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Abstract

We consider two of the most fundamental theorems in Cryptography. The first,
due to H̊astad, Impagliazzo, Levin, and Luby (STOC ’89, STOC ’90, SIAM J. on
Computing ’99), is that pseudorandom generators can be constructed from any one-
way function. The second, due to Yao [34] (FOCS ’82), states that the existence of
weak one-way functions implies the existence of full-fledged one-way functions. These
powerful plausibility results shape our understanding of hardness and randomness in
Cryptography, but unfortunately their proofs are not as tight (i.e., security preserving)
as one may desire.

This work revisits a technique that we call the randomized iterate, introduced by
Goldreich et al. [11] (SIAM J. on Computing ’93). This technique was used by Gol-
dreich et al. to give a construction of pseudorandom generators from regular one-way
functions. We simplify and strengthen this technique in order to obtain a similar con-
struction, where the seed length of the resulting generators is as short as Θ(n log n)
(rather than Θ(n3) achieved by Goldreich et al.). Our technique has the potential of
implying seed-length Θ(n), and the only bottleneck for such a result are the parame-
ters of current generators against bounded-space computations. We give a construc-
tion with similar parameters for security amplification of regular one-way functions.
This improves upon the construction of Goldreich, Impagliazzo, Levin, Venkatesan,
and Zuckerman (FOCS ’90) in that the construction does not need to “know” the
regularity parameter of the functions (in terms of security, the two reductions are in-
comparable). In addition, we use the randomized iterate to show a construction of
a pseudorandom generator based on an exponentially-hard one-way function that has
seed length of only Θ(n2). This improves a recent result of Holenstein [19] (TCC ’06)
that shows a construction with seed length Θ(n5) based on such one-way functions.
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Finally, we show that the randomized iterate may even be useful in the general context
of H̊astad, Impagliazzo, Levin, and Luby. In particular, we use the randomized iterate
to replace the basic building block of the H̊astad et al. construction. Interestingly,
this modification improves efficiency by an Θ(n2) factor and reduces the seed length
to Θ(n7) (which also implies improvement in the security of the construction).

Keywords: cryptography, pseudorandom generator, one-way functions, hardness amplifi-
cation.
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1 Introduction

In this work we address two fundamental problems in cryptography: (1) constructing pseu-
dorandom generators from one-way functions and (2) transforming weak one-way functions
into strong one-way functions. The common thread linking the two problems in our discus-
sion is the technique we use. This technique, which we call here the randomized iterate, was
introduced by Goldreich et al. [11] in the context of constructing pseudorandom generators
from regular one-way functions. We revisit this method, simplify existing proofs and utilize
our new perspective to achieve significantly better parameters for security and efficiency.
We demonstrate that the randomized iterate is also applicable to the construction of pseu-
dorandom generators from any one-way function. Specifically, we revisit the seminal paper
of H̊astad, Impagliazzo, Levin, and Luby and show that the randomized iterate can help
improve the parameters in this context. We also give significant improvements to the con-
struction of pseudorandom generators from one-way functions that are exponentially hard
to invert. Finally, we use the randomized iterate both to simplify and to strengthen previous
results regarding efficient hardness amplification of regular one-way functions.

We start by introducing the randomized iterate in the context of pseudorandom gen-
erators, and postpone the discussion on amplifying weak to strong one-way functions to
Section 1.3.

1.1 Pseudorandom Generators and the Randomized Iterate

Pseudorandom generators, first introduced by Blum and Micali [2], and stated in its current,
equivalent form, by Yao [34], are one of the cornerstones of cryptography. Informally, a
pseudorandom generator is a polynomial-time computable function G that stretches a short
random string x into a long string G(x) that “looks” random to any efficient (i.e., polynomial-
time) algorithm. Hence, there is no efficient algorithm that can distinguish between G(x)
and a truly random string of length |G(x)| with more than a negligible probability. Originally
introduced in order to convert a small amount of randomness into a much larger number of
effectively random bits, pseudorandom generators have since proved to be valuable compo-
nents for various cryptographic applications such as bit commitments [28], pseudorandom
functions [9] and pseudorandom permutations [26], to name a few.

1.1.1 Previous Constructions

The first construction of a pseudorandom generator given in Blum and Micali [2], was based
on a particular one-way function and was later generalized in Yao [34] into a construction of a
pseudorandom generator based on any one-way permutation (hereafter, the BMY generator).
The BMY generator works by iteratively applying the one-way permutation on its own
output. More precisely, for a given function f and input x, define the k’th iterate recursively
as fk(x) = f(fk−1(x)), where f 1(x) = f(x). To complete the construction, one needs to
take a hardcore-bit at each iteration. If we denote by b(x) the hardcore-bit of x (take for
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instance the Goldreich and Levin [8] predicate), then the BMY generator on seed x outputs
the hardcore-bits b(f 1(x)), . . . , b(fn+1(x)).1

The natural question arising from the BMY generator was whether one-way permutations
are actually necessary for pseudorandom generators, or can one do with a more relaxed
notion. Specifically, is any one-way function sufficient for pseudorandom generators? Levin
[25] observed that the BMY construction works for any one-way function on its iterates,
that is, a one-way function that remains one-way when applied sequentially on its own
outputs. A general one-way function, however, does not have this property since the output
of f may have very little randomness in it, and a second application of f may be easy to
invert. A partial solution was suggested by Goldreich et al. [11], who showed a construction
of a pseudorandom generator based on any regular2 one-way function (hereafter, the GKL
generator). The GKL generator introduced the technique at the core of this work, that we
call the randomized iterate. Rather than simple iterations, an extra randomization step is
added between every two applications of f . More precisely,

Definition 1.1 (the randomized iterate (informal)). For function f : {0, 1}n 7→ {0, 1}n,
input x ∈ {0, 1}n and a vector h = (h1, . . . , hk−1) of length-preserving hash functions over
{0, 1}n, recursively define the k’th randomized iterate by:

fk(x, h) = f(hk−1(f
k−1(x, (h1, . . . , hk−2)))),

where f1(x) = f(x). For m > k − 1, we let fk(x, h1, . . . , hm) = fk(x, h1, . . . , hk−1).

The rational is that hk−1(f
k−1(x, h)), for a random x and h, is uniformly distributed in

{0, 1}n, and the challenge is to show that f , when applied to hk−1(f
k−1(x, h)), is hard to

invert even when h is made public. Once this is shown, the generator is similar in nature to
the BMY generator, i.e., it outputs b(f1(x, h)), . . . , b(fn+1(x, h)), h.

Finally, H̊astad et al. [16] (combining [23, 15]) culminated this line of research by showing
a construction of a pseudorandom generator using any one-way function (hereafter, the
HILL generator). This result is one of the most fundamental and influential theorems in
cryptography. It introduced many new ideas that have since proved useful in other contexts,
such as the notion of pseudoentropy, and the implicit use of family of pairwise-independent
hash functions as randomness extractors. We mention that HILL departs from GKL in its
techniques, taking a significantly different approach.

1.1.2 The Complexity and Security of Previous Constructions

While the HILL generator fully answers the question of the plausibility of a generator based
on any one-way function, the construction is highly involved and very inefficient. Other
than the evident contrast between the simplicity and elegance of the BMY generator to

1We mention that typically the BMY generator is presented as b(x), b(f1(x)), . . . , b(fn(x)). For consis-
tency with our results, however, we present it so that the first hardcore bit is taken after the first iteration.

2A function is regular if every element in its image has the same number of preimages.
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the complex construction and proof of the HILL generator, the parameters achieved in the
construction are far worse, rendering the construction impractical.

In practice, it is not necessarily sufficient that a reduction translates polynomial security
into polynomial security. In order for reductions to be of any practical use, the concrete
overhead introduced by the reduction comes into play. There are various factors involved in
determining the security of a reduction, and in Section 2.11 we elaborate on the security of
cryptographic reductions and the classification of reductions in terms of their security. Here,
however, we focus only on one central parameter, which is the length d of the generator’s
seed compared to the length n of the input to the underlying one-way function. The BMY
generator takes a seed of length Θ(n), the GKL generator takes a seed of length Θ(n3) while
the HILL construction produces a generator with seed length in the order of Θ(n8).3

The seed length is of great importance to the security of the resulting generator. While
it is not the only parameter, it serves as a lower bound to how good the security may be. For
instance, the HILL generator on d bits has security that is at best comparable to the security
of the underlying one-way function, but only on Θ( 8

√
d) bits. To illustrate the implications

of this deterioration in security, consider the following example: suppose that we only trust
a one-way function when applied to inputs of at least 100 bits, then the GKL generator can
only be trusted when applied to a seed of length of at least one million bits, while the HILL
generator can only be trusted on seed lengths of 1016 and up (both being highly impractical).
Thus, trying to improve the seed length towards a linear one (as it is in the BMY generator)
is of great importance in making these constructions practical.

1.1.3 Exponentially Hard One-Way Functions and Improving the Seed Length

The BMY and GKL generators demonstrate that assuming restrictions on the underlying
one-way function allows for great improvement of the seed length (or input blowup). The
common theme in these restrictions is that they deal with the structure of the one-way func-
tion. A different approach was recently taken by Holenstein [19], who builds a pseudorandom
generator from any one-way function with exponential hardness.4 This approach is different
as it discusses raw hardness as opposed to structure. The result in [19] is a generalization
of the HILL generator that takes into account the parameter stating the hardness of the
one-way function. In its extreme case where the hardness is exponential, the pseudorandom

generator takes a seed length of d = Θ(n5) and has security 2Θ(d
1
5 ). The seed length can

be reduced to as low as Θ(n4 log2 n) when the resulting generator is only required to have
super-polynomial security (i.e., security of nlogn). In its other extreme based on a general
one-way function (with super-polynomial hardness), [19] forms a formal proof of the best
known seed length for the HILL construction (seed length Θ(n8)).

3 The seed length actually proved in [16] is Θ(n10), however it is mentioned that a more careful analysis
can get to Θ(n8). A formal proof for the Θ(n8) seed length construction is given by Holenstein [19].

4For some constant c > 0, no algorithm of running time at most 2cn inverts the function with probability
better than 2−cn.
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1.2 Our Results on Pseudorandom Generators

Our improvements to the seed length of pseudorandom generators under the various assump-
tions are summarized in Figure 1. In the upcoming section we elaborate on each of these
constructions and highlight the source of the improvements.

Paper Type of function Seed length
[2, 34] One-way permutation Θ(n)
[11]

This work
Regular one-way function

Θ(n3)
Θ(n log n)

[19]
This work

One-way function with exponential hardness
Θ(n5)
Θ(n2)

This work Regular one-way function with exponential hardness Θ(n)
[16, 19]

This work
Any one-way function

Θ(n8)
Θ(n7)

Figure 1: Summary of results.

1.2.1 Regular One-Way Functions

We give a construction of a pseudorandom generator from any regular one-way function
with seed length Θ(n log n). We mention that our approach has the potential of reaching a
construction with a linear seed, the bottleneck being the efficiency of the currently known
bounded-space generators. Our construction follows the randomized iterate method and is
achieved in two steps:

• We give a significantly simpler proof that the GKL generator works, allowing the use of
a family of hash functions that is pairwise-independent rather than n-wise independent
(as used in [11]). This gives a construction with seed length Θ(n2) (see Theorem 3.6).

• The new proof allows for the derandomization of the choice of the randomizing hash
functions via the generator against bounded-space adversaries (for short, bounded-
space generator) of Nisan [29], further reducing the seed length to Θ(n log n) (see
Theorem 3.10).

The proof method. Following is a high-level description of our proof method. For sim-
plicity we focus on the second randomized iteration (i.e., on f2(x, h) = f(h(f(x))), but the
same argument generalizes to the other iterations. The main task at hand is to show that
it is hard to find f 1(x, h) = f(x) when given f 2(x, h) and h. This follows by showing that
any procedure A for finding f(x) given (f2(x, h), h) enables to invert the one-way function
f (on a random image). Specifically, we show that for a random image y ∈ f(Un), if we
choose a random and independent hash h′ and feed the pair (y, h′) to A, then A is likely to
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return a value f(x′) such that h′(f(x′)) ∈ f−1(y) (and thus we obtain an inverse of y). This
is ultimately shown by proving that if A succeeds on the distribution of (f 2(x, h), h), then
A is also successful on the distribution of (f 2(x, h), h′), where h′ is chosen independently of
(x, h).

Our proof is inspired by a technique used by Rackoff in his proof of the Leftover Hash
Lemma (in [22]). Rackoff proves that a distribution is close to uniform by showing that it has
collision probability that is very close to that of the uniform distribution.5 We would have
liked to follow this scheme and consider the collision probability of the two aforementioned
distributions. In our case, however, the two distributions could actually be very far from
each other. Yet, based on our analysis of the collision probabilities, we manage to prove
that the probability of any event under the first distribution is polynomially related to the
probability of the same event under the second distribution. This proof generalizes nicely
also to the case of many iterations.

The derandomization using a bounded-space generator, follows directly from the new
proof. The point is to introduce a derandomization of the hash functions such that the
collision probability of the randomized iterate remains essentially the same. Since the proof
centers around the collision probability of (fk(x, h), h), the proof will hold also for the de-
randomized version. More precisely, consider the procedure that given inputs x0, x1 and
h = (h1, . . . , hk−1), outputs ‘1’ if fk(x0, h) equals fk(x1, h) and ‘0’ otherwise. Note that
the probability, over a uniform choice of inputs, that the above procedure outputs ‘1’, is
exactly the collision probability of (fk(x, h), h). Also note that the above procedure can run
in linear space, since it simply needs to store the two intermediate iterates at each step.
Therefore, the probability that the above procedure outputs ‘1’ while replacing h with the
output of a generator against linear space adversaries, is very close to the collision prob-
ability of (fk(x, h), h). It follows that the collision probability of (fk(x, h̃), h̃), where h̃ is
now the output of the bounded-space generator is very close to that of (fk(x, h), h), and
the security proof now follows as in the proof when using independent randomizing hash
functions. We mention that derandomization of similar spirit was used by Phillips [31], in
his efficient amplification of weak one-way permutations (see Section 1.3).

1.2.2 Exponentially Hard One-Way Functions

We give a construction of a pseudorandom generator from any exponentially-hard one-way
function with seed length d = Θ(n2) and security 2Θ(

√
d). If we only require the security of

the resulting generator to be super-polynomial, then the construction gives a seed that is
only Θ(n log2 n) long. We mention that Holenstein’s result applies for any one-way function
(but is most efficient when the one-way function is exponentially hard). Our construction on
the other hand is specialized for one-way functions with exponential hardness, and does not
generalize to use significantly weaker one-way functions. More concretely, our construction
can use any one-way function with security 2ϕ(n), as long as ϕ(n) ∈ Ω( n

logn
).

5The collision probability of a distribution is the probability of getting the same element twice when
taking two independent samples from the distribution.
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The core technique of our construction is once again the randomized iterate. Trying
to apply the randomized iterate to a general one-way function, we encounter the following
difficulty: for k ≥ 2, the k’th randomized iteration of a general one-way function may be
easy on a large fraction of the inputs. Our key observation is that the randomized iterate
cannot be easy everywhere. Our Lemma 4.1 indicates that for every one-way function f ,
there exists a set S of inputs to fk such that the k’th randomized iteration is hard to invert
over inputs taken from this set. Moreover, the density of S is at least 1/k. This means that
there is some pseudorandomness to be extracted from the k’th randomized iterate; taking
a hard-core bit of the k’th randomized iteration gives a bit that with probability 1/k looks
random (to a computationally bounded observer). Our idea is to collect these bits that
contain some pseudoentropy and to then extract from them the pseudorandom output of the
generator.

Consider taking t independent copies of the randomized iterate (on t independent inputs)
and for each of the t copies taking a hardcore bit from the k’th iteration. This forms a string
of t bits, of which t/k are expected to be random looking. Our next step would be to run a
randomness extractor on this string, to generate Θ(t/k) pseudorandom bits. The problem,
however, is that the total number of pseudorandom bits generated, i.e., Θ(

∑m
k=1

t
k
) where m

is the number of iterations, is too low, and in particular insufficient to compensate for the
tn bits invested in the random seed.

This problem can be remedied by taking more hardcore bits at each iteration. Specifically,
if the one-way function has exponential hardness then a linear number of hardcore bits may
be taken at each iteration (Goldreich and Levin [8]). Thus, taking t = n independent copies,
the total number of pseudorandom bits generated can be larger than the seed length. The
construction gives a seed that is Θ(n2) bits long, as each independent copy of the randomized
iterate only runs a constant number of iterations.

Remark 1.2 (on randomness extractors and pseudorandomness). The use of randomness
extractors in a computational setting, was initiated in [16]. We give a general “uniform
extraction lemma” (Lemma 2.14) for this purpose that is proved using a uniform hardcore
Lemma of Holenstein [18]. We mention that a similar proof was given independently in [19].

