉
[
LA,z

Π

]
. �

3.7.3 Proving Lemma 3.28

Proof of Lemma 3.28. In the following we fix a protocol Π, real vector η =
{
η(C,j)

}
(C,j)∈[(A,z)]

and

a positive integer k. We also assume for simplicity that Π̂η
(A,z) is not the undefined protocol, i.e.,

Π̂η
(A,z) 6=⊥.34 The proof is by induction on the round complexity of Π.

34If this assumption does not hold, let z′ ∈ (z − 1) be the largest index such that Π̂η
(A,z′) 6=⊥, and let η′ ={

η(C,j)

}
(C,j)∈[(A,z′)]

. It follows from Definition 3.10 that M̂Π,η
(A,j) is the zero measure for any z′ < j ≤ z, and thus

L̂Π,η′

A ≡ L̂Π,η
A . Moreover, the fact that αj = 0 for any z′ < j ≤ z suffices to validate the assumption.
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Base case. Assume round(Π) = 0 and let ` be the only node in T (Π). For j ∈ (z), Definition 3.27
yields that χ

Π̂η
(A,j)

(`) = χΠ(`) = 1, where the last equality holds since, by assumption, val(Π) > 0.

It follows Definition 3.10 that MA
Π̂η

(A,j)

(`) = 1 and Definition 3.27 that M̂Π,η
(A,j)(`) = η(A,j). Hence,

it holds that αj = η(A,j). Similarly, for j ∈ (z − 1) it holds that M̂Π,η
(B,j)(`) = 0 and thus βj = 0.

Clearly,
(
A(k),B

)
= Π and val(A(i),B) = 1 for every i ∈ [k − 1]. We conclude that

E〈A(k),B〉
[
L̂Π,η
A

]
=E〈Π〉

[
L̂Π,η
A

]
=

z∑
j=0

M̂Π,η
(A,j)(`) ·

j−1∏
t=0

(
1− M̂Π,η

(A,t)(`)
)

=

z∑
j=0

η(A,j) ·
j−1∏
t=0

(
1− η(A,t)

)
=

z∑
j=0

αj ·
j−1∏
t=0

(1− αt)

=

∑z
j=0 αj

∏j−1
t=0 (1− βt)k+1(1− αt)∏k−1
i=0 val(A(i),B)

.

Induction step. Assume the lemma holds for m-round protocols and that round(Π) = m+1. We
prove it by the following steps: (1) we define two real vectors η0 and η1 such that the restriction

of L̂Π,η
A to Π0 and Π1 is equal to L̂

Π0,η0
A and L̂

Π1,η1
A respectively; (2) we apply the induction

hypothesis on the two latter measures; (3) if A controls root(Π), we use the properties of A(k) – as
stated in Claim 3.4 – to derive the lemma, whereas if B controls root(Π), we derive the lemma from
Lemma 2.20.

All claims given in the context of this proof are proven in Section 3.7.4. We defer handling the
case that eΠ(λ, b) ∈ {0, 1} for some b ∈ {0, 1} (see the end of this proof) and assume for now that
eΠ(λ, 0), eΠ(λ, 1) ∈ (0, 1). The real vectors η0 and η1 are defined as follows.

Definition 3.29. Let ηb =
{
ηb(C,j)

}
(C,j)∈[(A,z)]

, where for (C, j) ∈ [(A, z)] and b ∈ {0, 1}, let

ηb(C,j) =



0 e
Π̂η

(C,j)
(λ, b) = 0;

η(C,j) e
Π̂η

(C,j)
(λ, b) = 1;

η(C,j) e
Π̂η

(C,j)
(λ, b) /∈ {0, 1} ∧ (C controls root(Π) ∨ Smaller

Π̂η
(C,j)

(b));

ξ1−b
(C,j)

ξb
(C,j)

· η(C,j) otherwise;

,

where ξb(C,j) = E〈(
Π̂η

(C,j)

)
b

〉
[
MC(

Π̂η
(C,j)

)
b

]
and Smaller

Π̂η
(C,j)

(b) = 1 if ξb(C,j) ≤ ξ
1−b
(C,j).

35

35Note that the definition of ηb follows the same lines of the definition of the dominated measure (given in Defini-
tion 3.10).
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Given the real vector ηb, consider the dominated submeasure sequence ηb induces on the sub-
protocol Πb. At first glance, the relation of this submeasure sequence to the dominated submeasure
sequence η induces on Π, is unclear; nonetheless, we manage to prove the following key observation.

Claim 3.30. It holds that L̂
Πb,ηb
A ≡

(
L̂Π,η
A

)
b

for both b ∈ {0, 1}.

Namely, taking (A, z,ηb)-DMS(Πb) – the dominated submeasures defined with respect to Πb

and ηb – and constructing from it the measure L̂
Πb,ηb
A , results in the same measure as taking

(A, z,η)-DMS(Π) – the dominated submeasures defined with respect to Π and η – and constructing
from it the measure L̂Π,η

A while restricting the latter to Πb.
Given the above fact, we can use our induction hypothesis on the subprotocols Π0 and Π1 with

respect to the real vectors η0 and η1, respectively. For b ∈ {0, 1} and j ∈ (z), let αbj := µ
Πb,ηb

(A,j) (:=

E〈
(Π̂b)

ηb
(A,j)

〉[M̂Πb,ηb

(A,j)

]
), and for j ∈ (z − 1) let βbj := µ

Πb,ηb

(B,j) . Assuming that val(Π1) > 0, then

E〈(A(k),B)
1
〉
[(
L̂Π,η
A

)
1

]
(1)
= E〈

A
(k)
Π1
,BΠ1

〉[L̂Π1,η1
A

] (2)

≥
∑z

j=0 α
1
j

∏j−1
t=0 (1− β1

t )k+1(1− α1
t )∏k−1

i=0 val
((

A(i),B
)

1

) . (23)

where (1) follows from Proposition 3.5 and Claim 3.30, and (2) follows from the induction hypot-
hesis. Similarly, if val(Π0) > 1, then

E〈(A(k),B)
0
〉
[(
L̂Π,η
A

)
0

]
= E〈

A
(k)
Π0
,BΠ0

〉[L̂Π0,η0
A

]
≥
∑z

j=0 α
0
j

∏j−1
t=0 (1− β0

t )k+1(1− α0
t )∏k−1

i=0 val
((

A(i),B
)

0

) . (24)

In the following we use the fact that the dominated submeasure sequence of one of the subpro-
tocols is at least as long as the submeasure sequence of the protocol itself. Specifically, we show
the following.

Definition 3.31. For b ∈ {0, 1}, let zb = min
{{

j ∈ (z) : αbj = 1 ∨ βbj = 1
}
∪ {z}

}
.

Assuming without loss of generality (and throughout the proof of the lemma) that z1 ≤ z0, we
have the following claim (proven in Section 3.7.4).

Claim 3.32. Assume that z1 ≤ z0, then z0 = z.

We are now ready to prove the lemma by separately considering which party controls the root
of Π.

A controls root(Π) and val(Π0), val(Π1) > 0. Under these assumptions, we can apply the in-
duction hypothesis on both subtrees (namely, we can use Equations (23) and (24)). Let
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p = eΠ(λ, 0). Compute

E〈A(k),B〉
[
L̂Π,η
A

]
(25)

= e(A(k),B)(λ, 0) · E〈(A(k),B)
0
〉
[(
L̂Π,η
A

)
0

]
+ e(A(k),B)(λ, 1) · E〈(A(k),B)

1
〉
[(
L̂Π,η
A

)
1

]
(1)
= p ·

∏k−1
i=0 val

((
A(i),B

)
0

)∏k−1
i=0 val

(
A(i),B

) · E〈(A(k),B)
0
〉
[(
L̂Π,η
A

)
0

]
+ (1− p) ·

∏k−1
i=0 val

((
A(i),B

)
1

)∏k−1
i=0 val(A(i),B)

· E〈(A(k),B)
1
〉
[(
L̂Π,η
A

)
1

]
(2)

≥ p ·
∏k−1
i=0 val

((
A(i),B

)
0

)∏k−1
i=0 val

(
A(i),B

) ·
∑z

j=0 α
0
j

∏j−1
t=0 (1− β0

t )k+1(1− α0
t )∏k−1

i=0 val
((

A(i),B
)

0

)
+ (1− p) ·

∏k−1
i=0 val

((
A(i),B

)
1

)∏k−1
i=0 val(A(i),B)

·
∑z

j=0 α
1
j

∏j−1
t=0 (1− β1

t )k+1(1− α1
t )∏k−1

i=0 val
((

A(i),B
)

1

)
=
p ·
(∑z

j=0 α
0
j

∏j−1
t=0 (1− β0

t )k+1(1− α0
t )
)

∏k−1
i=0 val(A(i),B)

+
(1− p) ·

(∑z
j=0 α

1
j

∏j−1
t=0 (1− β1

t )k+1(1− α1
t )
)

∏k−1
i=0 val(A(i),B)

,

where (1) follows from Claim 3.4 and (2) follows from Equations (23) and (24).

Our next step is to establish a connection between the above
{
α0
j , α

1
j

}
j∈(z)

and{
β0
j , β

1
j

}
j∈(z−1)

to {αj}j∈(z) and {βj}j∈(z−1) (appearing in the lemma’s statement). We prove

the following claims.

Claim 3.33. If A controls root(Π), it holds that β0
j = βj for every j ∈ (z − 1) and β1

j = βj
for every j ∈ (z1 − 1).

It is a direct implication of Proposition 3.13 that β0
j = β1

j = βj for j ∈ (z1 − 1). Moreover,

β0
j = βj for every z1 ≤ j ≤ z − 1. The latter is harder to grasp without the technical proof

of the claim, which is provided in Section 3.7.4.

Claim 3.34. If A controls root(Π) and z1 < z, it holds that α1
z1 = 1.

By Claim 3.33 it follows that as long as an undefined protocol was not reached in one of
the subprotocols, then β0

j = β1
j = βj . Assuming that z1 < z and β1

z1 = 1, it would have
followed that βz1 = 1, and an undefined protocol is reached in the original protocol before z,
a contradiction to our assumption. (Again, see Section 3.7.4 for the formal proof.)

Claims 3.33 and 3.34 and Equation (25) yield that

E〈A(k),B〉
[
L̂Π,η
A

]
≥

∑z
j=0

∏j−1
t=0 (1− βt)k+1

(
p · α0

j

∏j−1
t=0 (1− α0

t ) + (1− p) · α1
j ·
∏j−1
t=0 (1− α1

t )
)

∏k−1
i=0 val(A(i),B)

.

(26)

The proof of this case is concluded by plugging the next claim into Equation (26).
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Claim 3.35. If A controls root(Π) it holds that

αj ·
j−1∏
t=0

(1− αt) = p · α0
j ·

j−1∏
t=0

(1− α0
t ) + (1− p) · α1

j ·
j−1∏
t=1

(1− α1
t )

for any j ∈ (z).

Claim 3.35 is proven in Section 3.7.4, but informally it holds since the probability of visiting
the left-hand [resp., right-hand] subprotocol in the conditional protocol Π̂η

(A,j) (in which αj is

defined) is p ·
∏j−1
t=0 (1−α0

t )/
∏j−1
t=0 (1−αt) [resp., (1− p) ·

∏j−1
t=0 (1−α1

t )/
∏j−1
t=0 (1−αt)]. Since

αj is defined to be the expected value of some measure in the above conditional protocol, its
value is a linear combination of α0

j and α1
j , with the coefficient being the above probabilities.

A controls root(Π) and val(Π0) > val(Π1) = 0. Under these assumptions, we can still use the in-
duction hypothesis for the left-hand subprotocol Π0, where for right-hand subprotocol Π1, we
argue the following.

Claim 3.36. If val(Π1) = 0, it holds that
(
L̂Π,η
A

)
1
≡ 0.36

Claim 3.36 holds since according to Claim 3.30 we can simply argue that L̂
Π1,η1
A is the zero

measure, and this holds since the latter measure is a combination of A-dominated measures,
all of which are the zero measure in a zero-value protocol.

Using Claim 3.36, similar computations to the ones in Equation (25) yield that

E〈A(k),B〉
[
L̂Π,η
A

]
(27)

= e(A(k),B)(λ, 0) · E〈(A(k),B)
0
〉
[(
L̂Π,η
A

)
0

]
+ e(A(k),B)(λ, 1) · E〈(A(k),B)

1
〉
[(
L̂Π,η
A

)
1

]
≥ p ·

∏k−1
i=0 val

((
A(i),B

)
0

)∏k−1
i=0 val

(
A(i),B

) ·
∑z

j=0 α
0
j

∏j−1
t=0 (1− β0

t )k+1(1− α0
t )∏k−1

i=0 val
((

A(i),B
)

0

)
=
p ·
(∑z

j=0 α
0
j

∏j−1
t=0 (1− β0

t )k+1(1− α0
t )
)

∏k−1
i=0 val(A(i),B)

.

Using a similar argument to that of Equation (26), combining Claim 3.33 and Equation (27)
yields that

E〈A(k),B〉
[
L̂Π,η
A

]
≥

∑z
j=0

∏j−1
t=0 (1− βt)k+1

[
p · α0

j

∏j−1
t=0 (1− α0

t )
]

∏k−1
i=0 val(A(i),B)

. (28)

The proof of this case is concluded by plugging the next claim (proven in Section 3.7.4) into
Claim 3.35, and plugging the result into Equation (28).

Claim 3.37. If val(Π1) = 0, it holds that α1
j = 0 for every j ∈ (z).

36That is,
(
L̂Π,η

A

)
1

is the zero measure.
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A controls root(Π) and val(Π1) > val(Π0) = 0. The proof of the lemma under these assumptions
is analogous to the previous case.

We have concluded the proof for cases in which A controls root(Π), and now proceed to prove
the cases in which B controls root(Π). Roughly speaking, A and B switched roles, and claims true
before regarding βj are now true for αj , and vice versa. Moreover, the analysis above relies on the
probabilities that the recursive biased-continuation attacker visits the subprotocols Π0 and Π1 when
it plays the role of A and controls root(Π). When B controls root(Π), however, these probabilities
do not change (namely, they remain p and 1 − p respectively). To overcome this difficulty we use
a convex type argument stated in Lemma 2.20.

B controls root(Π) and val(Π0), val(Π1) > 0. In this case Equations (23) and (24) hold.

Compute

E〈A(k),B〉
[
L̂Π,η
A

]
(29)

= p · E〈(A(k),B)
0
〉
[(
L̂Π,η
A

)
0

]
+ (1− p) · E〈(A(k),B)

1
〉
[(
L̂Π,η
A

)
1

]
≥ p ·

∑z
j=0 α

0
j

∏j−1
t=0 (1− β0

t )k+1(1− α0
t )∏k−1

i=0 val
((

A(i),B
)

0

) + (1− p) ·
∑z

j=0 α
1
j

∏j−1
t=0 (1− β1

t )k+1(1− α1
t )∏k−1

i=0 val
((

A(i),B
)

1

) ,

where the inequality follows from Equations (23) and (24). If B controls root(Π), we can
prove the next claims (proven in Section 3.7.4), analogous to Claims 3.33 and 3.34.

Claim 3.38. If B controls root(Π), it holds that α0
j = αj for every j ∈ (z) and that α1

j = αj
for every j ∈ (z1).

Claim 3.39. If B controls root(Π) and z1 < z, it holds that β1
z1 = 1.

Claim 3.38 and Equation (29) yield that

E〈A(k),B〉
[
L̂Π,η
A

]
(30)

≥
z∑
j=0

αj

j−1∏
t=0

(1− αt)

(
p ·

∏j−1
t=0 (1− β0

t )k+1∏k−1
i=0 val

((
A(i),B

)
0

) + (1− p) ·
∏j−1
t=0 (1− β1

t )k+1∏k−1
i=0 val

((
A(i),B

)
1

)).
Applying the convex type inequality given in Lemma 2.20 for each summand in the right-hand
side of Equation (30) with respect to x =

∏j−1
t=0 (1−β0

t ), y =
∏j−1
t=0 (1−β1

t ), ai = val(A(i−1),B0),
bi = val(A(i−1),B1), p0 = p and p1 = 1− p, and plugging into Equation (30) yield that

E〈A(k),B〉
[
L̂Π,η
A

]
≥

∑z
j=0 αj

∏j−1
t=0 (1− αt)

(
p ·
∏j−1
t=0 (1− β0

t ) + (1− p) ·
∏j−1
t=0 (1− β1

t )
)k+1

∏k−1
i=0

(
p · val

((
A(i),B

)
0

)
+ (1− p) · val

((
A(i),B

)
1

)) .

(31)

We conclude the proof of this case by observing that for every i ∈ (k − 1) it holds that
val
(
A(i),B

)
= p · val

((
A(i),B

)
0

)
+ (1− p) · val

((
A(i),B

)
1

)
, and using the next claim (proven in

Section 3.7.4), analogous to Claim 3.35.
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Claim 3.40. If B controls root(Π), it holds that

j−1∏
t=0

(1− βt) = p ·
j−1∏
t=0

(1− β0
t ) + (1− p) ·

j−1∏
t=0

(1− β1
t ).

B controls root(Π) and val(Π0) > val(Π1) = 0. In this case, Claims 3.33 and 3.38 yield that αj =
0 for any j ∈ (z1). Hence, it suffices to prove that

E〈A(k),B〉
[
L̂Π,η
A

]
≥
∑z

j=z1+1 αj
∏j−1
t=0 (1− βt)k+1(1− αt)∏k−1

i=0 val(A(i),B)
. (32)

Thus, the proof immediately follows if z1 = z, and in the following we assume that z1 < z.

As in Equation (29), compute

E〈A(k),B〉
[
L̂Π,η
A

]
= p · E〈(A(k),B)

0
〉
[(
L̂Π,η
A

)
0

]
+ (1− p) · E〈(A(k),B)

1
〉
[(
L̂Π,η
A

)
1

]
(33)

≥ p ·
∑z

j=0 α
0
j

∏j−1
t=0 (1− β0

t )k+1(1− α0
t )∏k−1

i=0 val
((

A(i),B
)

0

) ,

where the inequality follows Equation (24) and Claim 3.36. Claim 3.38 now yields

E〈A(k),B〉
[
L̂Π,η
A

]
≥

z∑
j=0

αj

j−1∏
t=0

(1− αt) ·
p ·
∏j−1
t=0 (1− β0

t )k+1∏k−1
i=0 val

((
A(i),B

)
0

) , (34)

where Claim 3.38 yields

E〈A(k),B〉
[
L̂Π,η
A

]
≥

z∑
j=z1+1

αj

j−1∏
t=0

(1− αt) ·
p ·
∏j−1
t=0 (1− β0

t )k+1∏k−1
i=0 val

((
A(i),B

)
0

) . (35)

Multiplying both the numerator and the denominator for every summand of Equation (35)
with pk yields

E〈A(k),B〉
[
L̂Π,η
A

]
≥

z∑
j=z1+1

αj

j−1∏
t=0

(1− αt) ·

(
p ·
∏j−1
t=0 (1− β0

t )
)k+1

∏k−1
i=0 p · val

((
A(i),B

)
0

) . (36)

Equation (32), and hence the proof of this case, is derived by observing that val(A(i),B) =
p·val

((
A(i),B

)
0

)
for every i ∈ (k−1),37 and plugging Claims 3.39 and 3.40 into Equation (36).

B controls root(Π) and val(Π1) > val(Π0) = 0. Analogously to Claim 3.37, it holds that α0
j = 0

for every j ∈ (z). Claim 3.38 yields that αj = 0 for every j ∈ (z). The proof of this case
trivially follows since ∑z

j=0 αj
∏j−1
t=0 (1− βt)k+1(1− αt)∏k−1
i=0 val(A(i),B)

= 0.

37Recall that if val(A,B) = 0, then val
(
A(i),B

)
= 0 for every i ∈ N.
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The above case analysis concludes the proof of the lemma when assuming that eΠ(λ, b) /∈ {0, 1}
for both b ∈ {0, 1}. Assume that eΠ(λ, b) = 1 for some b ∈ {0, 1}. Since, by assumption, val(Π) > 0,
it follows that val(Πb) > 0. Moreover, the definition of conditional protocols (Definition 3.17) yields
that e

Π̂η
(C,j)

(λ, b) = 1 and e
Π̂η

(C,j)
(λ, 1 − b) = 0 for any (C, j) ∈ [(A, z)] (regardless of which party

controls root(Π)). By defining ηb = η, the definition of the dominated measure (Definition 3.10)
yields that αj = αbj for every j ∈ (z) and that βj = βbj for every j ∈ (z − 1). The proof of this case
immediately follows from the induction hypothesis on Πb. �

3.7.4 Missing Proofs

This section is dedicated to proving deferred statements used in the proof of Lemma 3.28. We
assume a fixed protocol Π, fixed real vector η =

(
η(A,0), η(B,0), . . . , η(B,z−1), η(A,z)

)
and a fixed

positive integer k. We also assume that Π̂η
(A,z) 6=⊥, z1 ≤ z0 and eΠ(λ, b) ∈ (0, 1) for both b ∈ {0, 1}.

Recall that we defined two real vectors η0 and η1 (Definition 3.29), and for b ∈ {0, 1} we defined

αbj := µ
Πb,ηb

(A,j) (:= E〈
(Π̂b)

ηb
(A,j)

〉[M̂Πb,ηb

(A,j)

]
) for j ∈ (z), and βbj := µ

Πb,ηb

(B,j) , for j ∈ (z − 1).

We begin with the following proposition, which underlies many of the claims to follow.

Proposition 3.41. For b ∈ {0, 1} and (C, j) ∈ [(A, z)], it holds that

1.
(

Π̂η
(C,j)

)
b

=
(

Π̂b

)ηb

(C,j)
; and

2.
(
M̂Π,η

(C,j)

)
b
≡ M̂Πb,ηb

(C,j) .

Namely, the restriction of Π̂η
(C,j) (the (C, j)’th conditional protocol with respect to Π and η) to

its b’th subtree is equal to the (C, j)’th conditional protocol defined with respect to Πb (b’th subtree
of Π) and ηb. Moreover, the result of multiplying the C-dominated measure of Π̂η

(C,j) by η(C,j), and

then restricting it to the subtree
(

Π̂η
(C,j)

)
b
, is equivalent to multiplying the C-dominated measure

of
(

Π̂b

)ηb

(C,j)
by ηb(C,j).
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Proof of Proposition 3.41. The proof is by induction on the ordered pairs [(A, z)].

Base case. Recall that the first pair of [(A, z)] is (A, 0). Definition 3.27 yields that Π̂η
(A,0) = Π

and that
(

Π̂b

)ηb

(A,0)
= Πb, yielding that Item 1 holds for (A, 0). As for Item 2, by Definition 3.10

and the assumption that eΠ(λ, b) ∈ (0, 1) for both b ∈ {0, 1}, it holds that

(
M̂Π,η

(A,0)

)
b
≡
(
η(A,0) ·MA

Π

)
b
≡

 η(A,0) ·MA
Πb

A controls root(Π) ∨ SmallerΠ(b);

η(A,0) ·
ξ1−b
(A,0)

ξb
(A,0)

·MA
Πb

otherwise.

The proof that Item 2 holds for (A, 0) now follows from Definition 3.29.

38Note that Item 1 is not immediate. Protocol
(

Π̂η
(C,j)

)
b

is a restriction of a protocol defined on the root of Π,

whereas
(

Π̂b

)ηb

(C,j)
is a protocol defined on the root of Πb.
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Induction step. Fix (C, j) ∈ [(A, z)] and assume the claim holds for pred(C, j). Using the
induction hypothesis, we first prove Item 1 for (C, j). Next, using the fact that Item 1 holds for
(C, j), we prove Item 2.

Proving Item 1. By Definition 3.27, it holds that(
Π̂η

(C,j)

)
b

=
(

Π̂η
pred(C,j)|¬

(
M̂Π,η

pred(C,j)

))
b

=
(

Π̂η
pred(C,j)

)
b
|¬
(
M̂Π,η

pred(C,j)

)
b

(1)
=
(

Π̂b

)ηb

pred(C,j)
|¬
(
M̂

Πb,ηb

pred(C,j)

)
=
(

Π̂b

)ηb

(C,j)
,

where (1) follows from the induction hypothesis.

