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Summary

Since most interesting cryptographic tasks are impossible to achieve with absolute, information-
theoretic security, modern cryptography aims to design cryptographic primitives (i.e., algo-
rithms/protocols) that are computationally infeasible to break (i.e., secure against computationally
bounded adversaries). Proving lower bounds of the type needed, however, seems beyond the reach
of current techniques in complexity theory. 1 Thus, research in the Foundations of Cryptography
has aimed to design primitives based on complexity assumptions that are as weak as possible. It is
well known that the assumption that one-way functions exist, is necessary for most cryptographic
primitives. It is then natural to pose the opposite question. Namely, does the existence of one-way
functions imply the existence of all cryptographic primitives? Here we consider some of the most
fundamental primitives in cryptography and prove the following results about the power of one-way
functions in implementing these primitives.

Statistically hiding commitments. Statistically hiding commitments (ones where the hiding
property holds against even computationally unbounded adversaries) are among the few fun-
damental primitives for which we have failed to find exact characterization. That is, until
recently it was only known how to build these primitives from seemingly stronger assumptions
than the existence of one-way functions, yet there was no black-box separation between these
primitives and one-way functions.

We resolve the complexity of statistically hiding commitments, giving a construction of statis-
tically hiding commitment schemes under the minimal complexity assumption that one-way
functions exist. By this we give a positive answer to an open question posed by Naor, Ostro-
vsky, Venkatesan, and Yung (CRYPTO ‘92, J. Cryptology ‘98).

Pseudorandom generators. We present a construction of pseudorandom generators based on
regular one-way functions that is significantly better (in terms of security and efficiency)
than the previous construction of Goldreich, Krawczyk and Luby (FOCS ’88, SIAM J. on
Computing ’99) (i.e., the input length of our generator is Θ(n log n) compared to Θ(n3) in
Goldreich et al., where n is the input length of the underlying one-way function). In addi-
tion, we present a construction of pseudorandom generators from any one-way function that
improves the construction of H̊astad, Impagliazzo, Levin and Luby (STOC ’89, STOC ’90,
SIAM J. on Computing ’99). Finally, we show a rather efficient construction of pseudorandom
generator (input length Θ(n2)) based on one-way functions with exponential hardness. Our
construction significantly improves the previous construction due to Holenstein (TCC ’06)
(input length Θ(n5)).

1Indeed, it would require at least proving that P 6= NP.
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Summary Summary

Interactive hashing. We give an alternative proof for interactive hashing protocol of Naor, Os-
trovsky, Venkatesan and Yung (CRYPTO ‘92, J. Cryptology ‘98), which seems to us signif-
icantly simpler and more intuitive than the original one. Moreover, the new proof achieves
much better parameters (in terms of how security preserving the reduction is). Finally, our
proof implies a more versatile interactive hashing theorem in a more general setting than that
of Naor et al.

Hardness amplifications. We present a reduction for security amplification of regular one-way
functions, which incur only Θ(n log(n)) blow-up in the input length. This improves upon the
reduction of Goldreich, Impagliazzo, Levin, Venkatesan and Zuckerman (FOCS ’90) in that
the reduction does not need to know the regularity parameter of the functions (in terms of
security, the two reductions are incomparable).

ii
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Chapter 1

Introduction

1.1 Overview

Since most interesting cryptographic tasks (e.g., key-agreement protocols, encryption schemes) are
impossible to achieve with absolute, information-theoretic security, modern cryptography aims to
design cryptographic primitives (i.e., algorithms/protocols) that are computationally infeasible to
break. Namely, their security is based on computational hardness assumptions. Proving lower
bounds of the type needed, however, seems beyond the reach of current techniques in complexity
theory, and indeed would require at least proving that P 6= NP. 1

Given this state of affairs, research in the foundations of cryptography has aimed to design
cryptographic protocols based on complexity assumptions that are as weak and general as pos-
sible. Typically, complexity assumptions come in two flavors: specific hardness assumptions like
discrete log, factoring and RSA, and general hardness assumptions like the existence of one-way
functions and of collision resistant hash functions. Since one-way functions (efficient computable
functions that are infeasible to invert) are implied by almost any cryptographic task [IL89, OW93],
a large effort was devoted to base the basic cryptographic primitives on their mere existence. This
project was enormously successful in the 1980’s. In a beautiful sequence of works, it was shown
that many cryptographic primitives, such as pseudorandom generators, pseudorandom functions,
private-key encryption and authentication, digital signatures, (computationally hiding) commit-
ment schemes, and (computational) zero-knowledge proofs could be constructed from any one-way
function [HILL99, GGM86, Rom90, Nao91, GMW91].