1.2.3 Any One-Way Function

The HILL generator takes a totally different path than the GKL generator. The initial step
in the HILL construction takes a one-way function f and generates a bit that has significantly
more pseudoentropy than actual entropy. This gap is then exploited in order to build a full-
fledged pseudorandom generator. This initial construction does not use iterations of f at all.
We ask whether the technique of randomized iterations can be helpful for the case of any
one-way function, and give a positive answer to this question (actually, we are using only
the first two iterations). Specifically, this method also improves the efficiency of the overall
construction by an Θ(n2) factor (ignoring polylog(n) terms) over the original HILL generator
and reduces the seed length by a factor of n, which also implies improvement in the security
of the construction. All in all, we present (Theorem 5.8) a pseudorandom generator from
any one-way function with seed length Θ(n7).
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Our generator replaces the initial step of the HILL generator with a different construction
based on the techniques we have developed. We briefly describe the new initial step. Denote
the degeneracy of y by Df (y) = ⌈log |f−1(y)|⌉ (this is a measure that divides the images of
f to n categories according to their preimage size). Let b denote a hardcore-bit (again we
take the Goldreich-Levin hardcore bit [8]). Loosely speaking, we consider the bit b(f(x))
when given the value (f 2(x, h), h) and make the following observation: when Df (f(x)) ≥
Df (f

2(x, h)), the value b(f(x)) is (almost) fully determined by (f2(x, h), h); as opposed to
when Df (f(x)) < Df (f

2(x, h)), where no information about b(f(x)) leaks. But in addition,
if Df (f(x)) = Df (f

2(x, h)), then b(f(x)) is computationally-indistinguishable from uniform
(that is, looks uniform to any efficient observer), even though it is actually fully determined.
The latter stems from the fact that when Df (f(x)) = Df (f

2(x, h)) the behavior is close to
that of a regular function.

As a corollary we get that the bit b(f(x)) has entropy of no more than 1
2
(i.e., the

probability of Df (f(x)) < Df (f
2(x, h))), but has “entropy of at least 1

2
+ 1

Θ(n)
in the eyes of

any computationally-bounded observer” (i.e., the probability of Df (f(x)) ≤ Df (f
2(x, h))).

In other words, b(f(x)) has entropy 1
2
but pseudoentropy of 1

2
+ 1

Θ(n)
.6 As in HILL, it is this

gap of 1
Θ(n)

between the entropy and pseudoentropy that eventually allows the construction
of a pseudorandom generator.

Comparing to H̊astad et al. [16]. [16] build a pair of function and predicate such that
the predicate has entropy p, but pseudoentropy of at least p+ 1

Θ(n)
(see Appendix A for the

description of their pair). Unlike in our construction, however, the entropy threshold p in
their construction is unknown (i.e., not efficiently computable). This is a real disadvantage,
since knowledge of this threshold is essential for the overall construction. To overcome this,
they enumerate all values for p (up to an accuracy of Θ( 1

n
)), run the generator with each

of these values and eventually combines all generators using an XOR of their outputs. This
enumeration costs an additional factor n to the seed length of the final generator and an
additional factor of n2 to the number of calls to the underlying function f , and hence our
efficiency and security improvements.

Remark 1.3. [on pseudorandomness in NC1] For the most part, the [16] construction is
“depth” preserving. In particular, given two “non-uniform” hints of log n bits each (that
specify two different properties of the one-way function7), the reduction gives generators in
NC1 from any one-way function in NC1. Unfortunately, without these hints, the depth of
the construction is polynomial (rather than logarithmic). Our construction eliminates the

6It natural to ask why should we consider b(f(x)) as the predicate and not simply b(x). Clearly the
pseudoentropy of b(x), given (f2(x, h), h) is at least as large as that of b(f(x)) (since f(x) is determined by
x). The problem is that the real entropy of b(x) in this case is unknown (and may, in fact, be as high as
the pseudoentropy). In other words, when considering b(f(x)) rather than b(x), we reduce the conditional
entropy to a known bound, while keeping the pseudoentropy larger than this bound.

7Consider the random variable induced by applying the one-way function on a uniformly chosen input.
One of these hints relates to the entropy of this random variable, where the other hint, p, relates to its
variance.
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need for one of these hints (we still need to know the entropy of the function) and thus
can be viewed as a step towards achieving generators in NC1 from any one-way function in
NC1. Building pseudorandom generators in NC1 (from one-way functions in NC1) would be
highly significant. In particular, since [1] showed that such generators imply pseudorandom
generators in NC0.

1.2.4 The Recent Generator of Haitner, Reingold, and Vadhan

In a very recent result, Haitner, Reingold, and Vadhan [14] presented a new family of pseu-
dorandom generator for “any hardness”. In particular, when starting from standard (poly-
nomially secure) one-way functions, their construction achieves seed length Θ(n4) (compared
with the Θ(n7) achieved here). When starting from exponentially-hard one-way functions,
their seed length matches the result presented here.8 An additional advantage of the genera-
tors of [14] over this work (and over [16, 19]), is that their generators use non-adaptive calls
to the underlying one-way functions. In particular, their results yields that pseudorandom
generators in NC0 can be constructed from one-way functions in NC1 (see Remark 1.3).

1.3 One-Way Functions – Amplification from Weak to Strong

The existence of one-way functions is essential to almost any task in cryptography (see for
example [21]) and also sufficient for numerous cryptographic primitives such as the pseudo-
random generators discussed above. In general, for constructions based on one-way functions
we use what are called strong one-way functions. That is, functions that can only be inverted
efficiently with negligible success probability. A more relaxed definition is that of an ε-weak
one-way function, where ε = ε(n) is a polynomial fraction. This is a function that every
efficient algorithm fails to invert on at least a ε fraction of the inputs. This definition is signif-
icantly weaker, yet, Yao [34] showed how to convert any weak one-way function into a strong
one (see proof in [7]). The new strong one-way function simply consists of many independent
copies of the weak function concatenated to each other. The solution of Yao, however, incurs
a blow-up factor of ω(log(n)/ε) to the input length of the strong function, which translates
to a significant loss in the security (as in the case of pseudorandom generators).

Goldreich et al. [10] pointed out this loss of security problem and gave a solution for one-
way permutations that has just a linear blowup in the length of the input. Their solution
was also generalized to known-regular one-way functions (regular functions whose image size
is efficiently computable), where its input length varied according to the required security.
The input length is linear when the required security is 2O(

√
n), but deteriorates up to Θ(n2)

when the required security is higher (e.g., security 2Θ(n)).9 Their construction uses a variant
of randomized iterates, where the randomization is via one random step on an expander

8Their result also generalizes to functions with in between hardness, significantly improving over [19] for
every choice of hardness.

9Loosely speaking, one can think of the security as the probability of finding an inverse to a random
image f(x) simply by choosing a random element in the domain.
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graph. Additional attempts to avoid this loss of security problem were given by [31, 5] (see
below).

1.3.1 Our Contribution to Hardness Amplification

We present an alternative efficient hardness amplification for regular one-way functions.
Specifically, in Theorem 6.3 we show that the k’th randomized iterate of a weak one-way
function along with the randomizing hash functions form a strong one-way function (for the
right choice of k). Moreover, this holds also for the derandomized version of the randomized
iterate (Theorem 6.7), giving an almost linear construction. Our construction is arguably
simpler and has the following advantages:

1. While the construction in [10] works only for known regular weak one-way functions,
our amplification works for any regular weak one-way function (whether its image size
is efficiently computable or not).

2. The input length of the resulting strong one-way function is Θ(n log n) regardless of
the required security. Thus, for some range of the parameters our solution is better
than that of [10] (although it is worse than [10] for other ranges).

As in the case of pseudorandom generators discussed above, our method would yield a
construction with input length Θ(n) if bounded-space generators with better parameters
become available.

The Idea. At the basis of all hardness amplification lies the fact that for any inverting
algorithm, a weak one-way function has a set that the algorithm fails upon (hereafter, the
failing-set of this algorithm). It follows that a large enough number of randomly chosen
inputs are bound to hit every such failing-set and thus to fail every algorithm. Taking
independent random samples (i.e., f ′(x1, . . . , xk) = (f(x1), . . . , f(xk))) works well (this is
Yao’s construction [34]), but with the price of increasing the input length. An alternative
approach (a variant of which was used by [10]) would be to use randomized iterations (i.e.,
to consider the function fk(x, h)). This also amounts to applying f to k random inputs
and therefore bound to hit every failing set. One obstacle is that when given fk(x, h), an

adversary may invert fk to a different input (x′, h
′
) (with different and carefully chosen hash

functions) such that the computation of fk(x′, h
′
) avoids applying f to a relevant failing

set. To overcome this, the hash functions h are also given as part of the output (i.e., we
consider the function g(x, h) = (fk(x, h), h)), forcing an inverter to invert to the same hash
functions. Using our core technique (from the pseudorandom generators section) we show
that the hardness of inverting fk is maintained even when h is known.

At a first glance, the aforementioned approach does not help in decreasing the input
blowup, since the description of h is long. Indeed, choosing fully independent randomizing
hash functions requires an input as long as that of Yao’s solution (an input of length Θ(n ·
ω(log(n))/ε)). What makes this approach appealing, is the derandomization of the hash
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functions using space-bounded generators, which reduces the input length to only Θ(n log n).
We mention that since the hardness of fk stems from the fact that a random input hits with
high probability any failing-set, it is required that this is also the case for the derandomized
fk (and not only that the derandomized function maintains low collision probability as in
the pseudorandom generator case). Fortunately, the derandomization using bounded-space
generators also guarantees this property.

We mention that there have been several attempts to formulate such a construction, using
all of the aforementioned tools. Goldreich et al. [10] did actually consider following the GKL
methodology, but chose a different (though related) approach. Phillips [31] gives a solution
with input length Θ(n log n) using bounded-space generators, but only for the simple case of
permutations (where [10] has better parameters). Di Crescenzo and Impagliazzo [5] give a
solution for regular functions, but only in a model where public randomness is available (in
the mold of [17]). Their solution is based on pairwise-independent hash functions that serve
as the public randomness. We are able to combine all these ingredients into one general
result, perhaps due to our simplified proof.

1.3.2 Additional Issues

On non-length-preserving functions. This work focuses on length-preserving one-way
functions. We also demonstrate how our proofs may be generalized, with no penalty
in the tightness of the security, to use non-length preserving functions.10 This gener-
alization requires the use of a construction of a family of almost pairwise-independent
hash functions (see Sections 2.7.1 and 3.4.1).

The results in the public randomness model. Similarly to previous works, our results
also give linear reductions in the public randomness model. This model (introduced by
Herzberg and Luby [17]) allows the use of public random coins that are not regarded
a part of the input. Our results, however, introduce significant savings in the amount
of public randomness that is necessary.

1.4 Organization

Section 2 includes the formal definitions and notations used throughout this work. In Sec-
tion 3 we present our construction of pseudorandom generators from regular one-way func-
tions. Section 4 presents the construction based on exponentially-hard one-way functions
and in particular proves a lemma regarding the hardness of inverting the randomized iterate
of a general one-way function (Lemma 4.1). In Section 5 we present our improvement to the
HILL pseudorandom generator from any one-way function. Finally, in Section 6 we present
our hardness amplification of regular one-way functions.

10Some alternative techniques for converting arbitrary one-way functions to length-preserving ones (e.g.,
padding), incur serious deterioration in the security of the resulting one-way functions.
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2 Preliminaries

2.1 Notations

We use capital letters for random variables and matrices, standard letters for values and
calligraphic letters for sets. Given two equal length strings x and y, we denote by ⟨x, y⟩2
their inner product modulu two. A set L ⊆ S is of density (at least) δ with respect to S, if
|L| ≥ |S| · δ. For f : S 7→ {0, 1}∗ and L ⊆ S, we let f(L) = {f(x) : x ∈ L}. For y ∈ f(S), we
denote the preimages of y under f by f−1(y) = {x ∈ S : f(x) = y}. The degeneracy of f on
y is defined by Df (y) := ⌈log |f−1(y)|⌉. The characteristic function of a set S ⊆ U , denoted
χS , answers 1 on x ∈ S and 0 otherwise.

We let poly denote the set of polynomials, where we sometime abuse notation and use it
to denote a member of this set, and let ppt denote the set of probabilistic algorithms (i.e.,
Turing machines) that run in strict polynomial time. A function µ : N 7→ [0, 1] is negligible, if
µ(n) < 1/p(n) for every p ∈ poly and large enough n. We denote by f : {0, 1}n 7→ {0, 1}ℓ(n),
the ensemble of functions {fn : {0, 1}n 7→ {0, 1}ℓ(n)}n∈N (it will be clear from the context
whether f denotes an infinite family or a single function). Throughout the paper we let n
be the security parameter, and when its value is clear from the context, we sometimes omit
it from the notation.

2.2 Distributions and Entropy

We adopt the convention that when the same random variable appears multiple times in
an expression, all occurrences refer to the same instantiation. For example, Pr[X = X]
is 1. Let X be a random variable taking values in a finite set U . The support of X is
Supp(X) := {x ∈ U : Pr[X = x] > 0} and we write x ← X to indicate that x is selected
according to X. If S is a subset of U , then x← S means that x is selected according to the
uniform distribution on S. We write Un to denote the random variable distributed uniformly
over {0, 1}n. Given a function f : {0, 1}n 7→ {0, 1}ℓ, we denote by f(Un) the distribution
over {0, 1}ℓ induced by f operating on Un. By a distribution ensemble over {S(n)}n∈N, we
mean a series {Dn}n∈N, where each Dn is a distribution over S(n).
Let D be a distribution over some finite domain X, we use the following measures of entropy:

• The Shannon entropy of D, denoted H(D), is defined as
∑

x∈X D(x) · log 1
D(x)

.

• The collision probability of D, denoted CP(D), is defined as
∑

x∈X D(x)2.

• The min entropy of D, denoted H∞(D), is defined as minx∈X log 1
D(x)

.

Two distributions X and Y over U are ε close, denoted ∆(X, Y ) ≤ ε, if maxS⊆U |Prw←X(S)−
Prw←Y (S)| ≤ ε. We define the distinguishing advantage of an algorithm D between two
distribution ensembles {Xn} and {Yn} by

∆D(Xn, Yn) = |Pr[D(1n, x) = 1]− Pr[D(1n, y) = 1]| ,

where the probabilities are taken over x← Xn and y ← Yn, and the randomness of D.
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2.3 Function Ensembles

We denote an ensemble of function families by F = {Fn}n∈N, where f ∈ Fn maps strings
of length n to stings of length ℓ(n), (namely F = {Fn : {0, 1}n 7→ {0, 1}ℓ(n)}n∈N). We let
F = Fn, whenever n is clear from the context, where in the special case that ℓ(n) = n, the
family F is called a length preserving.

To be useful in applications, we need F to be efficient:

Definition 2.1 (efficient function ensemble). An ensemble of function families F =
{Fn : {0, 1}n 7→ {0, 1}ℓ(n)}n∈N is efficient, if the description of the elements of Fn is the
set {0, 1}d(n), for some d ∈ poly, and there exists a polynomial-time algorithm Eval with
Eval(f, x) = f(x) for every n ∈ N, f ∈ Fn and x ∈ {0, 1}n.

2.3.1 Functions with Partial Domains

While in Section 2 we usually consider function families with full domain: f : {0, 1}n 7→
{0, 1}ℓ(n), which stands for {fn : {0, 1}n 7→ {0, 1}ℓ(n)}n∈N,11 in the following sections we typi-
cally find it more convenient to consider function families with partial domain: {fn : S(n) 7→
{0, 1}ℓ(n)}n∈N, which we denote by f : S(n) 7→ {0, 1}ℓ(n). It is easy to see, however, that each
of theses partial-domain families admits (via padding) a full-domain family with the same
“features”, e.g., if the partial-domain family is one way, then its full-domain variant is one-
way with exactly the same security guarantee (ignoring constant factors). Hence, one can
safely apply (as we do) definitions and lemmas that are stated with respect to full-domain
function families, to a partial-domain family, while such application is formally reasoned
with respect to the full-domain variant of the family.

2.4 Pairwise-Independent Hash Functions

Definition 2.2 (pairwise-independent hash functions). An ensemble of function families
H = {Hn = {h : {0, 1}n 7→ {0, 1}ℓ(n)}}n∈N is a family of pairwise-independent hash functions, if
for every n ∈ N and x ̸= x′ ∈ {0, 1}n, it holds that (h(x), h(x′))h←Hn is uniformly distributed
over {0, 1}2ℓ(n).

For any polynomial-time computable function ℓ(n) ≤ poly(n), there are various construc-
tions of efficient families of pairwise-independent hash functions whose description length
(i.e., d(n) according to Definition 2.1) is linear in n+ ℓ(n) (e.g., [3]).

In some cases we cannot afford to use hash functions whose description length is linear
in the input size, but can only afford a description that is linear in the output size. In such
cases we use the following relaxation of pairwise-independent hash functions:

Definition 2.3 (almost pairwise-independent hash functions). An ensemble of function fam-
ilies Hn = {h : {0, 1}n 7→ {0, 1}ℓ(n)}n∈N is a family of ε(n)-almost pairwise-independent hash
functions, if for any n ∈ N and x ̸= x′ ∈ {0, 1}n it holds that (h(x), h(x′))h←Hn is ε(n)-close
to the uniform distribution over {0, 1}2ℓ(n).

11One exception is Lemma 2.9, where we consider a function family over {{0, 1}2n ×Hn}.
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Due to [3, 33] and [27], for any polynomial-time computable functions ε and ℓ, where
ℓ(n) is an integer function bounded by poly(n), there exist efficient families of ε(n)-almost
pairwise-independent hash functions whose description length is Θ(log(n)+ℓ(n)− log(ε(n))).

2.5 Randomness Extractors

Randomness extractors, introduced by Nisan and Zuckerman [30], are an information the-
oretic tool for obtaining true randomness from a “weak” source of randomness. In this
work extractors are used in a computational setting to extract pseudorandomness from an
imperfect source.