Proving Item 2. Similarly to the base case, Definition 3.10 yields that

(
M̂Π,η

(C,j)

)
b
≡



0 e
Π̂η

(C,j)
(λ, b) = 0;

η(C,j) ·MC(
Π̂η

(C,j)

)
b

e
Π̂η

(C,j)
(λ, b) = 1;

η(C,j) ·MC(
Π̂η

(C,j)

)
b

e
Π̂η

(C,j)
(λ, b) /∈ {0, 1}∧(

C controls root(Π) ∨ Smaller
Π̂η

(C,j)
(b)

)
;

η(C,j) ·
ξ1−b
(C,j)

ξb
(C,j)

·MC(
Π̂η

(C,j)

)
b

otherwise,

and the proof follows from Item 1 and Definition 3.29.
�

Recall that the real numbers αbj and βbj were defined to be the expected values of the (A, j)’th
and (B, j)’th dominated measures in the sequence (A, z,ηb)-DMS(Πb), respectively (see the proof
of Lemma 3.28). Following Proposition 3.41, we could equivalently define αbj and βbj with respect
to the sequence (A, z,η)-DMS(Π).

Proposition 3.42. For both b ∈ {0, 1}, it holds that

1. αbj = E〈(
Π̂η

(A,j)

)
b

〉[(M̂Π,η
(A,j)

)
b

]
for every j ∈ (z); and

2. βbj = E〈(
Π̂η

(B,j)

)
b

〉[(M̂Π,η
(B,j)

)
b

]
for every j ∈ (z − 1).

Proof. Immediately follows Proposition 3.41. �

Proposition 3.42 allows us to use Proposition 3.13 in order to analyze the connections between
α0
j and α1

j to αj , and similarly between β0
j and β1

j to βj . Towards this goal, we analyze the
edge distribution of the conditional protocols defined in the procedure that generates the measure
sequence (A, z,η)-DMS(Π).
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Proposition 3.43. The following holds for both b ∈ {0, 1}.

1. A controls root(Π) =⇒

(a) e
Π̂η

(A,j)
(λ, b) = eΠ(λ, b) ·

∏j−1
t=0(1−αbt)∏j−1
t=0 (1−αt)

for all j ∈ (z).

(b) e
Π̂η

(B,j)
(λ, b) = eΠ(λ, b) ·

∏j
t=0(1−αbt)∏j
t=0(1−αt)

for all j ∈ (z − 1).

2. B controls root(Π) =⇒

(a) e
Π̂η

(A,j)
(λ, b) = eΠ(λ, b) ·

∏j−1
t=0(1−βbt )∏j−1
t=0 (1−βt)

for all j ∈ (z).

(b) e
Π̂η

(B,j)
(λ, b) = eΠ(λ, b) ·

∏j−1
t=0(1−βbt )∏j−1
t=0 (1−βt)

for all j ∈ (z − 1).

Proof. We prove Item 1 using induction on the ordered pairs [(A, z)]. The proof of Item 2 is
analogous.

Base case. The proof follows since according to Definition 3.27, it holds that Π̂η
(A,0) = Π.

Induction step. Fix (C, j) ∈ [(A, z)] and assume the claim holds for pred(C, j). The proof splits
according to which party C is.

Case C = A. If e
Π̂η

(B,j−1)
(λ, b) = 0, Definition 3.17 yields that e

Π̂η
(A,j)

(λ, b) = 0. The proof follows

since, by the induction hypothesis, it holds that

e
Π̂η

(A,j)
(λ, b) = e

Π̂η
(B,j−1)

(λ, b) = eΠ(λ, b) ·
∏j−1
t=0

(
1− αbt

)∏j−1
t=0 (1− αt)

.

In the complementary case, i.e., e
Π̂η

(B,j−1)
(λ, b) > 0, Proposition 3.13 and Definition 3.10 yield

that βj−1 = βbj−1. It must be the case that βj−1 = βbj−1 < 1, since otherwise, according to

Definition 3.27, it holds that Π̂η
(A,j) =⊥, a contradiction to the assumption that Π̂η

(A,z) 6=⊥.
The proof follows since in this case Definition 3.17 and Proposition 3.42 yield that

e
Π̂η

(A,j)
(λ, b) = e

Π̂η
(B,j−1)

(λ, b) ·
1− βbj−1

1− βj−1

= e
Π̂η

(B,j−1)
(λ, b)

= eΠ(λ, b) ·
∏j−1
t=0

(
1− αbt

)∏j−1
t=0 (1− αt)

,

where the last equality follows the induction hypothesis.

Case C = B. It must be that case that αj < 1, since otherwise, similarly to the previous case and

according to Definition 3.27, it holds that Π̂η
(B,j) =⊥, a contradiction to the assumption that
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Π̂η
(A,z) 6=⊥. The proof follows since in this case Definition 3.17 and Proposition 3.42 yield that

e
Π̂η

(B,j)
(λ, b) = e

Π̂η
(A,j)

(λ, b) ·
1− αbj
1− αj

= eΠ(λ, b) ·
∏j−1
t=0

(
1− αbt

)∏j−1
t=0 (1− αt)

·
1− αbj
1− αj

= eΠ(λ, b) ·
∏j
t=0

(
1− αbt

)∏j
t=0(1− αt)

,

where the second equality follows from the induction hypothesis.
�

Using the above propositions, we now turn our focus to proving the claims in the proof of
Lemma 3.28. To facilitate reading and tracking the proof, we cluster claims together according to
their role in the proof of Lemma 3.28.

3.7.4.1 Proving Claims 3.30 and 3.32

Proof of Claim 3.30. For b ∈ {0, 1} it holds that

L̂
Πb,ηb
A ≡

z∑
j=0

M̂
Πb,ηb

(A,j) ·
j−1∏
t=0

(
1− M̂Πb,ηb

(A,t)

)

≡
z∑
j=0

(
M̂Π,η

(A,j)

)
b
·
j−1∏
t=0

(
1−

(
M̂Π,η

(A,t)

)
b

)
≡
(
L̂Π,η
A

)
b
,

where the second equivalence follows from Proposition 3.41. �

Proof of Claim 3.32. Assume towards a contradiction that z0 < z. By the definition of z0

(Definition 3.31) and the definition of conditional protocols (Definition 3.17), it follows that(
Π̂0

)η0

(A,z0+1)
=⊥. Since (by assumption) z1 ≤ z0 , it also holds that

(
Π̂1

)η1

(A,z0+1)
=⊥. Hence, Pro-

position 3.41 yields that
(

Π̂η
(A,z0+1)

)
0
,
(

Π̂η
(A,z0+1)

)
1

=⊥. Namely, the function describing Π̂η
(A,z0+1)

does not correspond to any two-party execution when restricting it to the subtrees T (Π0) and
T (Π1). Hence, the aforementioned function does not correspond to a two-party execution (over
T (Π)), in contradiction to the assumption that Π̂η

(A,z) 6=⊥. �

3.7.4.2 Proving Claims 3.33 to 3.35

The following proofs rely on the next observation. As long as αbj < 1 and βbj < 1, Proposition 3.43
ensures that there is a positive probability to visit both the left and the right subtree of the (C, j)’th
conditional protocol.
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Proof of Claim 3.34. Assume that A controls root(Π) and that z1 < z. Assume towards a contra-
diction that α1

z1 < 1. Since z1 ≤ z0 (by assumption), it follows that α0
z1 < 1 as well. The definition

of z1 (Definition 3.31) yields that β1
z1 = 1. However, Proposition 3.43 yields that e

Π̂η
(B,j)

(λ, b) ∈ (0, 1)

for both b ∈ {0, 1}, and thus Propositions 3.13 and 3.42 yield that βz1 = 1. Now, Definition 3.27
yields that Π̂η

(A,z1+1)
=⊥, a contradiction to the assumption that Π̂η

(A,z) 6=⊥. �

Proof of Claim 3.33. For j ∈ (z1 − 1), it holds that e
Π̂η

(B,j)
(λ, b) ∈ (0, 1) for both b ∈ {0, 1}. Thus,

β0
j = β1

j = βj is a direct implication of Propositions 3.13 and 3.41.

For z1 ≤ z − 1, Claim 3.34 and Proposition 3.43 yield that e
Π̂η

(B,j)
(λ, 0) = 1. Since, by Defini-

tion 3.29, it holds that η(B,j) = η0
(B,j), Definition 3.10 and Proposition 3.41 yield that β0

j = βj . �

Proof of Claim 3.35. The proof immediately follows from Propositions 3.42 and 3.43. �

3.7.4.3 Proving Claims 3.36 and 3.37

Proof of Claim 3.36. By Definition 3.10 it holds that M̂
Π1,η1

(A,j) ≡ 0 for every j ∈ (z). Definition 3.27

yields that L̂
Π1,η1
A ≡ 0. The proof follows from Claim 3.30. �

Proof of Claim 3.37. Follows similar arguments to the above proof of Claim 3.36, together with
Proposition 3.42. �

3.7.4.4 Proving Claims 3.38 to 3.40

The proofs of the rest of the claims stated in the proof of Lemma 3.28 are analogous to the claims
proven above. Specifically, Claim 3.38 is analogous to Claim 3.33, Claim 3.39 is analogous to
Claim 3.34, and Claim 3.40 is analogous to Claim 3.35.

3.8 Proving Lemma 3.26

Lemma 3.26 immediately follows by the next lemma.

Lemma 3.44. For every protocol Π, there exists (C, j) ∈ {A,B} × N such that

E〈Π(C,j)〉
[
MC

Π(C,j)

]
= 1.

The proof of Lemma 3.44 is given below, but first we use it to derive Lemma 3.26.

Proof of Lemma 3.26. Let z be the minimal integer such that
∑z

j=0 αj ≥ c or
∑z

j=0 βj ≥ c. Note
that such z is guaranteed to exist by Lemma 3.44 and since by Lemma 3.12 it holds that αj =

E〈Π(A,j)〉
[
MA

Π(A,j)

]
and βj = E〈Π(B,j)〉

[
MB

Π(B,j)

]
. The proof splits to the following cases.
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Case
∑z

j=0 αj ≥ c. By the choice of z it holds that
∑z−1

j=0 αj < c and
∑z−1

j=0 βj < c. Lemma 3.24
yields that

E〈Π〉

[
LA,z

Π

]
=

z∑
j=0

αj

j−1∏
t=0

(1− βt)(1− αt)

(1)

≥
z∑
j=0

αj

z−1∏
t=0

(1− βt)(1− αt)

(2)

≥

 z∑
j=0

αj

 ·
1−

z−1∑
j=0

βj

 ·
1−

z−1∑
j=0

αj


(3)

≥ c · (1− 2c),

where (1) follows from multiplying the j’th summand by
∏z−1
t=j (1 − βt)(1 − αt) ≤ 1 and (2)

and (3) follow since (1− x)(1− y) ≥ 1− (x+ y) for any x, y ≥ 0. Hence, z satisfies Item 1.

Case
∑z

j=0 αj < c. By the choice of z it holds that
∑z

j=0 βj ≥ c and
∑z−1

j=0 βj < c. Similar
arguments to the previous case show that z satisfies Item 2.

�

Towards proving Lemma 3.44 we prove that there is always a leaf for which the value of the
dominated measure is 1.

Claim 3.45. Let Π be a protocol with OPTA(Π) = 1. Then there exists ` ∈ L1(Π) such that
MA

Π(`) = 1.

Proof. The proof is by induction on the round complexity of Π.
Assume that round(Π) = 0 and let ` be the only node in T (Π). Since OPTA(Π) > 0, it must

be the case that χΠ(`) = 1. The proof follows since Definition 3.10 yields that MA
Π(`) = 1.

Assume that round(Π) = m+1 and that the lemma holds for m-round protocols. If eΠ(λ, b) = 1
for some b ∈ {0, 1}, then by Proposition 3.8 it holds that OPTA(Πb) = OPTA(Π) = 1. This allows
us to apply the induction hypothesis on Πb, which yields that there exists ` ∈ L1(Πb) such that
MA

Πb
(`) = 1. In this case, according to Definition 3.10, MA

Π(`) = MA
Πb

(`) = 1, and the proof follows.
In the following we assume that eΠ(λ, b) ∈ (0, 1) for any b ∈ {0, 1}. We conclude the proof using

the following case analysis.

A controls root(Π). According to Proposition 3.8, there exists b ∈ {0, 1} such that OPTA(Πb) =
OPTA(Π) = 1. This allows us to apply the induction hypothesis on Πb, which yields that there
exists ` ∈ L1(Πb) such that MA

Πb
(`) = 1. The A-maximal property of MA

Π (Proposition 3.13(1))

yields that MA
Π(`) = MA

Πb
(`) = 1, and the proof for this case follows.

B controls root(Π). According to Proposition 3.8, OPTA(Πb) = OPTA(Π) = 1 for both b ∈ {0, 1}.
This allows us to apply the induction hypothesis on Π0 and Π1, which yields that there
exists `0 ∈ L1(Π0) and `1 ∈ L1(Π1) such that MA

Π0
(`0) = 1 and MA

Π1
(`1) = 1. The B-

minimal property of MA
Π (Proposition 3.13(2)) yields that there exists b ∈ {0, 1} such that

MA
Π(`b) = MA

Πb
(`b) = 1 (the bit b for which SmallerΠ(b) = 1), and the proof for this case

follows.
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This concludes the case analysis and the proof follows. �

We can now derive Lemma 3.44. Claim 3.45 and Proposition 3.13 yield that the number of
possible transcripts of Π(C,j) shrinks as (C, j) grows. Specifically, at least one possible transcript

of Π(A,j) whose common outcome is 1 (the transcript represented by the leaf is guaranteed to exist

from Claim 3.45) is not a possible transcript of Π(B,j). Similarly, at least one possible transcript
of Π(B,j−1) whose common outcome is 0 is not a possible transcript of Π(A,j). Since the number of

possible transcripts of Π is finite (though might be exponentially large), there exists j ∈ N such
that either the common outcome of all possible transcripts Π(A,j) is 1 or the common outcome of
all possible transcripts of Π(B,j) is 0. The expected value of the A-dominated measure of Π(A,j) or
the B-dominated measure of Π(B,j) will be 1. The formal proof is given next.

Proof of Lemma 3.44. Assume towards a contradiction that E〈Π(C,j)〉
[
MC

Π(C,j)

]
< 1 for every

(C, j) ∈ {A,B} × N. It follows that Π(C,j) 6=⊥ for every such (C, j). For a pair (C, j) ∈ {A,B} × N,

recursively define L(C,j) := Lpred(C,j) ∪ S(C,j), where S(C,j) :=
{
` ∈ L(Π): MC

Π(C,j)
(`) = 1

}
and

L(B,−1) := ∅. The following claim (proven below) shows two properties of S(C,j).

Claim 3.46. It holds that S(C,j) 6= ∅ and Lpred(C,j) ∩ S(C,j) = ∅ for every (C, j) � (B, 0).

Claim 3.46 yields that
∣∣L(C,j)

∣∣ > ∣∣Lpred(C,j)

∣∣ for every (C, j) � (B, 0), a contradiction to the fact
that L(C,j) ⊆ L(Π) for every (C, j). �

Proof of Claim 3.46. Let (C, j) � (B, 0). By Lemma 3.21 it holds that OPTC

(
Π(C,j)

)
= 1.39 Hence,

Claim 3.45 yields that S(C,j) 6= ∅.
Towards proving the second property, let `′ ∈ Lpred(C,j), and let (C′, j′) ∈ [pred(C, j)] such that

`′ ∈ S(C′,j′). By the definition of S(C′,j′), it holds that MC′
Π(C′,j′)

(`′) = 1. By Proposition 3.19 it

holds that `′ /∈ Supp
(〈

Π(C′′,j′′)

〉)
for every (C′′, j′′) � (C′, j′). Since (C, j) � pred(C, j) � (C′, j′),

it holds that `′ /∈ Supp
(〈

Π(C,j)

〉)
. By Definition 3.10 it holds that MC

Π(C,j)
(`) = 0 for every

` /∈ Supp
(〈

Π(C,j)

〉)
, and thus `′ /∈ S(C,j). Hence, Lpred(C,j) ∩ S(C,j) = ∅. �

4 Efficiently Biasing Coin-Flipping Protocols

In Section 3, we showed that for any coin-flipping protocol and ε ∈ (0, 1
2 ], applying the biased-

continuation attack recursively for κ = κ(ε) times, biases the honest party’s outcome by (at least)
1/2−ε. Implementing this attack, however, requires access to a sampling algorithm (i.e., the biased
continuator BiasedCont; see Definition 3.1), which we do not know how to efficiently implement
even when assuming OWFs do not exist. In this section, we show that the inexistence of OWFs
does suffice to implement an approximation of the biased-continuation attack that can be used to
implement a strong enough variant of the aforementioned attack.

The outline of this section is as follows. In Section 4.1 we define the approximated (recursive)
biased-continuation attacker, an approximated variant of the (ideal) recursive biased-continuation

39Note that this might not hold for Π(A,0) = Π. Namely, it might be the case that OPTB(Π) = 1. In this case MA
Π

is the zero measure, Π(B,0) = Π and S(A,0) = ∅.
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attacker defined in Section 3. We show that this approximated attacker does well as lone as it
does not visits low-value nodes — the expected protocol’s outcome conditioned on visiting the
nodes (transcripts) is close to zero. In Section 4.2, we define a special class of protocols, called
approximately pruned protocols, that have (almost) no low-value nodes. We conclude that the
approximated attacker does well when it attacks approximately pruned protocols, and argue about
the implementation of this attacker. In Section 4.3, we define the pruning-in-the-head attacker
that behaves as if the protocol it is attacking is pruned, and by doing so manages to make use
of the recursive approximated biased-continuation attacker to attack any protocol. In Section 4.4
we argue about the implementation of the pruning-in-the-head attacker. Finally in Section 4.5,
we show that the assumption that OWFs do not exist implies that the above attacker can be
implemented efficiently, yielding that the outcome on any coin-flipping protocol can be efficiently
biased to be arbitrarily close to 0 or 1.

Throughout the section, as it was the case in Section 3, we prove statements with respect to
attackers that, when playing the role of the left-hand party of the protocol (i.e., A), are trying to
bias the common output of the protocol towards one, and, when playing the role of the right-hand
party of the protocol (i.e., B), are trying to bias the common output of the protocol towards zero.
All statements have analogues ones with respect to the opposite attack goals.

4.1 The Approximated Biased-Continuation Attacker

We start with defining the recursive approximated biased-continuation attacker, an approximated
variant of the recursive biased-continuation attacker defined in Section 3, and state our bound on
its success probability. The rest of the section will be devoted to proving this bound.

Defining the attacker. The approximated recursive biased-continuation attacker is using an
approximated version of the biased continuator BiasedCont (see Definition 3.1). The approximated
biased continuator is only guaranteed to works well when applied on nodes whose value (i.e., the
probability that the protocol outcome is 1 given that the current transcript is the node’s label) is
not too close to the borders. The motivation for using this weaker biased continuator is that, as
we see later, it can be efficiently implemented assuming the in-existence of OWFs. In the following
let BiasedContΠ be as in Definition 3.1.

Definition 4.1 (low-value and high-value nodes). For a protocol Π = (A,B) and δ ∈ [0, 1], let

• SmallδΠ = {u ∈ V(Π) \ L(Π) : val(Πu) ≤ δ}, and

• LargeδΠ = {u ∈ V(Π) \ L(Π) : val(Πu) ≥ 1− δ}.

For C ∈ {A,B}, let Smallδ,CΠ = SmallδΠ ∩ CtrlCΠ and similarly let Largeδ,CΠ = LargeδΠ ∩ CtrlCΠ.40

Definition 4.2 (approximated biased continuator BiasedContξ,δΠ ). Algorithm C is a (ξ, δ)-biased-
continuator for an m-round protocol Π if the following hold.

1. Pr`←〈Π〉
[
∃i ∈ (m− 1) : SD(C(`1,...,i, 1),BiasedContΠ(`1,...,i, 1)) > ξ ∧ `1,...,i /∈ SmallδΠ

]
≤ ξ,

and

2. Pr`←〈Π〉
[
∃i ∈ (m− 1) : SD(C(`1,...,i, 0),BiasedContΠ(`1,...,i, 0)) > ξ ∧ `1,...,i /∈ LargeδΠ

]
≤ ξ.

40Recall that CtrlCΠ denotes the nodes in T (Π) controlled by party C (see Definition 2.4).
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Let BiasedContξ,δΠ be an arbitrary (but fixed) (ξ, δ)-biased-continuator of Π.

The recursive approximated biased-continuation attacker is identical to that defined in Section 3,
except that it uses the approximated biased-continuator sampler and not the ideal one.

Let A
(0,ξ,δ)
Π ≡ A, and for integer i > 0 define:

Algorithm 4.3 (approximated recursive biased-continuation attacker A
(i,ξ,δ)
Π ).

Parameters: integer i > 0, ξ, δ ∈ (0, 1).

Input: transcript u ∈ {0, 1}∗.
Operation:

1. If u ∈ L(Π), output χΠ(u) and halt.

2. Set msg = BiasedContξ,δ(
A

(i−1,ξ,δ)
Π ,B

)(u, 1).

3. Send msg to B.

4. If u′ = u ◦msg ∈ L(Π), output χΠ(u′).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the following we sometimes refer to the base (non-recursive) version of the above algorithm,

i.e., A
(1,ξ,δ)
Π , as the approximated biased-continuation attacker. When clear from the context, we

will remove the protocol name (i.e., Π) from the subscript of the above attacker. (As a rule of
thumb, in statements and definitions we explicitly write the protocols to which the algorithms
refer, whereas in proofs and informal discussions we usually omit them.)

The attacker’s success probability. We would like to bound the difference between the biased-
continuation attacker and its approximated variant defined above. Following Definition 4.2, if the
approximated biased continuator BiasedContξ,δ is called on non-low-value nodes (transcripts), both
attackers are given similar answers, so the difference between them will be small. Hence, as long
as the probability of hitting low-value nodes under A’s control is small (note that only nodes under
A’s control are queried), we expect that the recursive approximated biased-continuation attacker
will do well. This is formally put in the next lemma.

Lemma 4.4. For any δ ∈ (0, 1/4] and k ∈ N, there exists a polynomial pk,δ such that the following

holds. Let Π = (A,B) be an m-round protocol, and assume that Pr〈Π〉

[
desc

(
Small1.5δ

′,A
Π

)]
≤ α for

some δ ≤ δ′ ≤ 1
4 .41 Then for any ξ, µ ∈ (0, 1), it holds that

SD
(〈

A
(k)
Π ,B

〉
,
〈

A
(k,ξ,δ′)
Π ,B

〉)
≤ φItk,δ(α, ξ,m, δ′, µ) := (α+ ξ) · pk,δ(m, 1/δ′, 1/µ) + µ.

The fact that the lemma assumes a bound with respect to Small1.5δ
′,A

Π (and not Smallδ
′,A

Π ) is of
technical nature, and is not significant to the understating of the statement.

We will use Lemma 4.4 as follows: the constants δ, δ′ and k will be set according to the
(constant) bias of the protocol. Then we choose µ ∈ o(1). Finally, we are free to choose α and ξ to
be 1/p for large enough polynomial p, such that p� pk,δ(m, 1/δ

′, 1/µ).

41desc(S) is the set of nodes with ancestor in S (see Definition 2.1).
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In addition to Lemma 4.4, the following lemma will be useful when considering pruned protocols
in the next section.

Lemma 4.5. For any δ ∈ (0, 1/4] and k ∈ N, there exists a polynomial qk,δ such that the following
holds. Let Π = (A,B) and Π′ = (C,D) be two m-round protocols and let F be a frontier of U , for

some U ⊆ V(Π). Assume SD(〈Π〉, 〈Π′〉) ≤ ε, Pr〈Π〉

[
desc

(
Small1.5δ

′,A
Π

)]
≤ α for some δ ≤ δ′ ≤ 1

4 ,

and Pr〈Π′〉[desc(F)] ≤ β. Then for any ξ, µ ∈ (0, 1), it holds that

Pr〈
A

(k,δ′,ξ)
Π ,B

〉[desc(F)] ≤ φBalk,δ (α, β, ε,m, δ′, µ) + φItk,δ(α, ξ,m, δ
′, µ),

for

φBalk,δ (α, β, ε,m, δ′, µ) := (α+ β + ε) · qk,δ(m, 1/δ′, 1/µ) + µ.

Namely, Lemma 4.5 asserts that if the transcripts of Π and Π′ are close, the probability of
hitting low-value nodes in Π under the control of the left-hand party is small and the probability
of hitting a frontier F in Π′ is small as well. Then the probability of hitting this frontier in Π when
the recursive approximated biased-continuation attacker is taking the role of the left-hand party in
Π is small as well.