Primitives assumed to carry some hardness assumption can be used to construct a provably
secure cryptographic tasks in two possible ways: “black-box usage”, where the construction uses
only the input/output behavior of the primitive (i.e., the primitive is accessed as a “subroutine”),
and “non-black-box usage”, where the construction uses the internal structure of the primitive,
e.g., its code. It was shown that many of the primitives whose existence we failed to reduce to
the existence of one-way functions, such as public-key encryption, collision-resistant hashing and
oblivious transfer, could not be black-box reduced to the existence of one-way functions [IR89,
Sim98].

Few important primitives, however, resisted classification into the above categories. That is,
it was only known how to build these primitives from seemingly stronger assumptions than the

1For most cryptographic primitives, the task of breaking these primitives can be translated into an NP problem.
Thus, proving the security of such primitives against polynomially bounded adversaries, would imply that P 6= NP.
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1. Introduction 1.2. Statistically Hiding Commitment

existence of one-way functions, yet there was no black-box separation between these primitives
and one-way functions. One of the most fundamental primitive among these few examples is
statistically hiding commitment. In Section 1.2, we describe this primitive and present our result
that resolves the complexity of this primitive, giving a (black-box) construction of statistically
hiding commitment schemes under the minimal complexity assumption that one-way functions
exist. Interactive hashing is a major component in all known constructions of statistically hiding
commitment that are based on, possibly restricted types of, one-way functions (in particular, in the
one described in this work). We describe this notion in Section 1.3, and present our contribution
to efficient constructions of interactive hashing protocols.

A closely related line of research to the one discussed above, tries to find the most efficient
construction of a cryptographic primitive based on a given complexity assumption. In particular,
what is the most efficient construction assuming the existence of (particular type of) one-way func-
tions. While in some settings very efficient constructions where given (i.e., hardness amplification
of one-way permutations [GIL+90]), others constructions are highly inefficient, making them im-
practical in practice. Here again, lower bounds on the efficiency of any black-box reduction were
given [KST99, GGKT05, HHRS07, HK05, Wee07]. The above question is of high importance w.r.t.
the fundamental notions of pseudorandom generators and of hardness amplification. In Section 1.4,
we describe pseudorandom generators and present our efficient constructions of these primitives
from different types of one-way functions. Where in Section 1.5, we discuss the notion of hardness
amplification and present our efficient constructions.

1.2 Statistically Hiding Commitment

A commitment scheme defines a two-stage interactive protocol between a sender S and a receiver
R; informally, after the commit stage, S is bound to (at most) one value, which stays hidden from
R, and in the reveal stage R learns this value. The two security properties hinted at in this informal
description are known as binding (namely, that S is bound to at most one value after the commit
stage) and hiding (namely, that R does not learn the value to which S commits before the reveal
stage).

As with most cryptographic primitives, each of these security properties comes in two main fla-
vors — computational security, whereby a polynomial-time adversary cannot violate the property
except with negligible probability, and the stronger notion of statistical security, whereby even a
computationally unbounded adversary cannot violate the property except with negligible probabil-
ity. (An even stronger notion is that of perfect security, in which we do not even allow a negligible
probability of breaking the scheme.) Naturally, statistical security, when achievable, is preferable
to computational security. However, it can be shown that there do not exist commitment schemes
that are simultaneously statistically hiding and statistically binding. Thus, at best we can hope
for one of the two properties to be statistical and the other to be computational. The complex-
ity of statistically binding commitment schemes has been understood for a long time; they can
be constructed from any one-way function [Nao91, HILL99] and conversely, one-way functions are
necessary for commitment schemes, even with both security properties computational [IL89]. In
this work, however, we are interested in statistically hiding commitments.

Some of the most important examples of cryptographic protocols based on commitments are the
zero-knowledge protocols for proving membership in an arbitrary NP language [GMW91, BCC88].
In the protocol of [GMW91], the hiding property of the commitment scheme translates to the

2



1. Introduction 1.3. Interactive Hashing

zero-knowledge property of the protocol (i.e. the verifier learns nothing other than the fact that
the assertion being proven is true), and the binding property of the commitment translates to the
soundness property of the protocol, (i.e. the prover cannot convince the verifier of a false assertion).
Thus, the existence of statistically hiding commitments implies that arbitrary NP statements can
be proven with statistical zero knowledge and computational soundness; that is, every language in
NP has a statistical zero-knowledge argument system [BCC88, BCY91, NOVY98].

Using statistically hiding commitments and the resulting statistical zero-knowledge arguments
in known reductions [GMW91, GMW87], one can actually transform any two-party protocol that
provides statistical security for one of the parties against a passive (a.k.a. honest-but-curious)
adversary into one that provides statistical security for the same party against a malicious adversary
(while preserving computational security for the other party).

1.2.1 Our Results

We resolve the complexity of statistically hiding commitments, giving a (black-box) construction of
statistically hiding commitment schemes under the minimal complexity assumption that one-way
functions exist. By this we give a positive answer to an open question posed by Naor, Ostrovsky,
Venkatesan, and Yung (CRYPTO ‘92, J. Cryptology ‘98).