Definition 2.4 (strong extractors). A function Ext : {0, 1}q × {0, 1}n 7→ {0, 1}ℓ is (k, ε)-
strong extractor, if ∆((Ext(Uq, X), Uq), (Uℓ, Uq)) ≤ ε for every distribution X over {0, 1}n
with H∞(X) ≥ k.

2.6 Bounded-Space Generators

Bounded-space generators refer to (pseudorandom) generators that fool bounded-space ad-
versaries. Such generators play a central role in derandomization tasks. We are interested
in generators for the following type of adversaries:

Definition 2.5 (bounded-width layered branching program - LBP). An (s,m, v)-LBP M
is a finite directed acyclic graph whose nodes are partitioned into m + 1 layers indexed by
{1, . . . ,m + 1}. The first layer has a single node (the source), the last layer has two nodes
(sinks) labeled with 0 and 1, and each of the intermediate layers has up to 2s nodes. Each
node in the i ∈ [m] layer has exactly 2v outgoing labeled edges to the (i+ 1)st layer, one for
every possible string z ∈ {0, 1}v.

For a sequence z ∈ {0, 1}mv, we let M(z) (the output of M on input z) be the label reached
at the end of the following m-step walk: the walk starts at the source node of the first layer,
and at each step advances from the ith to the (i+ 1)st layer along the edge labeled by zi.

An alternative (and somewhat more intuitive) description to the above, associates labels
with the graph’s nodes (rather than with its edges). Upon “reading” the input zi, the
program uses an arbitrary computation, which depends only on the current node label and
zi, and advances to a node in the i+ 1 layer.

Definition 2.6. A generator BSG : {0, 1}n 7→ {0, 1}mv is said to ε-fool an LBP M , if

|[M(Umv) = 1]− Pr[M(BSG(Un)) = 1]| < ε.

The following theorem immediately follows from [24, Thm 2].

Theorem 2.7 ([29, 24]). Let s(n),m(n), v(n) ∈ N and ε(n) ∈ (0, 1) be polynomial-time
computable functions. Then there exist a polynomial-time computable function q(n) ∈
Θ(v(n)+(s(n)+log(m(n)/ε(n)))·logm(n)) and a generator BSG : {0, 1}q(n) 7→ {0, 1}m(n)·v(n)

that runs in time poly(s(n),m(n), v(n), log(1/ε(n))), and ε(n)-fools every (s(n),m(n), v(n))-
LBP.
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2.7 One-Way Functions

Definition 2.8 (one-way functions). A function f : {0, 1}n 7→ {0, 1}ℓ(n) is (T (n), ε(n))-one-
way, if f is polynomial-time computable and

Pry←f(Un)[A(1
n, y) ∈ f−1(y)] < ε(n)

for any algorithm A of running time T (n) and large enough n.12 A one-way permutation is a
one-way function that is a permutation over {0, 1}n for every n ∈ N. A function f is regular,
if there exists an integer function α such that∣∣f−1(f(x))∣∣ = α(n)

for every n ∈ N and x ∈ {0, 1}n. In the special case that α is polynomial-time computable,
we say that f is known regular.13

In the case that ε(n) = 1/T (n), we simply write that f is T (n)-one-way. f is one-way,
if it is T (n)-one-way for every T ∈ poly, where f is exponentially hard (one-way), if it is
2cn-one-way for some constant c > 0. Finally, if f is (T (n) > nO(1), 1 − ε(n))-one-way, it is
customary to call it an ε(n)-weak one-way function.

2.7.1 Length Preserving One-Way Functions

In the following we prove the “folklore” fact that a one-way function can be assumed without
loss of generality to be length preserving. In the case where the function is length decreasing,
one can generate a length preserving one-way function simply by padding the output with
extra zeros. In the case that it is length increasing, however, one needs to be more careful
in order for the input length to remain of the same order.

Lemma 2.9. Let f : {0, 1}n 7→ {0, 1}ℓ(n) be a (T = T (n), ε = ε(n))-one-way function and let
H be an efficient family of 2−2n-almost pairwise-independent hash functions from {0, 1}ℓ(n)
to {0, 1}2n. We define g as

g(xa, xb, h) = (h(f(xa)), h),

where xa, xb ∈ {0, 1}n and h ∈ H. Then g is a length-preserving (T − nO(1), ε+ 2−n+1)-one-
way function.14

Recall that by [3, 33] and [27], we have such hash families whose description length is
Θ(n).

Proof. The function g is length preserving as both input and output are of length 2n plus
the description of h ∈ H. Let A be an algorithm that runs in time TA = TA(n) and inverts g
with probability εA = εA(n). Note that xb is a dummy input (used just for padding) so the
success of A is taken over (xa, h) and A’s randomness. Define MA as follows:

12We typically omit the security parameter (i.e., 1n) from the adversary’s parameters list.
13In this work we do not require such property, and our results hold for functions with unknown regularity.

Thus, when we say regular functions we actually mean unknown-regular functions.
14See Section 2.3.1 regarding the fact that g is only defined over some input lengths.
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Algorithm 2.10. (MA)

Input: y ∈ f({0, 1}n).
Operation:

1. Choose a uniformly random h ∈ H.

2. Apply A(h(y), h) to get an output (xa, xb, h).

3. Output xa.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clearly, the running time of MA is (at most) TA+nO(1). Algorithm MA is sure to succeed
on any choice of (y, h) for which the following hold: A succeeds on (h(y), h) and there exists
no y′ ̸= y ∈ f({0, 1}n) such that h(y′) = h(y) (h does not introduce any collision to y). Let
S := {(y, h) ∈ {0, 1}n ×H : ∃y′ ̸= y ∈ f({0, 1}n) : h(y′) = h(y)}. Thus,

Pr[MA(f(Un)) ∈ f−1(f(Un))] ≥ Pr[A(g(Un, H)) ∈ g−1(g(Un, H)) ∧ g(Un, H) /∈ S]
≥ Pr[A(g(Un, H)) ∈ g−1(g(Un, H))]− Pr[g(Un, H) ∈ S],

where H is a random variable uniformly distributed over H. The almost pairwise indepen-
dence of H assures that for every y ̸= y′ ∈ f({0, 1}n), it holds that Pr[H(y′) = H(y)] ≤
2−2n+1. Since |f(Un)| ≤ 2n, a union bound implies that Pr[∃y′ ̸= y ∈ f({0, 1}n) : H(y′) =
H(y)] ≤ 2−n+1 for every y ∈ f(Un). Thus, an averaging argument yields that Pr[(f(Un), H) ∈
S] ≤ 2−n+1. Putting it all together, we get that Pr[MA(f(Un)) ∈ f−1(f(Un))] ≥ εA − 2−n+1.

�

2.8 Hardcore Predicates and Functions

Hard-core predicates/functions have a major role in the construction of one-way function
based pseudorandom generators.

Definition 2.11 (hardcore functions). We call hc : {0, 1}n 7→ {0, 1}ℓ(n) a (T (n), ε(n))-
hardcore function of f : {0, 1}n 7→ {0, 1}∗ over S = {S(n) ⊆ {0, 1}n}n∈N, if

∆D
(
(1n, f(x), hc(x))x←S(n), (1

n, f(x), Uℓ(n))x←S(n)
)
≤ ε(n),

for any algorithm D of running-time T (n) and large enough n.

We use the following conventions: in case S(n) = {0, 1}n for every n, we omit it from the
above notation. In the case that ε = 1/T , we simply say that hc is a T -hardcore function.
Where hc is simply a hardcore function, if it is a T (n)-hardcore function for every T ∈ poly.
If hc is a predicate (i.e., ℓ(n) = 1), it is called a hardcore predicate of f .15 Finally, it is
common to call the value hc(x), the “hardcore-bits” of f(x).

15For hardcore predicates, it is more common (and somewhat more convenient) to measure the advantage
of a possible “predictor” in guessing hc(x) given f(x), rather than the distinguishing gap as above. Yet, we
preferred the above definition to have the same terminology for (hardcore) predicates and functions.
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It is easy to see that a (T (n), ε(n))-hardcore predicate of f over {S(n) ⊆ {0, 1}n}n∈N
of density δ (i.e., S(n) is of density δ(n) with respect to {0, 1}n, for every n ∈ N), is a

(T (n), δ(n) · ε(n)+ 1−δ(n
2

)-hardcore predicate of f over the whole domain (i.e., {{0, 1}n}n∈N).
We use the Goldreich-Levin hardcore functions, and in particular make use of the follow-

ing theorem whose proof immediately follows from [8, Corollary 1].

Theorem 2.12 ([8]). There exists a polynomial-time computable function gl : {0, 1}3v 7→
{0, 1}v such that the following holds: let f : {0, 1}n 7→ {0, 1}mf (n) and g : {0, 1}n 7→
{0, 1}mg(n) be two polynomial-time computable functions over {0, 1}n, and let S = {S(n) ⊆
{0, 1}n}n∈N. Assume that

Prx←S(n)[A(1
n, f(x)) = g(x)] ≤ ε(n)

for any algorithm A of running time T (n) and large enough n. Then for any ℓ(n) ∈ [mg(n)],
the function hc : {0, 1}n × {0, 1}2mg(n) 7→ {0, 1}ℓ(n), defined as hc(x, r) = gl(g(x), r)1,...,ℓ(n),
is a (T (n) · (ε(n)/n)O(1), O(2ℓ(n) · ε(n)))-hardcore function of f ′(x, r) = (f(x), r) over S ′ =
{S(n)× {0, 1}2mg(n)}n∈N.16

For the important case of super-polynomial hardness and polynomial-time computable f
and g, the above theorem yields the following fact:

Corollary 2.13. Let f , g, S, hc, f ′ and S ′ be as in Theorem 2.12. Assume that f is
polynomial-time computable, that ℓ(n) ∈ O(log n) and that

Prx←S(n)[A(1
n, f(x)) = g(x)] = neg(n)

for any ppt A, then hc is a hardcore function of f ′ over S ′.

2.9 A Uniform Extraction Lemma

The following lemma is a generalization of the (uniform version) of Yao’s XOR lemma. Given
t independent (T, (1−ε)/2)-hardcore bits, we “extract” approximately εt pseudorandom bits
out of them.17

The basic statement is that the application of a strong randomness extractor to t inde-
pendent ”weak” hardcore bits, forms a strong hardcore function. In our discussion we denote
the weak hardcore predicate by b and the output of the extractor by hc. The statement is
proved by showing a reduction from a distinguishing algorithm D that succeeds in distin-
guishing between the output of hc and true randomness (when seeing the output of f), to
an algorithm that predicts the weak hardcore predicate b with high success probability, thus
contradicting the hardness guarantees of the weak hardcore predicate.

16The computation of the first ℓ output bits of gl only uses the first mg + ℓ− 1 bits of r. In particular for
ℓ = 1, the input length of hc (the “Goldreich-Levin predicate”) can be made mg (and not 2mg as stated in
the theorem). Yet, to simplify notations we always apply hc on inputs of length 2mg.

17Lemma 2.14 generalizes [16, Lemma 6.5]. Independently of this work, [20, Thm 7.3] presents a similar
generalization of this lemma.
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For convenience of presentation, we denote by ρδ,t,m the probability that out of t inde-
pendent binomial random variables, each with probability at least δ of being one, at least m
come out ones.

Lemma 2.14. Let f : {0, 1}n 7→ {0, 1}ℓ, b : {0, 1}n 7→ {0, 1}, and let Ext : {0, 1}q×{0, 1}t 7→
{0, 1}r be a (m, εExt)-strong extractor over {0, 1}t where ℓ, q, t, m and r are functions of
n and εExt ∈ (0, 1]. Moreover, assume that f , b and Ext are polynomial-time computable
(when Ext is given also given n as an additional advice).

Define hc : {0, 1}q × {0, 1}t×n 7→ {0, 1}r as

hc(s, x1, . . . , xt) = (s,Ext(s, b(x1), . . . , b(xt))).

Then for any distinguishing algorithm D, there exists a ppt M such that the following holds:
If δ ∈ (0, 1] and γ ∈ (3t · 2−n/3, 1] are such that

εD := ∆D
(
(1n, f(Un

1), . . . , f(Un
t), hc(Uq, b(Un

1), . . . , b(Un
t))), (1n, f(Un

1), . . . , f(Un
t), Uq, Ur)

)
(1)

> εExt + ρδ,t,m + γ,

then

Pr
[
M(1n, 1TD(n), 1⌊1/δ⌋, 1⌊1/γ⌋, f(Un)) = b(Un)

]
> 1− δ/2 + c · γ2 · δ5,

where TD(n) bounds the running time of D and c > 0 is a universal constant.

Specifically, for the right choice of parameters, if b is a hardcore predicate of f and Ext
is a strong extractor, then hc is an hardcore function of f(x1, . . . , xt) = f(x1), . . . , f(xt).

Proof. For a fixed set S ⊆ {0, 1}n of density δ, define the following (not necessarily efficiently
computable) randomized predicate Q : {0, 1}n 7→ {0, 1}:

Q(x) =

{
U1 x ∈ S,
b(x) otherwise.

(2)

For i ∈ {0, . . . , t}, define the random variable X i as

X i = (1n, f(Un
1), . . . , f(Un

t), Uq,Ext(Uq, b(Un
1), . . . , b(Un

i), Q(Un
i+1), . . . , Q(Un

t)) (3)

By definition, the statistical distance between X0 and (1n, f(Un
1), . . . , f(Un

t), Uq, Ur) is
bounded by εExt + ρδ,t,m. Since X t = (1n, f(Un

1), . . . , f(Un
t), hc(Uq, Un

1, . . . , Un
t)), it fol-

lows that

Pr[D(X t) = 1]− Pr[D(X0) = 1] > εD − εExt − ρδ,t,m = γ, (4)

where the absolute value is omitted without loss of generality. A straightforward hybrid
argument yields that D distinguishes between Xj and Xj+1 with advantage γ/t, for some
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j ∈ {0, . . . , t−1}. We next use D to define an algorithm D1 for telling (f(X), b(X))x←S from
f(X), U)x←S : algorithm D1 first finds j ∈ {0, . . . , t− 1} with

Pr[D(Xj+1) = 1]− Pr[D(Xj) = 1] > γ/2t (5)

Note that using 4nt3/γ2 simulations of D, such index j can be found cor-
rectly with probability 1 − 2−n. Then on input (y, b), algorithm D1 returns
D(1n, f(U1

n), . . . , f(U
j
n), y, f(U

j+1
n ), . . . , f(U t

n), Uq,Ext(Uq, b(U
1
n), . . . , b(U

j
n), b, U

j+2, . . . , U t)).
It follows that

Pr[D1(f(Un), b(Un)) = 1]− Pr[D1(f(Un), U) = 1] > γ/2t− 2−n > γ/3t (6)

and that the running time of D1 is poly(n) · TD(n)/γ
2. Moreover, since Xj and Xj+1 are

identical when conditioned that Un
j+1 /∈ S, then Equation (6) holds even when conditioning

on Un ∈ S. Using a standard reduction from distinguishing to predicting (e.g. in [7, Sec
3.3.5]) we get that there exists a predictor P that using a single call to D1 achieves

Prx←S [P (f(x)) = b(x)] >
1

2
+ γ/3t (7)

We complete the proof using the following proposition, which immediately follows from [20,
Thm 6.8].18

Proposition 2.15. (Uniform Hardcore Lemma, [20]) Let f : {0, 1}n 7→ {0, 1}ℓ(n) and
b : {0, 1}n 7→ {0, 1} be polynomial-time computable functions. Then for any predictor al-
gorithm P there exists a ppt M such that the following holds for any n ∈ N, δ ∈ (0, 1] and
γ ∈ (2−n/3, 1]: assuming that

Prx←S [P
χS (f(x)) = b(x)] >

1

2
+ γ

for every set S ⊆ {0, 1}n of density δ, where all of P ’s queries to χS are computed indepen-
dently of the input f(x), then

Pr[M(1n, 1TP (n), 1⌊1/δ⌋, 1⌊1/γ⌋, f(Un)) = b(Un)] > 1− δ/2 + c · γ2 · δ5,

where TP (n) bounds the running time of P and c > 0 is a universal constant.

Given Equation (7), Proposition 2.15 yields the existence of a ppt M with

Pr
[
M(1n, 1TD(n), 1⌊1/δ⌋, 1⌊1/γ⌋, f(Un)) = b(Un)

]
> 1− δ/2 + c · γ2 · δ5

for any such n, m, δ and γ. �
18[20, Thm 6.8] requires δ and γ to be polynomial-time computable and noticeable, where here we give

them as parameters and give no such restrictions on their values. Nevertheless, the generalization presented
here readily follows from the original proof.
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2.10 Pseudorandom Generators

Definition 2.16 (pseudorandom generators). An ensemble of distributions D = {Dn}n∈N
over {0, 1}ℓ(n) is (T (n), ε(n))-pseudorandom, if

∆D
(
Dn, Uℓ(n)

)
< ε(n)

for every algorithm D of running time T (n) and large enough n.
A a function G : {0, 1}n 7→ {0, 1}ℓ(n) is a (T (n), ε(n))-pseudorandom generator,

if it is length-increasing and polynomial-time computable, and G(Un) is ((T (n), ε(n))-
pseudorandom.

In the case that ε(n) = 1/T (n), we simply say that G is a T (n)-pseudorandom generator,
where G is a pseudorandom generator, if it is T (n)-pseudorandom generator for any T ∈ poly.