Outline for the proof of Lemma 4.4. Proving Lemma 4.4 actually turns out to be quite
challenging. The lemma assumes that the probability, according to the honest distribution of leaves
(i.e., 〈Π〉), to generate a low-value node under A’s control is small. The queries the attacker makes,
however, might be chosen from a different distribution, making some nodes much more likely to be
queried than before. We call such nodes “unbalanced”. If low-value nodes under A’s control were a
large fraction of the unbalanced ones, then Definition 4.2 guarantee nothing about the answers of
the approximated biased continuator BiasedContξ,δ. Indeed, the main technical contribution of this
section is to show that low-value nodes under A’s control are only small fraction of the unbalanced
ones.

A natural approach for proving Lemma 4.4 is to use induction on k. The base case when k = 1

holds since BiasedContξ,δ
′

Π , used by A
(1,ξ,δ′)
Π , is a (ξ, δ′)-biased-continuator of Π. Moving to the

induction step, we assume the lemma is true for k − 1. Namely, we assume that

SD
(〈

A
(k−1)
Π ,B

〉
,
〈

A
(k−1,ξ,δ′)
Π ,B

〉)
is small. (37)

The first step is to apply the ideal biased-continuation attacker on the left-hand side part of
both protocols. We will show that even after applying the attacker, the protocols remain close.
Namely, we will prove the following statement.

SD
(〈

A
(k−1)
Π ,B

〉
,
〈

A
(k−1,ξ,δ′)
Π ,B

〉)
is small (38)

=⇒ SD

(〈(
A

(k−1)
Π

)(1)
,B

〉
,

〈(
A

(k−1,ξ,δ′)
Π

)(1)
,B

〉)
is small as well.

Putting differently, to prove Equation (38) we show that the biased-continuation attacker is “robust”
— it does not make similar protocols dissimilar.
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The second step it to show that applying the ideal biased-continuation attacker on the right-
hand side protocol is similar to applying the approximated biased-continuation attacker on the
same protocol. Namely, we will prove the following statement.

SD

(〈(
A

(k−1,ξ,δ′)
Π

)(1)
,B

〉
,

〈(
A

(k−1,ξ,δ′)
Π

)(1,ξ,δ′)
,B

〉)
is small (39)

Putting differently, to prove the “ideal to real” reduction described in Equation (38) we show that
the approximated biased-continuation attacker is a good approximation to its ideal variant.

In fact, both the “robustness” property (Equation (38)) and the “ideal to real” reduction (Equa-
tion (39)) require the additional assumption that the probability of hitting low-value nodes under
the control of the left-hand side party is small. Following the induction hypothesis (Equation (37))
showing this assumption to be true reduces to showing that the recursive ideal biased-continuation
attacker hit low-value nodes under its control with only small probability (specifically, we need this
to hold for k− 1 recursions). The lemma assumes that the probability of hitting such nodes in the
original protocol is small, namely that the set of A-controlled low-value nodes is of low density. We
will show that the recursive ideal biased-continuation attacker does not increase the density of any
sets by much.

The outline of this section is as follows. In Section 4.1.1 we formally define unbalanced nodes
with respect to the non-recursive attacker, and show that low-value nodes under A’s control are only
small fraction of them. This connection between unbalanced nodes to low-value ones underlines
all the other results in this section. In Section 4.1.2 we state and prove the “robustness” property.
In Section 4.1.3 we analyze the “ideal to real” reduction. In Section 4.1.4 we show that when it
is applied recursively, the ideal biased-continuation attacker does not increase the probability of
hitting low-density sets. Finally, in Section 4.1.5 we give the proofs of Lemmas 4.4 and 4.5.

4.1.1 Unbalanced Nodes

For non low-value and non high-value transcripts, Definition 4.2 guarantees that when queried on
transcripts chosen according to the honest distribution of leaves (i.e., 〈Π〉), there is only a small
statistical distance between the answers of the biased continuator BiasedCont and it approximated
variant BiasedContξ,δ. The queries the biased-continuation attacker makes, however, might be
chosen from a different distribution, making some transcripts much more likely to be queried than
before. We call such transcripts “unbalanced”.

Definition 4.6 (unbalanced nodes). For a protocol Π = (A,B) and γ ≥ 1, let UnBalγΠ ={
u ∈ V(Π) \ L(Π): v(

A
(1)
Π ,B

)(u) ≥ γ · v(A,B)(u)

}
, where A

(1)
Π is as in Algorithm 3.2 and v as in De-

finition 2.4.42

Namely, UnBalγΠ are those nodes that a random execution of (A(1),B) visits with probability at
least γ times the probability that a random execution of Π does.

Given a protocol Π = (A,B), we would like to understand what makes a node unbalanced. Let
u be a γ-unbalanced node, i.e., v(A(1),B)(u) ≥ γ · v(A,B)(u). By the edge distribution of

(
A(1),B

)
42vT(u) is the probability that node (transcript) u is reached in an (honest) execution of protocol T.
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(Claim 3.4), it follows that

v(A(1),B)(u)

v(A,B)(u)
=

∏
0≤i≤|u|−1:

u1,...,i∈CtrlAΠ

val(Πu1,...,i+1)

val(Πu1,...,i)
≥ γ. (40)

Hence, if γ is large, one of the terms of the product in Equation (40) must be large. Since the
value of any sub-protocol is at most one, the numerator of each term cannot be large. It then must
be the case that the denominator of at least one of those terms is close to zero, i.e., that u has a
low-value ancestor controlled by A.43

The following key lemma formulates the above intuition, and shows that the biased-continuation
attacker does not bias the original distribution of the protocol by too much, unless it has previously
visited a low-value node controlled by A.

Lemma 4.7. Let Π = (A,B) be a protocol and let A
(1)
Π be as in Algorithm 3.2. Then for every

δ ∈ (0, 1
2 ] there exists a constant c = c(δ) > 0, such that for every δ′ ≥ δ and γ > 1:

Pr〈
A

(1)
Π ,B

〉[desc
(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))]
≤ 2

γc
.44

Namely, the probability of reaching a γ-unbalanced node which does not have a δ′-low ancestor,
for δ′ ≥ δ, is some inverse polynomial in γ. The proof of Lemma 4.7 is given below. Looking
ahead, we will apply this lemma for some γ ∈ poly(n), where n is the security parameter given
to the parties. At a high level, BiasedContξ,δ gives a good (enough) approximation for the biased
continuator BiasedCont when called on nodes that are at most poly(n)-unbalanced. This lemma
is useful since it gives a 1/ poly(n) bound for the probability that BiasedContξ,δ is called on nodes
that are more than poly(n)-unbalanced. Another important point is that the inverse polynomial
(i.e., c) depends only on δ (and is independent of γ and δ′). This becomes crucial when analyzing
the success probability of the approximated biased-continuation attacker.

Lemma 4.7 allows us to bound the probability that the (ideal) biased-continuation attacker hits
unbalanced nodes with the probability that the original protocol hits A-controlled low-value nodes.
Indeed, consider the first time (A(1),B) reaches a γ-unbalanced node u. If an A-controlled low-value
ancestor node was reached before reaching u, then this ancestor cannot be γ-unbalanced, and thus
the probability of hitting it (and in turn hitting u) is bounded by γ times the probability of the
original protocol hitting A-controlled low-value nodes. In the complementary case, in which no
A-controlled low-value node was reached before reaching u, the probability of hitting u is bounded
by Lemma 4.7. This analysis is where we use that Lemma 4.7 is proven with respect to proper
descendants of low-value nodes. The above discussion is stated formally next.

Lemma 4.8. Let Π = (A,B) be a protocol, let δ ∈ (0, 1
2 ], and let c = c(δ) be according Lemma 4.7.

Then

Pr〈
A

(1)
Π ,B

〉[desc
(
UnBalγΠ

)]
≤ γ · Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π

)]
+

2

γc
,

43This discussion is not entirely accurate, but it gives a good intuition for why unbalanced nodes relate to low-
value ones. Indeed, the actual statement (Lemma 4.7) shows this discussion to hold only with high probability, which
suffices for our needs.

44Recall that for S ⊆ V(Π), desc(S) stands for the set of nodes which have an ancestor in S, but are not in S itself
(see Definition 2.1).
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for any δ′ ≥ δ and γ > 1.

Proof. By Proposition 2.2, it holds that

desc
(
UnBalγΠ

)
⊆ desc

(
Smallδ

′,A
Π \ UnBalγΠ

)
∪ desc

(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))
. (41)

We can now compute

Pr〈A(1),B〉
[
desc

(
UnBalγΠ

)]
≤ Pr〈A(1),B〉

[
desc

(
Smallδ

′,A
Π \ UnBalγΠ

)]
+ Pr〈A(1),B〉

[
desc

(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))]
≤ γ · Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π

)]
+

2

γc
,

where the second inequality follows from the definition of UnBalγΠ and Lemma 4.7. �

The rest of this section is dedicated to proving Lemma 4.7.

Proving Lemma 4.7

Proof of Lemma 4.7. The lemma is proven via the proving following facts:

(1) There exists c > 0 such that

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))]
≤ 2− val(Π)

γc
(42)

for every γ > 1. Note that Equation (42) only considers descendants of Smallδ,AΠ , and not
proper descendants.

(2) For γ > 1 it holds that

desc
(
UnBalγΠ \ desc

(
Smallδ,AΠ

))
⊆ desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))
.45 (43)

(3) For δ′ > δ it holds that

UnBalγΠ \ desc
(
Smallδ

′,A
Π

)
⊆ UnBalγΠ \ desc

(
Smallδ,AΠ

)
. (44)

It is clear that combining the above steps yields (a stronger version of) the lemma.

Proof of (1): Fix δ ∈ (0, 1
2 ] and let c := α(δ) be the value guaranteed in Lemma 2.21. The

proof is by induction on the round complexity of Π.
Assume round(Π) = 0 and let ` be the single leaf of Π. By Definition 4.6, ` /∈ UnBalγΠ and thus

UnBalγΠ = ∅. Hence, for every δ > 0,

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc(Smallδ,AΠ )

)]
= Pr〈A(1),B〉[∅] = 0 ≤ 2− val(Π)

γc
.

45It thus follows that desc
(
UnBalγΠ \ desc

(
Smallδ,AΠ

))
= desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))
.
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Assume that Equation (42) holds for m-round protocols and that round(Π) = m + 1. If
e(A,B)(λ, b) = 1 for some b ∈ {0, 1} (recall that λ denotes the empty string), then

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc(Smallδ,AΠ )

)]
= Pr〈(A(1),B)

b
〉
[
desc

(
UnBalγΠb \ desc(Smallδ,AΠb

)
)]

= Pr〈
A

(1)
Πb
,BΠb

〉[desc
(
UnBalγΠb \ desc(Smallδ,AΠb

)
)]
,

where the second equality follows Proposition 3.5. The proof now follows from the induction
hypothesis.

To complete the proof, we assume that e(A,B)(λ, b) /∈ {0, 1} for both b ∈ {0, 1}, and let p =
e(A,B)(λ, 0). The proof splits according to who controls the root of Π.

B controls root(Π). We first note that

UnBalγΠ \ desc
(
Smallδ,AΠ

)
=
(
UnBalγΠ0

\ desc
(
Smallδ,AΠ0

))
∪
(
UnBalγΠ1

\ desc
(
Smallδ,AΠ1

))
.

(45)

To see the above, first note desc
(
Smallδ,AΠ

)
\ {root(Π)} = desc

(
Smallδ,AΠ0

)
∪ desc

(
Smallδ,AΠ1

)
,

and since B controls root(Π), it holds that UnBalγΠ \ {root(Π)} = UnBalγΠ0
∪UnBalγΠ1

. Finally,
since γ > 1 it holds that root(Π) /∈ UnBalγΠ, and Equation (45) follows.

We can now write

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))]
= e(A(1),B)(λ, 0) · Pr〈(A(1),B)0〉

[
desc

(
UnBalγΠ0

\ desc(Smallδ,AΠ0
)
)]

+ e(A(1),B)(λ, 1) · Pr〈(A(1),B)1〉
[
desc

(
UnBalγΠ1

\ desc(Smallδ,AΠ1
)
)]

= p · Pr〈
A

(1)
Π0
,BΠ0

〉[desc
(
UnBalγΠ0

\ desc(Smallδ,AΠ0
)
)]

+ (1− p) · Pr〈
A

(1)
Π1
,BΠ1

〉[desc
(
UnBalγΠ1

\ desc(Smallδ,AΠ1
)
)]

≤ p · 2− val(Π0)

γc
+ (1− p) · 2− val(Π1)

γc

=
2− val(Π)

γc
.

The first equality follows from Equation (45), the second equality follows from Proposition 3.5,
and the inequality follows from the induction hypothesis.

A controls root(Π). If val(Π) ≤ δ, then root(Π) ∈ Smallδ,AΠ . Therefore, UnBalγΠ \desc
(
Smallδ,AΠ

)
=

∅ and the proof follows from a similar argument as in the base case.

In the complementary case, i.e., val(Π) > δ, assume without loss of generality that val(Π0) ≥
val(Π) ≥ val(Π1). We start with the case that val(Π1) > 0. For b ∈ {0, 1}, let γb := val(Π)

val(Πb)
· γ.

By Claim 3.4, for u ∈ V(Π) with u 6= root(Π) and b = u1, it holds that

v(A(1),B)(u)

v(A,B)(u)
=

e(A,B)(λ, b)

e(A(1),B)(λ, b)
·

v(A(1),B)b
(u)

v(A,B)b(u)
=

val(Πb)

val(Π)
·

v(A(1),B)b
(u)

v(A,B)b(u)
.
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Thus, u ∈ UnBalγΠ if and only if u ∈ UnBalγbΠb
. Hence, using also the fact that root(Π) /∈

Smallδ,AΠ (since we assumed val(Π) > δ), arguments similar to those used to prove Equa-
tion (45) yield that

(46)

UnBalγΠ \ desc
(
Smallδ,AΠ

)
=
(
UnBalγ0

Π0
\ desc

(
Smallδ,AΠ0

))
∪
(
UnBalγ1

Π1
\ desc

(
Smallδ,AΠ1

))
.

Moreover, for b ∈ {0, 1} it holds that

(47)

Pr〈(A(1),B)b〉
[
desc

(
UnBalγbΠb

\ desc(Smallδ,AΠb
)
)]

= Pr〈
A

(1)
Πb
,BΠb

〉[desc
(
UnBalγΠb \ desc(Smallδ,AΠb

)
)]

≤ 2− val(Πb)

γcb

=

(
val(Πb)

val(Π)

)c
· 2− val(Πb)

γc
.

The first equality follows from Proposition 3.5. The inequality follows from the next case
analysis: if γb > 1, then it follows from the induction hypothesis applied with respect to Πb,
δ and γb; if γb ≤ 1, then it follows since 2−val(Πb)

γcb
≥ 1 and since the left-hand side of the

inequality is a probability mass. Hence,

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))]
(48)

= e(A(1),B)(λ, 0) · Pr〈(A(1),B)0〉
[
desc

(
UnBalγ0

Π0
\ desc

(
Smallδ,AΠ0

))]
+ e(A(1),B)(λ, 1) · Pr〈(A(1),B)1〉

[
desc

(
UnBalγ1

Π1
\ desc

(
Smallδ,AΠ1

))]
≤ p ·

(
val(Π0)

val(Π)

)1+c

· 2− val(Π0)

γc
+ (1− p) ·

(
val(Π1)

val(Π)

)1+c

· 2− val(Π1)

γc
,

where the equality follows from Equation (46), and the inequality follows from Equation (47)

together with Claim 3.4. Letting y = val(Π0)
val(Π) − 1 , x = val(Π) and λ = p

1−p , and noting

that λy =
(
val(Π0)
val(Π) − 1

)
· p

1−p = p·val(Π0)−p·val(Π)
val(Π)−p·val(Π) ≤ p·val(Π0)

val(Π) ≤ 1, Lemma 2.21 yields (after

multiplying by 1−p
γc ) that

p ·
(

val(Π0)

val(Π)

)1+c

· 2− val(Π0)

γc
+ (1− p) ·

(
val(Π1)

val(Π)

)1+c

· 2− val(Π1)

γc
≤ 2− val(Π)

γc
, (49)

completing the proof for the case val(Π1) > 0.

It is left to argue the case that val(Π1) = 0. In this case, according to Claim 3.4, it holds that
e(A(1),B)(λ, 0) = 1 and e(A(1),B)(λ, 1) = 0. Hence, there are no unbalanced nodes in Π1, i.e.,

UnBalγΠ \desc
(
Smallδ,AΠ

)
∩V(Π1) = ∅. As before, let γ0 := val(Π)

val(Π0) ·γ = p ·γ (the latter equality
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holds since val(Π) = p · val(Π0).) Arguments similar to those used to prove Equation (46)
yield that

UnBalγΠ \ desc
(
Smallδ,AΠ

)
= UnBalγ0

Π0
\ desc

(
Smallδ,AΠ0

)
. (50)

It follows that

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))]
= e(A(1),B)(λ, 0) · Pr〈(A(1),B)0〉

[
desc

(
UnBalγ0

Π0
\ desc

(
Smallδ,AΠ0

))]
≤
(

1

p

)1+c

· 2− val(Π0)

γc
.

Applying Lemma 2.21 with the same parameters as above completes the proof.

Proof of (2): Fix γ > 1 and recall that for a set S ⊂ V(Π), frnt(S) stands for the frontier of
S, i.e., the set of nodes belong to S, whose ancestors do not belong to S (see Definition 2.1). We
prove that

frnt
(
UnBalγΠ \ desc

(
Smallδ,AΠ

))
⊆ UnBalγΠ \ desc

(
Smallδ,AΠ

)
, (51)

and the proof of (2) follows.

Let u ∈ frnt
(
UnBalγΠ \ desc

(
Smallδ,AΠ

))
. We prove Equation (51) by showing that u /∈ Smallδ,AΠ .

Since γ > 1 and u ∈ UnBalγΠ, it is clear that u 6= root(Π). Let w be the parent of u. By the choice
of u, it follows that w /∈ UnBalγΠ, and thus v(A(1),B)(w) < γ · v(A,B)(w). We write

γ · v(A,B)(w) · e(A(1),B)(w, u) > v(A(1),B)(w) · e(A(1),B)(w, u) (52)

= v(A(1),B)(u)

≥ γ · v(A,B)(u)

= γ · v(A,B)(w) · e(A,B)(w, u).

We conclude that e(A,B)(w, u) < e(A(1),B)(w, u), and thus it must be the case that w is controlled by

A. By Claim 3.4, it holds that e(A(1),B)(w, u) = e(A,B)(w, u) · val(Πu)
val(Πw) , and thus val(Πu) > val(Πw).

Finally, observe that w /∈ Smallδ,AΠ , since otherwise u ∈ desc
(
Smallδ,AΠ

)
. It follows that val(Πw) > δ,

and hence val(Πu) > δ, as required.

Proof of (3): Note that for every δ′ ≥ δ it holds that Smallδ,AΠ ⊆ Smallδ
′,A

Π . Hence, UnBalγΠ \
desc(Smallδ

′,A
Π ) ⊆ UnBalγΠ \ desc(Smallδ,AΠ ), and the proof follows. �

4.1.2 The Biased-Continuation Attacker is Robust

Consider what happens when the biased-continuations attacker attacks a protocol Π = (A,B).
This attacker chooses a random 1-leaf according to 〈Π〉, the leaf distribution of Π. If these was
another protocol Π′ that was close (in the leaf-distribution sense) to Π, then the attacker can
instead sample from 〈Π′〉, while making similar decisions throughout its operation. So, the biased-
continuation attacker is robust to the distribution from which it samples. This is formally put in
the next lemma.

61



Lemma 4.9 (robustness lemma). Let Π = (A,B) and Π′ = (C,D) be two m-round protocols, let
δ ∈ (0, 1

2 ], and let c = c(δ) be according to Lemma 4.7. Assuming SD(〈Π〉, 〈Π′〉) ≤ α, χΠ ≡ χΠ′,
and Π and Π′ have the same control scheme, it holds that

SD

(〈
A

(1)
Π ,B

〉
,
〈

C
(1)
Π′ ,D

〉)
≤ 3 ·m · γ

δ′
·
(
α+ Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)])
+

2

γc
,

for every δ′ ≥ δ and γ ≥ 1, where A(1) and C(1) are as in Algorithm 3.2.

Namely, the biased-continuation attacker does not make similar protocols too dissimilar. The
rest of this section is dedicated to proving Lemma 4.9.

Proof. We use Lemma 2.17. Define the random function f given an element from V(Π) ∪ {⊥} as
follows: given u ∈ V(Π), if A controls u return `← 〈Πu〉 such that χΠ(`) = 1 (if no such node exists,
return an arbitrary node in desc(u)); otherwise, i.e., if B controls u, return `← 〈Πu〉. Finally, given
⊥, f return ⊥. The random function g given an element from V(Π) ∪ {⊥} is analogously defined
with respect to protocol Π′.46 For function φ with range in L(Π), let Hφ be the following algorithm:

Algorithm 4.10 (H).

State: node u, set to λ at the start of the execution.

Operation:

1. Repeat for m times:

(a) Set ` = φ(u).

(b) Set u = u ◦ `i, where i is the current iteration.

2. Output u.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is easy to verify that Hf ≡
〈

A
(1)
Π ,B

〉
and Hg ≡

〈
C

(1)
Π′ ,D

〉
. Hence, it suffices to upper-bound

SD
(
Hf ,Hg

)
.

For i ∈ [m], let Pi to be i’th node in a random execution of Π (such a node consists of i − 1
bits). We use the next claim, proven below.

Claim 4.11. Eu←Pi [SD(f(u), g(u))] ≤ 2α
δ′ + Pr〈Π〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
.

Let Qi denote the i’th query to f in a random execution of Hf (note that by construction, such
a query always exists) and let Q = (Q1, . . . , Qm). By construction, for u ∈ V(Π) with |u| = i− 1,

Qi(u) is the probability that u is visited in a random execution of
(

A
(1)
Π ,B

)
. We get

Pr(q1,...,qm)←Q[∃i ∈ [m] : qi 6=⊥ ∧Qi(qi) > γ · Pi(qi)] = Pr〈A(1),B〉
[
desc

(
UnBalγΠ

)]
≤ γ · Pr〈Π〉

[
desc

(
Smallδ

′,A
Π

)]
+

2

γc
,

where the inequality follows from Lemma 4.8.
The proof of Lemma 4.9 now follows by Lemma 2.17, letting k = m, a = 2α

δ′ +

Pr〈Π〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
, λ = γ and b = γ · Pr〈Π〉

[
desc

(
Smallδ

′,A
Π

)]
+ 2

γc . �
46The sets V(Π) and V(Π′), as well as the sets L(Π) and L(Π′), are identical, as the both describe nodes in the

complete binary tree of height m. See Section 2 for further details.
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Proof of Claim 4.11. Let Vi(Π) = {v ∈ V(Π): |v| = i− 1}, VAi (Π) = Vi(Π) ∩ CtrlAΠ and VBi (Π) =
Vi(Π) ∩ CtrlBΠ. Compute

Eu←Pi [SD(f(u), g(u))] =
∑

u∈Vi(Π)

Pi(u) · SD(f(u), g(u)) (53)

=
∑

u∈VA
i (Π)

Pi(u) · SD(f(u), g(u)) +
∑

u∈VB
i (Π)

Pi(u) · SD(f(u), g(u)).

In the rest of the proof we show that∑
u∈VA

i (Π)

Pi(u) · SD(f(u), g(u)) ≤ 1

δ′
·
∑

u∈VA
i (Π)

Pi(u) · SD
(
〈Πu〉,

〈
Π′u
〉)

(54)

+ Pr〈Π〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
,

that ∑
u∈VB

i (Π)

Pi(u) · SD(f(u), g(u)) ≤
∑

u∈VB
i (Π)

Pi(u) · SD
(
〈Πu〉,

〈
Π′u
〉)
, (55)

and that ∑
u∈Vi(Π)

Pi(u) · SD
(
〈Πu〉,

〈
Π′u
〉)
≤ 2 · SD

(
〈Π〉,

〈
Π′
〉)
. (56)

Plugging Equations (54) to (56) into Equation (53) completes the proof Claim 4.11.