1.3 Interactive Hashing

Interactive hashing, introduced by Naor, Ostrovsky, Venkatesan and Yung [NOVY98], is a protocol
that allows a sender S to commit to a particular value while only reviling to a receiver R some
predefined information of this value. More specifically, S commits to a value y while only reviling
to R the value (h, h(y)), where h is some random hash function. The two security properties of
interactive hashing are binding (namely, S is bounded by the protocol to at most one value of y)
and hiding (namely, R does not learn any impermissible information about y). As in [NOVY98],
we will consider in this work interactive hashing where the hiding property is statistical (i.e., the
protocol preserves the secrecy of y even against an all-powerful R), and the binding property is
computational (i.e., it assumes that S is computationally bounded).

Interactive hashing (in the flavor mentioned above) is closely related and to a large extent
motivated by the notion of statistically hiding commitments. The relation between interactive
hashing and statistically hiding commitments goes beyond the similarity in definitions. On one
hand, interactive hashing can easily be implemented using commitment schemes (simply commit
to y using the commitment scheme and reveal whatever information needed on y in the clear). On
the other hand, one of the main applications of interactive hashing protocols is for constructing
statistically hiding commitment schemes. A major motivation for looking into interactive hashing,
is to simplify constructions of statistically hiding commitment schemes based on any one-way
functions mentioned above.

1.3.1 Our Results

We introduce an alternative proof for the [NOVY98] protocol, which relies in parts on the original
proof due to [NOVY98], but still seems to us significantly simpler. Moreover, the parameters
achieved by our proof are an improvement compared with the original ones. Given an algorithm A
that breaks the binding property with probability εA, we get an algorithm that inverts the one-way

3



1. Introduction 1.4. Pseudorandom Generators

permutation in comparable time and with inverting probability ε2
A · poly(n). This is a substantial

improvement and seems much closer to natural limitations of the proof technique. 2

In addition to being simpler and more security preserving, the new proof implies a more general
interactive hashing theorem. The new theorem applies to every family of hash functions that is a
product of Boolean families of pairwise independent hash functions (and not only to the special
family of two-to-one hash functions used by [NOVY98, NOV06]). More importantly, the new
theorem directly applies to the “sparse case”, where the set we apply the hash function on might
be negligible in the set of all strings.

1.4 Pseudorandom Generators

Pseudorandom Generators, a notion first introduced by Blum and Micali [BM82] and stated in its
current, equivalent form by Yao [Yao82], are one of the cornerstones of cryptography. Informally,
a pseudorandom generator is a polynomial-time computable function G that stretches a short ran-
dom string x into a long string G(x) that “looks” random to any efficient (i.e., polynomial-time)
algorithm. Hence, there is no efficient algorithm that can distinguish between G(x) and a truly
random string of length |G(x)| with more than a negligible probability. Originally introduced in
order to convert a small amount of randomness into a much larger number of effectively random
bits, pseudorandom generators have since proved to be valuable components for various crypto-
graphic applications, such as bit commitments [Nao91], pseudorandom functions [GGM86] and
pseudorandom permutations [LR88], to name a few.

The first construction of a pseudorandom generator was given in [BM82] based on a particular
one-way function and was later generalized in [Yao82] into a construction of a pseudorandom
generator based on any one-way permutation. Their result was generalized to by Goldreich et al.
[GKL93] that showed a construction of a pseudorandom generator based on any regular one-way
function. (A regular function is a function such that every element in its image has the same
number of preimages). Finally, H̊astad et al. [HILL99] (combining [ILL89a, H̊as90]), culminated
this line of research by showing a construction of a pseudorandom generator using any one-way
function. Recently, Holenstein [Hol06a] generalized the construction of [HILL99], to get more
efficient pseudorandom generators from any one-way function with exponential hardness (i.e., for
some constant C, no algorithm of running-time at most 2Cn inverts the function with probability
better than 2−Cn).

The Complexity and Security of the Previous Constructions

While the HILL generator fully answers the question of the plausibility of a generator based on any
one-way function, the construction is highly involved and very inefficient. Other than the evident
contrast between the simplicity and elegance of the BMY generator to the complex construction and
proof of the HILL generator, the parameters achieved in the construction are far worse, rendering
the construction impractical.