2.11 The Security of Cryptographic Constructions

Typically, the proof of security for cryptographic constructions is based on reductions. In this
paradigm we use a presumably secure implementation of one primitive (or possibly several
primitives) in order to implement a second primitive. The proof of security for the second
primitive relies on the security assumption for the original one. More precisely, we prove that
any efficient adversary that breaks the implementation of the second primitive can be used
to efficiently break the original primitive. Note that the meaning of “breaking a primitive”
and, furthermore, the definition of the success probability of an adversary in breaking the
primitive, varies between different primitives. For example, in the case of one-way functions
the success probability is the fraction of inputs on which the adversary manages to invert
the function. Usually, there is a tradeoff between the running time of an adversary and its
success probability (e.g., it may be possible to utterly break a primitive by enumerating all
possibilities for the secret key). Therefore, both the running time and success probability
of possible adversaries are relevant when analyzing the security of a primitive. A useful,
combined parameter is the time-success ratio of an adversary which we define next.

Definition 2.17 (time-success ratio). Let P be a primitive and let A be an adversary running
in time TA(n) and breaking P with probability εA(n). The time-success ratio of A in breaking

P is defined as R(n) = TA(n)
εA(n)

, where n is the security-parameter of the primitive.

Note that in the above definition, the smaller the R the better A is in breaking P . A
quantitative analysis of the security of a reduction is crucial for both theoretical and practical
reasons. Given an implementation of primitive P using primitive Q along with a proof of
security, let RP be the security-ratio of a given adversary with respect to P and let RQ be the
security-ratio of the adversary that the proof of security yields. A natural way to measure
the security of a reduction is by the relation between RP and RQ. Clearly, the smaller the
RQ comparing to RP , the better the performance of the adversary the reduction yields when
trying to break Q comparing to the performance of the adversary trying to break P .
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The most desirable reduction is when RQ(n) ∈ nO(1) ·O(RP (O(n))). In such reductions,
known as linear-preserving reductions, we are guaranteed that breaking the constructed
primitive is essentially as hard as breaking the original one. Next we find the polynomial-
preserving reductions when RQ ∈ nO(1) · O(RP (O(n))O(1)). Note that a linear/polynomial-
preserving reduction typically means that for the same level of security we can take the inputs
of Q and P to be of the same length (up to a constant-ratio). The other side of the scale is
when RQ ∈ nO(1) · O(RP (n

O(1))). In such reductions, known as weak-preserving reductions,
we are only guaranteed that breaking P is as hard as breaking Q for polynomially smaller
security-parameter (e.g., polynomially smaller input length). For a more comprehensive dis-
cussion of the above issues the reader may refer to [6, 17]. This quantitative classification of
security preserving reduction partly motivates our focus on the input length as the main pa-
rameter that our reductions aim to improve. In particular, better space bounded generators
would make our reduction polynomial preserving rather than weak preserving.

2.11.1 Black-Box Reductions

It is worth mentioning while the reductions given in Sections 3 and 6 are fully black box, the
underlying function and the possible adversary are treated as black boxes (i.e., as oracles), the
reductions given in Sections 4 and 5 are not. The latter reductions are all using Holenstein’s
“uniform hardcore lemma” (specifically, [20, Thm 6.8]) that has a non-black box proof. This
usage of non-black-box proof, however, does not seems inherent to the problem, and it is
very likely that the proof of [20, Thm 6.8] can be made to be fully black-box. Such a change
would also change these reductions to be fully black box.

3 Pseudorandom Generators from Regular One-Way

Functions

The following discussion considers only length preserving regular one-way functions, where
the extension to general regular one-way functions is described in Section 3.4.1.

3.1 Some Motivation and the Randomized Iterate

Recall that the BMY generator simply iterates a one-way permutation f : {0, 1}n 7→ {0, 1}n
on itself for n + 1 times and outputs a hardcore bit of each iteration. The rational is that
since f is a permutation, the output of each iteration is uniform in {0, 1}n and therefore it
is hard to invert f on each of the iterations. It follows that output bits of the generator are
unpredictable, and by Yao [34] they are also pseudorandom.

We want to duplicate this approach for general one-way functions, but unfortunately
the situation changes drastically when the function f is not a permutation. After a single
application of f , the output may be very far from uniform, and in fact may be concentrated
on a very small and easy fraction of the inputs to f . Thus, reapplying f to this output gives
no hardness guarantees at all. In an attempt to salvage the BMY framework, Goldreich et al.
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[11] suggested to add a randomization step between every two applications of f , making the
next input to f a truly random one. This modification, which we call the randomized iterate,
lies at the core of our work and is defined next.

Definition 3.1 (the randomized iterate). Let n ∈ N, f : {0, 1}n 7→ {0, 1}n and let H be
a family of pairwise-independent length-preserving hash functions over strings of length n.
For k ∈ N, x ∈ {0, 1}n and h = (h1, . . . , hk−1) ∈ Hk−1, define the k’th randomized iterate
fk : {0, 1}n ×Hk−1 7→ {0, 1}n recursively as

fk(x, h) = f(hk−1(f
k−1(x, (h1, . . . , hk−2))),

where f1(x) = f(x). For m > k − 1, we let fk(x, h1, . . . , hm) = fk(x, h1, . . . , hk−1).
In the following we denote by Hj the random variable uniformly distributed over Hj.

The application of the randomized iterate for pseudorandom generators is a bit tricky.
On the one hand, such a randomization costs a large number of random bits, much larger
than what can be compensated for by the hardcore-bits generated in each iteration. So in
order for the output to actually be longer than the input, we also output the descriptions
of the hash functions. But on the other hand, handing out the randomizing hash gives
information on intermediate values such as f i(x, h), and thus f might no longer be hard to
invert when applied to such an input. Somewhat surprisingly, the randomized iterate of a
regular one-way function remains hard to invert even when the hash functions are known.
This fact, which is central to the whole approach, was proved in [11] when using a family of
n-wise independent hash functions. As a first step, we give a simpler proof that extends to
pairwise-independent hash functions as well.

3.2 The Last Randomized Iteration is Hard to Invert

In this section we formally state and prove the key observation mentioned above. After
applying k randomized iterations of a regular one-way function f , it is hard to invert the
last iteration, even if given access to all of the hash functions leading up to this point.

Lemma 3.2. Let n, f , H, k and fk be as in Definition 3.1. Assume that f is regular, then
for any algorithm A with

Pr[A(fk(Un, H
k−1), Hk−1) = fk−1(Un, H

k−1)] = εA

it holds that

Pr[Hk−1
k−1 (A(f(Un), H

k−1)) ∈ f−1(f(Un))] ≥ ε2A/k.

Assuming that f one-way, we get the following corollary.

Corollary 3.3. Let k(n) ∈ N, and for n ∈ N let f , H and fk be as in Definition 3.1 (that is
f , H and fk are infinite families of functions, whose input sets are indexed by n). Assuming
that f is a regular one-way function, that H is efficiently computable and that k ≤ poly(n),
then the following hold:
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1. Pr[A(fk(Un, H
k−1), Hk−1) = fk−1(Un, H

k−1)] = neg(n) for any ppt A, and

2. The predicate bk : {0, 1}n × Hk−1 × {0, 1}2n 7→ {0, 1} defined as bk(x, h, r) =

gl(fk−1(x, h), r)1 is a hardcore predicate of f̂k(x, h, r) = (fk(x, h), h, r), where gl is
the Goldreich-Levin hardcore function (see Theorem 2.12).

Proof. Assume there exists a ppt A that violates (1), Lemma 3.2 yields that
Pr[Hk−1

k−1 (A(f(Un), H
k−1)) ∈ f−1(f(Un))] ̸= neg(n). Hence, there exists a ppt that inverts

f with non-negligible probability, in contradiction to the one-wayness of f . The the second
part of the corollary immediately follows from (1) and Theorem 2.12, when plugging f = fk,
g = fk−1 and S(n) = {0, 1}n ×Hk−1. �

Proof. (of Lemma 3.2) Note that A(fk(x, h), h) = fk−1(x, h) implies that
hk−1(A(f

k(x, h), h)) ∈ f−1(fk(x, h)). Since fk(Un, H
k−1) and f(Un) are identically

distributed, the lemma would have trivially followed had Hk−1 been independent of
fk(Un, H

k−1). Unfortunately, this is clearly not the case for arbitrary an function f . Rather,
Lemma 3.4 states that for our purposes, the variables Hk−1 and fk(Un, H

k−1) are “close
enough” to being independent in the case of regular functions. Details follow.

In the following we assume that A is deterministic, where the proof for randomized A
would follow.19 Let GoodA ⊂ {0, 1}n × Hk−1 include the inputs on which A is successful
upon. Namely,

GoodA = {(y, h) ∈ {0, 1}n ×Hk−1 : hk−1(A(y, h)) ∈ f−1(y)} (8)

Since Pr[(fk(Un, H
k−1), Hk−1) ∈ GoodA] = εA, the proof of Lemma 3.2 follows by the next

lemma when plugging in L = GoodA and δ = εA.

Lemma 3.4. Let f , H, k, and fk be as in Lemma 3.2. Assume that f is regular, then for
any set L ⊆ {0, 1}n ×Hk−1 with

Pr[(fk(Un, H
k−1), Hk−1) ∈ L] ≥ δ,

it holds that
Pr[(f(Un), H

k−1) ∈ L] ≥ δ2/k.
�

19Let N be the number of different values for the coins used by A, let Ar be the instance of A whose random
coins are fixed to r and let εAr be the success probability of Ar. Assuming Lemma 3.2 for deterministic
algorithms, it follows that

Pr[Hk−1
k−1 (A(f(Un),H

k−1)) ∈ f−1(f(Un))] =
1

N
·
∑
r

Pr[Hk−1
k−1 (Ar(f(Un), H

k−1)) ∈ f−1(f(Un))]

≥ 1

N
·
∑
r

ε2Ar

k
=

1

Nk
·
∑
r

ε2Ar
≥ 1

Nk
·N · ε2A = ε2A/k,

where the first inequality is by Lemma 3.2 (for deterministic algorithms) and last one follows since εA =
1
N

∑
r εAr and using the inequality ∥x∥1 ≤

√
N · ∥x∥2, for any x ∈ RN .
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Proof. The lemma essentially states that with respect to f̂k(x, h) = (fk(x, h), h) (i.e., the
function defined by concatenating the input hash functions to the output of fk), any large
subset of inputs induces a large subset of outputs. Thus, there is a fairly high probability
of hitting this output set simply by sampling independent y and h. Intuitively, if a large
set of inputs induces a small set of outputs, then there must be many collisions in this set
(a collision means that two different inputs lead to the same output). Indeed, to prove the
lemma we start by showing that many collisions are impossible, or more precisely, by proving
an upper bound on the collision probability of the function (fk(x, h), h).

Claim 3.5. It holds that

CP(fk(Un, H
k−1), Hk−1) ≤ k

|H|k−1 · |f({0, 1}n)|
.

Proof. For every two inputs (x0, h0) and (x1, h1) to fk, in order to have a collision
we must first have that h0 = h1, which happens with probability 1

|H|k−1 . Now, given

that h0 = h1 = h (with a random h ∈ Hk−1), we require also that fk(x0, h) equals
fk(x1, h). If f(x0) = f(x1) (happens with probability 1/ |f({0, 1}n)|) then a collision is
assured. Otherwise, there must be an i ∈ [k − 1] for which f i(x0, h) ̸= f i(x1, h), but
f i+1(x0, h) = f i+1(x1, h). Since f i(x0, h) ̸= f i(x1, h), due to the pairwise independence of
hi, the values hi(f

i(x0, h)) and hi(f
i(x1, h)) are uniformly random values in {0, 1}n, and

thus f(hi(f
i(x0, h))) = f(hi(f

i(x1, h))) happens with probability 1/ |f({0, 1}n)|. Altogether,
CP(fk(Un, H

k−1), Hk−1) ≤ 1

|H|k−1 · k
|f({0,1}n)| . �

Continuing the proof of Lemma 3.4, we now find a lower bound on the probability of
getting a collision, namely a lower bound on the quantity CP(fk(Un, H

k−1), Hk−1). We do so
by bounding the (possibly smaller) probability of getting a collision (x0, h0) = (x1, h1) ∈ L,
for two independent values of (fk(Un, H

k−1), Hk−1). We first request that both (x0, h0) ∈ L
and (x1, h1) ∈ L. This happens with probability at least δ2. Once inside L, we know that
the probability of collision is at least 1/ |L|. Altogether:

CP(fk(Un, H
k−1), Hk−1) ≥ δ2 · 1

|L|
. (9)

Combining Claim 3.5 and eq. (9), we get |L|
|H|k−1·|f({0,1}n)| ≥

δ2

k
. Since the probability of getting

a value in L when choosing a random element in f({0, 1}n)×Hk−1 is exactly |L|
|H|k−1·|f({0,1}n)|

(this follows since for a regular function f the distribution f(Un) is the uniform distribution
over f({0, 1}n)). It follows that Pr[(y, h) ∈ L] ≥ δ2/k as requested. �

3.3 Pseudorandom Generators from Regular One-Way Functions

After showing that the randomized iterations of a regular one-way function are hard to invert,
it is natural to follow the footsteps of the BMY construction to construct a pseudorandom
generator. Rather than using simple iterations of the function f , randomized iterations of f
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are used instead, with fresh randomness in each application. As in the BMY case, a hardcore-
bit(s) of the current input is taken at each stage. In order to keep things more readable, we
start by giving our pseudorandom generator based on regular one-way functions with super-
polynomial hardness (i.e., standard one-way functions). In Section 3.3.1, we generalize this
result to regular one-way functions with arbitrary hardness. In particular, we get more
efficient pseudorandom generators, assuming that underlying regular one-way functions are
exponentially hard.

Theorem 3.6. For n, k ∈ N, let f , H and fk be as in Definition 3.1, and let b(·) := gl(·)1,
where gl is the Goldreich-Levin hardcore function (see Theorem 2.12). We define G over
{0, 1}n ×Hn × {0, 1}2n as

G(x, h, r) = (b(f 1(x, h), r), . . . , b(fn+1(x, h), r), h, r).

Assuming that f is a regular one-way function and that H is efficient, then G is a pseudo-
random generator.

Proof. Let bk(x, h, r) = b(fk(x, h), r). Corollary 3.3 yields that bk is a hardcore function of

f̂k(x, h, r) = (fk(x, h), h, r). In the following we show that any algorithm that breaks the
pseudorandomness of G, violates the hardness of b(fk−1) for some k ∈ [n+ 1].

We do the proof with respect to the reordering of the output bits of G as
(r, h, bn+1, . . . , b1), as this shuffling has no effect the pseudorandomness property. Yao [34]
showed using a hybrid argument that it is, up to linear factor, as hard to distinguish a pseu-
dorandom sequence from a random one, as it is to predict the next bit of the sequence for
every prefix of the sequence. Thus, it suffices to show that for every k ∈ [n + 1] it is hard
to predict bk−1 given (r, h, bn+1, . . . , bk). Assume toward a contradiction the existence of a
ppt P for which Pr[P (r, h, bn+1, . . . , bk) = bk−1] > 1

2
+ ϕ(n) for some non-negligible function

ϕ(n). Consider the following efficient algorithm MP for predicting bk−1 given (r, h, fk(x, h)).

Algorithm 3.7. (MP )

Input: (r, h1, . . . , hk−1, f
k(x, h1, . . . , hk−1)).

Operation:

1. Choose uniformly at random hk, . . . , hn ∈ H,

2. Generate fk+1, . . . , fn+1 from (fk, hk+1, . . . , hn), i.e., fk+j(x, h1, . . . , hn) =
f j(hk(f

k(x, h1, . . . , hk−1)), hk+1, . . . , hn).

3. Output P (r, h1 . . . , hn, b
n+1, . . . , bk)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

By choosing hk+1, . . . , hn independently at random, MP generates a series (f 1, . . . , fn+1)
that has the same distribution as in the evaluation of G. Thus, the procedure MP succeeds
in predicting bk−1 with probability at least 1

2
+ ϕ(n), in contradiction to Corollary 3.3. �
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3.3.1 From Any Hardness

The next theorem generalizes Theorem 3.6 for regular one-way function with arbitrary hard-
ness. The construction simply takes many hardcore bits at each iteration (as much as the
hardness of the function allows) and the proof (omitted) follows the same lines as the proof
of Theorem 3.6, using an “any hardness” variant of Corollary 3.3 (see Corollary 4.2 for a
generalized version of this variant).

Theorem 3.8. Let f , H, fk and gl be as in Theorem 3.6, let ℓ = ℓ(n) ∈ [n] be a polynomial-
time computable function and let m(n) = ⌈n/ℓ⌉+1. We define G over {0, 1}n×Hm×{0, 1}2n
as

G(x, h, r) = (gl(f1(x, h), r)1,...,ℓ, . . . , gl(f
m(x, h), r), h, r)1,...,ℓ, h, r).

Assuming that f is a (T (n), ε(n)) regular one-way function and that H is efficient, then
G is a (T (n)·(ε′(n)/n)c, 2ℓ ·ε′(n)), where ε′(n) = nc ·

√
ε(n) and c > 0 is a universal constant.

For exponentially hard one-way regular one-way function, the above yields the following
“linear stretch” generator:

Corollary 3.9. Assume there exists a regular, exponentially hard one-way function, then
there exists a 2Ω(n)-pseudorandom generator with linear stretch.