Proof of Equation (54): Let u ∈ VAi (Π). By the definition of f , and since u is under A’s
control, it follows that Pr[f(u) = `] = 〈Πu〉(`)/val(Πu) if χΠ(`) = 1, and Pr[f(u) = `] = 0 ot-
herwise. Since Π and Π′ have the same control scheme, the same holds for g(u) with respect
to Π′. Let S ′u ⊆ L1(Π) be the set with SD(f(u), g(u)) =

∑
`∈S′u(Pr[f(u) = `]− Pr[g(u) = `]) =∑

`∈L1(Π)\S′u(Pr[g(u) = `]− Pr[f(u) = `]).47 Define Su ⊆ L1(Π) as follows: if val(Πu) ≥ val(Π′u) let

Su = S ′u; otherwise let Su = L1(Π) \ S ′u. It follows that∑
u∈VA

i (Π)

Pi(u) · SD(f(u), g(u)) ≤
∑

u∈VA
i (Π):

val(Πu)≥val(Π′u)≥δ′

Pi(u) ·
∑
`∈Su

(
〈Πu〉(`)
val(Πu)

− 〈Π
′
u〉(`)

val(Π′u)

)
(57)

+
∑

u∈VA
i (Π):

val(Π′u)>val(Πu)≥δ′

Pi(u) ·
∑
`∈Su

(
〈Π′u〉(`)
val(Π′u)

− 〈Πu〉(`)
val(Πu)

)

+
∑

u∈VA
i (Π):

val(Πu)<δ′∨val(Π′u)<δ′

Pi(u).

47Note that it must be the case that S ′u ⊆ L1(Π), since Pr[f(u) = `] = Pr[g(u) = `] = 0, for every ` with χΠ(`) = 0,
which follows from the assumption that χΠ ≡ χΠ′ .
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Assume val(Πu) ≥ val(Π′u). The definition of Su implies that 〈Πu〉(`)/val(Πu) ≥ 〈Π′u〉(`)/val(Π′u)
for every ` ∈ Su. But since val(Πu)/val(Π′u) ≥ 1, the latter yields that 〈Πu〉(`) ≥ 〈Π′u〉(`) for every
` ∈ Su. Using this observation, we bound the first summand in the right-hand side of Equation (57).∑

u∈VA
i (Π):

val(Πu)≥val(Π′u)≥δ′

Pi(u) ·
∑
`∈Su

(
〈Πu〉(`)
val(Πu)

− 〈Π
′
u〉(`)

val(Π′u)

)
(58)

≤
∑

u∈VA
i (Π):

val(Πu)≥val(Π′u)≥δ′

Pi(u)

val(Π′)
·
∑
`∈Su

(
〈Πu〉(`)−

〈
Π′u
〉
(`)
)

≤ 1

δ′

∑
u∈VA

i (Π):
val(Πu)≥val(Π′u)≥δ′

Pi(u) ·
∑
`∈Su

(
〈Πu〉(`)−

〈
Π′u
〉
(`)
)

≤ 1

δ′

∑
u∈VA

i (Π):
val(Πu)≥val(Π′u)≥δ′

Pi(u) · SD
(
〈Πu〉,

〈
Π′u
〉)
,

where the second inequality follows since
∑

`∈Su(〈Πu〉(`)− 〈Π′u〉(`)) ≥ 0, as argued above. Similar
calculations, and using the symmetry of statistical distance, we bound the second summand in the
right-hand side of Equation (57):∑

u∈VA
i (Π):

val(Π′u)≥val(Πu)≥δ′

Pi(u) ·
∑
`∈Su

(
〈Π′u〉(`)
val(Π′u)

− 〈Πu〉(`)
val(Πu)

)
≤ 1

δ′

∑
u∈VA

i (Π):
val(Π′u)≥val(Πu)≥δ′

Pi(u) · SD
(
〈Πu〉,

〈
Π′u
〉)
.

(59)

Finally, to bound the third summand in the right-hand side of Equation (57), we note that it sums

over (not all) u ∈ Smallδ
′,A

Π ∪ Smallδ
′,C

Π′ . Since Pi simply samples a random partial transcript from
Π, it follows that ∑

u∈VA
i (Π):

val(Πu)<δ′∨val(Π′u)<δ′

Pi(u) ≤ Pr〈Π〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
. (60)

Plugging Equations (58) to (60) into Equation (57) yields Equation (54).

Proof of Equation (55): Since it is the right-hand party who controls u in Π and in Π′, it follows
that SD(f(u), g(u)) = SD(〈Πu〉, 〈Π′u〉), and Equation (55) follows.

Proof of Equation (56): Using the definition of Pi, we can write∑
u∈Vi(Π)

Pi(u) · SD
(
〈Πu〉,

〈
Π′u
〉)

=
∑

u∈Vi(Π)

vΠ(u) · 1

2

∑
`∈L(Πu)

∣∣vΠu(`)− vΠ′u(`)
∣∣

=
1

2

∑
`∈L(Π)

∣∣∣∣vΠ(`1,...,i−1) · vΠ`1,...,i−1
(`)− vΠ(`1,...,i−1) · vΠ′`1,...,i−1

(`)

∣∣∣∣
= SD

(
〈Π〉,

〈
Π′′
〉)
,
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for 〈Π′′〉(`) := vΠ(`1,...,i−1) · vΠ′`1,...,i−1
(`).

We prove that SD(〈Π′〉, 〈Π′′〉) ≤ SD(〈Π′〉, 〈Π〉), and Equation (56) follows from the triangle

inequality. Let h be the random function that, given ` ∈ L(Π), returns `′ ←
〈

Π′`1,...,i−1

〉
. Therefore,

h(〈Π′〉) ≡ 〈Π′〉 and h(〈Π〉) ≡ 〈Π′′〉, and this completes the proof.
This completes the proof of Equations (54) to (56), and thus the proof of Claim 4.11. �

4.1.3 The Success Probability of A
(1,ξ,δ)
Π — The “Ideal to Real” Reduction

Consider an execution of (A(1,ξ,δ),B). Such an execution asks the approximated biased continuator
BiasedContξ,δ for continuations of transcripts under A’s control, leading to 1-leaves. Hence, as
long as this execution generates neither low-value transcripts under A’s control nor unbalanced
transcripts, we expect the approximated biased-continuation attacker to do almost as well as its
ideal variant. This is formally put in the next lemma.

Lemma 4.12. Let Π = (A,B) be an m-round protocol and let δ ∈ (0, 1
2 ]. Then

SD
(〈

A
(1)
Π ,B

〉
,
〈

A
(1,ξ,δ)
Π ,B

〉)
≤ m · γ ·

(
2ξ + Pr〈A,B〉

[
desc(Smallδ,AΠ )

])
+ Pr〈

A
(1)
Π ,B

〉[desc
(
UnBalγΠ

)]
for every γ ≥ 1 and ξ > 0.

Proof. We use Lemma 2.17. For function φ, let Hφ be an algorithm that outputs the transcript

of a random execution of
(

A
(1)
Π ,B

)
in which A

(1)
Π ’s calls to BiasedContΠ are sent to φ instead.48

Let f and g be the (random) functions BiasedContΠ and BiasedContξ,δΠ respectively, letting also
f(⊥) = g(⊥) =⊥. By construction, it holds that

SD
(〈

A
(1)
Π ,B

〉
,
〈

A
(1,ξ,δ)
Π ,B

〉)
= SD

(
Hf ,Hg

)
. (61)

For i ∈ [m], let P ′i be the distribution of the i’th node under A’s control in a random execution of
Π, taking the value ⊥ if no such node exists, and let Pi = (P ′i , 1), with (⊥, 1) =⊥. By definition,

Eq←Pi [SD(f(q), g(q))] = Eq←Pi

[
SD(BiasedContΠ(q),BiasedContξ,δΠ (q)) · 1¬⊥(q)

]
(62)

≤ 2ξ + Pr〈Π〉

[
desc(Smallδ,AΠ )

]
,

letting the indicator 1¬⊥(q) take the value one if q 6=⊥, and zero otherwise.
Let Qi denote the i’th query to f in a random execution of Hf , taking the value ⊥ if no such

query exists, and let Q = (Q1, . . . , Qm). By definition,

Pr(q1,...,qm)←Q[∃i ∈ [m] : qi 6=⊥ ∧ Qi(qi) > γ · Pi(qi)] = Pr〈
A

(1)
Π ,B

〉[desc
(
UnBalγΠ

)]
. (63)

Hence, the proof follows by Lemma 2.17, letting k := m, a := 2ξ + Pr〈Π〉

[
desc(Smallδ,AΠ )

]
, λ := γ

and b := Pr〈
A

(1)
Π ,B

〉[desc
(
UnBalγΠ

)]
. �

48Note that H is not the same as Algorithm 4.10 defined in the proof of the robustness lemma (Lemma 4.9). There
we considered two different underlying protocols, and needed to also argue about the different actions the honest
(i.e., non-attacked) parties took. Here, we have only one underlying protocol and thus care only about the calls the
attacked party makes.
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Our use of Lemma 4.12 is via the following lemma that states that the approximated biased-
continuation attacker successfully biases protocols in which the probability of hitting A-controlled
low-value nodes is small.

Lemma 4.13. Let Π = (A,B) be an m-round protocol, let δ ∈ (0, 1
2 ], and let c = c(δ) be according

to Lemma 4.7, then

SD
(〈

A
(1)
Π ,B

〉
,
〈

A
(1,ξ,δ′)
Π ,B

〉)
≤ 2 ·m · γ ·

(
ξ + Pr〈A,B〉

[
desc(Smallδ

′,A
Π )

])
+

2

γc

for any δ′ ≥ δ, ξ > 0 and γ > 1.

Proof. Follows by plugging Lemma 4.8 into Lemma 4.12. �

4.1.4 Bounding the Probability of Hitting Low-Density Sets

Our final step before proving Lemmas 4.4 and 4.5, is showing that the recursive ideal biased-
continuation attacker does not increase the probability of hitting any set by much. This is a
generalization of Lemma 4.8 to arbitrary sets of nodes (i.e., not only unbalanced) and to the
recursive version of the ideal biased-continuation attacker.

Lemma 4.8 considered unbalanced nodes to be those that the probability of hitting them in the
protocol which the (non-recursive) biased-continuation attacker take the role of A is γ-times higher
than in the original protocol. When extending Lemma 4.8 to the recursive version of the attacker,
we take different degree of “unbalancedness” for every level of the recursion. Specifically, we will
(implicitly) define unbalanced nodes for the i’th level of the recursion, to be those nodes that the
probability of hitting them in the protocol in which the i’th-level recursive attacker takes the role
of A, is γi-times higher than in the protocol which the (i − 1)’th-level recursive attacker take the
role of A. The freedom to choose different degrees of “unbalanceness” for different levels of the
recursion will be crucial when arguing that (a similar attack to) the biased-continuation attack can
be can implemented efficiently assuming the in-existence of OWFs.

Lemma 4.14. Let Π = (A,B) be a protocol, let δ ∈ (0, 1
2 ], and let c = c(δ) be according Lemma 4.7.

Then for any δ′ ≥ δ, every k ∈ N, any (γ1, . . . , γk) ∈ (1,∞)k and every S ⊆ V(Π) it holds that

Pr〈
A

(k)
Π ,B

〉[desc
(
S ∪ Smallδ

′,A
Π

)]
≤ Pr〈A,B〉

[
desc

(
S ∪ Smallδ

′,A
Π

)]
·
k∏
i=1

γi + 2 ·
k∑
i=1

·
∏k
j=i+1 γj

γci
.

To prove Lemma 4.14 we will use the next claim.

Claim 4.15. Let Π = (A,B) be a protocol, let S ⊆ V(Π), let δ ∈ (0, 1
2 ] and let c = c(δ) from

Lemma 4.7. Then, for every δ′ ≥ δ and γ > 1, it holds that

Pr〈
A

(1)
Π ,B

〉[desc
(
S ∪ Smallδ

′,A
Π

)]
≤ γ · Pr〈A,B〉

[
desc

((
S ∪ Smallδ

′,A
Π

)
\ desc

(
UnBalγΠ

))]
+

2

γc
.

Proof. Fix δ′ ≥ δ and γ > 1. Applying Proposition 2.3 with respect to A = S ∪ Smallδ
′,A

Π ,

B = Smallδ
′,A

Π and C = UnBalγΠ yields that

desc
(
S ∪ Smallδ

′,A
Π

)
⊆ desc

((
S ∪ Smallδ

′,A
Π

)
\ desc

(
UnBalγΠ

))
∪ desc

(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))
.

(64)
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It follows that

Pr〈A(1),B〉[desc(S)] ≤ Pr〈A(1),B〉
[
desc

((
S ∪ Smallδ

′,A
Π

)
\ desc

(
UnBalγΠ

))]
+ Pr〈A(1),B〉

[
desc

(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))]
≤ γ · Pr〈A,B〉

[
desc

((
S ∪ Smallδ

′,A
Π

)
\ desc

(
UnBalγΠ

))]
+

2

γc
,

where the first inequality follows from Equation (64) and the second inequality follows from the
definition of UnBalγΠ (Definition 4.6) and Lemma 4.7. �

We are now ready to prove Lemma 4.14.

Proof of Lemma 4.14. Fix δ′ ≥ δ and (γ1, . . . , γk) ∈ (1,∞)k. The proof is by induction on k. For
k = 0, the proof follows immediately from definition.

Assume the lemma holds for k − 1; we prove it for k. For i ∈ (k − 1), let Π(i) =
(

A
(i)
Π ,B

)
. It is

easy to verify that when the ideal biased continuation attacker takes the role of A in the protocol
and tries to bias the outcome towards 1, the value of every node cannot decrease. Namely, it holds

that Smallδ
′,A

Π(i) ⊆ Smallδ
′,A

Π(i−1) for every i ∈ [k − 1], and thus Smallδ
′,A

Π(k−1) ⊆ Smallδ
′,A

Π . Applying

Claim 4.15 with respect to the protocol Π(k−1), set S ∪ Smallδ
′,A

Π and γ = γk, yields that

Pr〈
A

(1)

Π(k−1)
,B
〉[desc

(
S ∪ Smallδ

′,A
Π

)]
(65)

≤ γk · Pr〈Π(k−1)〉
[
desc

((
S ∪ Smallδ

′,A
Π ∪ Smallδ

′,A
Π(k−1)

)
\ desc

(
UnBalγk

Π(k−1)

))]
+

2

γck

≤ γk · Pr〈Π(k−1)〉
[
desc

(
S ∪ Smallδ

′,A
Π

)]
+

2

γck
.

Equation (65) together with the induction hypothesis now yield that

Pr〈
A

(1)

Π(k−1)
,B
〉[desc

(
S ∪ Smallδ

′,A
Π

)]
≤ γk

(
Pr〈A,B〉

[
desc

(
S ∪ Smallδ

′,A
Π

)]
·
k−1∏
i=1

γi + 2 ·
k−1∑
i=1

·
∏k−1
j=i+1 γj

γci

)

+
2

γck

= Pr〈A,B〉

[
desc

(
S ∪ Smallδ

′,A
Π

)]
·
k∏
i=1

γi + 2 ·
k∑
i=1

·
∏k
j=i+1 γj

γci
.

Noting that
(

A
(1)

Π(k−1) ,B
)

=
(

A
(k)
Π ,B

)
concludes the proof. �

4.1.5 Proving Lemmas 4.4 and 4.5

We are finally ready to prove Lemmas 4.4 and 4.5. These proofs rely on the next lemma, a slight
generalization to Lemma 4.4.
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Lemma 4.16. For any δ ∈ (0, 1/4], exists a constant c = c(δ) such that the following holds. Let

Π = (A,B) be a m-round protocol, and assume Pr〈Π〉

[
desc

(
Small1.5δ

′,A
Π

)]
≤ α for some δ ≤ δ′ ≤ 1

4 .

Then, for every ξ ∈ (0, 1), k ∈ N and γ = (γ1, . . . , γk) ∈ (1,∞)k, it holds that

SD
(〈

A
(k)
Π ,B

〉
,
〈

A
(k,ξ,δ′)
Π ,B

〉)
≤ k ·

30k ·mk ·
∏k
i=1 γi

δ′2k
· (α+ ξ) (66)

+

k∑
i=1

2k−i+2 ·
30k−i ·mk−i ·

∏k
j=i+1 γj

δ′2(k−i) · γci
. (67)

Before proving this lemma, we use is to derive Lemmas 4.4 and 4.5.

Proving Lemma 4.4

Proof of Lemma 4.4. Fix δ ∈ (0, 1/4], k ∈ N and δ′ ∈ [δ, 1/4] for which Pr〈Π〉

[
desc

(
Small1.5δ

′,A
Π

)]
≤

α. Furthermore, fix ξ ∈ (0, 1) and µ ∈ (0, 1) and let c = c(δ) be the constant guaranteed by
Lemma 4.16. We begin by defining a vector γ = (γ1, . . . , γk) ∈ (1,∞)k with respect to the sum in
Equation (67) is less than µ. For i ∈ [k], let

ti := 2k−i+2 ·
30k−i ·mk−i ·

∏k
j=i+1 γj

δ′2(k−i) · γci
. (68)

The sum in Equation (67) can be now written as
∑k

i=1 ti. We now define γ so that ti ≤ µ/2i for

every i, implying that
∑k

i=1 ti ≤ µ. Let γk :=
⌈
(4 · 2k/µ)1/c

⌉
. Note that

tk =
4

γck
≤ µ

2k
. (69)

The value of γk−1, . . . , γ1 is set inductively. For i ∈ [k − 1], let

γi :=


(

2k−i+2 ·
30k−i ·mk−i ·

∏k
j=i+1 γj

δ′2(k−i) · 2i

µ

)1/c
.

By construction, it holds that
∏k
j=i+1 γj ∈ poly(m, 1/δ′, 1/µ), γ = (γ1, . . . , γk) ∈ (1,∞)k and

that
∑k

i=1 ti ≤ µ. The proof is thus concluded by applying Lemma 4.16. �

Proving Lemma 4.5

Proof of Lemma 4.5. Fix δ ∈ (0, 1/4], k ∈ N and δ′ ∈ [δ, 1/4] for which Pr〈Π〉

[
desc

(
Small1.5δ

′,A
Π

)]
≤

α. Let c = c(δ) be the constant guaranteed by Lemma 4.16. Set γ = (γ1, . . . , γk) ∈ (1,∞)k

in the same way it was set in the proof of Lemma 4.4 above. By assumption, it holds that
Pr〈Π〉[desc(F)] ≤ β + ε. Applying Lemma 4.14 yields that

Pr〈
A

(k)
Π ,B

〉[desc(F)] ≤ (α+ β + ε) ·
k∏
i=1

γi + 2 ·
k∑
i=1

·
∏k
j=i+1 γj

γci
,
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and Lemma 4.16 now yields that

Pr〈
A

(k,δ′,ξ)
Π ,B

〉[desc(F)] ≤ (α+ β + ε) ·
k∏
i=1

γi + 2 ·
k∑
i=1

·
∏k
j=i+1 γj

γci
(70)

+ k ·
30k ·mk ·

∏k
i=1 γi

δ′2k
· (α+ ξ) (71)

+

k∑
i=1

2k−i+2 ·
30k−i ·mk−i ·

∏k
j=i+1 γj

δ′2(k−i) · γci
. (72)

By the proof of Lemma 4.4 above, the terms in Equations (71) and (72) are at most
φItk,δ(α, ξ,m, δ

′, µ). Moreover, the proof of Lemma 4.4 also yields that the term in Equation (72) is

a most µ and that
∏k
i=1 γi ∈ poly(m, 1/δ′, 1/µ). The proof is concluded by noting that the second

term in the right-hand side of Equation (70) is bounded from above by that in Equation (72) and
thus is also at most µ. �

Proving Lemma 4.16. Lemma 4.16 is proven by induction on k. The next lemma, which
combines the results from the previous sections, will be useful to argue the induction step.

Lemma 4.17. For every δ ∈ (0, 1/4], exists a constant c = c(δ) such that the following holds. Let
Π = (A,B) and Π′ = (C,D) be two m-round protocols with the same control scheme, and assume

1. χΠ ≡ χΠ′,

2. SD(〈Π〉, 〈Π′〉) ≤ β, and

3. Pr〈Π′〉

[
desc

(
Small1.5δ

′,C
Π′

)]
≤ α for some δ ≤ δ′ ≤ 1

4 .

Then, for every ξ ∈ (0, 1) and γ > 1, it holds that

SD
(〈

A
(1,ξ,δ′)
Π ,B

〉
,
〈

C
(1)
Π′ ,D

〉)
≤ 30 ·m · γ

δ′2
· (α+ ξ + β) +

4

γc
.

Proof. Fix δ ∈ (0, 1/4] and let c = c(δ) be according to Lemma 4.7. Fix δ′ ∈ [δ, 1/4] for which

Pr〈Π〉

[
desc

(
Small1.5δ

′,A
Π

)]
≤ α. Furthermore, fix ξ ∈ (0, 1) and γ > 1.

The proof proceeds in two steps. First, apply Lemma 4.9 (robustness lemma) to show that after
the (ideal) biased-continuation attacker takes the role of A and C in Π and Π′ respectively, the leaf
distributions of these protocols remain close. Second, apply Lemma 4.13 (ideal-to-approximated
biased-continuation attacker) to show that replacing the attacker of the left-hand party in Π with
its approximated variant, the leaf distributions of these protocols remain close.

In order to apply Lemma 4.9, we first need to bound Pr〈Π〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
.

Let F = frnt
(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)
, let F1 = {u ∈ F : val((Π′)u) ≥ 1.5δ′}, and let F2 =

{u ∈ F : val((Π′)u) < 1.5δ′}. Since F ⊆ F1
⋃
F2, it suffices to bound Pr〈Π〉[desc(F1)] and

Pr〈Π〉[desc(F2)], which we do separately.
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Bounding F1: Nodes in F1 must have small value in Π but large value in Π′. Since 〈Π〉 and 〈Π′〉
are close, the probability of reaching such nodes is small.

Formally, since every node in F1 must belong to Smallδ
′,A

Π , it follows that
Pr〈Π〉[L1(Π) | desc(F1)] ≤ δ′. Assumption (1) of the lemma and the definition of F1 yield,
however, that Pr〈Π′〉[L(Π) | desc(F1)] ≥ 1.5δ′. It follows from Proposition 2.8 that

Pr〈Π〉[desc(F1)] ≤ β · 1 + 1.5δ′

0.5δ′
≤ 4β

δ′
.

The last inequality holds since, by assumption, δ′ ≤ 1/4.

Bounding F2: The definition of F2, the assumption that Π and Π′ have the same control
scheme, and assumption (3), yield that Pr〈Π′〉[desc(F2)] ≤ α. Hence, the assumption that
SD(〈Π〉, 〈Π′〉) ≤ β (assumption (2) of the lemma) yields that Pr〈Π〉[desc(F2)] ≤ α+ β.

Combining the two bounds, it follows that Pr〈Π〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
≤ 5β/δ′+α. We

can apply Lemma 4.9 and derive

SD
(〈

A
(1)
Π ,B

〉
,
〈

C
(1)
Π′ ,D

〉)
≤ 3 ·m · γ

δ′
·
(
β +

5β

δ′
+ α

)
+

2

γc
. (73)

The next step is to apply Lemma 4.13. To do so we need to bound Pr〈Π〉

[
desc

(
Smallδ

′,A
Π

)]
, but

since it is clear that Pr〈Π〉

[
desc

(
Smallδ

′,A
Π

)]
≤ Pr〈Π〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
, it follows that

Pr〈Π〉

[
desc

(
Smallδ

′,A
Π

)]
≤ 5β/δ′ + α. Applying Lemma 4.13, we derive

SD
(〈

A
(1)
Π ,B

〉
,
〈

A
(1,ξ,δ′)
Π ,B

〉)
≤ 2 ·m · γ ·

(
ξ +

5β

δ′
+ α

)
+

2

γc
. (74)

Finally, applying the triangle inequality of statistical distance to Equations (73) and (74) completes
the proof of Lemma 4.17. �

The proof of Lemma 4.16 now follows straightforward calculations.

Proof of Lemma 4.16. Fix δ ∈ (0, 1/4] and let c = c(δ) be according to Lemma 4.17. Fix δ′ ∈
[δ, 1/4] for which Pr〈Π〉

[
desc

(
Small1.5δ

′,A
Π

)]
≤ α. Furthermore, fix ξ ∈ (0, 1).