In practice, it is not necessarily sufficient that a reduction translates polynomial security into
polynomial security. In order for reductions to be of any practical use, the concrete overhead
introduced by the reduction comes into play. There are various factors involved in determining the
security of a reduction, and in Section 2.3.2 we elaborate on the security of cryptographic reductions

2We note that independently of our work, [NOV06] recently presented an ε3
A · poly(n) reduction.
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1. Introduction 1.5. Hardness Amplification

and the classification of reductions in terms of their security. Here, however, we focus only on one
central parameter, which is the length m of the generator’s seed compared to the length n of the
input to the underlying one-way function. The BMY generator takes a seed of length m = Θ(n),
the GKL generator takes a seed of length m = Θ(n3) while the HILL construction produces a
generator with seed length on the order of m = Θ(n8).3

The length of the seed is of great importance to the security of the resulting generator. While
it is not the only parameter, it serves as a lower bound to how good the security may be. For
instance, the HILL generator on m bits has security that is at best comparable to the security of
the underlying one-way function, but only on Θ( 8

√
m) bits. To illustrate the implications of this

deterioration in security, consider the following example: Suppose that we only trust a one-way
function when applied to inputs of at least 100 bits, then the GKL generator can only be trusted
when applied to a seed of length of at least one million bits, while the HILL generator can only be
trusted on seed lengths of 1016 and up (both being highly impractical). Thus, trying to improve the
seed length towards a linear one (as it is in the BMY generator) is of great importance in making
these constructions practical.

1.4.1 Our Results

We give a construction of a pseudorandom generator from any regular one-way function with seed
length O(n log n). We note that our approach has the potential of reaching a construction with
a linear seed, the bottleneck being the efficiency of the current bounded-space generators. Our
construction is achieved in two steps:

• We give a significantly simpler proof that the generator of [GKL93] works, allowing the use
of a family of hash functions which is pairwise-independent rather than n-wise independent
(as used in [GKL93]). This gives a construction with seed length O(n2).

• The new proof allows for the derandomization of the choice of the randomizing hash func-
tions via the bounded-space generator of Nisan [Nis92], further reducing the seed length to
O(n log n).

We give a construction of a pseudorandom generator from any exponentially hard one-way func-
tion with seed length O(n2). If the resulting generator is allowed to have only super-polynomial
security then the construction gives seed length of only O(n log2 n). Finally, we present a pseu-
dorandom generator from any one-way function with seed length O(n7), which is the best known
to date. Our improvements to the seed length of pseudorandom generators under the various
assumptions are summarized in Figure 1.1.

1.5 Hardness Amplification

The existence of one-way functions is essential to almost any task in cryptography (see for example
[IL89]) and also sufficient for numerous cryptographic primitives, such as the pseudorandom gen-
erators discussed above. In general, for constructions based on one-way functions we use what are

3 The seed length actually proved in [HILL99] is Θ(n10), however it is mentioned that a more careful analysis can
get to Θ(n8). A formal proof for the Θ(n8) seed length construction is given by Holenstein [Hol06a].
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Paper Type of function Seed length
[BM82, Yao82] One-way permutation Θ(n)

[GKL93]
This work

Regular one-way function
Θ(n3)

Θ(n log n)
[Hol06a]

This work
One-way function with exponential hardness

Θ(n5)
Θ(n2)

This work Regular one-way function with exponential hardness Θ(n)
[HILL99]
This work

Any one-way function
Θ(n8)
Θ(n7)

Figure 1.1: Our improvements to pseudorandom generators.

called strong one-way functions. That is, functions that can only be inverted efficiently with neg-
ligible success probability. A more relaxed definition is that of an δ-weak one-way function, where
δ(n) is a polynomial fraction. This is a function that no efficient algorithm inverts with probability
better than 1−δ(n). This definition is significantly weaker, yet Yao [Yao82] showed how to convert
any weak one-way function into a strong one. The new strong one-way function simply consists of
many independent copies of the weak function concatenated to each other. The solution of Yao,
however, incurs a blow-up factor of at least ω(1)/δ(n) to the input length of the strong function, 4

which translates to a significant loss in the security (as in the case of pseudorandom generators).
With this security loss in mind, several works have tried to present an efficient method of am-

plification from weak to strong. Goldreich et al. [GIL+90] give a solution for one-way permutations
that has just a linear blowup in the length of the input. This solution generalizes to known-regular
one-way functions (regular functions whose image size is efficiently computable), where its input
length varies according to the required security. The input length is linear when security is at most
2Ω(

√
n), but deteriorates up to O(n2) when the required security is higher (e.g., security 2O(n)). 5

1.5.1 Our Results

We present an alternative efficient hardness amplification for regular one-way functions. Our con-
struction is arguably simpler and has the following advantages:

1. While the [GIL+90] construction works only for known regular weak one-way functions, our
amplification works for any regular weak one-way functions (whether its image size is effi-
ciently computable or not).

2. The input length of the resulting strong one-way function is O(n log n) regardless of the
required security. Thus, for some range of the parameters our solution is better than that of
[GIL+90] (although it is worse than [GIL+90] for other ranges).

4 The ω(1) factor stands for the logarithm of the required security. For example, if the security is 2O(n) then this
factor is of order n.