3.4 An Almost-Linear-Input Generator from Regular One-Way
Functions

Assuming that the underlying function is one way in the usual sense (i.e., of super-polynomial
hardness) and that the hash function family has linear description size, the pseudorandom
generator presented in the previous section (when using Theorem 3.8) stretches a seed of
length Θ(n2/ log(n)) by log(n) bits. Although this is an improvement over the GKL genera-
tor, it still translates to a rather high loss of security, since the security of the generator on
d(n) bits relies on the security of regular one-way function on

√
d(n) bits. In this section

we give a modified construction of the pseudorandom generator of Theorem 3.6, whose seed
length is only d(n) ∈ Θ(n log n).

Notice that the input length of the generator of Theorem 3.6 is dominated by the descrip-
tion of the n independent hash functions h = (h1, . . . , hn). The idea of the new construction
is to derandomize the choice of h. Thus, h1, . . . , hn are no longer chosen independently,
but are chosen in a way that is sufficient for the proof to go through. The derandom-
ization uses generators against bounded-space distinguishers, and specifically we can use
the generator of Nisan [29], (or that of Impagliazzo, Nisan, and Wigderson [24]). The
key observation is that calculating the randomized iterate of an input can be viewed as a
bounded-space algorithm, alternatively presented here as a bounded-width layered branch-
ing program. More accurately, at each step the branching program gets a random input hi

and produces f i+1 = f(hi(f
i)). We will show that indeed when replacing h1, . . . , hn with

the output of a generator that fools such branching programs, then the proof of security still
holds (and specifically the proof of Lemma 3.4).
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Theorem 3.10. Let f , H, fk and b be as in Theorem 3.6. Let v(H) = 2n be the description
length of h ∈ H and let BSG : {0, 1}q(n)∈Θ(n logn) 7→ {0, 1}n·v(H) be a bounded-space generator
that 2−n-fools every (2n, n, v(H))-LBP.20 We define G over {0, 1}n×{0, 1}q(n)×{0, 1}2n as

G(x, s, r) = (b(f1(x,BSG(s)), r), . . . , b(fn+1(x,BSG(s)), r), s, r).

Assuming that f is a regular one-way function and that H is efficient, then G is a pseudo-
random generator.

Proof outline. The proof of the derandomized version follows in the steps of the proof of
Theorem 3.6. We give a high-level outline of this proof, focusing only on the main technical
lemma that changes slightly. The proof first shows that given the k’th randomized iterate
fk(x, h) and h, it is hard to compute fk−1(x, h) (analogously to Lemma 3.2), only now this
also holds when the hash functions are chosen as the output of the bounded-space generator.
The proof is identical to the proof of Lemma 3.2, only replacing appearances of h with the
seed s. Again, the key to the proof is the following technical lemma (slightly modified from
Lemma 3.4):

Lemma 3.11. For every set L ⊆ {0, 1}n × {0, 1}q(n) with

Pr[(fk(Un,BSG(Uq(n))), Uq(n)) ∈ L] ≥ δ,

it holds that

Pr[(f(Un), Uq(n)) ∈ L] ≥ δ2/(k + 1).

Once we know that fk−1(x,BSG(s)) is hard to compute given fk(x,BSG(s)) and s (for
random x and s), we deduce that one cannot predict a hardcore bit b(fk−1(x,BSG(s)), r)
given fk(x,BSG(s)) and the seed s to the bounded-space generator. From here, the proof
follows just as the proof of Theorem 3.6 in showing that the output of G is an unpredictable
sequence and therefore a pseudorandom sequence.

Proof. (of Lemma 3.11) Let q = q(n) and denote by g : {0, 1}n × {0, 1}q 7→ {0, 1}n × {0, 1}q
the function taking inputs of the form (x, s) to outputs of the form (fk(x,BSG(s)), s). We
proceed by giving bounds on the collision probability of g. For every two inputs (x0, s0) and
(x1, s1) to g, in order to have a collision we must first have that s0 = s1 which happens with
probability 1/2q. Now, given that s0 = s1 = s (with a random s), we analyze the probability
of the event that fk(x0,BSG(s)) equals fk(x1,BSG(s)).

Consider the following (2n, n, v(H))-LBP M for the input pair (x0, x1): the source node
is labeled by (y01 = f(x0), y

1
1 = f(x1)), and being on node labeled by (y0i , y

1
i ) in the i’th layer,

it does the following on input h ∈ H: let y0i+1 = f(h(y0i )) and y1i+1 = f(h(y1i )). If i < n,
it moves to the node (y0i+1, y

1
i+1) in the i + 1 layer. Otherwise (i.e., i = n), it moves to the

1-labeled node (in the n+ 1 layer) in case y0n+1 = y1n+1 and to the 0-labeled node otherwise.

20Such generators follow from Theorem 2.7.
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The LBP described above accepts (outputs 1) with probability that is exactly the desired
collision probability, that is, the probability that fk(x0, h) = fk(x1, h) over any distribution
on h = (h1, . . . , hk−1). For every pair (x0, x1) with f(x0) ̸= f(x1), this probability over
random h was bounded in the proof of Lemma 3.4 by:

Prh←Hk−1 [fk(x0, h) = fk(x1, h)] ≤
k − 1

|f({0, 1}n)|
.

Since the generator fools the above LBP, then replacing the random inputs h with the output
of the bounded-space generator does not change the probability of acceptance by more than
εBSG(n) = 2−n. Therefore, assuming f(x0) ̸= f(x1), we have that

Prs←Uq [f
k(x0,BSG(s)) = fk(x1,BSG(s))] ≤ k − 1

|f({0, 1}n)|
+

1

2n
(10)

When taking the probability over random (x0, x1), we also add the probability that f(x0) =
f(x1). Thus,

Pr(x0,x1)←U2n,s←Uq [f
k(x0,BSG(s)) = fk(x1,BSG(s))] ≤ k

|f({0, 1}n)|
+

1

2n
≤ k + 1

|f({0, 1}n)|
.

Plugging the above into the calculation of the collision probability of the function g (recall
that g(x, s) = (fk(x,BSG(s)), s)), we get:

CP(g(Un, Uq)) ≤
k + 1

2q · |f({0, 1}n)|
(11)

Continuing the proof, we now find a lower bound on the probability of getting a collision
inside the set L, which is a lower bound on the probability of getting a collision at all. We
first request that both fk(x0,BSG(s0)) ∈ L and fk(x1,BSG(s1)) ∈ L, which happens with
probability at least δ2. Once inside L, we know that the probability of collision is at least
1/ |L|. Altogether:

CP(g(Un, Uq)) ≥ δ2/ |L| (12)

Combining Equations (11) and (12), we get

|L|
2q · |f({0, 1}n)|

≥ δ2

k + 1
.

But the probability of getting a value in L when choosing a random element in f({0, 1}n)×
{0, 1}q is exactly |L|

2q ·|f({0,1}n)| . Thus, Pr[(f(Un), Uq(n)) ∈ L] ≥ δ2/(k + 1) as requested. �

Remark 3.12. It is tempting to think that one should replace Nisan generator in the above
proof with the generator of Nisan and Zuckerman [30]. That generator may have seed of
size Θ(n) (rather than Θ(n log n)), where s = 2n as in our case. Unfortunately, with such
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a short seed, that generator incurs an error εBSG(n) = 2−n
1−γ

for some constant γ, which is
too high for our proof to work. In order for the proof to go through we need that εBSG(n) <
poly(n)/ |f({0, 1}n)|. Interestingly, this means that we get a linear-input construction when
the image size is significantly smaller than 2n; in order to achieve a linear-input construction
in the general case, we need better generators against LBPs (that have both short seed and
small error).

3.4.1 Dealing with Non Length-Preserving Functions

The pseudorandom generators presented in this section assumed that the underlying regular
one-way function is length preserving. We mention that this is not a necessity and outline
how any regular one-way function can be used. For the simple case that f is shrinking,
simply padding the output to the same length is sufficient.21 The more interesting case is of
a length-expanding one-way function f . The important point is that we want the generator
to be almost linear in the length of the input to f rather than its output. In Lemma 2.9
we show how to transform an expanding one-way function f from {0, 1}n to {0, 1}ℓ(n) into a
length preserving one-way function from {0, 1}d(n) to {0, 1}d(n) for some d(n) ∈ Θ(n). This
construction, however, does not maintain the regularity of the one-way function (it maintains
only an approximate regularity).

For the regular case we suggest a different solution; rather than changing the underlying
one-way function to be length preserving, we change the randomizing hash functions to be
shrinking. That is, given a regular one-way function f : {0, 1}n 7→ {0, 1}ℓ(n), define the
randomized iterate of this function with respect to a family of hash functions from {0, 1}ℓ(n)
to {0, 1}n. The randomized iterate is now well defined, and all the proofs given above
for length preserving one-way functions, readily hold for this new construction. The only
problem with this approach is that the description of such hash functions is too long (it is
Θ(ℓ(n)) instead of Θ(n)). This is overcome by using an efficient family of almost pairwise-
independent hash functions from ℓ(n) bits to n bits with error 2−n (see Definition 2.3), which
requires a description of only Θ(n) bits.

4 Pseudorandom Generators from Exponentially Hard

One-Way Functions

4.1 Overview

4.1.1 The Randomized Iterate and General One-Way Functions

As mentioned in the introduction, the last randomized iteration of a general one-way function
is not necessarily hard to invert, and in fact may be easy to invert. This hardness, however,
is not totally diminished, it simply deteriorates in every additional iteration. By refining

21Dedic et al. [4] showed that in the case of a shrinking function one can actually build a generator with
seed length that is a function of the output length of f rather than the (longer) input length.
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the techniques used in the case of regular one-way functions, we manage to give a lower
bound on this deterioration. More precisely, we show (Section 4.2) that there exists a set S
of inputs to fk with density at least 1/k, such that the k’th randomized iteration is hard to
invert over inputs taken from S. As a result, a hard core bit of the k’th randomized iteration
has the guarantee that with probability at least 1/k it is pseudorandom.

4.1.2 The Multiple Randomized Iterate

Our goal is to get a string of pseudorandom bits, and the idea is to run t independent copies
of the randomized iterate (on t independent inputs). We call this the multiple randomized
iterate. From each of the t copies, we output a hardcore bit of the k’th iteration. For
this iteration this forms a string of t bits, of which t/k are expected to be random looking.
The next step is to run a randomness extractor on such a string (where the output of the
extractor is of length Ω(t/k)). This ensures that with very high probability, the output of
the extractor is a pseudorandom string of bits.

4.1.3 The Pseudorandom Generator – A First Attempt

A first attempt for the pseudorandom generator runs the multiple randomized iterate on t
independent inputs, for m (to be determined later) iterations. For each k ∈ [m], we extract
t
2k

bits at the k’th iteration. These bits are guaranteed to be pseudorandom (even when
given all of the values at the (k + 1)’th iterate and all of the randomizing hash functions).
Thus, outputting the concatenation of the pseudorandom strings for the different values of
k forms a long pseudorandom output (by a standard hybrid argument).

This concatenation, however, is still not long enough. It is required that the output of
the generator is longer than its input, which is not the case here. The input contains t strings
x1, . . . , xt and tm hash functions. The hash functions are included in the output, so the rest
of the output needs to make up for the tn bits of x1, . . . , xt. At each iteration we output t

2k

bits which adds up to
∑m

k=1
t
2k

bits. This harmonic progression is bounded by t · logm
2

, Thus,
in order to exceed the tn bits of the input we need m > 2n which is far from being efficient.

4.1.4 The Pseudorandom Generator and Exponential Hardness

The failed generator from above can be remedied when the exponential hardness comes into
play. It is known that if a function is 2cn-one-way (for some constant c ∈ (0, 1)), then it has a
2c

′n-hardcore function of c′n bits (for another constant c′). Thus, if the original hardness was
exponential, then in the k’th iteration we can actually extract c′n random looking strings,
each of length t

2k
. Altogether, we get that the output length is c′n ·

∑m
k=1

t
2k
≥ c′tn · logm.

Thus, for a choice ofm such that logm > 1
c′
, we get that the overall output is a pseudorandom

string of length greater than the input. It follows that to get a T (n)-pseudorandom generator,
the input length of the above generator is Θ(tn), where t can be taken in Θ(log(m · T (n))).
In particular, in order to get a 2Ω(n)-pseudorandom generator, one needs to take a seed of
length Θ(n2).
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To sum up, we describe the full construction in a slightly different manner: one first
creates a matrix of size t×m, where each row in the matrix is generated by computing the
first m randomized iterates of f (each row takes independent inputs). Now from each entry
in the matrix Θ(cn) hardcore bits are computed (thus generating a matrix of hardcore bits).
The final stage runs a randomness extractor on each of the columns of the hardcore bits
matrix.22 Moreover, the number of pseudorandom bits extracted from a column deteriorates
from one iteration to another (t/k pseudorandom bits are taken at the columns associated
with the k’th randomized iterate).

4.1.5 Some Remarks

• Our method also works for 2ϕ(n)-one-way functions only as long as ϕ(n) ∈ Ω( n
logn

),

but fails to handle smaller values of ϕ (as m grows, the value 1
m

becomes too small,
requiring t to grow substantially).

• The description in this section focuses on length-preserving one-way functions, the
results can be generalized, using Lemma 2.9, to use non-length preserving functions.

4.2 The Last Randomized Iterate is (sometimes) Hard to Invert

We now formally state and prove the key observation of this section; there exists a set of
inputs of significant weight for which it is hard to invert the k’th randomized iteration, even
if given access to all of the hash functions leading up to this point. This statement is a
generalization of Lemma 3.2 to all functions rather than just regular ones. In the following
Lemma it is instructive to ignore the parameter gap (set gap = 0), as it will only be used in
Section 5.

Lemma 4.1. Let f , H, k and fk be as in Definition 3.1, let gap ∈ {0, . . . , n} and let
S ⊆ {0, 1}n ×Hk−1 be defined as

S = {(x, h) ∈ {0, 1}n ×Hk−1 : Df (f
k(x, h)) + gap ≥ max

j∈[k]
Df (f

j(x, h))}.

Then,

1. Pr[(Un, H
k−1) ∈ S] ≥ 1/k.

2. For any algorithm A with

Pr[A(fk(Un, H
k−1), Hk−1) = fk−1(Un, H

k−1) ∧ (Un, H
k−1) ∈ S] = εA

it holds that

Pr[Hk−1
k−1 (A(f(Un), H

k−1)) ∈ f−1(f(Un))] ≥
ε2A

2nk · 2gap
.

22 Note that each execution of the extractor runs on a column in which each entry consists of a single
bit (rather than Θ(cn) bits). In other words, we translate each column of Θ(cn) bit-strings to Θ(cn) bit
columns. This is a requirement of the proof technique.
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Note that by considering a function gap > 0, one can increase the size of S at the price
of weakening the hardness of fk over it. We will use this feature in Section 5, in which we
will set gap = Θ(log n). In the current section we only make use of the choice gap = 0.

As in Section 3, assuming that f is a one-way function yields the following corollary:

Corollary 4.2. Let k = k(n), gap = gap(n) ∈ N, and for n ∈ N let f , H, fk and S = S(n)
be as in Lemma 4.1. Assuming that f is (T (n), ε(n))-one-way, that H is efficient and that
k ≤ poly(n), then there exists a constant c > 0 such that the following hold:

1. Pr(x,h)←S(n)[A(f
k(x, h), h) = fk−1(x, h)] ≤ ε′(n) = nc ·

√
2gap · ε(n) for any algorithm

A of running time T (n)− nc and large enough n, and

2. For ℓ = ℓ(n) ∈ [n], let hck : {0, 1}n × Hk−1 × {0, 1}2n 7→ {0, 1}ℓ be defined as
hck(x, h, r) = gl(fk−1(x, h), r)1,...,ℓ, where gl is the Goldreich-Levin hardcore function
(see Theorem 2.12). Then hck is a (T (n) · (ε′(n)/n)c, 2ℓ · ε′(n))-hardcore function of

f̂k(x, h, r) = (fk(x, h), h, r) over {S(n)× {0, 1}2n}n∈N.

Proof. Lemma 4.1(1) states that Pr[(Un, H
k−1) ∈ S(n)] ≥ 1/k. Hence, for any algorithm A

with Pr(x,h)←S(n)[A(f
k(x, h), h) = fk−1(x, h)] > ε′(n), it holds that

Pr[A(fk(Un, H
k−1), Hk−1) = fk−1(Un, H

k−1) ∧ (Un, H
k−1) ∈ S(n)] > ε′

k
=

nc

k
·
√
2gap · ε.

The corollary follows by applying Lemma 4.1(2) and getting

Pr[Hk−1
k−1 (A(f(Un), H

k−1)) ∈ f−1(f(Un))] ≥
(
nc

k
·
√
2gap · ε

)2

/2nk · 2gap (13)

= n2c−1ε/2 · k3,

which, for large enough c, contradicts the one-wayness of f . The the second part of the
corollary immediately follows from the above and Theorem 2.12, when plugging f = fk and
g = fk−1. �

Proof. (of Lemma 4.1) Since f1(Un, H
k), . . . , fk(Un, H

k) are i.i.d. over f(Un), then by sym-
metry the k’th iteration has the heaviest preimage size with probability at least 1/k. This
proves the first part of the lemma. For the second part of the lemma, we assume for simplic-
ity that A is deterministic (this can be generalized as explained in the proof of Lemma 3.2).
Let

GoodA = {(y, h) ∈ {0, 1}n ×Hk−1 : hk−1(A(y, h)) ∈ f−1(y)} (14)

By this notation, the assumption is that Pr[(fk(Un, H
k−1), Hk−1) ∈ GoodA ∧ (Un, H

k−1) ∈
S] = εA, and the proof of Lemma 4.1 follows by the next lemma when plugging in L = GoodA

and δ = εA.
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Lemma 4.3. Let f , H, k, fk, gap and S be as in Lemma 4.1. Then for any set L ⊆
{0, 1}n ×Hk−1 with

Pr[(fk(Un, H
k−1), Hk−1) ∈ L ∧ (Un, H

k−1) ∈ S] ≥ δ,

it holds that

Pr[(f(Un), H
k−1) ∈ L] ≥ δ2

2nk · 2gap
.