The proof is by induction on k. For k = 0, the proof follows immediately from definition.
Fix k ∈ N and let (γ1, . . . , γk) ∈ (1,∞)k. Assume the lemma holds for k − 1; we prove it for k

by applying Lemma 4.17. For i ∈ (k), let Π
(i)
1 =

(
A

(i)
Π ,B

)
and let Π

(i)
2 =

(
A

(i,ξ,δ′)
Π ,B

)
. Using this

notation, we can write Π
(k)
1 =

(
A

(1)

Π
(k−1)
1

,B

)
and Π

(k)
2 =

(
A

(1,ξ,δ′)

Π
(k−1)
2

,B

)
. Hence,

SD
(〈

A
(k)
Π ,B

〉
,
〈

A
(k,ξ,δ′)
Π ,B

〉)
= SD

(〈
A

(1)

Π
(k−1)
1

,B

〉
,

〈
A

(1,ξ,δ′)

Π
(k−1)
2

,B

〉)
. (75)

We would like to apply Lemma 4.17 with respect to Π
(k−1)
1 and Π

(k−1)
2 . Indeed, these protocols

share the same control scheme and common output function χ, and the induction hypothesis gives

us a bound for SD
(〈

Π
(k−1)
1

〉
,
〈

Π
(k−1)
2

〉)
. It remains to bound Pr〈

Π
(k−1)
1

〉[desc

(
Small1.5δ

′,A

Π
(k−1)
1

)]
.
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As we argued before,49 it is easy to verify that when the ideal biased continuation attacker
takes the role of A in the protocol and tries to bias the outcome towards 1, the value of every node

cannot decrease. Namely, it holds that Small1.5δ
′,A

Π
(i)
1

⊆ Small1.5δ
′,A

Π
(i−1)
1

for every i ∈ [k − 1], and thus

Small1.5δ
′,A

Π
(k−1)
1

⊆ Small1.5δ
′,A

Π1
= Small1.5δ

′,A
Π . It holds that

Pr〈
Π

(k−1)
1

〉[desc

(
Small1.5δ

′,A

Π
(k−1)
1

)]
≤ Pr〈

Π
(k−1)
1

〉[desc
(
Small1.5δ

′,A
Π

)]
(76)

≤ Pr〈Π〉

[
desc

(
Small1.5δ

′,A
Π

)]
·
k−1∏
i=1

γi + 2 ·
k−1∑
i=1

·
∏k−1
j=i+1 γj

γci

≤ α ·
k−1∏
i=1

γi + 2 ·
k−1∑
i=1

·
∏k−1
j=i+1 γj

γci
.

The second inequality follows from applying Lemma 4.14 with respect to 1.5δ′ and the set

Small1.5δ
′,A

Π . By the induction hypothesis and Lemma 4.17 applied to Π
(k−1)
1 and Π

(k−1)
2 with

respect to γk, it holds that

SD
(〈

A
(k)
Π ,B

〉
,
〈

A
(k,ξ,δ′)
Π ,B

〉)
≤ 30 ·m · γk

δ′2
·

(
(k − 1) ·

30k−1 ·mk−1 ·
∏k−1
i=1 γi

δ′2(k−1)
· (ξ + α)

+
k−1∑
i=1

2k−i+1 ·
30k−1−i ·mk−1−i ·

∏k−1
j=i+1 γj

δ′2(k−1−i) · γci

+α ·
k−1∏
i=1

γi + 2 ·
k−1∑
i=1

·
∏k−1
j=i+1 γj

γci
+ ξ

)
+

4

γck

=
30 ·m · γk

δ′2
·

(
(k − 1) ·

30k−1 ·mk−1 ·
∏k−1
i=1 γi

δ′2(k−1)
· (ξ + α) + α ·

k−1∏
i=1

γi + ξ

)

+
30 ·m · γk

δ′2
·

(
k−1∑
i=1

2k−i+1 ·
30k−1−i ·mk−1−i ·

∏k−1
j=i+1 γj

δ′2(k−1−i) · γci
+ 2 ·

k−1∑
i=1

·
∏k−1
j=i+1 γj

γci

)
+

4

γck
.

The induction proof now follows by grouping together the summands in the parentheses. This
concludes the proof of Lemma 4.24. �

4.2 Attacking Pruned Protocols

In Section 4.1 we showed that if in a protocol Π = (A,B) the probability to visit A-controlled
low-value nodes is small, then the recursive approximated biased-continuation attacker (taking
the role of A) biases the outcome of the protocol towards one almost as well as its ideal variant
does (a similar fact holds for the attacker taking the role of B, trying to bias the outcome of the
protocol towards zero, and the probability to visit B-controlled high-value nodes is small). For some

49We used the same argument in the proof of Lemma 4.14.
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protocols, however, this probability might be arbitrarily large, so the analysis in Section 4.1 does
not suffice to argue that the recursive approximated biased-continuation attacker successfully biases
any protocol. In this section we define the pruned variant of a protocol so that the probability of
hitting A-controlled low-value nodes, as well as hitting B-controlled high-value nodes is indeed small.
Hence, Lemma 4.4 yields that the recursive approximated biased-continuation attacker successfully
biases the pruned variant of any protocol. In Section 4.3, we exploit the above for attacking any
protocol by letting the attacker “pretend” it is attacking a pruned variant, rather than the original
protocol.

We start with defining an ideal pruned variant of a protocol, in which there exist no A-controlled
low-value nodes and B-controlled high-value nodes. This variant, however, might not be efficiently
computed, even if OWFs do not exist. To cope with this efficiency issue, we consider an approx-
imated variant of the pruned protocol, in which such nodes might exist, but the probability of
hitting them is small. Finally, we apply the results from Section 4.1 to argue that the recursive
approximated biased-continuation attacker biases the outcome of the approximately pruned variant
of any protocol.

Pruned protocols. In the pruned variant of protocol Π = (A,B), the edge distribution remains
intact, while the controlling scheme is changed, giving the control to B on low-value nodes, and to
A on high-value nodes.

Definition 4.18 (the pruned variant of a protocol). Let Π = (A,B) be an m-round protocol and

let δ ∈ (0, 1
2). In the δ-pruned variant of Π, denoted by Π[δ] =

(
A

[δ]
Π ,B

[δ]
Π

)
, the parties follow the

protocol Π, where A
[δ]
Π and B

[δ]
Π take the roles of A and B respectively, with the following exception

occurring the first time the protocol’s transcript u is in SmallδΠ ∪ LargeδΠ:

If u ∈ LargeδΠ, set C = A
[δ]
Π ; otherwise set C = B

[δ]
Π . The party C takes control of the node u,

samples a leaf `← 〈Πu〉, and then, bit by bit, sends `|u|+1,...,m to the other party.

Namely, the first time the value of the protocol is close to either 1 or 0, the party interested in

this value (i.e., A
[δ]
Π for 1, and B

[δ]
Π for 0) takes control and decides the outcome (without changing

the value of the protocol). Hence, the protocol is effectively pruned at these nodes (each such node
is effectively a parent of two leaves).

For every protocol Π, its pruned variant Π[δ] is a well-defined protocol, so the analysis of
Section 3 can be applied.50 As mentioned above, the pruned variant of a protocol might not be
efficiently computed, even if OWFs do not exist, so we move to consider an approximated variant
of the pruned protocol.

Approximately pruned protocols. To define the approximated pruned protocols, we begin by
defining two algorithms, both of which can be efficiently implemented assuming OWFs do not exist
for an appropriate choice of parameters. The first algorithm samples an honest (i.e., unbiased)
continuation of the protocol.

50Note that in the pruned protocol, the parties’ turns might not alternate (i.e., the same party might send several
consecutive bits), even if they do alternate in the original protocol. Rather, the protocol’s control scheme (determining
which party is active at a given point) is a function of the protocol’s transcript and the original protocol’s control
scheme. Such schemes are consistent with the ones considered in the previous sections.
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Definition 4.19 (approximated honest continuation). Let Π be an m-round protocol, and let
HonContΠ be the algorithm that on node u ∈ V(Π) returns ` ← 〈Πu〉. Algorithm HC is a ξ-
Honest-Continuator for Π, if Pr`←〈Π〉[∃i ∈ (m− 1) : SD(HC(`1,...,i),HonContΠ(`1,...,i)) > ξ] ≤ ξ. Let

HonContξΠ be an arbitrary (but fixed) ξ-honest-continuator for Π.

The second algorithm estimates the value of a given transcript (i.e., a node) of the protocol.

Definition 4.20 (estimator). Let Π be an m-round protocol. A deterministic algorithm Est is

a ξ-Estimator for Π, if Pr`←〈Π〉
[
∃i ∈ (m− 1) :

∣∣Est(`1,...,i)− val(Π`1,...,i)
∣∣ > ξ

]
≤ ξ. Let EstξΠ be an

arbitrary (but fixed) ξ-estimator for Π.

Using the above estimator, we define the approximated version of the low and high value nodes.

Definition 4.21 (approximated low-value and high-value nodes). For protocol Π, δ ∈ (0, 1
2) and a

deterministic real-value algorithm Est, let

• Smallδ,EstΠ = {u ∈ V(Π) \ L(Π): Est(u) ≤ δ};

• Largeδ,EstΠ = {u ∈ V(Π) \ L(Π): Est(u) ≥ 1− δ}.

For ξ ∈ [0, 1], let Smallδ,ξΠ = Small
δ,EstξΠ
Π .

We can now define the approximately pruned protocol, which is the oracle variant of the ideal
pruned protocol.

Definition 4.22 (the approximately pruned variant of a protocol). Let Π = (A,B) be an m-round
protocol, let δ ∈ (0, 1

2), let HC be an algorithm, and let Est be a deterministic real value algorithm.

The (δ,Est,HC)-approximately pruned variant of Π, denoted Π[δ,Est,HC] =
(

A
[δ,Est,HC]
Π ,B

[δ,Est,HC]
Π

)
, is

defined as follows.

Control Scheme: the parties follow the control scheme of the protocol Π, where A
[δ,Est,HC]
Π and

B
[δ,Est,HC]
Π take the roles of A and B respectively, with the following exception occurring the first

time the protocol’s transcript u is in Smallδ,EstΠ ∪Largeδ,EstΠ : if u ∈ Largeδ,EstΠ set C = A
[δ,Est,HC]
Π ;

otherwise set C = B
[δ,Est,HC]
Π . The party C takes control of all nodes in desc(u) (i.e., nodes for

which u is an ancestor).

Execution: for a protocol’s transcript u and a party C who controls u, C sets ` = HC(u) and sends
`|u|+1 to the other party.51

For δ ∈ (0, 1
2) and ξ, ξ′ ∈ [0, 1], let Π[δ,ξ,ξ′] = Π[δ,EstξΠ,HonCont

ξ′
Π ] and Π[δ,ξ] = Π[δ,ξ,ξ], and the same

notation is used for the parties of the pruned protocol.

Namely, in Π[δ,ξ], the parties follow the control scheme of Π until reaching a node in Smallδ,ξΠ ∪
Largeδ,ξΠ for the first time. Upon reaching such a node, the control moves to (and stays with) A if

u ∈ Largeδ,ξΠ , or B if u ∈ Smallδ,ξΠ . The fact that the messages sent by the parties are determined

by the answers of HonContξΠ, instead of by their random coins, makes them stateless throughout
the execution of the protocol. This fact will be crucial when implementing our final attacker.

51This happens to every transcript, even those that are not children of Smallδ,EstΠ ∪ Largeδ,EstΠ .
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Attacking approximately pruned protocols. We would like to argue about the success pro-
bability of the recursive approximated biased-continuation attacker when attacking approximately
pruned protocols. To do so, we must first show that the probability of reaching A-controlled low-
value nodes in such protocols is low. By definition, it is impossible to reach such nodes in the ideal
pruned protocol. Thus, if the approximately pruned variant is indeed an approximation of the
pruned variant of the protocol, we expect that probability of reaching A-controlled low-value nodes
in this protocol will be low. Unfortunately, this does not necessarily hold. This is because the value
of each node in both protocols might not be the same, and because the control scheme of these
protocols might be different. It turns out that the bound for the above probability depends on the
probability of the original protocol visiting nodes whose value is close to the pruning threshold,
i.e., δ and 1− δ.
Definition 4.23. For protocol Π, ξ ∈ (0, 1) and δ ∈ (0, 1

2), let

Borderδ,ξΠ = {u ∈ V(Π) \ L(Π): val(Πu) ∈ (δ − ξ, δ + ξ] ∨ val(Πu) ∈ [1− δ − ξ, 1− δ + ξ)},

and let borderΠ(δ, ξ) = Pr〈Π〉

[
desc

(
Borderδ,ξΠ

)]
.

Namely, Borderδ,ξΠ are those nodes that are ξ-close to the “border” between SmallδΠ ∪ LargeδΠ
and the rest of the nodes. The intervals in the above definition are taken to be open in one side
and close on the other for technical reason, and this fact is insignificant for the understanding of
the definition.

We can now state the main result of this section — the recursive approximated biased-
continuation attacker biases this approximated pruned protocol with similar success to that of
the recursive (ideal) biased-continuation attacker. Specifically, we have the following lemma, which
is an application of Lemma 4.4 to the approximately pruned protocol.

Lemma 4.24. Let 0 < δ ≤ δ′ ≤ 1
4 , let ξ ∈ (0, 1) and let Π̃ =

(
Ã, B̃

)
= Π[2δ′,ξ] be the (2δ′, ξ)-

approximately pruned variant of a m-round protocol Π. Then,

SD
(〈

A
(k)

Π̃
, B̃
〉
,
〈

A
(k,ξ,δ′)

Π̃
, B̃
〉)
≤ φItk,δ

(
borderΠ(2δ′, ξ) + 12 ·m · ξ/δ′, ξ,m, δ′, µ

)
,

for every k ∈ N and µ ∈ (0, 1).52

The next lemma will also be useful ahead. It shows that if a set of nodes is reached with low
probability in the original protocol, then the probability to reach the same set does not increase
by mush when the recursive approximated biased-continuation attacker attacks that approximately
pruned variance of the protocol. This is an immediate application of Lemma 4.5 to the approxi-
mately pruned protocol.

Lemma 4.25. Let 0 < δ ≤ δ′ ≤ 1
4 , let ξ ∈ (0, 1) and let Π̃ =

(
Ã, B̃

)
= Π[2δ′,ξ] be the (2δ′, ξ)-

approximately pruned variant of an m-round protocol Π. Let F be a frontier with Pr〈Π〉[desc(F)] ≤
β. Then

Pr〈
A

(k,δ′,ξ)
Π̃

,B̃
〉[desc(F)] ≤ φBalk,δ

(
borderΠ(2δ′, ξ) + 12 ·m · ξ/δ′, β, 2 ·m · ξ,m, δ′, µ

)
+ φItk,δ

(
borderΠ(2δ′, ξ) + 12 ·m · ξ/δ′, ξ,m, δ′, µ

)
,

for every k ∈ N and µ ∈ (0, 1).53

52See Lemma 4.4 for the definition of φIt
k,δ.

53See Lemma 4.5 for the definition of φBal
k,δ.
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Finally, in order for the above bounds to be useful, we need to show that borderΠ(δ, ξ) —
the probability in the original protocol of reaching nodes whose value is ξ-close to δ — is small.
Unfortunately, given a protocol and a pruning threshold, this probability might be large. We argue,
however, that if we allow a small deviation from the pruning threshold, this probability is small.

Lemma 4.26. Let Π be an m-round protocol, let δ ∈ (0, 1
2 ], and let ξ ∈ (0, 1). If ξ ≤ δ2

16m2 , then
there exists j ∈ J :=

{
0, 1, . . . ,

⌈
m/
√
ξ
⌉}

such that borderΠ(δ′, ξ) ≤ m ·
√
ξ for δ′ = δ/2 + j · 2ξ ∈

[ δ2 , δ].

The rest of this section is dedicated to proving the above Lemmas. In Section 4.2.1 we show
useful properties of approximately pruned protocols and use them to prove Lemmas 4.24 and 4.25.
In Section 4.2.2 we prove Lemma 4.26.

4.2.1 Proving Lemmas 4.24 and 4.25

Properties of approximately pruned protocols. In order to prove Lemmas 4.24 and 4.25 we
need to bound the probability of hitting A-controlled low-value nodes with that of reaching nodes
whose value is close to the pruning threshold in the original protocol (i.e., borderΠ(δ, ξ)). The first
step is to show that the approximately pruned protocol is close (in leaf-distribution sense) to the
original protocol.

Lemma 4.27. Let Π = (A,B) be an m-round protocol. Then

SD
(
〈Π〉,

〈
Π[δ,ξ]

〉)
≤ 2 ·m · ξ

for every δ ∈ (0, 1/2] and ξ ∈ (0, 1).

The proof of Lemma 4.27 is a simple implication of the approximation guarantee of the honest-
continuator. Note that the leaf distributions of Π and Π[δ] are identical, so the above lemma also
shows that the leaf distributions of the ideal and approximated pruned protocols are close (i.e.,
that the latter is indeed an approximation to the former). Also note that the above bound does
not depend on δ.

Proof. The proof is an application of Lemma 2.17. By definition, every message in Π[δ,ξ,0] is set
by calling a perfect honest-continuator for Π. Thus, 〈Π〉 ≡

〈
Π[δ,ξ,0]

〉
, and it suffices to bound

SD
(〈

Π[δ,ξ,0]
〉
,
〈
Π[δ,ξ]

〉
=
〈
Π[δ,ξ,ξ]

〉)
, which we do by applying Lemma 2.17.

For a function φ, let Hφ be an algorithm that outputs the transcript of a random execution of

Π[δ,EstξΠ,φ]. Let f and g be the (random) functions HonContΠ and HonContξΠ respectively, and let
f(⊥) = g(⊥) =⊥. By construction, it holds that

SD
(〈

Π[δ,ξ,0]
〉
,
〈

Π[δ,ξ,ξ]
〉)

= SD
(

Hf ,Hg
)
.

For i ∈ [m], let Pi be i’th node in a random execution of Π (such a node consists of i− 1 bits), and

let FailContξ,iΠ =
{
u ∈ V(Π): |u| = i− 1 ∧ SD

(
HonContΠ(u),HonContξΠ(u)

)
> ξ
}

. By definition,

Pru←Pi

[
u ∈ FailContξ,iΠ

]
= Pr`←〈Π〉

[
SD
(

HonCont(`1,...,i−1),HonContξΠ(`1,...,i−1)
)
> ξ
]

≤ Pr`←〈Π〉

[
∃i ∈ [m] : SD

(
HonCont(`1,...,i−1),HonContξΠ(`1,...,i−1)

)
> ξ
]

≤ ξ,
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and thus

Eu←Pi [SD(f(u), g(u))]

= Eu←Pi

[
SD
(

HonContΠ(u),HonContξΠ(u)
)]

= Pru←Pi

[
u ∈ FailContξ,iΠ

]
· Eu←Pi

[
SD
(

HonContΠ(u),HonContξΠ(u)
) ∣∣∣ u ∈ FailContξ,iΠ

]
+ Pru←Pi

[
u /∈ FailContξ,iΠ

]
· Eu←Pi

[
SD
(

HonContΠ(u),HonContξΠ(u)
) ∣∣∣ u /∈ FailContξ,iΠ

]
≤ ξ + ξ = 2ξ,

where the first equality follows since Pi(⊥) = 0.
Let Qi denote the i’th query to f in a random execution of Hf (note that by construction, such

a query always exists) and let Q = (Q1, . . . , Qm). By definition, Qi ≡ Pi, and thus

Pr(q1,...,qm)←Q[∃i ∈ [m] : qi 6=⊥ ∧ Qi(qi) > Pi(qi)] = 0.

The proof now follows by Lemma 2.17, letting k = m, a = 2ξ, λ = 1 and b = 0. �

We can now bound the probability of hitting A-controlled low-value nodes with that of reaching
nodes whose value is close to the pruning threshold in the original protocol.

Lemma 4.28. Let δ ∈ (0, 1/2), let ε ∈ (0, δ), let ξ ∈ (0, 1) and let Π̃ =
(

Ã, B̃
)

= Π[δ,ξ] be the

(δ, ξ)-approximately pruned variant of an m-round protocol Π. Then

Pr〈Π̃〉
[
desc

(
Smallδ−ε,Ã

Π̃

)]
≤ borderΠ(δ, ξ) +

6 ·m · ξ
ε

.

Proof of Lemma 4.28. The proof is an application of Lemma 4.27 and Proposition 2.8.

Let FailEstξΠ =
{
u ∈ V(Π):

∣∣∣val(Πu)− EstξΠ(u)
∣∣∣ > ξ

}
and let F = frnt

(
Smallδ−ε,Ã

Π̃

)
\(

Borderδ,ξΠ ∪ FailEstξΠ

)
. It follows that

Pr〈Π̃〉
[
desc

(
Smallδ−ε,Ã

Π̃

)]
≤ Pr〈Π̃〉

[
desc

(
Borderδ,ξΠ ∪ FailEstξΠ

)]
+ Pr〈Π̃〉[desc(F)]. (77)

By Lemma 4.27, it holds that

Pr〈Π̃〉
[
desc

(
Borderδ,ξΠ ∪ FailEstξΠ

)]
≤ borderΠ(δ, ξ) + 3 ·m · ξ. (78)

Let u ∈ F . Since u is under Ã’s control, it holds that EstξΠ(u) > δ. Since u /∈ FailEstξΠ, it holds that

val(Πu) > δ − ξ, and since u /∈ Borderδ,ξΠ , we have val(Πu) ≥ δ + ξ. By definition, val(Π̃u) ≤ δ − ε.
Thus, Pr〈Π̃〉[L1(Π) | desc(F)] ≤ δ − ε and Pr〈Π〉[L1(Π) | desc(F)] ≥ δ + ξ. Finally, by Lemma 4.27

it holds that SD
(

Π̃,Π
)
≤ 2 ·m · ξ, and thus by Proposition 2.8 we have

Pr〈Π̃〉[desc(F)] ≤ 2 ·m · ξ · 1 + δ − ε
ξ + ε

≤ 3 ·m · ξ
ε

. (79)

Plugging Equations (78) and (79) into Equation (77) completes the proof of the lemma. �
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Proving Lemma 4.24.

Proof of Lemma 4.24. Applying Lemma 4.28 to Π̃ and ε = 0.5δ′ yields that

Pr〈Π̃〉
[
desc

(
Small1.5δ

′,Ã

Π̃

)]
≤ borderΠ(2δ′, ξ) +

12 ·m · ξ
δ′

. (80)

The proof now immediately follows from Lemma 4.4. �

Proving Lemma 4.25.

Proof of Lemma 4.25. Immediately follows from plugging Lemma 4.27 and Equation (80) into
Lemma 4.5. �

4.2.2 Proving Lemma 4.26

Proof of Lemma 4.26. For j ∈ J , let δ′(j) = δ/2 + j · 2ξ. From the definition of J , it is clear that
δ′(j) ∈ [ δ2 , δ] for every j ∈ J . Hence, it is left to argue that ∃j ∈ J such that borderΠ(δ′(j), ξ) ≤
m ·
√
ξ.

For i ∈ [m], let Borderδ,ξ,iΠ =
{
u ∈ V(Π): u ∈ Borderδ,ξΠ ∧ |u| = i− 1

}
. It holds that

Pr〈Π〉

[
desc

(
Borderδ,ξΠ

)]
≤ Pr〈Π〉

[
desc

(
∪i∈[m]Borderδ,ξ,iΠ

)]
(81)

≤
m∑
i=1

Pr〈Π〉

[
desc

(
Borderδ,ξ,iΠ

)]
.

For every i ∈ [m], let N (i) =
{
j ∈ J : Pr〈Π〉

[
desc

(
Border

δ′(j),ξ,i
Π

)]
>
√
ξ
}

and let N = ∪i∈[m]N (i).

We use the following claim (proven below).

Claim 4.29. It holds that |N (i)| < 1/
√
ξ for every i ∈ [m].

Claim 4.29 yields that |N | ≤
∑m

i=1|N (i)| < m√
ξ
< |J |. Thus, ∃j ∈ J such that j /∈ N .