5Loosely speaking, one can think of the security as the probability of finding an inverse to a random image f(x)
simply by choosing a random element in the domain.
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1.6 Outline

We present the basic notations and definitions in Chapter 2, additional definitions are given in the
chapters themselves. Chapter 2 also contains some of the common tools used through this work,
some of these tools are original contributions of this thesis. In Chapter 3 we give our construction
of statistically hiding commitments from any one-way function, where in Chapter 4 we give our new
interactive hashing theorem. In Chapter 5 we present our contribution to efficient constructions of
pseudorandom generators. Finally in Chapter 6 we use some of the tools developed in Chapter 5
to obtain our efficient hardness amplification result.
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Chapter 2

Preliminaries

2.1 General Notations

Given two strings x and y, we denote their concatenation by x ◦ y and denote their inner prod-
uct modulus two by 〈x, y〉2. Given a function f : {0, 1}∗ 7→ {0, 1}∗ and a set L ⊆ {0, 1}∗, we
denote the image of f on L as f(L) def= {f(x) : x ∈ L} and denote f({0, 1}∗) by Im(f). For
y ∈ Im(f), we define f−1(y) def= {x ∈ {0, 1}∗ : f(x) = y}. The degeneracy of f on y is defined
by Degf (y) def=

⌈
log

∣∣f−1(y)
∣∣⌉. We denote by f : {0, 1}n 7→ {0, 1}`(n), the ensemble of functions{

fn : {0, 1}n → {0, 1}`(n)
}

n∈N. A function µ : N → [0, 1] is called negligible if µ(n) = n−ω(1).
We let neg(n) denote an arbitrary negligible function (i.e., when we say that f(n) < neg(n) we
mean that there exists a negligible function µ(n) such that for every n, f(n) < µ(n)). Likewise,
poly(n) denotes an arbitrary function f(n) = nO(1), where ppt refers to probabilistic algorithms
(i.e., Turing machines) that run in strict polynomial time.

2.1.1 Interactive Protocols

An interactive protocol (A,B) consists of two algorithms that compute the next-message functions
of the (honest) parties in the protocol. Specifically, A(x, a, α1, . . . , αk; r) denotes the next message
αk+1 sent by party A when the common input is x, A’s auxiliary input is a, A’s coin tosses are
r, and the messages exchanged so far are α1, . . . , αk. There is a special messages, halt, that
immediately halts the interaction, at which time each party can compute one more message, which
is their private output.

We write (A(a), B(b))(x) to denote the random process obtained by having A and B interact
on common input x, with (private) auxiliary inputs a and b to A and B, respectively (if any), and
with independent random coin tosses for A and B. We call (A,B) polynomially bounded if there is a
polynomial p such that for all x, a, b, the running-time each party is at most p(|x|) with probability
one. Moreover, if B∗ is any interactive algorithm, then A will immediately halt in (A(a), B∗(b))(x)
if its running-time exceeds p(|x|); we have the analogous requirement for B interacting with any A∗.
The number of rounds in an execution of the protocol is the total number of messages exchanged
between A and B. We call the protocol (A, B) public coin for A (resp., B) if all the messages sent
by A (resp., B) are simply the output of its coin tosses (independent of the history), except for
the final halt message and A’s (resp., B’s) private output, which is computed as a deterministic
function of the transcript.
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2. Preliminaries 2.2. Pairwise Independent Hash Functions

We associate several random variables with the interaction (A(a), B(b))(x). The private output
of A is denoted by outputA(A(a), B(b))(x), and viewA(A(a), B(b))(x) denotes A’s view of the inter-
action, i.e., its values are transcripts (γ1, γ2, . . . , γt; r), where the γi’s are all the messages exchanged
and r is A’s coin tosses. Similarly, outputB(A(a), B(b))(x) and viewB(A(a), B(b)) denote B’s pri-
vate output and view, respectively. The joint output, if any, is denoted by output(A(a), B(b))(x).

2.1.2 Distributions and Entropy

Given a random variable X taking values in a finite set U , we write x ← X to indicate that
x is selected according to X. Given a subset S of U , we let x ← S denote that x is selected
according to the uniform distribution on S. We adopt the convention that when the same random
variable occurs several times in an expression, all occurrences refer to a single sample. For example,
Pr[f(X) = X] is defined to be the probability that when x ← X, we have f(x) = x. We write
Un to denote the random variable distributed uniformly over {0, 1}n. Let D be a distribution
over the set L, the support of D is defined as: Supp(D) def= {x ∈ L : D(x) > 0}. We write Xk to
denote the random variable consisting of k independent copies of X. For an event E, X|E denotes
the random variable X conditioned on E. The statistical difference (also known as the variation
distance) between random variables X and Y taking values in U is defined to be ∆(X,Y ) =
maxS⊂U |Pr [X ∈ S]− Pr [Y ∈ S]|. We define the distinguishing advantage of an algorithm A, on
security parameter n, between X and Y by

∆A
n (X,Y ) = |Pr[A(1n, X) = 1]− Pr[A(1n, Yn) = 1]| ,

where the probabilities are taken over the distributions X and Y , and the randomness of A (we omit
the security parameter from the above notation whenever its value is clear from the context). By
a Distribution Ensemble we mean a series {Dn}n∈N, where each Dn is a distribution over a finite
set Un. Two probability ensembles {Xn}n∈N and {Yn}n∈N are computationally indistinguishable
if ∆A(Xn, Yn) < neg(n) for every ppt A. Similarly, we say that {Xn} and {Yn} are statistically
indistinguishable if the above is required for all functions A (instead of only ppt A’s), or equivalently
if ∆(Xn, Yn) < neg(n). Let D be a distribution over some finite domain X, we use the following
measures of entropy:

• The Shannon-entropy of D is H(D) =
∑

x∈X D(x) log 1
D(x) .