�

Proof. (of Lemma 4.3) Divide the outputs of the function f into n slices according to their
preimage size: for every j ∈ [n], define the j’th slice Sj = {(x, h) ∈ S | Df (f

k(x, h)) = j}.
Note that since Sj ⊆ S, for each (x, h) ∈ Sj and i ∈ [k], it holds that Df (f

i(x, h)) ≤
Df (f

k(x, h)) + gap = j + gap. The proof of Lemma 4.3 follows the methodology of the
analogous lemma for the regular case (see Lemma 3.4). More precisely, the proof studies
the collision probability of fk, only here we look at fk when restricted to Sj (i.e., we work
separately on each slice). Denote this as:

CP(fk(Un, H
k−1) ∧ Sj) := Pr[(fk(x0, h0), h0) = (fk(x1, h1), h1) ∧ (x0, h0), (x1, h1) ∈ Sj],

where (x0, h0) and (x1, h1) are i.i.d. over {0, 1}n ×Hk−1. We first give an upper-bound on
this collision probability.

Claim 4.4.

CP(fk(Un, H
k−1) ∧ Sj) ≤

k

|H|k−1 · 2n−gap−j

Proof. For every two random inputs (x0, h0) and (x1, h1) in {0, 1}n×Hk−1, in order to have a
collision we must first have that h0 = h1, which happens with probability (1/ |H|)k−1. Given
that h0 = h1 = h (with h ∈ Hk−1 being uniform), we require also that fk(x0, h) equals
fk(x1, h). In the following we upper bound this probability.

If f(x0) = f(x1), such a collision is assured. Since (x1, h) ∈ Sj, it holds that Df (f(x1)) ≤
Df (f

k(x1, h))+ gap = j+gap. Therefore, Pr[f(x0) = f(x1)] ≤ 2j+gap−n. For the other cases
(i.e., f(x0) ̸= f(x1)), there must be an index j ∈ [k − 1] for which f j(x0, h) ̸= f j(x1, h),
but f j+1(x0, h) = f j+1(x1, h). Since f j(x0, h) ̸= f j(x1, h), the pairwise independence of H
yields that hj(f

j(x0, h)) is uniform over {0, 1}n and independent of hj(f
j(x1, h)). Thus (as in

the proof of the first part), it holds that Pr[f(hj(f
j(x0, h))) = f(hj(f

j(x1, h)))] ≤ 2j+gap−n.
Namely, Pr[f j+1(x0, h) = f j+1(x1, h) | f j(x0, h) ̸= f j(x1, h)] ≤ 2j+gap−n. Altogether, it holds
that

CP(fk(Un, H
k−1) ∧ Sj) ≤ k · 2

j+gap−n

|H|k−1
=

k

|H|k−1 · 2n−gap−j
.

�
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Continuing the proof Lemma 4.3, we now give a lower-bound for the above collision
probability. We seek the probability of getting a collision inside Sj and further restrict
our calculation to collisions whose output lie in the set Lj = {(z, h) ∈ L | Df (z) = j}
(this further restriction may only reduce the collision probability and thus the lower bound
holds also without the restriction). In order to have such a collision, we first request that
both inputs are in Sj and generate outputs in Lj. Letting δj = Pr[(fk(Un,Hk−1),Hk−1) ∈
Lj ∧ (Un,Hk−1) ∈ Sj], the above happens with probability δ2j . Once inside Lj, we require
that both outputs collide (which happens with probability at least 1

|Lj |). Altogether:

CP(fk(Un, H
k−1) ∧ Sj) ≥ δ2j/ |Lj| (15)

Combining Claim 4.4 and eq. (15), we get:

|Lj| · 2j+gap−n

|H|k−1
≥ δ2j/k (16)

Note that when drawing a random value from (f(Un), H
k−1), the probability of hitting an

element in Lj is at least 2
j−n−1/ |H|k−1 (since each output in Lj has preimage at least 2j−1).

This means that

Pr[(f(Un), H
k−1) ∈ Lj] ≥ |Lj| · 2j−n−1/ |H|k−1 (17)

and by Equation (16) we deduce that Pr[(f(Un), H
k−1) ∈ Lj] ≥

δ2j
k·2gap+1 . Finally, the prob-

ability of hitting L is Pr[(f(Un), H
k−1) ∈ L] =

∑
j Pr[(f(Un), H

k−1) ∈ Lj] ≥
∑

j

δ2j
k·2gap+1 .

Since
∑

j δ
2
j ≥ (

∑
j δj)

2/n and (by definition)
∑

j δj = δ, it holds that Pr[(f(Un), H
k−1) ∈

L] ≥ δ2

nk·2gap+1 , as claimed. �

4.3 The Multiple Randomized Iterate

In this section we consider the function f t×k that consists of t independent copies of the
randomized iterate fk.

Definition 4.5 (the multiple randomized iterate). Let f , H, k and fk be as in Definition 3.1.
For t ∈ N, we define the k’th Multiple Randomized Iterate f t×k : {0, 1}t×n × Ht×(k−1) 7→
{0, 1}t×n as:

f t×k(x, V ) = (fk(x1, V1), . . . , f
k(xt, Vt)),

where x ∈ {0, 1}t×n and V ∈ Ht×(k−1).

For each of the t outputs of f t×k, we look at its hardcore function hck. Corollary 4.2
yields that t/k of these t hardcore strings are expected to fall inside the “hard-set” of fk

(and thus are indeed pseudorandom given (f t×k(x, V ), V )). The next step is to invoke a
randomness extractor on a concatenation of one bit from each of the different independent
hardcore strings. The output of the extractor is taken to be of length

⌊
t
4k

⌋
. The intuition
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being that with high probability, the concatenation of these bits from the different outputs
of hck contains “pseudoentropy” of at least t

3k
bits. Thus, the output of the extractor forms

a pseudorandom string and might serve as a hardcore function of the multiple randomized
iterate f t×k.

Definition 4.6 (hardcore function for the multiple randomized iterate). Let k, t, f , H and
f t×k be as in Definition 4.5, let ℓ ∈ [n], hck : {0, 1}n × Hk−1 × {0, 1}2n 7→ {0, 1}ℓ be as

in Corollary 4.2 and let Extk : {0, 1}q × {0, 1}t 7→ {0, 1}⌊
t
4k
⌋. We define hct×k : {0, 1}t×n ×

Ht×(k−1) × {0, 1}2n × {0, 1}q 7→ {0, 1}ℓ·⌊
t
4k
⌋ as

hct×k(x, V, r, s) = (hct×k1 (x, V, r, s), . . . , hct×kℓ (x, V, r, s)),

where x ∈ {0, 1}t×n, V ∈ Ht×(k−1), r ∈ {0, 1}2n, s ∈ {0, 1}q and
hct×ki (x, V, r, s) = Extk(s, (hc

k(x1, V1), r)i, . . . , (hc
k(xt, Vt), r)i)). Finally, we let

f̂ t×k(x, V, r, s) = (f t×k(x, V ), V, r, s).

Lemma 4.7. Let k = k(n), t = t(n), q = q(n), ℓ = ℓ(n) ∈ N with ℓ(n) ≤ n, and for n ∈ N let

f , H, Extk, hct×k and f̂ t×k be as in Definition 4.6. Assume that f is (T (n), ε(n))-one-way,
that H is efficient, Extk is a (⌊ t

3k
⌋, εExtk)-strong extractor and that 2(εExtk + ρ 1

2k
,t,⌊ t

3k
⌋
) ≤

ε(n) < 2−2ℓ · n−O(1), where ρ is taken as in Lemma 2.1423. Further, assume that k, t, q ≤
poly(n), that ε is polynomial-time computable and that Extk is polynomial-time computable

given k. Then hct×k is a (T · εO(1), ℓε)-hardcore function of f̂ t×k.

Proof. We prove that for any i = i(n) ∈ [ℓ(n)], the function hct×ki is a (T · εO(1), ε)-hardcore

function of gt×ki defined as gt×ki (x, V, r, s) = (f̂ t×k(x, V, r, s), hck(x1)1,...,i−1, . . . , hc
k(xt)1,...,i−1),

and the proof of the lemma follows by a straightforward hybrid argument.
Assume there exist a distinguisher D of running-time T ′ = T ·εO(1) and an index function

i = i(n) ∈ N, that contradict the hardness of hct×ki with respect to gt×ki as stated above. Let

gki (·) = (f̂k(·), hck(·)1,...,i−1) and let hcki (·) = hck(·)i. Lemma 2.14 yields (plugging m = ⌊ t
3k
⌋,

δ = 1/2k, γ = ε/2, f = gki , b = hcki and Ext = Extk)
24 that there exists a ppt M with

Pr
[
M(1n, 1T

′
, 1k, 1⌊2/ε⌋, gki (X)) = hcki (X)

]
> 1− 1/4k (18)

for infinitely many n’s, where X is uniformly distributed over {0, 1}n ×Hk−1 × {0, 1}2n.
On the other hand, Corollary 4.2 yields that hck is a (T ′′ = T · (ε′/n)O(1), ε′′ = 2ℓ · ε′)

hardcore function of f̂k over a family of sets S of density 1/k, where ε′ = ε′(n) = nO(1)·
√

ε(n).
It easily follows that hcki is a (T

′′′ ∈ Ω(T ′′ ·ε′′/n), ε′′′ ∈ O(ε′′)) hardcore predicate of gki over S,
23ρδ,t,m is the probability that out of t independent binomial random variables, each with probability at

least δ of being one, at least m come out ones.
24To use Lemma 2.14, we assume without loss of generality that ε(n) > 2−n/3 (otherwise the proof is

trivial). We also assume without loss of generality that k can be efficiently extracted from the input length
of gki , yielding that Extk is polynomial-time computable given this value.
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for any i = i(n) ∈ [ℓ(n)].25 Since (by assumption) ε < 2−2ℓ · n−O(1), it holds that ε′′′ ∈ o( 1
k
)

and therefore T ′′′ = T · εO(1). Thus, hcki is a (T · εO(1), 1
2
− 1

3k
) hardcore predicate of gki

(over {0, 1}n) for any such i. A standard equivalence between distinguishing and prediction
algorithms yields that no algorithm of running time T ′′′ predicts hcki (·) from gki (·) with
probability better than 1 − 1

3k
, which, for the right constant in the definition of T ′ above,

contradicts Equation (18). �

4.4 A Pseudorandom Generator from Exponentially Hard One-
Way Functions

We are now ready to present our pseudorandom generator. After deriving a hardcore function
for the multiple randomized iterate, the generator is similar to the construction from regular
one-way function. That is, run randomized iterations and output the hardcore bits. The
major difference in our construction is that, for starters, it uses hardcore functions rather than
hardcore bits. More importantly, the amount of hardcore bits extracted at each iteration is
not constant and deteriorates with every additional iteration. As in Section 3, our generator
applies the standard BMY principle on the multiple randomized iterate, outputting the
hardcore bits of each iteration.

Our generator is given in the following theorem, whose proof immediately follows by
Lemma 4.7 and a standard BMY like indistinguishability argument (cf., the proof of Theo-
rem 3.6).

Theorem 4.8. Let m = m(n) ∈ N, and for k = k(n), ℓ = ℓ(n), t = t(n), q = q(n) ∈ N with
k ≤ m + 1 and ℓ ≤ n, let f , H, Extk, hct×k and f t×k be as in Definition 4.6. We define

G : {0, 1}t×n×Ht×m×{0, 1}2n×{0, 1}q 7→ {0, 1}ℓ·
∑

k∈[m+1]⌊
t
4k
⌋×Ht×m×{0, 1}2n×{0, 1}q as

G(x, V, r, s) = (hct×1(x, V, r, s) . . . , hct×m(x, V, r, s), V, r, s),

where x ∈ {0, 1}t×n, V ∈ Ht×m, r ∈ {0, 1}2n and s ∈ {0, 1}q.
Assume that f is a (T = T (n), ε = ε(n))-one-way, H is efficient, and that Extk is a

(⌊ t
3k
⌋, εExtk = εExtk(n))-strong extractor and 2(εExtk + ρ 1

2k
,t,⌊ t

3k
⌋
) ≤ ε < 2−ℓ · n−O(1) (where ρ

is taken as in Lemma 2.14) for every k ∈ [m + 1]. Further, assume that m, t, q ≤ poly(n),
that ε is polynomial-time computable, that Extk is polynomial-time computable given k and
that G is length increasing. Then G is a (T · εO(1),m · ℓ · ε)-pseudorandom generator.

The above theorem yield the following efficient generator from exponentially hard one-
way functions:

25Let D be a distinguisher of running time TD, which given gki (·) tells hc
k
i (·) from uniform with advantage

εD for some (infinite) sequence of indices i = i(n). Allowing to err with probability εD/8, it takes O(TD ·
log(1/εD)/εD) time to find a value of i ∈ [ℓ(n)] on which D distinguishes the above with advantage εD/2.

Given such good value of i and f̂k(·), it is easy to use D to distinguish hck(·) from uniform with advantage
εD/4. Hence, the above process runs in time O(TD · log(1/εD)/εD), and distinguishes hck(·) from uniform
with advantage εD/8 for infinitely many n’s.
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Corollary 4.9. Assuming there exists an exponentially hard one-way function, then there
exists a 2Ω(

√
n)-pseudorandom generator with linear stretch.

Proof. Let H and W be efficient families of length-preserving pairwise independent hash
functions with linear description size, and for t ∈ N and k ∈ [t], define Extk :Wt×{0, 1}t 7→
{0, 1}⌊

t
4k
⌋ as Extk(w, x) = w(x)

1,...,⌊ t
4k
⌋
. For any such t and k, the Leftover Hash Lemma

([16, Lemma 4.8]) yields that Extk is a (⌊ t
3k
⌋, 2−c1·t/k))-strong extractor, where a Chernoff

bound yields that ρ 1
2k

,t,⌊ t
3k
⌋
< 2−c2·t/k

2
, where c1, c2 > 0 are universal constants. Let f be

a 2cn-one-way function, where we assume without loss of generality that c ≤ 1
2
·min{c1, c2}

(otherwise, consider a smaller value for c). Note that 2−cn > 2(εExtk + ρ 1
k
,t,⌊ t

2k
⌋
) for every

t > nk2 and n > 1/c. In the following we let t = t(n) = nk2, ℓ = ℓ(n) = cn/2 and let m
be a constant such that

∑
k∈[m+1]

1
5k
≥ 4/c. Note that for such m and large enough t (e.g.,

t = 20(m+ 1)), it holds that ℓ ·
∑

k∈[m+1]⌊
t
4k
⌋ ≥ 2tn.

Now let ε = ε(n) ≥ 2−cn to be determined later by the analysis. Clearly, f is a (T (n) =
2cn, ε)-one-way function. By plugging the above f , H, Extk, t, ℓ and m into Theorem 4.8,
we get a (T · εO(1),Ω(n · ε))-pseudorandom generator mapping strings of length r(n) =
t(n) · (n+mq(n))+2n+q(n) to strings of length r′(n) = t(n)(2n+mq(n))+2n+q(n). Since
q(n) ∈ Θ(n), it follows that r(n) ∈ Θ(n2) and that r′(n) = r(n)(1+Θ(1)). Finally, by taking
ε(n) = 2−c

′n for small enough c′, we have that G is a 2c
′n-pseudorandom generator. �

5 Pseudorandom Generator from Any One-Way Func-

tion

Our implementation of a pseudorandom generator from any one-way function follows the
footsteps of H̊astad et al. [16] (more precisely, we follow the new proof to [16] due to Holen-
stein [19]), though we take a totally different approach in the implementation of the initial
step.

The basic building block of the [16] generator is a pseudoentropy pair.26 A distribution
is said to have pseudoentropy at least k if it is computationally indistinguishable from some
distribution that has entropy k. Informally, a pair (f, b) of a function and predicate is a
pseudoentropy pair if the following hold: the pseudoentropy of b’s output given the output
of f is noticeably larger than the real (conditional) entropy of this bit. In their construction,
[16] exploit this gap between real entropy and pseudoentropy to construct a pseudorandom
generator. We show that the second randomized iterate of a one-way function together with
a standard hardcore predicate, forms a pseudoentropy pair with better properties than the
[16] one. Hence, plugging our pseudoentropy pair as the first step of the [16] construction,
results in a better overall construction. Let us now turn to a more formal discussion. A
pseudoentropy pair is defined as follows:

26The notion of pseudoentropy pair is implicit in [16], and was formally defined in [12].
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Definition 5.1 (pseudoentropy pair (PEP)). Let f : {0, 1}n 7→ {0, 1}ℓ(n) and b : {0, 1}n 7→
{0, 1} be polynomial-time computable functions. The pair (f, b) is a (λ(n), γ(n))-PEP, if

1. H(b(Un) | f(Un)) ≤ λ(n), and

2. b is a (T (n), 1−λ(n)−γ(n)
2

)-hardcore predicate of f , for any T ∈ poly.