Set δ′ = δ′(j). It holds that Pr〈Π〉

[
desc

(
Borderδ

′,ξ,i
Π

)]
≤
√
ξ for every i ∈ [m]. Plugging it into

Equation (81) yields that borderΠ(δ′, ξ) = Pr〈Π〉

[
desc

(
Borderδ

′,ξ
Π

)]
≤ m ·

√
ξ, completing the proof

of Lemma 4.26. �

Proof of Claim 4.29. Assume towards a contradiction that there exists i ∈ [m] such that |N (i)| ≥
1/
√
ξ. Let Pi be the distribution over {0, 1}i, described by outputting `i, for `← 〈Π〉. We get that

Pr〈Π〉

[
desc

(
Border

δ′(j),ξ,i
Π

)]
= Pi

(
Border

δ′(j),ξ,i
Π

)
. Since, Border

δ′(j),ξ,i
Π ∩ Border

δ′(j′),ξ,i
Π = ∅ for every

j 6= j′ ∈ J , it holds that

1 ≥
∑
j∈J

Pi

(
Border

δ′(j),ξ,i
Π

)
≥
∑

j∈N (i)

Pi

(
Border

δ′(j),ξ,i
Π

)
> |N (i)| ·

√
ξ ≥ 1,

and a contradiction is derived, where the last inequality follows the assumption that |N (i)| ≥ 1/
√
ξ.
�
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4.3 The Pruning-in-the-Head Attacker

In Section 4.2, the recursive approximated biased-continuation attacker was shown to successfully
biases the approximately pruned variant of any protocol. We now use this result to design an
attacker that biases any protocol. The new attacker applies the approximated biased-continuation
attacker as if the attacked protocol is (approximately) pruned, until it reaches a low or high value
node, and then it switches its behavior to act honestly (i.e., as the protocol prescribes). Named
after its strategy, we name it the pruning-in-the-head attacker.

To make the discussion simpler, ee start with describing the ideal (inefficient) variant of the
pruning-in-the-head attacker. Consider the ideal pruned variant of a protocol pruned at some
threshold δ, denoted by Π[δ] =

(
A[δ],B[δ]

)
(see Definition 4.18). Being a coin-flipping protocol,

the results of Section 3 apply to Π[δ]. Specifically, Theorem 3.3 yields that
(
A[δ]
)(k)

successfully

biases Π[δ] (as usual, for concreteness, we focus on the attacker for A). For parameters δ and k,
the ideal pruning-in-the-head attacker, denoted A(k,δ), acts as follows: until reaching a pruned node

according to δ (i.e., a node whose value is lower than δ or higher than 1− δ), it acts like
(
A[δ]
)(k)

;
when reaching a pruned node, and in the rest of the execution, it acts like the honest party A.
Namely, A(k,δ) acts as if it is actually attacking the pruned variant of the protocol, instead of the
original protocol.

We argue that A(k,δ) biases the original protocol almost as well as
(
A[δ]
)(k)

biases the ideal

pruned protocol. Consider the protocols
((

A[δ]
)(k)

,B[δ]
)

and
(
A(k,δ),B

)
. On unpruned nodes, both

protocols act the same. On low-value nodes, the protocols might have different control schemes,

but their outputs share the same distribution. On high-value nodes, the value of
((

A[δ]
)(k)

,B[δ]
)

might be as high as 1, since
(
A[δ]
)(k)

attacks such nodes. On the other hand, in
(
A(k,δ),B

)
, when

a high-value node is reached, A(k,δ) acts honestly. However, since this is a high-value node, its
value is at least 1− δ. All in all, the values of the two protocols differ by at most δ. Hence, A(k,δ)

successfully attack (the non-pruned) protocol Π. This might not seem like a great achievement.
An inefficient, and much simpler, attack on protocol Π was already presented in Section 3. The
point is that unlike the attack of Section 3, the above attacker can be made efficient.

In the rest of this section we extend the above discussion for approximated attackers attacking
approximately pruned protocols. Specifically, we give an approximated variant of A(k,δ) — the
pruning-in-the-head attacker — and prove that it is a successful attacker by showing that it biases
any protocol Π almost as well as the recursive approximated biased-continuation attacker biases
the δ-approximately pruned variant of Π (the latter, by Section 4.2, is a successful attack). In
Section 4.4, we show how to implement this attacker using only an honest continuator for the
original protocol, which is the main step towards implementing it efficiently assuming the inexistent
of one-way functions (done in Section 4.5).

The pruning-in-the-head attacker. Let Π = (A,B) be a protocol. Recall that HonContξΠ
stands for the arbitrarily fixed ξ-honest continuator for Π (see Definition 4.19) and that EstξΠ
stands for the arbitrarily fixed ξ-estimator for Π (see Definition 4.20). Furthermore, recall that

Small
δ,EstξΠ
Π [resp., Large

δ,EstξΠ
Π ] stands for the set of nodes for which EstξΠ is at most δ [resp., at least

1− δ] (see Definition 4.21) and that Π[δ,ξ] stands for the (δ, ξ)-approximately pruned variant of Π
(see Definition 4.22). Finally, recall that for a set of nodes S ⊆ V(Π), desc(S) stands for those
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nodes that at least one of their predecessors belong to S (see Definition 2.1).

Let Â
(i,ξ,δ)
Π ≡ A and for integer i > 0 define:

Algorithm 4.30 (the pruning-in-the-head attacker Â
(i,ξ,δ)
Π ).

Parameters: integer i > 0, ξ, δ ∈ (0, 1).

Input: transcript u ∈ {0, 1}∗.
Notation: let Π̃ = Π[2δ,ξ].

Operation:

1. If u ∈ L(Π), output χΠ(u) and halt.

2. Set msg as follows.

• If u ∈ desc

(
Small

2δ,EstξΠ
Π ∪ Large

2δ,EstξΠ
Π

)
, set msg = HonContξΠ(u).

• Otherwise, set msg = A
(i,ξ,δ)

Π̃
(u) (see Algorithm 4.3).

3. Send msg to B.

4. If u′ = u ◦msg ∈ L(Π), output χΠ(u′).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The next lemma lower-bounds the success probability of the pruning-in-the-head attacker. It
states that if a given protocol Π does not have many nodes whose value is close to 2δ, then
the pruning-in-the-head attacker biases Π almost as well as the approximated attacker biases the
approximated pruned protocol.

Recall that borderΠ(δ, ξ) stands for the probability that Π generates transcripts whose values
are ξ-close to δ or to 1− δ (see Definition 4.23).

Lemma 4.31 (main lemma for the pruning-in-the-head attacker.). Let 0 < δ ≤ δ′ ≤ 1
4 , let ξ ∈ (0, 1)

and let Π̃ =
(

Ã, B̃
)

= Π[2δ′,ξ] be the (2δ′, ξ)-approximately pruned variant of an m-round protocol

Π = (A,B) (see Definition 4.22). Then

val
(

Â
(k,ξ,δ′)
Π ,B

)
≥ val

(
A

(k)

Π̃
, B̃
)
− 2δ′ − (m+ 2) ·

√
ξ

− 2 · φBalk,δ

(
borderΠ(2δ′, ξ) + 12 ·m · ξ/δ′, 2

√
ξ, 2 ·m · ξ,m, δ′, µ

)
− 3 · φItk,δ

(
borderΠ(2δ′, ξ) + 12 ·m · ξ/δ′, ξ,m, δ′, µ

)
,

for every k ∈ N and µ ∈ (0, 1), and for φItk,δ, φ
Bal
k,δ ∈ poly be according to Lemmas 4.4 and 4.5

respectively.

The rest of this section is dedicated to proving Lemma 4.31.

79



4.3.1 Proving Lemma 4.31

The proof follow the proof we sketched above for the ideal pruning-in-the-head attacker. When
moving to the approximated case, however, we need to consider failing transcripts — transcripts on
which the approximating oracles fail to give a good approximation. As long as the approximated
pruning-in-the-head attacker did not generate a failing transcript, it will succeed in biasing the
protocol almost as well as its ideal variant. Thus, the heart of the proof is showing that the
approximated pruning-in-the-head attacker generates a failing transcript with only low probability.
By definition, the probability of the original protocol to generate such failing transcripts is low,
so we can use Lemma 4.25 to argue that the recursive approximated biased-continuation attacker,
when attacking the approximated pruned protocol, also generates failing transcripts with only low
probability. We use this fact to argue that the approximated pruning-in-the-head attacker such
transcripts with only low probability as well.

The proof handles separately the failing transcripts into that transcripts precede pruned
transcripts, i.e., the execution of the protocol has not pruned before generated these transcripts,
and the rest of the failing transcripts (i.e., failing transcripts preceded by pruned transcripts). Spe-
cifically, we make the following observations:

1. Failing transcripts that precede pruned transcripts (high- or low-value transcripts).

The probability of the approximated pruning-in-the-head attacker to reach these transcripts
is the same as the recursive approximated biased-continuation attacker, which we already
know is low.

2. Failing transcript preceded by pruned transcripts. We consider the following two sub-cases.

(a) The probability of the original protocol to generate pruned transcripts is low.

In this case, it suffices to show that the approximated pruning-in-the-head attacker gene-
rate pruned transcripts with low probability as well. By Lemma 4.25, the probability of
the recursive approximated biased-continuation attacker to generate pruned transcripts
is low, and until reaching such transcripts, the approximated pruning-in-the-head attac-
ker acts as the recursive approximated biased-continuation attacker.

(b) The probability of the original protocol to generate pruned transcripts is high.

In this case, since, by definition, the overall probability of generating failing transcripts
is low, the probability of the original protocol to generate failing transcripts given that
the protocol reached a pruned transcript is low. Once it reaches a pruned transcript the
pruning-in-the-head attacker behaves just like the original protocol. Thus, the proba-
bility the pruning-in-the-head attacker generates failing transcripts, even conditioning
that is generates pruned transcript, is low.

All in all, we get that the probability that the approximated pruning-in-the-head attacker generates
failing transcripts is low, and thus the intuition from the ideal case applies.

Moving to the formal proof, fix k > 0 (the proof for k = 0 is immediate) and µ ∈ (0, 1). To
ease notation ahead, let γΠ(δ′, ξ) = borderΠ(2δ′, ξ) + 12 ·m · ξ/δ′. We define four hybrid protocols
to establish the above arguments step by step. The proof of the lemma will follow by showing that
these hybrid protocols’ expected outcomes as are close to one another.

Let FailCont :=
{
u ∈ V(Π): SD

(
HonContξΠ(u),HonCont(u)

)
> ξ
}

, i.e., transcripts on which

the approximated honest continuator HonContξΠ acts significantly different from the ideal honest
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continuator HonCont. Let FailEst :=
{
u ∈ V(Π): val(Πu) < 1− 2δ′ − ξ ∧ EstξΠ(u) > 1− 2δ′

}
, i.e.,

low-value transcripts which the approximated estimator EstξΠ mistakenly estimates their value to

be high, and let Fail := FailCont ∪ FailEst. Finally, let SafeLarge := Large2δ′,ξ
Π \ desc(Fail), i.e.,

high-value transcripts that are not descendants of failing transcripts.
We are now ready to define the hybrid protocols, all of which share the common output function

of the original protocol Π (i.e., the function determines the common output of full transcripts of
Π, see Definition 2.6).

• Protocol Π1: This protocol is just protocol
(

A
(k,δ′,ξ)

Π̃
, B̃
)

, i.e., the approximated recursive

biased-continuation attacker attacks the approximated pruned protocol.

• Protocol Π2: Both parties act as in Π1 until (if at all) the first time the protocol’s transcript
is in SafeLarge. In the rest of the protocol, the parties act like in Π (which also means
following Π’s control scheme).

• Protocol Π3: Both parties act as in Π2 until (if at all) the first time the protocol’s transcript

is in Fail. In the rest of the protocol, the parties act like in
(

Â
(k,ξ,δ′)
Π ,B

)
(which also means

following
(

Â
(k,ξ,δ′)
Π ,B

)
’s control scheme, which is identical to Π’s).

• Protocol Π4: This protocol is just protocol
(

Â
(k,ξ,δ′)
Π ,B

)
, i.e., the approximated pruning-in-

the-head attacker attacks the original protocol Π. (This is the protocol whose value we are
trying to analyze.)

The proof of the lemma immediately follows the next sequence of claims.

Claim 4.32. It holds that val(Π2) ≥ val(Π1)− 2δ′ − ξ.

Proof. Note that protocols Π1 and Π2 are identical until the first time the protocol’s transcript is
in SafeLarge. Hence, we can couple random executions of protocols Π1 and Π2, so that they are
the same until the first time the protocol’s transcript is in SafeLarge. Hence, for proving that claim
it suffices to show that val((Π1)u)− val((Π2)u) ≤ 2δ′ + ξ, for every u ∈ frnt(SafeLarge).

Fix u ∈ frnt(SafeLarge). Since u ∈ Large2δ′,ξ
Π , it holds that EstξΠ(u) ≥ 1−2δ′. Since u /∈ FailEst,

it holds that val(Πu) ≥ 1 − 2δ′ − ξ. Once visiting u, the parties in Π2 act like in Π. Thus,
it holds that val((Π2)u) = val(Πu). Since it is always the case that val((Π1)u) ≤ 1, we have
val((Π1)u)− val((Π2)u) ≤ 2δ′ + ξ. �

Claim 4.33. It holds that

val(Π3) ≥ val(Π2)−
√
ξ − 2 · φBalk,δ

(
γΠ(δ′, ξ), 2

√
ξ, 2 ·m · ξ,m, δ′, µ

)
− 2 · φItk,δ

(
γΠ(δ′, ξ), ξ,m, δ′, µ

)
.

Proof. We prove the claim by proving the following, stronger statement.

SD(〈Π2〉, 〈Π3〉) ≤
√
ξ + 2 · φBalk,δ

(
γΠ(δ′, ξ), 2

√
ξ, 2 ·m · ξ,m, δ′, µ

)
+ 2 · φItk,δ

(
γΠ(δ′, ξ), ξ,m, δ′, µ

)
.
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Note that protocols Π2 and Π3 are identical until the first time the protocol’s transcript is in Fail.
Hence, we can couple random executions of protocols Π2 and Π3, so that the executions are the
same until the first time the protocol’s transcript is in Fail. Thus, it suffices to show that

Pr〈Π2〉[desc(Fail)] ≤
√
ξ + 2 · φBalk,δ

(
γΠ(δ′, ξ), 2

√
ξ, 2 ·m · ξ,m, δ′, µ

)
(82)

+ 2 · φItk,δ
(
γΠ(δ′, ξ), ξ,m, δ′, µ

)
.

Let F1 = Fail ∩ desc(SafeLarge) and F2 = Fail \ F1. Since

Pr〈Π2〉[desc(Fail)] ≤ Pr〈Π2〉[desc(F1)] + Pr〈Π2〉[desc(F2)], (83)

it suffices to bound the two summands in the right-hand side of Equation (83). We begin by

bounding the second summand. Since F2 ⊆ Fail, and by the definitions of HonContξΠ and EstξΠ, it
holds that

Pr〈Π〉[desc(F2)] ≤ Pr〈Π〉[desc(Fail)] ≤ 2ξ. (84)

As we did in the proof of the previous claim, we couple random executions of protocols Π1 and Π2,
so that the executions are the same until the first time the protocol’s transcript is in SafeLarge.
Since transcripts in F2 are not descendants of SafeLarge, it holds that

Pr〈Π2〉[desc(F2)] = Pr〈Π1〉[desc(F2)] (85)

= Pr〈
A

(k,ξ,δ′)
Π̃

,B̃
〉[desc(F2)]

≤ φBalk,δ

(
γΠ(δ′, ξ), 2ξ, 2 ·m · ξ,m, δ′, µ

)
+ φItk,δ

(
γΠ(δ′, ξ), ξ,m, δ′, µ

)
,

where the second equality follows from the definition of Π1, and the the inequality follows from
Lemma 4.25.

We now bound the first summand in the right-hand side of Equation (83). Let

S1 =
{
u ∈ frnt(SafeLarge) : Pr〈Πu〉[desc(F1)] ≥

√
ξ
}
,

and

S2 =
{
u ∈ frnt(SafeLarge) : 0 < Pr〈Πu〉[desc(F1)] <

√
ξ
}
.

Namely, S1 are those nodes (transcripts) in the frontier of SafeLarge from which there is high
probability (larger than

√
ξ) that Π reaches F1. On the other hand, S2 are those nodes in the

frontier of SafeLarge from which there is low probability (positive, but less than
√
ξ) that Π

reaches F1. Using the above coupling between Π1 and Π2, it follows that

Pr〈Π2〉[desc(F1)] ≤ Pr〈Π1〉[desc(S1)] + Pr〈Π2〉[desc(F1 ∩ desc(S2))]. (86)

Again, we bound each term in the right-hand side of the above equation separately. For the first
term of Equation (86), it holds that

2ξ ≥ Pr〈Π〉[desc(Fail)] ≥ Pr〈Π〉[desc(F1)] ≥ Pr〈Π〉[desc(S1)] ·
√
ξ,
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and thus Pr〈Π〉[desc(S1)] ≤ 2
√
ξ. Applying Lemma 4.25 again yields that

Pr〈Π1〉[desc(S1)] ≤ Pr〈
A

(k,ξ,δ′)
Π̃

,B̃
〉[desc(S2)] (87)

≤ φBalk,δ

(
γΠ(δ′, ξ), 2

√
ξ, 2 ·m · ξ,m, δ′, µ

)
+ φItk,δ

(
γΠ(δ′, ξ), ξ,m, δ′, µ

)
.

As for the second term of Equation (86), we write

Pr〈Π2〉[desc(F1 ∩ desc(S2))] =
∑
u∈S2

Pr〈Π2〉[desc(u)] · Pr〈(Π2)u〉[desc(F2)] (88)

=
∑
u∈S2

Pr〈Π2〉[desc(u)] · Pr〈Πu〉[desc(F2)]

≤
√
ξ ·
∑
u∈S2

Pr〈Π2〉[desc(u)]

≤
√
ξ,

where the second inequality follows form the definition of Π2.
Plugging Equations (87) and (88) into Equation (86) yields that

Pr〈Π2〉[desc(F1)] ≤
√
ξ + φBalk,δ

(
γΠ(δ′, ξ), 2

√
ξ, 2 ·m · ξ,m, δ′, µ

)
+ φItk,δ

(
γΠ(δ′, ξ), ξ,m, δ′, µ

)
. (89)

Equation (82) follows by plugging Equations (85) and (89) into Equation (83), and noting that
replacing ξ by

√
ξ in the second variable of the function φBalk,δ only increases it. �

Claim 4.34. It holds that val(Π4) ≥ val(Π3)−m · ξ.

Proof. We prove the claim by proving the following, stronger, statement:

SD(〈Π3〉, 〈Π4〉) ≤ m · ξ. (90)

Let Large = Large
2δ,EstξΠ
Π and Small = Small

2δ,EstξΠ
Π . We start by defining two randomized functions

f, g : V(Π) \ L(Π)→ V(Π), to simulate Π3 and Π4 respectively. Let

f(u) =


sample `←

(
A

(k,δ′,ξ)

Π̃
, B̃
)
u
; return `1,...,|u|+1 u /∈ desc(Fail ∪ Large ∪ Small)

HonCont(u)1,...,|u|+1 u ∈ desc(Large) \ desc(Fail)

HonContξ(u)1,...,|u|+1 u ∈ desc(Small) \ desc(Fail ∪ Large)

sample `←
(

Â
(k,ξ,δ′)
Π ,B

)
u
; return `1,...,|u|+1 u ∈ desc(Fail),

and let

g(u) =



f(u) u /∈ desc(Fail ∪ Large ∪ Small)

HonContξ(u)1,...,|u|+1 u ∈ desc(Large) \ desc(Fail) ∩ CtrlAΠ
f(u) u ∈ desc(Large) \ desc(Fail) ∩ CtrlBΠ
f(u) u ∈ desc(Small) \ desc(Fail ∪ Large) ∩ CtrlAΠ
HonCont(u)1,...,|u|+1 u ∈ desc(Small) \ desc(Fail ∪ Large) ∩ CtrlBΠ
f(u) u ∈ desc(Fail).

.
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Namely, for u ∈ desc(Large) \ desc(Fail) ∩ CtrlAΠ, f(u) = HonCont(u)1,...,|u|+1 while

g(u) = HonContξ(u)1,...,|u|+1, where for u ∈ desc(Small) \ desc(Fail ∪ Large) ∩ CtrlBΠ, f(u) =

HonContξ(u)1,...,|u|+1 while g(u) = HonCont(u)1,...,|u|+1. For any other u, f(u) = g(u).

Let Hh be the process that repeatedly calls the function h with the answer of the previous call,
staring with h(root(Π)), until reaching a leaf. It is easy to verify that Hf ≡ 〈Π3〉 and Hg ≡ 〈Π4〉.
Thus, is suffices to bound SD

(
Hf ,Hg

)
. By the definitions of f and g, it holds that SD(f(u), g(u)) =

0 if u ∈ Fail and that SD(f(u), g(u)) ≤ SD
(
HonContξ(u),HonCont(u)

)
≤ ξ if u /∈ Fail, where the

last inequality follows form the definition of Fail. The claim follows since Hh makes at most m
calls to h. �

Using the above claims, we can formally prove Lemma 4.31.

Proof of Lemma 4.31. Fix k ∈ N and µ ∈ (0, 1). Claims 4.32 to 4.34 yields that

val
(

Â
(k,ξ,δ′)
Π ,B

)
≥ val

(
A

(k,δ′,ξ)

Π̃
, B̃
)
− 2δ′ − (m+ 2) ·

√
ξ

− 2 · φBalk,δ

(
γΠ(δ′, ξ), 2

√
ξ, 2 ·m · ξ,m, δ′, µ

)
− 2 · φItk,δ

(
γΠ(δ′, ξ), ξ,m, δ′, µ

)
.

The proof now follows from Lemma 4.24. �

4.4 Implementing the Pruning-in-the-Head Attacker Using an Honest Conti-
nuator

The pruning-in-the-head attacker (Algorithm 4.30) uses the honest continuator and the estimator
algorithms (see Definitions 4.19 and 4.20 respectively), both defined with respect to the attacked
(original) protocol. It also uses the recursive approximated biased-continuation attacker (see Algo-
rithm 4.3), designed to attack the approximately pruned variant of the attacked protocol. In this
section we show how to use a given honest continuator for implementing the other two algorithms
the pruning-in-the-head attacker uses. It follows that implementing the pruning-in-the-head attac-
ker reduces to implementing an honest continuator. In the next (and final) section we show how
to implement such continuator assuming the in-existence of one-way functions.

We begin by showing that using an honest continuator and an estimator, one can implement
a biased continuator for the approximated pruned protocol. In fact, due to the recursive nature
of the attack, we need to implement a biased continuator for every level of the recursion, and not
only for the approximated pruned protocol.

Definition 4.35. Let Π = (A,B) be a protocol, let δ, ξ ∈ (0, 1), let k ∈ N and let
{

D(i)
}
i∈(k)

be a set of algorithms. Let Π(0) = Π. For i ∈ [k], let Π(i) =
(

A
(i,ξ,δ)

D(i−1) ,B
)

, where A
(i,ξ,δ)

D(i−1) acts

as A
(i,ξ,δ)
Π (Algorithm 4.3) does, but with D(i−1) taking the role of BiasedContξ,δ(

A
(i−1,ξ,δ)
Π ,B

).54 The

sequence
{

D(i)
}
i∈(k)

is a (ξ, δ)-biased-continuators-sequence for Π, if algorithm D(i) is a (ξ, δ)-biased-

continuator of Π(i), for every i ∈ (k).

54Recall that BiasedContξ,δΠ′ , is an arbitrary fixed (ξ, δ)-biased-continuator of Π′.
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Lemma 4.36. Let Π be an m-round protocol. Let δ ∈ (0, 1/2) , let ξ ∈ (0, 1), let Est be a
[0, 1]-output deterministic algorithm, let HC be ξ-honest-continuator for Π, and let Π̃ = (Ã, B̃) =
Π[2δ,ξ,Est,HC] be the (δ,Est,HC)-approximately pruned variant of Π (see Definition 4.22). Then for
every k ∈ N, there exists a sequence of algorithms

{
D(i)

}
i∈(k)

with the following properties:

1.
{

D(i)
}
i∈(k)

is a (ξ, δ)-biased-continuators-sequence for Π̃.

2. D(k)’s running time is O

(
m3(k+1) ·

⌈
log(1/ξ)

log(1/(1−δ))

⌉k+1
· (TEst + THC)

)
, for TEst and THC being

the running times of Est and HC are respectively.

Lemma 4.36 is proven in Section 4.4.1. Next, we show how to implement a randomized estimator
using an honest continuator.

Lemma 4.37. Let Π be an m-round protocol, let ξ ∈ (0, 1) and let HC be a ξ/2-honest continuator

for Π. Then there exists a randomized algorithm Est
(ξ,HC)
Π such that the following holds.

1. Prr←{0,1}`
[
Est

(ξ,HC)
Π,r is a ξ-estimator for Π

]
≥ 1− ξ, for ` being an upper bound on the num-

ber coins used by Est
(ξ,HC)
Π including those used by HC, and Est

(ξ,HC)
Π,r being the deterministic

algorithm defined by hard-wiring r into the randomness of Est
(ξ,HC)
Π .