• The collision-probability of D is CP(D) =
∑

x∈X D(x)2.

• The min-entropy of D is H∞(D) = minx∈X log 1
D(x) .

2.2 Pairwise Independent Hash Functions

DEFINITION 2.2.1 (pairwise Independent hash functions)
Let H be a family of functions mapping strings of length n to strings of length `(n). We say that H
is an efficient family of pairwise independent hash functions (following [CW79]) if the following hold:
1

1The first two properties, regarding the efficiency of the family, implicitly assume an ensemble of families (one
family for every value of n). For simplify of presentation, we only refer to a single family.
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2. Preliminaries 2.2. Pairwise Independent Hash Functions

Samplable. H is polynomially samplable in n,

Efficient. There exists a polynomial-time algorithm that given x ∈ {0, 1}n and a description of
h ∈ H outputs h(x),

Pairwise independence. For every distinct x1, x2 ∈ {0, 1}n and every y1, y2 ∈ {0, 1}`(n), we have

Prh←H[h(x1) = y1 ∧ h(x2) = y2] = 2−2`(n) .

It is well known ([CW79]) that there exists an efficient family of pairwise-independent hash
functions for every `(n) ∈ poly(n), whose elements description size is O(max {n, `(n)}).

Given a family of hash functions, we sometime consider the concatenation of this family to itself
defined next.

DEFINITION 2.2.2 (product hash family)
Let H be a family of functions mapping strings of length n to strings of length `(n) and let
k : N 7→ N. The k-product-family of H, denoted Hk(n), is a family of functions mapping strings
of length n to strings of length k(n)`(n) which is defined as follows: The members of Hk(n) are
all possible tuples h of k(n) functions from H. For every such tuple h = (h1, . . . , hk(n)) and every
x ∈ {0, 1}n we let h(x) = (h1(x), . . . , hk(n)(x)).

Through this work we make use of the following facts about pairwise independent hash functions.
The following standard lemma (see for example, [Gol01b, Lemma 4.3.1]) states that a random
pairwise independent hash function partitions a given set into (almost) equal size subsets.

LEMMA 2.2.3
Let H be a family of pairwise independent hash functions mapping strings of length n to strings of
length `, let L ⊆ {0, 1}n and let µ = |L| /2`. Then for every y ∈ {0, 1}` and δ > 0, it holds that

Prh←H[||{x ∈ L : h(x) = y}| − µ| > δµ] < 1
δ2µ

.

Finally, we also make use of the known Leftover Hash Lemma.

LEMMA 2.2.4 (Leftover Hash Lemma [BBR88, ILL89b]
Let random variable H denote a uniformly random hash function from a family of pairwise-independent
hash functions H mapping n-bit strings to `-bit strings, and let X be a random variable taking values
in {0, 1}n. For any ε > 0, if H∞(X) ≥ ` + 2 log(1/ε), and H is independent from X, then the random
variable (H,H(X)) is ε-close in statistical distance to uniform. 2

2.2.1 Almost Pairwise Independent Hash Functions

In some cases we cannot afford to use hash functions whose description length is linear in the input
size but can afford a description that is linear in the output size. In such cases we use the following

2That is, Ext : H×{0, 1}n 7→ {0, 1}` defined as Ext(h, x) = h(x), is an explicit (` + 2 log(1/ε), ε)-strong extractor
(see Section 2.3 for the definition of extractors).
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relaxation of pairwise-independent hash functions.

DEFINITION 2.2.5 (almost pairwise independent hash functions)
Let H be a family of functions mapping strings of length n to strings of length `(n) and let
δ : N 7→ [0, 1]. We say that H is an efficient family of δ-almost pairwise independent hash functions
(following [CW79]) if the following hold:

Samplable. H is polynomially samplable in n,

Efficient. There exists a polynomial-time algorithm that given x ∈ {0, 1}n and a description of
h ∈ H outputs h(x),

Almost pairwise independence. For every distinct x1, x2 ∈ {0, 1}n and ever y1, y2 ∈ {0, 1}`(n),
we have

∣∣Prh←H[h(x1) = y1 ∧ h(x2) = y2]− 2−2`(n)
∣∣ ≤ δ(n) .

Due to [CW79], [WC81] and [NN93] there exist constructions of efficient families almost
pairwise-independent hash functions for every `(n) ∈ poly(n), whose description length is
O(log(n) + `(n) + log(1/δ(n))).