H̊astad et al. [16] show how to use any one-way function in order to construct a (λ, 1/2n)-
PEP, where λ ∈ [0, 1] is an unknown value. They then present a construction of a pseudo-
random generator using a (λ, 1/Θ(n))-PEP where λ is known. To overcome this gap, H̊astad
et al. [16] enumerate all possible values of λ (up to an accuracy of 1/4n), invoke the generator
with every one of these values and eventually combine all of the potential generators using
an XOR of their outputs. This enumeration costs an additional factor of n to the seed length
as well as n2 times more calls to the underlying one-way function.

In Section 5.1 we prove that the second randomized iterate of a one-way function can
be used to construct a (1

2
, log n/n)-PEP. In Section 5.2 we show that by combining our

PEP with the second part of the construction in [19], we get a pseudorandom generator
that is more efficient and has better security than the original construction of [16]/[19]. For
comparison, we present the PEP used by [16] in Appendix A.

5.1 A Pseudoentropy Pair Based on the Randomized Iterate

Recall that for a given function f , we have defined (Definition 3.1) its second randomized
iterate as f 2(x, h) = f(h(f(x))). We would like to prove that the second iterate of a one-way
function gives rise to a PEP. Indeed, since the randomized iterate maintains some of the
hardness of a function (Lemma 4.1), we have that with probability 1

2
+Ω(log n/n) it is hard

to compute the value of f(x) given the output f 2(x, h). We want to complement this fact
by saying that with probability 1

2
the value of f(x) can essentially be determined from the

output. The latter statement is almost true, except that there typically remains a small
amount of uncertainty regarding f(x). To overcome this, we add to the output a small
amount of random information about f(x). Specifically, we define the extended randomized
iterate to include some additional random information about f(x). This information (of
Θ(log(n) bits) is small enough to diminish any entropy left in f(x) (at least on 1

2
of the

inputs), yet is not significant enough to change its pseudoentropy.

5.1.1 The Extended Randomized Iterate

For simplicity, in the following we focus on length-preserving (one-way) functions, the adap-
tation to general functions is done via Lemma 2.9. We use the following extended version of
the second randomized iterate:

Definition 5.2 (the extended randomized iterate). Let f : {0, 1}n 7→ {0, 1}n and let H and
HE be two families of pairwise-independent hash functions over {0, 1}n, outputting strings
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of length n and t = t(n) = ⌈3 log(n) + 7⌉ respectively. We define g : {0, 1}n × H × HE 7→
{0, 1}n ×H× {0, 1}t ×HE, the extended randomized iterate of f , as:

g(x, h, hE) = (f 2(x, h), h, hE(f(x)), hE).

In the following we denote by H and HE the random variables uniformly distributed over H
and HE respectively, and let Dom(g) = {0, 1}n ×H×HE.

The heart of this section is the following two lemmata: in Lemma 5.3 we show that for
any one-way function f , with probability 1

2
+Ω( logn

n
) it is hard to compute the value of f(x)

given a random output g(x, h, hE). While in Lemma 5.4, we show that the value of f(x) is
determined with high probability by the value of g(x, h, hE). It follows that there is more
”computational entropy” in b given f than there is real entropy.

Lemma 5.3. Let t = t(n) ∈ N, and for n ∈ N let f , H, HE and g be as in Definition 5.2.
Assume that f is one way, and that H and HE are efficient. Then for every constant c > 0
there exists a family of sets {S(n) ⊆ {0, 1}n×H×HE}n∈N of density at least 1

2
+ c · log n/n,

such that
Pr(x,h,hE)←S(n)[A(g(x, h, hE)) = f(x)] = neg(n)

for any ppt A.

Proof. For n ∈ N, define

S(n) = {(x, h, hE) ∈ Dom(g) : Df (f(x)) ≤ Df (f
2(x, h)) + gap},

where gap = gap(n) = 2 · ⌈c · log n⌉.
The hardness of g over {S(n)} follows from Corollary 4.2(1) with the additional ob-

servation that since HE(f(x) is short, then (HE(f(x), HE) can be guessed correctly with
probability 1/ poly(n) when given (f 2(x, h), h).

In order to lower bound the density of S(n), we denote by R0 and R1 the random
variables distributed according to ⌈Df (f(Un))/gap⌉ and ⌈Df (f

2(Un, H))/gap⌉ respectively.
Since f(Un) and f 2(Un, H) = f(H(f(Un))) are i.i.d. over f(Un), it follows that R

0 and R1

are i.i.d. over [⌈n/gap⌉]. By symmetry,

Pr[R0 � R1] = Pr[R0  R1] (19)

and since the collision probability of a random variable X is at least 1/ Supp(X), it holds
that

Pr[R0 = R1] ≥ 1/ ⌈n/gap⌉ (20)
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Combining the above equations yields that Pr[R0 ≤ R1] ≥ 1
2
+ 1
⌈n/gap⌉ , and therefore

|S(n)|
|{0, 1}n ×H×HE|

= Pr[Df (f(Un)) ≤ Df (f
2(Un, H)) + gap]

≥ Pr[R0 ≤ R1]

≥ 1

2
+

1

⌈n/gap⌉

≥ 1

2
+ c · log n/n,

where the last inequality holds for large enough n. �

The following Lemma is the basis for showing that with high probability, the value of
f(x) is determined by the value of g(x, h, hE).

Lemma 5.4. Let f and g be as in Definition 5.2. For (x, h, hE) ∈ Dom(g), let
α(x, h, hE) = Pr[f(Un) = f(x) | g(Un, H,HE) = g(x, h, hE)] and let L = {(x, h, hE) ∈
Dom(g) : α(x, h, hE) ≥ 1− 1/16n2}. Then, |L| / |Dom(g)| ≥ 1

2
+ 1

4n
.

Proof. Let FirstIterIsHeavier = {(x, h, hE) ∈ Dom(g) : Df (f(x)) ≥ Df (f
2(x, h)}. By sym-

metry (cf., the proof of Lemma 5.3) it holds that

|FirstIterIsHeavier| / |Dom(g)| ≥ 1

2
+

1

2n
(21)

In addition, for any (x, h, hE) ∈ FirstIterIsHeavier we have that:

α(x, h, hE) =
Pr[g(Un, H,HE) = g(x, h, hE) ∧ f(Un) = f(x)]

Pr[g(Un, H,HE) = g(x, h, hE)]
(22)

=
Pr[g(Un, h, hE) = g(x, h, hE) ∧ f(Un) = f(x)]

Pr[g(Un, h, hE) = g(x, h, hE)]

= 1− Pr[g(Un, h, hE) = g(x, h, hE) ∧ f(Un) ̸= f(x)]

Pr[g(Un, h, hE) = g(x, h, hE)]

≥ 1− Pr[g(Un, h, hE) = g(x, h, hE) ∧ f(Un) ̸= f(x)]

Pr[f(Un) = f(x)]

≥ 1− Pr[g(Un, h, hE) = g(x, h, hE) ∧ f(Un) ̸= f(x)]

2Df (f(x))−n−1

≥ 1− Pr[g(Un, h, hE) = g(x, h, hE) ∧ f(Un) ̸= f(x)]

2Df (f2(x,h))−n−1︸ ︷︷ ︸
β(x,h,hE)

,

where the last inequality follows by the definition of FirstIterIsHeavier. We next show that
β(x, h, hE) ≤ 1/16n2 formost elements of Dom(g). This will conclude the proof of the lemma,
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as it would follow that most elements of FirstIterIsHeavier are inside L (and therefore we
can set L to be almost all of FirstIterIsHeavier). Let Typical ⊆ Dom(g) be defined as

Typical = {(x, h, hE) : Pr[g(Un, h, hE) = g(x, h, hE) ∧ f(Un) ̸= f(x)] ≤ 4n · 2Df (f
2(x,h))−n−t}

Note that β(x, h, hE) ≤ 8n/2t ≤ 1/16n2 for every (x, h, hE) ∈ Typical. Hence,

α(x, h, hE) ≥ 1− 1/16n2 (23)

for every (x, h, hE) ∈ Typical∩FirstIterIsHeavier. It is left to show that most elements of
FirstIterIsHeavier are inside Typical.

Claim 5.5. It holds that |Typical |/|Dom(g)| ≥ 1− 1/4n.

Hence,

Pr[α(Un, H,HE) ≥ 1− 1/16n2] ≥ |FirstIterIsHeavier∩Typical| / |Dom(g)|

≥ 1

2
+

1

2n
− 1

4n
=

1

2
+

1

4n
,

concluding the proof of the lemma. �

Proof of Claim 5.5. For (x, z1, z2) ∈ {0, 1}n×{0, 1}n×{0, 1}t, defineM(x, z1, z2) ⊆ H×HE

as

M(x, z1, z2) = {(h, hE) : (f
2(x, h), hE(f(x)) = (z1, z2)} (24)

I.e.,M(x, z1, z2) contains the pairs (h, hE) that map x to (z1, z2). The pairwise independence
of H and HE implies that Pr(h,hE)←M(x,z1,z2)[g(x

′, h, hE) = g(x, h, hE)] ≤ 2Df (z1)−n−t for any
x′ /∈ f−1(f(x)). Hence, a Markov inequality yields that

Pr(h,hE)←M(x,z1,z2)[(x, h, hE) ∈ Typical] ≥ 1− 1/4n (25)

for any (x, z1, z2). Consider the following randomized process to generate elements in-
side Dom(g): 1. Choose a uniform (x, h, hE) ∈ Dom(g), 2. Choose a uniform (h′, h′E) ∈
M(x, f 2(x, h), hE(f(x))), and 3. Output (x, h′, h′E). Since the output of this process is uni-
form in Dom(g), Equation (25) yields that

Pr(x,h,hE)←Dom(g)[(x, h, hE) ∈ Typical] ≥ 1− 1/4n.

�
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5.1.2 Constructing the Pseudoentropy Pair

Recall that a PEP consists of a function and a corresponding predicate. For the function we
use the extended randomized iterate, and for the predicate we basically take the Goldreich-
Levin hardcore bit. The twist here is that unlike a standard GL predicate, we take the
hardcore bit from the intermediate value f(x) rather than from the actual input x. While a
hardcore bit taken from x has the required computational hardness, it may also have entropy
to it. By applying the predicate on f(x), we achieve the desired gap between entropy and
pseudoentropy. In the following formal theorem we use a slightly modified version of g to
incorporate the randomness required by the hardcore predicate. The function and predicate
are proved to form a (1

2
, log n/n)-PEP.

Theorem 5.6. Let t = t(n) ∈ N, and for n ∈ N let f , H, HE and g be as in Definition 5.2.
For r ∈ {0, 1}2n, let g′(x, h, hE, r) = (g(x, h, hE), r) and b(x, h, hE, r) = gl(f(x), r)1, where
gl is the Goldreich-Levin hardcore function (see Theorem 2.12).

Assuming that f is one-way and that H and HE are efficient, then (g′, b) is a (1
2
, log n/n)-

PEP.

Proof. The computational side of the theorem follows by Lemma 5.3 and Corollary 2.13: for
n ∈ N, let S(n) be the set of density 1

2
+2 · log n/n guaranteed by Lemma 5.3 (we choose the

constant c = 2 when applying the lemma). By plugging f = g, f ′ = g′, g(x, h, hE) = f(x),
hc1 = b, S = {S(n)}n∈N and S ′ = {S(n)× {0, 1}2n}n∈N to Corollary 2.13, we have that b is
a hardcore predicate of g′ over S ′. Since S ′ is of density 1

2
+ 2 · log n/n, this concludes the

proof of this part.
It is left to prove that H(b(Wn, Un) | g′(Wn, Un)) ≤ 1

2
for any n ∈ N, where Wn is

uniformly distributed over Dom(g). By Lemma 5.4 there exists a set L ⊆ Dom(g) of density
1
2
+ 1

4n
, such that Pr(x′,h′,h′

E)←Dom(g)[f(x
′) = f(x) | g(x′, h′, h′E) = g(x, h, hE)] > 1 − 1

16n2 for
every (x, h, hE) ∈ L. Hence,

H(b(Wn, Un) | g′(Wn, Un)) = H(b(Wn, Un) | g(Wn), Un) (26)

= Pr[g(Wn) ∈ g(L)] · E(z,r)←(g(Wn),Un),y←g−1(z)[H(b(y, r)) | z ∈ g(L)]
+ Pr[g(Wn) /∈ g(L)] · E(z,r)←(g(Wn),Un),y←g−1(z)[H(b(y, r)) | z /∈ g(L)]

≤ (
1

2
+

1

4n
) · H(1/16n2) + (

1

2
− 1

4n
),

where H(q), for q ∈ [0, 1], is the entropy of the Boolean random variable that equals 1 with
probability q. Let v = 1

16n2 , it follows that

H(b(Wn, Un) | g′(Wn, Un)) ≤ (
1

2
+

1

4n
) · 2 (v · (1− v))1/ ln(4) + (

1

2
− 1

4n
)

< (
1

2
+

1

4n
) · (v · (1− v))1/2 + (

1

2
− 1

4n
)

<
1

8n
+ v + (

1

2
− 1

4n
) <

1

2
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for large enough n, where the first inequality follows since H(q) ≤ 2(q(1− q))1/ ln(4) (cf., [32,
Thm 1.2]), and the second one follows since 2(q(1−q))1/ ln(4) < (q(1−q))1/2 for small enough
q (i.e., q < 1/100). �

5.2 The Pseudorandom Generator

The following fact is adapted from [19, Lemma 5].

Proposition 5.7. Let γ(n) > 1/n be polynomial-time computable function, and let (g, b)
be a (λ(n), γ(n))-PEP over {0, 1}n. Suppose we are given two non-uniform advices αn and
βn satisfying αn ≤ λ ≤ αn + γ/4 and βn ≤ H(g(Un)) ≤ βn + γ/4, then there exists a
pseudorandom generator G over {0, 1}d(n), where d(n) ∈ Θ(n3 · log2 n/γ(n)2). Further, on
input of length d(n), G only makes oracle calls to f and b on input length n.

Combining the above proposition and Theorem 5.6, we get the main result of this section.

Theorem 5.8. Assume there exists a one-way function f : {0, 1}n 7→ {0, 1}ℓ(n), then there
exists a pseudorandom generator over {0, 1}d(n), where d(n) ∈ Θ(n7/ log n). Further, on
input of length d(n), G only makes oracle calls to f on input length n.

Proof. Let H and HE be two families of efficient pairwise-independent hash functions over
{0, 1}n, outputting strings of length n and t(n) respectively, where t(n) ∈ O(log n) is as
in Definition 5.2. Theorem 5.6 guarantees the existence of a (1/2, log n/n)-PEP (g, b) over
{0, 1}n ×H×HE × {0, 1}2n, which makes oracle calls to f on inputs of length n. Taking H
and HE to be of linear description size and using simple padding, it follows that there exists
a (1/2, log n/n)-PEP (g′, b′) over {0, 1}n, whose oracle calls to f are on input of length Ω(n).

We would like to apply Proposition 5.7 on (g′, b′), λ(n) = 1/2 and γ(n) = log n/n, but in
order to do that we need a knowledge of proper values for (αn, βn). Choosing αn = λ(n) = 1/2
satisfies the requirement for αn. Still, we require a good choice of value for βn.

27 This is
overcome by enumerating the possible values of βn at a granularity of γ/4 = log n/4n (that
is 4n2

logn
possible values for βn since H(g(Un)) ∈ [0, n]) and using the following “combiner”:28

For any ν ∈ [0, 1], let Gν over {0, 1}d′(n)∈Θ(n5) be the generator resulting from applying
Proposition 5.7 with βn = ν. Let G′ν be the result of applying the [9] length-extension
method to Gν such that the output length of G′ν is t = ⌈4n/γ(n)⌉ ∈ O(n2/ log n) times
longer than the input length of Gν . Finally let G(x1, . . . , xt) =

⊕t
i=0 G

′
i/t(xi).

Overall, G is length expanding, polynomial-time computable and has input length
Θ(n7/ log n). Furthermore, since for some i ∈ [t] the distribution G′i/t(Ud′(n)) is pseudo-
random, a straightforward hybrid argument yields that the output of G is pseudorandom as
well. �

27Note that H(g(Wn)) is not necessarily efficiently approximable.
28Such a combiner was previously used by other applications, e.g., [16, Proposition 4.17] and [19, Thm 1],

and therefore we only give a high-level overview of its construction and proof.

44



Remark 5.9 (The efficiency improvement). The improvement in seed length by a factor of
n with respect to the generator of [16, 19], is also accompanied by an efficiency improvement;
first we need to generate only Θ(n2/ log n) generator candidates. Second, in order to exceed
the seeds of these candidate pseudorandom generators, the output of each of these candidates
is stretched (only) by a factor of Θ(n2/ log n). In the [16, 19] construction for comparison,
the enumeration is over Θ(n3/ log n) possible generators, and the output of each of these
candidates is stretched by a factor of Θ(n3/ log n). All in all, the efficiency difference adds
up to a factor of Θ(n2) less calls to f .

6 Hardness Amplification of Regular One-Way Func-

tions

In this section we present an efficient hardness amplification of any regular weak one-way
function.