2. Est(ξ,HC)’s running time is O
(
m ·

⌈
ln(2m/ξ)
ξ2/2

⌉
· THC

)
, for THC being the running time of HC.

Lemma 4.37 is proven in Section 4.4.2. Using the above implementations for a biased continuator
and an estimator, we can define an implantation for the pruning-in-the-head attacker using only an
honest continuator. Recall that the pruning-in-the-head attacker requires a deterministic estimator.
To get such an estimator, we randomly fix the coins of Est(ξ,HC).

Definition 4.38 (algorithm Ã
(k,ξ,δ,HC)
Π ). Let δ ∈ (0, 1/2), let ξ ∈ (0, 1) and let k > 0. Let Π be an

m-round protocol, let HC be an algorithm, and let ` be the number of coins used by algorithm Est
(ξ,HC)
Π

from Lemma 4.37, including those used by algorithm HC. For r ∈ {0, 1}`, let Estr = Est
(ξ,HC)
Π;r be

deterministic algorithm resulting from fixing Est
(ξ,HC)
Π;r coins to r.

Let Π̃ = (Ã, B̃) = Π[2δ,ξ,Estr,HC] and BiasedCont = BiasedCont
(ξ,δ,HC,k−1)

Π̃
, where{

BiasedCont
(ξ,δ,HC,i)

Π̃

}
i∈(k−1)

is the (ξ, δ)-biased-continuators-sequence for Π̃, guaranteed to ex-

ists by Lemma 4.36. Algorithm Ã
(k,ξ,δ,HC)
Π;r acts as algorithm Â

(k,ξ,δ)
Π (see Algorithm 4.30), but

with algorithms HC, Estr and BiasedCont, taking the role of algorithms HonContξΠ, EstξΠ and

BiasedContξ,δ(
A

(k−1,ξ,δ)

Π̃
,B̃
), respectively. Finally, algorithm Ã

(k,ξ,δ,HC)
Π act as Ã

(k,ξ,δ,HC)
Π;r , for r ← {0, 1}`.

The analysis of algorithm Â
(k,ξ,δ)
Π given in previous sections for was done with respect to

HonContξΠ, EstξΠ and BiasedContξ,δ(
A

(k−1,ξ,δ)

Π̃
,B̃
), the arbitrary but fixed honest continuator, estima-

tor and biased continuator (see Definitions 4.2, 4.19 and 4.20). Lemma 4.37 show that Estr is ξ-
estimator with high probability and Lemma 4.36 show that BiasedCont is a (ξ, δ)-biased-continuator.
Since the above fixing was arbitrary, the results form previous sections can be applied to Algorithm

Ã
(k,ξ,δ,HC)
Π as well. We do so in the next lemma, which also analyzes Ã

(k,ξ,δ,HC)
Π ’s running time.
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Lemma 4.39. Let Π = (A,B) be an m-round protocol, let 0 < δ ≤ δ′ ≤ 1
4 , ξ ∈ (0, 1), k > 0, and let

HC be a ξ/2-honest continuator for Π. The following holds with respect to Algorithm Ã
(k,ξ,δ′,HC)
Π :

1.
val
(

Ã
(k,ξ,δ′,HC)
Π ,B

)
≥ val

(
A

(k)

Π̃
, B̃
)
− 2δ′ − (m+ 2) ·

√
ξ − ξ (91)

− 2 · φBalk,δ

(
borderΠ(2δ′, ξ) + 12 ·m · ξ/δ′, 2

√
ξ, 2 ·m · ξ,m, δ′, µ

)
− 3 · φItk,δ

(
borderΠ(2δ′, ξ) + 12 ·m · ξ/δ′, ξ,m, δ′, µ

)
,

for every µ ∈ (0, 1), and for φItk,δ, φ
Bal
k,δ be according to Lemmas 4.4 and 4.5 respectively.

2. Ã
(k,ξ,δ′,HC)
Π ’s running time is at most O

(
m3k+5 ·

⌈
log(1/ξ)

log(1/(1−δ))

⌉k
·
⌈

ln(2m/ξ)
ξ2/2

⌉
· THC

)
, for THC

being the running time of HC .

Note the extra ξ term in the right-hand side of Equation (91) compared to the term in

Lemma 4.31. This term comes from the probability the estimator used by Ã
(k,ξ,δ′,HC)
Π is not a

good one.

Proof. We prove each item separately.

Proof of (1): It holds that

val
(

Ã
(k,ξ,δ′,HC)
Π ,B

)
≥ Pr

[
out
(

Ã
(k,ξ,δ′,HC)
Π;r ,B

)
= 1

∣∣ Estr is a ξ-estimator
]
· Pr[Estr is a ξ-estimator]

(92)

≥ Pr
[
out
(

Ã
(k,ξ,δ′,HC)
Π;r ,B

)
= 1

∣∣ Estr is a ξ-estimator
]
− ξ,

where the second inequality follows from Lemma 4.37. The above probabilities are over the choice

of r, the additional, if any, coins of Ã
(k,ξ,δ′,HC)
Π;r , and the coins of B.

We would like to conclude the proof by apply Lemma 4.31 to Equation (92). Lemma 4.31 is

stated for HonContξΠ and EstξΠ — arbitrary ξ-honest-continuator and ξ-estimator for the attacked

(original) protocol — and for BiasedContξ,δ(
A

(k−1,ξ,δ)

Π̃
,B̃
) — an arbitrary (ξ, δ)-biased-continuator for(

A
(k−1,ξ,δ)

Π̃
, B̃
)

. By assumption and Lemmas 4.36 and 4.37, HC, Estr and BiasedCont are such

hones-continuator, estimator and biased-continuator, respectively. Hence, the proof of this part
followed by Lemma 4.31.

Proof of (2): The proof is an easy implication of Lemmas 4.36 and 4.37. By definition, Ã
(k,ξ,δ′,HC)
Π

makes a single call to Est, and then either calls BiasedCont or HC.55 We focus on the former case, as
the running time of BiasedCont is longer than that of HC. By Lemma 4.37, the running time of Est is

O
(
m ·

⌈
ln(2m/ξ)
ξ2/2

⌉
· THC

)
, and by Lemma 4.36 and since δ ≤ δ′, the running time of BiasedCont is at

55As written in Algorithm 4.30, Ã
(k,ξ,δ′,HC)
Π;r might make m calls to Est (checking whether u ∈ desc(F) in step 2 of

the algorithm). This, however, does not significantly effect the running time and can be easily avoided by having the
attacker keep a state. Furthermore, the time it takes to sample coins for Est is bounded by Est’s running time.
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most O

(
m3(k+1) ·

⌈
log(1/ξ)

log(1/(1−δ))

⌉k+1
· (TEst + THC)

)
. For every call to BiasedCont and Est, algorithm

Ã
(k,ξ,δ′,HC)
Π makes at most O(m) steps. Hence, Ã

(k,ξ,δ′,HC)
Π ’s running time is bounded by

O

(
m ·m3(k+1) ·

⌈
log(1/ξ)

log(1/(1− δ))

⌉k+1

·
((

m ·
⌈

ln(2m/ξ)

ξ2/2

⌉
· THC

)
+ THC

))

= O

(
m3k+5 ·

⌈
log(1/ξ)

log(1/(1− δ))

⌉k
·
⌈

ln(2m/ξ)

ξ2/2

⌉
· THC

)
.

�

The rest of this section is dedicated to proving Lemmas 4.36 and 4.37.

4.4.1 Implementing the Biased-Continuation Attacker using Honest Continuator and
Estimator — Proving Lemma 4.36

Our goal is to implement a sequence of biased continuators, denoted by
{

D(i)
}
i∈(k)

, for the approx-

imated pruned protocol Π̃, using only honest continuator HC and an estimator Est for the original
(i.e., un-pruned) protocol. We do so by a recursive construction.

Given
{

D(i)
}
i∈(k−1)

, a sequence of efficient algorithms such that D(i) is a (ξ, δ)-biased-

continuator for Π̃(i) =
(

A
(i,ξ,δ)

D(i−1) , B̃
)

, we construct D(k), an efficient (ξ, δ)-biased-continuator for

Π̃(k), as follows. The first step is to reduce the task of implementing a biased continuator for Π̃(k)

to that of implementing a honest continuator for Π̃(k). This is done using the method of rejection
sampling. The second step is to reduce the task of implementing a honest continuator for Π̃(k) to
that of efficiently computing Π̃(k). A key observation to achieve this task is that Π̃(k) is stateless,
namely the parties do not keep state between the different rounds. And constructing honest con-
tinuator for stateless and efficiently computable protocols is a trivial task. Finally, we note that
Π̃(k) is efficient, assuming that D(k−1), HC and Est, are. The section follows this outline to formally
prove Lemma 4.36.

From honest continuation to biased continuation. Turning an honest continuator into a
biased continuator is essentially an easy task; given a transcript u and a bit b toward which the
continuator should bias, sample sufficiently many honest continuations for u, and return the first
continuation whose common output is b. Indeed, if the transcript’s value (i.e., expected outcome) is
close enough to b, then with high probability the above process indeed returns a biased continuation.

Algorithm 4.40 (BiasedCont
(ξ,δ,HC)
Π ).

Parameters: ξ, δ ∈ (0, 1).

Oracle: HC.

Input: u ∈ V(Π) and b ∈ {0, 1}.
Operation:

1. For i = 1 to
⌈

log(1/ξ)
log(1/(1−δ))

⌉
:
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(a) Set ` := HC(u).

(b) If χΠ(`) = b, return `|u|+1.

2. Return ⊥.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Claim 4.41. Let Π be an m-round protocol, let ξ, ξ′, δ ∈ (0, 1), and let HC be a ξ′-honest continuator

for Π. Then BiasedCont
(ξ,δ,HC)
Π is a ((t+1) ·ξ′+ξ, δ)-biased continuator for Π, for t =

⌈
log(1/ξ)

log(1/(1−δ))

⌉
.

Proof. Let HonContΠ be the algorithm that on input u returns random element in 〈Πu〉, and recall
the definition of BiasedContΠ from Definition 3.1. As usual, we focus on proving the statement for
algorithms trying to bias towards one, i.e., b = 1; the proof for the case that b = 0 is analogous. We
show that for every node u ∈ V(Π) with SD(HC(u),HonContΠ(u)) ≤ ξ′ and val(Πu) ≥ δ, it holds
that

SD
(

BiasedCont
(ξ,δ,HC)
Π (u, 1),BiasedContΠ(u, 1)

)
≤ t · ξ′ + ξ. (93)

This suffices to complete the proof since HC is a ξ′-honest continuator for Π, and thus the probability
that Π generates a transcript u such that SD(HC(u),HonContΠ(u)) > ξ′ is at most ξ′. The following

is an “unbounded version” of algorithm BiasedCont
(ξ,δ,HC)
Π (·, 1) defined above.

Algorithm 4.42 ( ̂BiasedCont).

Input: u ∈ V(Π).

Operation:

1. Do (forever):

(a) Set ` := HonContΠ(u).

(b) If χΠ(`) = 1, return `|u|+1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is not difficult to verify that the probability that ̂BiasedCont(u) does not halt is zero for every
u with val(Πu) > 0. Fix u with SD(HC(u),HonContΠ(u)) ≤ ξ′ and val(Πu) ≥ δ. It holds that

BiasedContΠ(u, 1) ≡ ̂BiasedCont(u). (94)

The only difference between ̂BiasedCont(u) and algorithm BiasedCont
(ξ,δ,HonContΠ)
Π (u, 1) (i.e.,

HonContΠ is taking the role of HC in Algorithm 4.40) is the probability the latter output ⊥. Hence,

SD
(

BiasedCont
(ξ,δ,HonCont)
Π (u, 1), ̂BiasedCont(u)

)
≤ Pr

[
BiasedCont

(ξ,δ,HonCont)
Π (u, 1) =⊥

]
. (95)

Compute

Pr
[
BiasedCont

(ξ,δ,HonCont)
Π (u, 1) =⊥

]
=
(
Pr`←HonCont(u)[χΠ(`) = 0]

)t
≤ (1− δ)t

≤ ξ,
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where the first inequality follows since val(Πu) ≥ δ and the last inequality follows from the

choice of t. Moreover, since BiasedCont
(ξ,δ,HC)
Π makes t calls to its oracle, the assumption that

SD(HonCont(u),HC(u)) ≤ ξ′ and a standard hybrid argument, yield that

SD
(

BiasedCont
(ξ,δ,HonCont)
Π (u, 1),BiasedCont

(ξ,δ,HC)
Π (u, 1)

)
≤ t · ξ.

A triangle inequality now completes the proof of Equation (93), and thus of the claim. �

Honest continuator for stateless protocols. For stateless protocols (i.e., the parties maintain
no state), implementing (perfect) honest continuation is trivial.

Algorithm 4.43 (HonContSLΠ).

Input: transcript u ∈ {0, 1}∗.
Operation:

1. Set t = u.

2. Repeat until t ∈ L(Π):

(a) Let C be the party that controls t.

(b) Sample uniformly at random coins rC for this round.

(c) Set t = t ◦ C(t; rC).

3. Return t.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Claim 4.44. For a stateless protocol Π, algorithm HonContSLΠ of Algorithm 4.43 is a 0-honest
continuator.

Proof. Immediate. �

Proving Lemma 4.36. We now use the above understanding (Claims 4.41 and 4.44) to prove
Lemma 4.36.

Proof of Lemma 4.36. The proof is by induction on k. We show that the running time of D(k) is

at most ck+1 ·m2(k+1) ·
⌈

log(1/ξ)
log(1/(1−δ))

⌉k+1
· (TEst + THC), for some constant c > 0 to be determined

by the analysis. The running time as stated in the lemma follows since ck+1 ∈ O(mk+1).
For the base case k = 0, the (ξ, δ)-biased-continuator for Π̃ is defined by

D(0) = BiasedCont
(ξ,δ,HonContSL

Π̃
)

Π .

Namely, D(0) is Algorithm 4.40 with Algorithm 4.43 being the honest continuator. Claims 4.41
and 4.44 and the fact that, by definition (recall Definition 4.22), Π̃ is stateless, yield that D(0) is

indeed a (ξ, δ)-biased-continuator for Π̃. As for its running time, D(0) makes at most
⌈

log(1/ξ)
log(1/(1−δ))

⌉
calls to HonContSL

Π̃
. Every time HonContSL

Π̃
is called, it makes at most m calls to Est and to HC.
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Let c > 0 be a constant such that the operations D(0) makes other than calling Est or HC take at most

c·m steps per such call.56 Hence, the running time of D(0) is at most c·m2·
⌈

log(1/ξ)
log(1/(1−δ))

⌉
·(TEst+THC).

Assume the lemma holds for k−1, namely that there exist a sequence of algorithms
{

D(i)
}
i∈(k−1)

such that D(i) is a (ξ, δ)-biased-continuator for Π̃(i) =
(

A
(i,ξ,δ)

D(i−1) , B̃
)

57 and D(k−1)’s running time is

at most ck ·m2k ·
⌈

log(1/ξ)
log(1/(1−δ))

⌉k
· (TEst + THC). Define

D(k) = BiasedCont
(ξ,δ,HonContSL

Π̃(k) )

Π .

Note that Π̃(k) is stateless: A
(k,ξ,δ)

D(k−1) simply makes calls to D(k−1) and thus stateless, and B̃ is

stateless by definition. As in the base case, Claims 4.41 and 4.44 yield that D(k) is a (ξ, δ)-biased-
continuator for Π̃(k). As for the running time of D(k), the analysis is identical to the base case,
but HonContSL

Π̃(k) makes at most m calls to D(k−1), HC or Est. Since the assumed bound on the

running time of D(k−1) is much longer than THC and TEst, the running time of D(k) is at most

c ·m2 ·
⌈

log(1/ξ)

log(1/(1− δ))

⌉
·

(
ck ·m2k ·

⌈
log(1/ξ)

log(1/(1− δ))

⌉k
· (TEst + THC)

)

= ck+1 ·m2(k+1) ·
⌈

log(1/ξ)

log(1/(1− δ))

⌉k+1

· (TEst + THC)

�

4.4.2 Implementing Estimator using Honest Continuator — Proving Lemma 4.37

Turning an honest continuator into a randomized estimator is straightforward: given a transcript
u, sample many honest continuations from u and return the mean of the parties’ common outcome
bit of these continuations.

Algorithm 4.45 (Est
(ξ,HC)
Π ).

Parameters: ξ ∈ (0, 1).

Oracle: algorithm HC.

Input: transcript u ∈ V(Π).

Operation:

1. Set sum = 0 and s =
⌈

ln(2m/ξ)
ξ2/2

⌉
.

2. For i = 1 to s: sum = sum+ χΠ(HC(u)).

(each call to HC is with fresh random coins).

3. Return sum/s.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

56Since the input length to D(0) is at most m it is easy to verify that such c exists
57Recall that A

(i,ξ,δ)

D(i−1) was defined in Definition 4.35.
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The number of calls Est
(ξ,HC)
Π makes to HC is set so that for most choices of its coins, Est

(ξ,HC)
Π

returns a good estimation for the value of every node. Thus, fixing, at random, the coins of Est
(ξ,HC)
Π ,

results with high probability in a good deterministic estimator.

Proof of Lemma 4.37. The running time of Est
(ξ,HC)
Π follows immediately from its definition.58 In

the rest of the proof we show that Item 1 holds, namely that with probability at least 1 − ξ over

fixing its coins at random Est
(ξ,HC)
Π is a ξ-estimator for Π.

Let Estr = Est
(ξ,HC)
Π,r , let µu = E`←HC(u)[χ(`)], and let Qr denote the event that ∀u ∈ V(Π)\L(Π),

it holds that a|Estr(u)− µu| ≤ ξ/2. The proof is an immediate conclusion from the following two
simple observations.

(1) Condition on Qr occurring, Estr is a ξ-estimator for Π.

(2) Prr←{0,1}` [¬Qr] ≤ ξ.

Proof of (1): Compute

Pr`←〈Π〉
[
∃i ∈ (m− 1) :

∣∣Estr(`1,...,i)− val(Π`1,...,i)
∣∣ > ξ

]
(96)

≤ Pr`←〈Π〉
[
∃i ∈ (m− 1) :

∣∣Estr(`1,...,i)− µ`1,...,i
∣∣ > ξ/2 ∨

∣∣µ`1,...,i − val(Π`1,...,i)
∣∣ > ξ/2

]
≤ Pr`←〈Π〉

[
∃i ∈ (m− 1) :

∣∣Estr(`1,...,i)− µ`1,...,i
∣∣ > ξ/2

]
+ Pr`←〈Π〉

[
∃i ∈ (m− 1) :

∣∣µ`1,...,i − val(Π`1,...,i)
∣∣ > ξ/2

]
.

Since, by assumption, Qr occurs, the first summand of the right-hand side of Equation (96) is zero.
Furthermore, since HC is a ξ/2-honest continuator for Π, we bound the second summand of the
right-hand side of Equation (96):

Pr`←〈Π〉
[
∃i ∈ (m− 1) :

∣∣µ`1,...,i − val(Π`1,...,i)
∣∣ > ξ/2

]
≤ Pr`←〈Π〉[∃i ∈ (m− 1) : SD(HC(`1,...,i),HonContΠ(`1,...,i)) > ξ/2]

≤ ξ/2 ≤ ξ.

Plugging the above into Equation (96) completes the proof.

Proof of (2): We use the following fact derived from Hoeffding’s bound.

Fact 4.46 (sampling). Let t ≥
ln
(

2
γ

)
2·ε2 , let X1, . . . , Xt ∈ [0, 1] be iid Boolean random variables, and

let µ = E[Xi]. Then Pr
[∣∣1
t

∑t
i=1Xi − µ

∣∣ ≥ ε] ≤ γ.

Taking ε := ξ/2 and γ := ξ/2m with Fact 4.46 yields that

Prr←{0,1}` [|Estr(u)− µu| > ξ/2] ≤ ξ

2m
(97)

58Est
(ξ,HC)
Π ’s input length is at most m, so it makes at most O(m) steps per call to HC.
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for every u ∈ V(Π) \ L(Π), and a union bound yields that

Prr←{0,1}` [¬Qr] = Prr←{0,1}` [∃u ∈ V(Π) \ L(Π): |Estr(u)− µu| > ξ/2]

≤
∑

u∈V(Π)\L(Π)

Prr←{0,1}` [|Estr(u)− µu| > ξ/2]

≤
∑

u∈V(Π)\L(Π)

ξ

2m
= ξ.

�

4.5 Main Theorem — Inexistence of OWF’s Implies an Efficient Attacker

We are finally ready to state and prove our main result – the existence of any constant bias (even
weak) coin-flipping protocol implies the existence of one-way functions.

In the following we consider both protocols and algorithms that get a security parameter,
written in unary, as input (sometimes, in addition to other input), and protocols and algorithms
that do not get a security parameter, as we did in previous sections. We refer to the former type
as parametrized and to the latter type as non-parametrized. It will be clear from the context
whether we consider a parametrized or non-parametrized entity. In particular, a poly-time entity
whose running time is measured as a function of its security parameter is by definition parametrized.
Given a parametrized protocol Π and n ∈ N, let Πn be its non-parametrized variant with the security
parameter 1n hardwired into the parties’ code. We apply similar notation also for parametrized
algorithms.

Theorem 4.47 (main theorem, restatement of Theorem 1.1). Assume one-way functions do not
exist. For every ppt coin-flipping protocol Π = (A,B) and ε > 0, there exist pptms A and B such
that the following hold for infinitely many n’s.

1. Pr[out(A(1),B)(1n) = 1] ≥ 1− ε or Pr[out(A,B(0))(1n) = 0] ≤ ε, and

2. Pr[out(A(0),B)(1n) = 0] ≤ ε or Pr[out(A,B(1))(1n) = 1] ≥ 1− ε.

The proof of Theorem 4.47 follows from Theorem 3.3 and Lemma 4.39 together with the follo-
wing lemma that shows how to implement an efficient honest continuator assuming OWFs do not
exist.

Lemma 4.48. Assume one-way functions do not exist. Then for any ppt coin-flipping protocol
Π = (A,B) and p ∈ poly, there exists a pptm algorithm HC such that HCn is a 1/p(n)-honest
continuator for Πn for infinitely many n’s.

The proof of Lemma 4.48 is given below, but first we use it to prove Theorem 4.47.

Proving Theorem 4.47.

Proof of Theorem 4.47. We focus on proving the first part of the theorem, where the second, sym-
metric, part follows the same arguments.

Let δ = ε/8, let m(n) = round(Πn) and let ξ(n) = 1/p(n) < (2δ)2

16m(n)2 for some large enough

p ∈ poly to be determined by the analysis. Let HC be the algorithm guaranteed by Lemma 4.48,
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such that HCn is an ξ(n)/2-honest continuator for Πn for every n in an infinite set I ⊆ N. For
n ∈ I, let δ′n ∈ [δ/2, δ] be such that borderΠn(2δ′n, ξ(n)) ≤ m(n) ·

√
2ξ(n), guaranteed to exist from

Lemma 4.26.59 Let Π̃n =
(

Ãn, B̃n
)

= Πn
[2δ′n,ξ] be the (2δ′n, ξ)-approximately pruned variant of Πn.

Let κ = κ(ε/2) be such that val
(

A
(k)

Π̃n
, B̃n

)
> 1 − ε/2 or val

(
Ãn,B

(k)

Π̃n

)
< ε/2, guaranteed to exist

for every n ∈ I from Theorem 3.3. Assume without loss of generality that there exists an infinite
set I ′ ⊆ I such that

val
(

A
(k)

Π̃n
, B̃n

)
> 1− ε/2 (98)

for every n ∈ I ′ and let µ(n) = 1/n.
Let r, s ∈ poly such that the following two equations hold.

φBalk,δ/2

(
borderΠn(2δ′n, ξ(n)) + 12 ·m(n) · ξ(n)/δ′n, 2

√
ξ(n), 2 ·m(n) · ξ(n),m(n), δ′n, µ(n)

)
=
(

borderΠn(2δ′n, ξ(n)) + 12 ·m(n) · ξ(n)/δ′n + 2
√
ξ(n)2 ·m(n) · ξ(n)

)
· qκ,δ/2(m(n), 1/δ′n, 1/µ(n)) + 1/µ(n)

≤
√
ξ(n) · r(n).