2.3 Randomness Extractors

Randomness extractors, introduced by Nisan and Zuckerman [NZ96] are an information theoretic
tool for obtaining true randomness from a “weak” source of randomness. In this work, extractors
are used in a computational setting to extract pseudorandomness from an imperfect source.

DEFINITION 2.3.1 (strong extractors)
A polynomial-time computable function Ext : {0, 1}d×{0, 1}n 7→ {0, 1}` is an (explicit) (k, ε)-strong
extractor if for every distribution X over {0, 1}n with H∞(X) ≥ k, the distribution (Ext(Ud, X), Ud)
is ε-close to (U`, Ud).

2.3.1 One-way Functions

DEFINITION 2.3.2 (one-way functions)
Let t : N 7→ N and δ : N 7→ [0, 1]. A polynomial-time computable function f : {0, 1}∗ 7→ {0, 1}∗ is
(t(n), δ(n))-one-way, if for every algorithm A of running-time at most t(n)

Pr[A(1n, f(Un)) ∈ f−1(f(Un))] < δ(n) .

In the case that δ(n) = 1
t(n) , we simply write that f is a t(n)-one-way. f is one-way if it is

p(n)-one-way for every polynomial p, and exponentially hard if it is 2Cn-one-way for some constant
C > 0. A one-way permutation is a one-way function that is a permutation over any input length n.
Finally, if f is (t(n), 1− δ(n))-one-way for δ > 1/poly(n) and every polynomial t, it is customary
to call f a δ-weak one-way function.
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DEFINITION 2.3.3 (regular one-way functions)
Let f : {0, 1}∗ 7→ {0, 1}∗ be a (t(n), δ(n))-one-way function. f is regular if there exist a function
α : N 7→ N such that for every n ∈ N and every x ∈ {0, 1}n we have

∣∣f−1(f(x))
∣∣ = α(n)

In the special case that α is also polynomial-time computable, f is known-regular. In this work
we do not require this property and our results hold for functions with unknown-regularity. Thus,
when we say regular functions we actually mean unknown-regular functions.

Few convention remarks. When the value of the security-parameter (i.e., 1n) is clear, we allow
ourselves to omit it from the adversary’s parameters list. Since any one-way function is without
loss of generality length-regular (i.e., inputs of same length are mapped to outputs of the same
length), it can be viewed as an ensemble of functions mapping inputs of a given length to outputs
of some polynomial (in the input) length. Therefore, we can write let f : {0, 1}n 7→ {0, 1}`(n) be a
one-way function, where `(n) is some polynomial-computable function.

Length Preserving One-way Functions

In the following we prove the “folklore” fact that when given a one-way function it can be assumed,
without loss of generality, that it is a length-preserving one. In the case that `(n) < n one can
generate a length preserving one-way function simply by padding the output with extra zeros. In
the case that `(n) > n, however, one needs to be more careful in order for the input length to
remain of the same order.

LEMMA 2.3.4
Let f : {0, 1}n 7→ {0, 1}`(n) be a (t(n), δ(n))-one-way function and let H be an efficient family of
2−2n-almost pairwise-independent hash functions from {0, 1}`(n) to {0, 1}2n. Define g as follows:

g(xa, xb, h) = (h(f(xa)), h)

where xa, xb ∈ {0, 1}n and h ∈ H. There exists a polynomial p such that g is a length-preserving
(t(n)− p(n), δ(n) + 2−n+1)-one-way function.3

Proof. The function g is length preserving as both input and output are of length 2n plus the
description of h ∈ H. Let A be an algorithm that runs in time tA(n) and inverts g with probability
εA(n). Note that xb is a dummy input (used just for padding) so the success of A is taken over
(xa, h) and A’s randomness. Define BA as follows:

ALGORITHM 2.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm BA for inverting f .

3Since a member of H can be describes using Θ(n) bits, the input length of g (and therefore also its output length)
is in the same order of that of f .
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Input: y ∈ Im(f).

1. Choose a uniformly random h ∈ H.

2. Apply A(h(y), h) to get an output (xa, xb, h).

3. Output xa.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let p(n) be the an upper bound on the sampling and evaluation time of h. Clearly the running-
time of BA is at most tA(n)+p(n). Algorithm BA is sure to succeed on any choice of (y, h) so that
A succeeds on (h(y), h) and in addition there exists no z ∈ Im(f) such that h(z) = h(y) (h does
not introduce any collision to y). Let Col = {(y, h) ∈ {0, 1}n ×H : ∃z ∈ Im(f) : h(z) = h(y)}.
Thus,

Pr[BA(f(Un)) ∈ f−1(f(Un))] ≥ Pr[A(g(Un,H)) ∈ g−1(g(Un,H))
∧

g(Un, H) /∈ Col]