6.1 Overview

As mentioned in the introduction, the key to one-way function hardness amplification lies in
the fact that every (T, 1−ε)-one-way function (i.e., ε-weak one-way, in the terminology of the
introduction) has a failing set of density ε for every algorithm of running time (essentially)
T , where the latter is a set that the algorithm fails to invert f upon. Sampling sufficiently
many independent inputs to f is bound to hit every failing set, and thus fails every algorithm.
Indeed, the basic hardness amplification of Yao [34] does exactly this. Since independent
sampling requires a long input, we turn to use the randomized iterate that, together with
the derandomization method, reduces the input length to Θ(n log n).

We start, Section 6.2, by formally defining failing sets and showing that weak one-way
functions admit such a set for any inversion algorithm. In Section 6.3 we show that the
randomized iterate of a weak one-way function is strongly one-way, where in Section 6.4, we
use a similar derandomization idea to that used in Section 3.4, to get an efficient one-way
function.

6.2 Failing Sets

Definition 6.1 (failing set). Let f : {0, 1}n 7→ {0, 1}ℓ(n) and let A be an algorithm trying to
invert f . We say that f has a (δ(n), ε(n))-failing-set for A, if for large enough n, there exists
a set S(n) ⊆ {0, 1}ℓ(n) such that

1. Pr[f(Un) ∈ S(n)] ≥ δ(n), and

2. Pr[A(y) ∈ f−1(y)] < ε(n) for every y ∈ S(n).
Claim 6.2. Let f : {0, 1}n 7→ {0, 1}ℓ(n) be a (T (n), 1− ε(n))-one-way function, and let γ(n)
be polynomial-time computable. Then any algorithm of running time T (n) · γ(n)/nc, where
c > 0 is a universal constant, has a (ε(n)− 2−n, γ(n))-failing-set.
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Proof. Let A be an algorithm of running time nc · T (n) · γ(n), and assume toward a contra-
diction that for infinitely many n’s there exists a set L(n) ⊆ {0, 1}ℓ(n) such that

1. Pr[f(Un) ∈ L(n)] ≥ 1− ε(n) + 2−n, and

2. Pr[A(y) ∈ f−1(y)] ≥ γ(n) for every y ∈ L(n).

We next show that the above contradicts the one-wayness of f , and the claim follows by
taking S(n) = {y ∈ {0, 1}ℓ(n) : Pr[A(y) ∈ f−1(y)] < γ(n)} as A’s failing set. Let MA be the
algorithm that on input y ∈ {0, 1}n invokes A for n/γ(n) times (with independent random
coins), and returns a preimage of y if any of these invocations finds one. For large enough c,
the running time of MA is bounded by T (n), and it inverts any y ∈ L(n) with probability
1 − 2−n. Hence, MA inverts f with probability Pr[f(Un) ∈ L(n)] · (1 − 2−n) > 1 − ε(n) for
infinitely many n’s,29 contradicting to the one-wayness of f . �

6.3 The Basic Construction

In the following we assume for simplicity that the underlying weak one-way function is
length-preserving, where the adaptation to any regular one-way function is the same as in
Section 3.

As a first step, we show that the function g(x, h) = (fk+1(x, h), h), for the proper choice
of k, is (strongly) one-way.30

Theorem 6.3. Let ε(n) > 1/ poly(n) be a polynomial-time computable function and let f :
{0, 1}n 7→ {0, 1}n be a regular (T (n), 1− ε(n))-one-way function. Let k = k(n) = ⌈4n/ε(n)⌉,
and for n ∈ N let H and fk+1 be as in Definition 3.1. Then the function g : {0, 1}n×Hk 7→
f({0, 1}n)×Hk defined as

g(x, h) = (fk+1(x, h), h),

is a (T ′(n) = T (n) · (ε′(n)/n)c, ε′(n))-one-way function for any polynomial-time computable
function ε′, where c > 0 is a universal constant.

Proof. Assume towards a contradiction the existence of an algorithm A and a polynomial-
time computable function εA that violate the one-wayness of g. Namely, A runs in time
TA(n) ≤ T (n) · (εA(n)/n)c, where c > 0 is a universal constant to be determined by the
analysis, and inverts g with probability larger than εA(n) for infinitely many n’s. We consider
the following algorithm MA that inverts the last iteration of f i+1 for some i ∈ [k]:

Algorithm 6.4 (MA).

Input: (y, h1 . . . , hi) ∈ f({0, 1}n)×Hi, where i ∈ [k].

Operation:

29We assume without loss of generality that ε(n) < 1− 2−n, as stronger one-way functions cannot exist.
30The focus on f ’s (k + 1) iteration, and not on its k’th iteration as in the earlier sections, is merely for

notational convenience.
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1. If i = k, let w = y.

Otherwise, choose uniformly at random hi+1, . . . , hk ∈ H and let w =
fk−i(hi+1(y), hi+2, . . . , hk).

31

2. Apply A(w, h1, . . . , hk) to get (x, h′1, . . . , h
′
k).

3. Return f i(x, h1, . . . , hi−1).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The proof of the theorem proceeds as follows: in Claim 6.5 we show that for every dense
set S ⊆ {0, 1}n, there exists i ∈ [k] such that MA inverts the last iteration of f i+1 with high
probability, even when conditioning that the output of this iteration is inside S. We then
use a generalization of Lemma 3.2, to show that MA yields an algorithm for which f has no
failing set, in contradiction to the one-wayness of f .

In the following we assume for simplicity that εA(n) ∈ ω(2−n). The heart of the proof
lies in the following claim:

Claim 6.5. For any n ∈ N and S ⊆ {0, 1}n with Pr[f(Un) ∈ S] ≥ ε(n)/2, there exists i ∈ [k]
such that

Pr[MA(f i+1(Un, H
i), H i) = f i(Un, H

i) ∧ f i+1(Un, H
i) ∈ S] ≥ εA(n)

2

9k(n)2
.

Before proving Claim 6.5, let us first use it for proving Theorem 6.3. For that, we use
the following immediate generalization of Lemma 3.2.

Lemma 6.6. Let f , H, i, and f i be as in Definition 3.1. Assume that f is regular, then for
any n ∈ N, any set L ⊆ {0, 1}n and any algorithm A with

Pr[A(f i+1(Un, H
i), H i) = f i(Un, H

i) ∧ f i(Un, H
i) ∈ L] = εA,

it holds that

Pr[H i
i (A(f(Un), H

i)) ∈ f−1(f(Un)) ∧ f(Un) ∈ L] ≥ ε2A/(i+ 1).

Consider the following algorithm for inverting f : on input y ∈ {0, 1}n, algorithm BA

chooses a random i ∈ [k] and h ∈ Hi, and returns hi(M
A(y, h)). For any set S(n) ∈ {0, 1}n

with Pr[f(Un) ∈ S(n)] ≥ ε(n)/2, it holds that

Pr[BA(f(Un)) ∈ f−1(f(Un)) ∧ f(Un) ∈ S(n)]
= Ei←[k]

[
Pr[Hi(M

A(f(Un), H
i)) ∈ f−1(f(Un)) ∧ f(Un) ∈ S(n)]

]
≥ Ei←[k]

[
(Pr[MA(f i+1(Un, H

i), H i) = f i(Un, H
i) ∧ f i+1(Un, H

i) ∈ S])2/(i+ 1)
]

≥ 1

k
·
(
εA(n)

2

9k2

)2

∈ Ω(ε4A/k
5),

31Namely, if y = f i+1(x, h1 . . . , hi), then we set that w = fk+1(x, h1, . . . , hk).
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where the first inequality is by Lemma 6.6, and the second one is by Claim 6.5. It follows
that BA has no (ε/2, γ(n) = (εA/n)

O(1))-failing-set. Since BA runs in time poly(n) + TA(n),
which by taking large enough c in the theorem statement, is smaller than T (n) · γ(n)/nc′ for
any c′ > 0, this is in contradiction to the one-wayness of f and Claim 6.2. �

Proof of Claim 6.5. For (y, h) ∈ f({0, 1}n) × Hk, let Sib(y, h) = {y′ ̸= y ∈
f({0, 1}n) : g(f−1(y′), h) = g(f−1(y), h)}), where g(f−1(y), h) = g(x, h) for an arbitrary
x ∈ f−1(y).32 The pairwise independence of H yields that Pr[fk+1(f−1(y), Hk) =
fk+1(f−1(y′), Hk)] ≤ k/ |f({0, 1}n)| for any y ̸= y′ ∈ f({0, 1}n) (cf., the proof
of Claim 3.5). Thus, for any y ∈ f({0, 1}n) it holds that E[|Sib(y,Hk))|] =∑

y′ ̸=y∈f({0,1}n) E
[
fk+1(f−1(y′), Hk) = fk+1(f−1(y), Hk)

]
≤ k, and a Markov’s inequality

yields that Pr[|Sib(y,Hk))| > 2k/εA] ≤ εA/2 for any y ∈ f({0, 1}n). The above and our
assumption about A yields that

Pr[SuccessA(Un, H
k) ∧

∣∣Sib(f(Un), H
k)
∣∣ ≤ 2k/εA] ≥ εA/2, (27)

where SuccessA(x, h) = 1 if A(g(x, h)) ∈ g−1(g(x, h)) and zero otherwise. Let S ⊆ {0, 1}n
be a set with Pr[f(Un) ∈ S] ≥ ε/2. The pairwise independence of H (actually one-wise
independence suffices for this part) yields that Pr[f i+1(x, (h,H)) ∈ S] ≥ ε/2 for every
i ∈ [k], x ∈ {0, 1}n and h ∈ Hi−1. Hence, Pr[∃i ∈ [k] : f i+1(x,H i) ∈ S] > 1− 2−2n for any
x ∈ {0, 1}n (recall that k = ⌈4n/ε⌉), and a union bound yields that

Pr[HitS(H
k)] > 1− |f({0, 1}n)| · 2−2n (28)

≥ 1− 2−n

≥ 1− εA/6,

where HitS(h) = 1 if for each x ∈ {0, 1}n there exists i ∈ [k] with f i+1(x, h) ∈ S, and equals
zero otherwise. Combining Equations (27) and (28) yields that

Pr
[
SuccessA(Un, H

k) ∧ |Sib(f(Un), H
k)| ≤ 2k/εA ∧ HitS(H

k)
]
> εA/2− εA/6 ≥ εA/3

(29)

Let A(·)1 be lhs of A(·) (i.e., x). It follows that

Pr[A(g(Un, H
k))1 ∈ f−1(f(Un)) ∧ HitS(H

k)] (30)

≥ Pr
[
A(g(Un, H

k))1 ∈ f−1(f(Un)) ∧ HitS(H
k) ∧ |Sib(f(Un),Hi))| ≤ 2k/εA

]
≥ Pr

[
SuccessA(Un, H

k) ∧ HitS(H
k) ∧ |Sib(f(Un),Hi))| ≤ 2k/εA

]
· Pr

[
A(g(Un, H

k))1 ∈ f−1(f(Un)) | SuccessA(Un, H
k) ∧ HitS(H

k) ∧ |Sib(f(Un),Hi))| ≤ 2k/εA
]

≥ εA
3
· 1

2k
εA

+ 1
≥ ε2A

9 · k
,

32Since g(x, h) is the same for every x ∈ f−1(y), the above is well defined.
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where the last inequality is by Equation (29) and the regularity of f (i.e., all images of f in
Sib(f(Un),Hi)) ∪ {f(Un)} occur with the same probability). It follows that

Pr
[
A(g(Un, H

k))1 ∈ f−1(f(Un)) ∧ ∃i ∈ [k] : f i+1(Un, H
k) ∈ S

]
≥ ε2A

9 · k

and in particular there exists i ∈ [k] such that

Pr
[
A(g(Un, H

k))1 ∈ f−1(f(Un)) ∧ f i+1(Un, H
k) ∈ S

]
≥ ε2A

9 · k2
(31)

We conclude that

Pr[MA(f i+1(Un, H
i), H i) = f i(Un, H

i) ∧ f i+1(Un, H
i) ∈ S]

≥ Pr[A(g(Un, H
k))1 ∈ f−1(f(Un)) ∧ f i+1(Un, H

k) ∈ S]

≥ ε2A
9 · k2

.

�

6.4 An Almost-Linear-Input Construction

In this section we derandomize the randomized iterate used in the basic construction above,
to get a one-way function with input length Θ(n log n). For that we use the bounded-space
generator of either [29] or [24] (see Theorem 2.7).

Theorem 6.7. Let f , k, H and fk+1 be as in Theorem 6.3. Let v(H) = 2n be the description
length of h ∈ H and let BSG : {0, 1}q(n)∈Θ(n logn) 7→ {0, 1}mv(H) be a bounded-space generator
that 2−2n-fools every (2n, k, v(H))-LBP.

Then g : {0, 1}n × {0, 1}q(n) 7→ {0, 1}n × {0, 1}q(n) defined as g(x, s) =
(fk+1(x,BSG(s)), s), is a (T (n) · (ε′(n)/n)O(1), ε′(n))-one-way function for any polynomial-
time computable function ε′.

For polynomially weak one-way functions, the above yields the following result.

Corollary 6.8. Let ε(n) > 1/ poly(n) be a polynomial-time computable function and let
f : {0, 1}n 7→ {0, 1}n be a polynomial-time computable regular function, which is (T (n), 1 −
ε(n))-one-way for every T ∈ poly. Then g of Theorem 6.7 is one way.

Proof. If g is not one-way, then it is not (1/p(n))-one-way for some p ∈ poly, in contradiction
to Theorem 6.7 (taking ε′(n) = 1/p(n)). �

Proof idea of Theorem 6.7: The proof of the derandomized version follows the proof of
Theorem 6.3. Through the proof of Theorem 6.3, the structure of Hk is used to derive the
following facts:
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1. For any i ∈ [k + 1] and L ⊆ {0, 1}n

Pr[(f(Un), H
k) ∈ L] ≥ Pr[(f i(Un, H

k), Hk) ∈ L]2/i

2. For any y ̸= y′ ∈ f({0, 1}n)

Pr[fk+1(f−1(y), Hk) = fk+1(f−1(y′), Hk)] ≤ k/ |f({0, 1}n)|

3. For any x ∈ {0, 1}n and S ⊆ {0, 1}n with Pr[f(Un) ∈ S] ≥ ε/2

Pr[∃i ∈ [k] : f i+1(x,Hk) ∈ S] ≥ 1− 2−2n.

Fact 1. was used to prove Lemma 6.6, and facts 2. and 3. were used to prove Claim 6.5
(specifically, to derive Equations (27) and (28) respectively). As in the proof of Theorem 3.10,
the following hold with respect to the derandomized version of Hk:

1’ For any i ∈ [k + 1] and L ⊆ {0, 1}n

Pr[(f(Un),BSG(Uq(n))) ∈ L] ≥ Pr[(f i(Un,BSG(Uq(n))),BSG(Uq(n))) ∈ L]2/(i+ 1)

2’ For any y ̸= y′ ∈ f({0, 1}n)

Pr[fk+1(f−1(y),BSG(Uq(n))) = fk+1(f−1(y′),BSG(Uq(n)))]

≤ k

|f({0, 1}n)|
+ 2−2n <

k + 1

|f({0, 1}n)|

3’ For any x ∈ {0, 1}n and S ⊆ {0, 1}n with Pr[f(Un) ∈ S] ≥ ε/2

Pr[∃i ∈ [k] : f i+1(x,BSG(Uq(n))) ∈ S] ≥ 1− 2−2n − 2−2n = 1− 21−2n

Item 1.′ follows from Lemma 3.11, item 2.′ is an immediate conclusion of Equation (10)
(appears in the proof of Lemma 3.11) and the proof item 3.′ is an easy variant of the proof
of (2′).33 Since the proofs of Lemma 6.6 and Equations (27) and (28) still hold even under
the weaker guarantees above (in the case of Lemma 6.6, there is an insignificant loss in the
parameters), then the proof of the main theorem (Theorem 6.3) goes through.
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A The Pseudoentropy Pair of H̊astad et al.

In the following we complete the picture of Section 5, presenting the pseudoentropy pair
used in [16, 19].34

Construction A.1 (the H̊astad et al. PEP). Let f : {0, 1}n 7→ {0, 1}ℓ(n) be a one-way func-
tion and let H be an efficient family of length-preserving pairwise-independent hash functions
over {0, 1}n. We define the function and predicate fH and bH over {0, 1}n ×H× [n] as

• fH(x, h, i) = (f(x), h(x)1,...,i+2⌈log(n)⌉, h, i), and

• bH(x, h, i) = gl(x)1,

where gl is the Goldreich-Levin hardcore function (see Theorem 2.12).

[16, 19] proved that (fH, bH) is a (ρ+1/2n, 1/2n)-PEP, for ρ = Pr(x,i)←(Un,[n])[Df (f(x)) <
i]. The proof first shows that if i ≤ Df (f(x)), then it is hard to predict bH(x, h, i).

35 Where

34The following is implicit in [16], and is formally shown in [19].
35In such a case, (hi+2⌈log(n)⌉(x), h, i) does not contain any noticeable information about x. It follows that

it is essentially as hard to predict bH(x, h, i) = gl(x)1 given fH(x, h, i), as it is to predict gl(x)1 given f(x).
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since the probability that i = Df (x) is 1/n, it follows that bH is a 1−ρ−1/n
2

-hardcore predicate
of fH.

On the other hand, the pairwise independence of H yields that if i ≥ Df (x), then there
is almost no entropy (i.e., less then 1/2n) in bH(x, h, i) given fH(x, h, i). Thus, the entropy
of bH(x, h, i) given fH(x, h, i) is not more than ρ+ 1

2n
.
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