And

φItκ,δ/2
(
borderΠn(2δ′n, ξ(n)) + 12 ·m(n) · ξ(n)/δ′n, ξ(n),m(n), δ′n, µ(n)

)
=
(
borderΠn(2δ′n, ξ(n)) + 12 ·m(n) · ξ(n)/δ′n + ξ(n)

)
· pκ,δ/2(m(n), 1/δ′n, 1/µ(n)) + 1/µ(n)

≤
√
ξ(n) · s(n),

Note that by the setting of parameters thus far, such r and s exists. Finally, let ξ ∈ poly be such
that

(m(n) + 2) ·
√
ξ(n) + ξ(n) + 2 ·

√
ξ(n) · r(n) + 3 ·

√
ξ(n) · s(n) ∈ o(1).

By Lemma 4.39(1),

val
(

Ã
(κ,ξ(n),δ′n,HCn)
Πn

,BΠn

)
≥ val

(
A

(k)

Π̃n
, B̃n

)
− 2δ′ − o(1) ≥ 1− ε

2
− ε

4
− o(1). (99)

We can now define out final adversary A(1). Let V =
{

(δ + j · 2ξ)/2: j ∈
{

0, 1, . . . ,
⌈
m/
√
ξ
⌉}}

be the set from Lemma 4.26 and recall that δ′n ∈ V. Prior to interacting with B, algorithm A(1)

estimates the value of Π̃δ′ :=
(

Ã
(κ,ξ(n),δ′,HCn)
Πn

,BΠn

)
, for every δ′ ∈ V, by running the latter protocol

for polynomially-many times. Let δ∗n be the value such that Π̃δ∗n is the maximum of all estimations.

When interacting with B, algorithm A(1) behave as Ã
(κ,ξ,δ∗n,HCn)
Πn

.

Since δ′n ∈ V, it follows that Pr
[
val
(

Π̃δ∗n

)
≥ val

(
Π̃δ′n

)
− ε/8

]
≥ 1− o(1), where the probability

is over the coins on A(1). Thus,

Pr[out(A(1),B)(1n) = 1] (100)

≥ Pr

[
out(A(1),B)(1n) = 1

∣∣∣∣ val
(

Π̃δ∗n

)
≥ val

(
Π̃δ′n

)
− ε/8

]
· Pr

[
val
(

Π̃δ∗n

)
≥ val

(
Π̃δ′n

)
− ε/8

]
≥ (1− 5ε/8− o(1)) · (1− o(1))

≥ 1− 5ε/8− o(1) ≥ 1− ε,
59By the choice of ξ and by Lemma 4.26 there exists δ′′ ∈ [δ, 2δ] such that borderΠn(δ′′, ξ(n)) ≤ m(n) ·

√
2ξ(n).

Now we can set δ′ = δ′′/2.
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for large enough n ∈ I ′.
The last step is to argue that A(1) is efficient. By our choice of parameters, the fact that κ is

constant (i.e., independent of n) and HC is pptm, Lemma 4.39(2) yields that Ã
(κ,ξ(n),δ′n,HCn)
Πn

is a
pptm. Since |V| ∈ poly(n), it follows that the running time of A(1) is also is poly(n). �

It is left to prove Lemma 4.48.

Proving Lemma 4.48.

Proof of Lemma 4.48. Let m(n) = round(Πn), and let ρA(n) and ρB(n) be, respectively, the (maxi-
mal) number of random bits used by A and B on common input 1n. Consider the transcript function
fΠ over 1∗ × {0, 1}ρA(n) × {0, 1}ρB(n) × (m(n)− 1), defined by

fΠ(1n, rA, rB, i) = 1n, trans((A(·; rA),B(·; rB))(1n))1,...,i. (101)

Since Π is a polynomial time protocol, it follows without loss of generality that m(n), ρA(n), ρB(n) ∈
poly(n) and that fΠ is computable in polynomial time.

Under the assumption that OWFs do not exist, the transcript function is not distributional
one-way, i.e., it has an inverter that returns a random preimage. We would like to argue that an
algorithm that outputs the transcript induced by the randomness this inverter returns is an honest
continuator. This is almost true, as this inverter guarantees to work for a random node of the
protocol tree, and we require that an honest continuator work for all nodes in a random path of the
protocol tree. Still, since any path in the protocol tree is of polynomial length, the lemma follows
by a union bound. We now move to the formal proof.

Fix p ∈ poly and let Inv be the 1/(m · p)-inverter guaranteed to exist by Lemma 2.15. Namely,
Invn = Inv(1n, ·) is a 1/(m(n) ·p(n))-inverter for fΠ(1n, ·, ·, ·) for every n within an infinite size index
set I ⊆ N.60 By the definition of fΠ, choosing a random preimage from f−1

Π (1n, u) is equivalent to
choosing an element according to the distribution (ConsisΠn(u), |u|).61 For a transcript u and coins
rA and rB for A and B respectively, let fu(rA, rB, ·) := u ◦ (trans(A(·; rA),B(·; rB))(1n))|u|+1,...,m(n),

and let HCn be the algorithm that, given input u, returns fu(Invn(u)).62 We show that HCn is a
1/p(n)-honest continuator for Πn, for every n ∈ I.

Fix n ∈ I. Let m = m(n), p = p(n) and from now on we omit n from notations. Note that
fu(ConsisΠ(u), |u|) ≡ 〈Πu〉 ≡ HonContΠ(u), and thus

SD(Inv(u), (ConsisΠ(u), |u|)) ≥ SD(HC(u),HonContΠ(u)), (102)

for every transcript u. Let I and L be random variables distributed as I ← (m− 1) and L← 〈Π〉
60Lemma 2.15 is stated for functions whose domain is {0, 1}n for every n ∈ N, i.e., functions defined for every input

length. Although the transcript function is not defined for every input length (and has 1n as an input), using the
fact that it is defined on {0, 1}q(n) for some q(n) ∈ poly(n) and standard padding techniques, Lemma 2.15 does in
fact guarantee such an inverter.

61Recall that ConsisΠ(u) returns random coins for the parties, consistent with a random execution of Π leading to
u.

62The function f actually ignores its third argument. It is defined to take three arguments only to match the
number of arguments in the output of Invn.
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respectively. Compute

Pr

[
SD(Inv(L1,...,I), (ConsisΠ(L1,...,I), I)) >

1

m · p

]
=

m−1∑
j=0

Pr

[
SD(Inv(L1,...,I), (ConsisΠ(L1,...,I), I)) >

1

m · p
| I = j

]
· Pr[I = j]

=
1

m

m−1∑
j=0

Pr

[
SD(Inv(L1,...,j), (ConsisΠ(L1,...,j), j)) >

1

m · p

]

≥ 1

m

m−1∑
j=0

Pr

[
SD(HC(L1,...,j),HonContΠ(L1,...,j)) >

1

m · p

]

≥ 1

m

m−1∑
j=0

Pr

[
SD(HC(L1,...,j),HonContΠ(L1,...,j)) >

1

p

]

≥ 1

m
Pr

[
∃j ∈ (m− 1) : SD(HC(L1,...,j),HonContΠ(L1,...,j)) >

1

p

]
.

The proof now follows by the properties of Inv.
�
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A Missing Proofs

A.1 Proving Lemma 2.20

Lemma A.1 (Restatement of Lemma 2.20). Let x, y ∈ [0, 1], let k ≥ 1 be an integer and let
a1, . . . , ak, b1, . . . , bk ∈ (0, 1]. Then for any p0, p1 ≥ 0 with p0 + p1 = 1, it holds that

p0 ·
xk+1∏k
i=1 ai

+ p1 ·
yk+1∏k
i=1 bi

≥ (p0x+ p1y)k+1∏k
i=1(p0ai + p1bi)

. (103)

Proof. The lemma easily follows if one of the following holds: (1) p0 = 1, p1 = 0; (2) p0 = 0, p1 = 1;
and (3) x = y = 0. Assuming 1 > p0, p1 > 0 and x + y > 0, dividing Equation (103) by its
right-hand side (which is always positive) gives

p0 ·

(
x

(p0x+p1y)

)k+1

∏k
i=1

ai
p0ai+p1bi

+ p1 ·

(
y

(p0x+p1y)

)k+1

∏k
i=1

bi
p0ai+p1bi

≥ 1. (104)

Define the following variable changes:

z =
p0x

p0x+ p1y
ci =

p0ai
p0ai + p1bi

for 1 ≤ i ≤ k.

It follows that

1− z =
p1y

p0x+ p1y
1− ci =

p1bi
p0ai + p1bi

for 1 ≤ i ≤ k.

Note that 0 ≤ z ≤ 1 and that 0 < ci < 1 for every 1 ≤ i ≤ k. Plugging the above into
Equation (104), it remains to show that

zk+1∏k
i=1 ci

+
(1− z)k+1∏k
i=1(1− ci)

≥ 1 (105)
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for all 0 ≤ z ≤ 1 and 0 < ci < 1. Equation (105) immediately follows for z = 0, 1, and in the rest of

the proof we show that it also holds for z ∈ (0, 1). Define f(z, c1, . . . , ck) := zk+1∏k
i=1 ci

+ (1−z)k+1∏k
i=1(1−ci)

−1.

Equation (105) follows by showing that f(z, c1, . . . , ck) ≥ 0 for all z ∈ (0, 1) and 0 < ci < 1. Taking
the partial derivative with respect to ci for 1 ≤ i ≤ k, it holds that

∂

∂ci
f = − zk+1

c2
i

∏
1≤j≤k
j 6=i

cj
+

(1− z)k+1

(1− ci)2
∏

1≤j≤k
j 6=i

(1− cj)
.

Fix 0 < z < 1, and let fz(c1, . . . , ck) = f(z, c1, . . . , ck). If c1 = . . . = ck = z, then for every
1 ≤ i ≤ k it holds that ∂

∂ci
fz(c1, . . . , ck) = ∂

∂ci
f(z, c1, . . . , ck) = 0. Hence, fz has a local extremum

at (c1, . . . , ck) = (z, . . . , z). Taking the second partial derivative with respect to ci for 1 ≤ i ≤ k, it
holds that

∂2

∂ci
f =

2zk+1

c3
i

∏
1≤j≤k
j 6=i

cj
+

2(1− z)k+1

(1− ci)3
∏

1≤j≤k
j 6=i

(1− cj)
> 0,

and thus, (c1, . . . , ck) = (z, . . . , z) is a local minimum of fz.
The next step is to show that (c1, . . . , ck) = (z, . . . , z) is a global minimum of fz. This is done

by showing that fz is convex when 0 < ci < 1. Indeed, consider the function − ln(x). This is
a convex function in for 0 < x < 1. Thus the function

∑k
i=1− ln(ci), which is a sum of convex

functions, is also convex. Moreover, consider the function ex. This is a convex function for any

x. Hence, the function e
∑k
i=1− ln(ci) = 1∏k

i=1 ci
, which is a composition of two convex functions, is

also convex for 0 < ci < 1. Since z is fixed, the function zk+1∏k
i=1 ci

is also convex. Similar argument

shows that (1−z)k+1∏k
i=1(1−ci)

is also convex for 0 < ci < 1. This yields that fz, which is a sum of two

convex functions, is convex. It is known that a local minimum of a convex function is also a global
minimum for that function [24, Therorem A, Chapter V], and thus (z, . . . , z) is a global minimum
of fz.

Let z′, c′1, . . . , c
′
k ∈ (0, 1). Since (z′, . . . , z′) is a global minimum of fz′ , it holds that

f(z′, z′, . . . , z′) = fz′(z
′, . . . , z′) ≤ fz′(c

′
1, . . . , c

′
k) = f(z′, c′1, . . . , c

′
k). But f(z′, z′, . . . , z′) = 0, and

thus f(z′, c′1, . . . , c
′
k) ≥ 0. This shows that Equation (105) holds, and the proof is concluded. �

A.2 Proving Lemma 2.21

Lemma A.2 (Restatement of Lemma 2.21). For every δ ∈ (0, 1
2 ], there exists α = α(δ) ∈ (0, 1]

such that

λ · a1+α
1 · (2− a1 · x) + a1+α

2 · (2− a2 · x) ≤ (1 + λ) · (2− x), (106)

for every x ≥ δ and λ, y ≥ 0 with λy ≤ 1, for a1 = 1 + y and a2 = 1− λy.

Proof. Fix δ ∈ (0, 1
2 ]. Rearranging the terms of Equation (106), one can equivalently prove that

for some α ∈ (0, 1], it holds that

x · (1 + λ− λ · (1 + y)2+α − (1− λy)2+α) ≤ 2 · (1 + λ− λ · (1 + y)1+α − (1− λy)1+α) (107)
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for all x, λ and y in the proper range. Note that the above trivially holds, regardless of the choice
of α ∈ (0, 1], if λy = 0 (both sides of the inequality are 0). In the following we show that for the
cases λy = 1 and λy ∈ (0, 1), Equation (107) holds for any small enough choice of α. Hence, the
proof follows by taking the small enough α for which the above cases hold simultaneously.

λy = 1: Let z = 1
λ + 1 = y + 1 > 1. Plugging in Equation (107), we need to find αh ∈ (0, 1] for

which it holds that

x ·
(

1 +
1

z − 1
− z2+α

z − 1

)
≤ 2 ·

(
1 +

1

z − 1
− z1+α

z − 1

)
(108)

for for all z > 1 and α ∈ (0, αh). Equivalently, by multiplying both sides by z−1
z – which,

since z > 1, is always positive – it suffices to find αh ∈ (0, 1] for which it holds that

x · (1− z1+α) ≤ 2 · (1− zα) (109)

for all z > 1 and α ∈ (0, αh).

Since 1−z1+α < 0 for all α ≥ 0 and z > 1, and letting hα(z) := zα−1
z1+α−1

, proving Equation (109)
is equivalent to finding αh ∈ (0, 1] such that

δ ≥ sup
z>1
{2 · hα(z)} = 2 · sup

z>1
{hα(z)} (110)

for all z > 1 and α ∈ (0, αh).

Consider the function

h(w) := sup
z>1
{hw(z)}. (111)

Claim A.3 states that limw→0+ h(w) = 0 (i.e., h(w) approaches 0 when w approaches 0 from
the positive side), and hence 2 · limw→0+ h(w) = 0. The proof of Equation (110), and thus
the proof of this part, follows since there is now small enough αh < 1 for which x ≥ 2 · h(α)
for every α ∈ (0, αh] and x ≥ δ.

λy ∈ (0, 1): Consider the function

g(α, λ, y) := 1 + λ− λ · (1 + y)2+α − (1− λy)2+α. (112)

Claim A.4 states that for α ≥ 0, the function g is negative over the given range of λ and y.
This allows us to complete the proof by finding α ∈ (0, 1] for which

δ ≥ 2 · sup
λ,y>0,λy<1

{
fα(λ, y) :=

1 + λ− λ · (1 + y)1+α − (1− λy)1+α

1 + λ− λ · (1 + y)2+α − (1− λy)2+α

}
. (113)

Consider the function

f(w) := sup
λ,y>0,λy<1

{fw(λ, y)}. (114)

Claim A.5 states that limw→0+ h(w) = 0, and hence (1 + δ) · limw→0+ h(w) = 0. The proof
of Equation (113), and thus the proof of this part follows since there is now small enough
αf < 1 for which x ≥ 2 · h(α) for every α ∈ (0, αf ] and x ≥ δ.
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By setting αmin = min{αh, αf}, it follows that x ≥ h(α), f(α) for any α ∈ (0, αmin) and x ≥ δ,
concluding the the proof of the claim. �

Claim A.3. limw→0+ h(w) = 0.

Proof. Simple calculations show that for fixed w, the function hw(z) is decreasing in the interval
(1,∞). Indeed, fix some w > 0, and consider the derivative of hw

h′w(z) =
wzw−1(z1+w − 1)− (1 + w)zw(zw − 1)

(z1+w − 1)2
(115)

=
−zw−1(z1+w − (1 + w)z + w)

(z1+w − 1)2
.

Let p(z) := z1+w − (1 + w)z + w. Taking the derivative of p and equaling it to 0, we have that

p′(z) = (1 + w)zw − (1 + w) = 0 (116)

⇐⇒ z = 1.

Since p′′(1) = (1 + w)w > 0 for all w > 0, it holds that z = 1 is the minimum of p in [1,∞). Since
p(1) = 0, it holds that p(a) > 0 for every a ∈ (1,∞). Thus, h′w(z) < 0, and hw(z) is decreasing in
the interval (1,∞). The latter fact yields that

lim
w→0+

h(w) = lim
w→0+

sup
z>1

hw(z)

= lim
w→0+

lim
z→1+

zw − 1

z1+w − 1

= lim
w→0+

lim
z→1+

wzw−1

(1 + w)zw

= lim
w→0+

w

1 + w

= 0,

where the third equality holds by L’Hôpital’s rule. �

Claim A.4. For all α ≥ 0 and λ, y > 0 with λy < 1, it holds that g(α, λ, y) < 0.

Proof. Fix λ, y > 0 with λy ≤ 1 and let f(x) := g(x, λ, y). We first prove that f is strictly
decreasing in the range [0,∞), and then show that f(0) < 0, yielding that g(α, λ, y) < 0 for the
given range of parameters. Taking the derivative of f , we have that

f ′(x) = −λ · (1 + y)2+x · ln(1 + y) + (1− λy)2+x · ln(1− λy), (117)

and since ln(1 − λy) < 0, it holds that f ′ is a negative function. Hence, f is strictly decreasing,
and takes its (unique) maximum over [0,∞) at 0. We conclude the proof by noting that f(0) =
−λ · y2 · (1 + λ) < 0. �

Claim A.5. limw→0+ f(w) = 0.
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Proof. Assume towards a contradiction that the claim does not hold. It follows that there exist
ε > 0 and an infinite sequence {wi}i∈N such that limi→∞wi = 0 and f(wi) ≥ ε for every i ∈ N.
Hence, there exists an infinite sequence of pairs {(λi, yi)}i∈N, such that for every i ∈ N it holds that
f(wi) = fwi(λi, yi) ≥ ε, λi, yi > 0 and λiyi ≤ 1.

If {λi}i∈N is not bounded from above, we focus on a subsequence of {(λi, yi)} in which λi
converges to ∞, and let λ∗ = ∞. Similarly, if {yi}i∈N is not bounded from above, we focus on a
subsequence of {(λi, yi)} in which yi converges to ∞, and let y∗ =∞. Otherwise, by the Bolzano-
Weierstrass Theorem, there exists a subsequence of {(λi, yi)} in which both λi and yi converge to
some real values. We let λ∗ and y∗ be these values.

The rest of the proof splits according to the values of λ∗ and y∗. In each case we focus on the
subsequence of {(wi, λi, yi)} that converges to (0, λ∗, y∗), and show that limi→∞ fwi(λi, yi) = 0, in
contradiction to the above assumption.

y∗ =∞: First note that the assumption y∗ = ∞ and the fact that λiyi ≤ 1 for every i yield that
λ∗ = 0.

For c ∈ [0, 1), the Taylor expansion with Lagrange remainder over the interval [0, c] yields that

(1− c)t = 1− tc+
t(t− 1)(1− s)t−2

2
c2 (118)

for some s ∈ (0, c). Consider the function

g(t, λ, y) := 1 + λ− λ · (1 + y)t − (1− λy)t. (119)

Equation (118) yields that

g(t, λi, yi) = 1 + λi − λi · (1 + yi)
t −
(

1− tλiyi +
t(t− 1)(1− si)t−2

2
λ2
i y

2
i

)
(120)

= λi

(
1− (1 + yi)

t + ty − t(t− 1)(1− si)t−2

2
λiy

2
i

)
for every index i and some si ∈ (0, λiyi). We conclude that

lim
i→∞

fwi(λi, yi) = lim
i→∞

g(1 + wi, λi, yi)

g(2 + wi, λi, yi)

= lim
i→∞

1− (1 + yi)
1+wi + (1 + wi)yi − (1+wi)wi(1−si)wi−1

2 λiy
2
i

1− (1 + yi)2+wi + (2 + wi)yi − (2+wi)(1+wi)(1−si)wi
2 λiy2

i

= lim
i→∞

1
(1+yi)2+wi

− (1+yi)
1+wi

(1+yi)2+wi
+ (1+wi)yi

(1+yi)2+wi
− (1+wi)wi(1−si)wi−1λiy

2
i

2(1+yi)2+wi

1
(1+yi)2+wi

− 1 + (2+wi)yi
(1+yi)2+wi

− (2+wi)(1+wi)(1−si)wiλiy2
i

2(1+yi)2+wi

= 0.

λ∗ =∞: Note that the assumption λ∗ =∞ yields that y∗ = 0. For c ∈ [0, 1), the Taylor expansion
with Lagrange remainder over the interval [0, c] yields that

(1− c)t = 1− tc+
t(t− 1)

2
c2 − t(t− 1)(t− 2)(1− s)t−3

6
c3, (121)
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for some s ∈ (0, c), and

(1 + c)t = 1 + tc+
t(t− 1)

2
c2 +

t(t− 1)(t− 2)(1 + s′)t−3

6
c3, (122)

for some s′ ∈ (0, c).

Applying Equations (121) and (122) for the function g of Equation (119) yields that

g(t, λi, yi) (123)

= g̃(t, λi, yi, si, s
′
i)

:= 1 + λi − λi
(

1 + ty +
t(t− 1)

2
y2
i +

t(t− 1)(t− 2)(1 + s′i)
t−3

6
y3
i

)
−
(

1− tλiyi +
t(t− 1)

2
λ2
i y

2
i +

t(t− 1)(t− 2)(1− si)t−3

6
λ3
i y

3
i

)
= −λ

2
i y

2
i

6

(
3t(t− 1)

λi
+
t(t− 1)(t− 2)(1 + s′i)

t−3yi
λi

+ 3t(t− 1) + t(t− 1)(t− 2)(1− si)t−3λiyi

)
for large enough index i and some si ∈ (0, λiyi) and s′i ∈ (0, yi). We conclude that

lim
i→∞

fwi(λi, yi)

= lim
i→∞

g(1 + wi, λi, yi)

g(2 + wi, λi, yi)

= lim
i→∞

g̃(1 + wi, λi, yi, si, s
′
i)

g̃(2 + wi, λi, yi, si, s′i)

= lim
i→∞

3(1+wi)wi
λi

+
(1+wi)wi(wi−1)(1+s′i)

wi−1yi
λi

+ 3(1 + wi)wi + (1 + wi)wi(wi − 1)(1− si)wi−2λiyi
3(2+wi)(1+wi)

λi
+ (2+wi)(1+wi)wi(1+s′)wi−1yi

λi
+ 3(2 + wi)(1 + wi) + (2 + wi)(1 + wi)wi(1− s)wi−1λiyi

=
0

6
= 0,

where the next-to-last equality holds since λiyi ≤ 1 for every i, and hence the last term of the
numerator and denominator goes to 0 when i→∞.

λ∗, y∗ > 0: It holds that

lim
i→∞

fwi(λi, yi) = lim
i→∞

1 + λi − λi · (1 + yi)
1+wi − (1− λiyi)1+wi

1 + λi − λi · (1 + yi)2+wi − (1− λiyi)2+wi

=
1 + λ∗ − λ∗(1 + y∗)− (1− λ∗y∗)

1 + λ∗ − λ∗(1 + y∗)2 − (1− λ∗y∗)2

= 0.
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λ∗ = 0 and y∗ > 0: Equations (118) and (120) yield that

lim
i→∞

fwi(λi, yi) = lim
i→∞

1− (1 + yi)
1+wi + (1 + wi)yi − (1+wi)wi(1−si)wi−1

2 λiy
2
i

1− (1 + yi)2+wi + (2 + wi)yi − (2+wi)(1+wi)(1−si)wi
2 λiy2

i

=
1− (1 + y∗) + y∗

1− (1 + y∗)2 + 2y∗

= 0.

y∗ = 0: Rearranging Equation (123) yields that the following holds for large enough index i:

g(t, λi, yi) (124)

= g̃(t, λi, yi, si, s
′
i)

= −λiy
2
i

6

(
3t(t− 1) + t(t− 1)(t− 2)(1 + s′i)

t−3yi + 3t(t− 1)λi + t(t− 1)(t− 2)(1− si)t−3λ2
i yi
)

for some si ∈ (0, λiyi) and si ∈ (0, yi). Given, this formulation it is easy to see that

lim
i→∞

fwi(λi, yi) = lim
i→∞

g̃(1 + wi, λi, yi, si, s
′
i)

g̃(2 + wi, λi, yi, si, s′i)

=
0

6 + 6λ∗

= 0.

The above holds since every term in the numerator goes to 0 and the term 3(2 + wi)(1 + wi) in
the denominator goes to 6.

This concludes the case analysis, and thus the proof of the claim. �
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