≥ Pr[A(g(Un,H)) ∈ g−1(g(Un,H))]− Pr[g(Un,H) ∈ Col] ,

where H is a random variable uniformly distributed over H. For all y, z ∈ Im(f) the almost
pairwise-independence of h yields that the probability that H(z) = H(y) is at most 2−2n+1. Since
the size of Im(f) in {0, 1}`(n) is at most 2n+1,a union bound over all possible z ∈ Im(f) gives that for
any y ∈ Im(f) it holds that Pr[∃z ∈ Im(f) : H(z) = H(y)] ≤ 2−n+1. Therefore, by an averaging
argument Pr[(f(Un),H) ∈ Col] ≤ 2−n+1. Putting it all together we get that Pr[BA(f(Un)) ∈
f−1(f(Un))] ≥ εA(n)− 2−n+1. ¤

2.3.2 The Security of Cryptographic Constructions

Typically the proof of security for cryptographic constructions is based on reductions. In this
paradigm we use a presumably secure implementation of one primitive (or possibly several prim-
itives) in order to implement a second primitive. The proof of security for the second primitive
relies on the security assumption for the original one. More precisely, we prove that any efficient
adversary that breaks the implementation of the second primitive can be used to efficiently break
the original primitive. Note that the meaning of “breaking a primitive” and, furthermore, the def-
inition of the success probability of an adversary in breaking the primitive, varies between different
primitives. For example, in the case of one-way functions the success probability is the fraction of
inputs on which the adversary manages to invert the function. Usually, there is a tradeoff between
the running-time of an adversary and its success probability (e.g., it may be possible to utterly
break a primitive by enumerating all possibilities for the secret key). Therefore, both the running-
time and success probability of possible adversaries are relevant when analyzing the security of a
primitive. A useful, combined parameter is the time-success ratio of an adversary which we define
next.

DEFINITION 2.3.6 (time-success ratio)
Let P be a primitive and let A be an adversary running in time tA(n) and breaking P with
probability εA(n). The time-success ratio of A in breaking P is defined as R(n) = tA(n)

εA(n) , where n is
the security-parameter of the primitive.4

4 It is convenient to define the security-parameter of a primitive as its input length. This is in particular the
convention for the primitives discussed in this work.
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Note that in the above definition, the smaller the R the better A is in breaking P . A quantitative
analysis of the security of a reduction is crucial for both theoretical and practical reasons. Given
an implementation of primitive P using primitive Q along with a proof of security, let RP be the
security-ratio of a given adversary w.r.t. P and let RQ be the security-ratio of the adversary that
the proof of security yields. A natural way to measure the security of a reduction is by the relation
between RP and RQ. Clearly, the smaller the RQ comparing to RP , the better the performance
of the adversary the reduction yields when trying to break Q comparing to the performance of the
adversary trying to break P .

The most desirable reductions is when RQ(n) ∈ nO(1)O(RP (O(n))). In such reductions, known
as linear-preserving reductions, we are guaranteed that breaking the constructed primitive is essen-
tially as hard as breaking the original one. Next we find the polynomial-preserving reductions when
RQ ∈ nO(1)O(RP (O(n))O(1)). Note that a linear/polynomial-preserving reduction typically means
that the inputs of Q and P are of the same length (up to a constant-ratio). The other side of the
scale is when RQ ∈ nO(1)O(RP (nO(1))). In such reductions, known as weak-preserving reductions,
we are only guaranteed that breaking P is as hard as breaking Q for polynomially smaller security-
parameter (e.g., polynomially smaller input length). For a more comprehensive discussion of the
above issues the reader may refer to [Gol00, HL92].
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Chapter 3

Statistically Hiding Commitments
From Any One-Way Function

3.1 Introduction

A commitment scheme defines a two-stage interactive protocol between a sender S and a receiver
R; informally, after the commit stage, S is bound to (at most) one value, which stays hidden from
R, and in the reveal stage R learns this value. The two security properties hinted at in this informal
description are known as binding (namely, that S is bound to at most one value after the commit
stage) and hiding (namely, that R does not learn the value to which S commits before the reveal
stage).

As with most cryptographic primitives, each of these security properties comes in two main fla-
vors — computational security, whereby a polynomial-time adversary cannot violate the property
except with negligible probability, and the stronger notion of statistical security, whereby even a
computationally unbounded adversary cannot violate the property except with negligible probabil-
ity. (An even stronger notion is that of perfect security, in which we do not even allow a negligible
probability of breaking the scheme.) Naturally, statistical security, when achievable, is preferable
to computational security. However, it can be shown that there do not exist commitment schemes
that are simultaneously statistically hiding and statistically binding. Thus, at best we can hope
for one of the two properties to be statistical and the other to be computational.

The complexity of statistically binding commitment schemes has been understood for a long
time; they can be constructed from any one-way function [Nao91, HILL99] and conversely, one-way
functions are necessary for commitment schemes, even with both security properties computa-
tional [IL89]. In this work, however, we are interested in statistically hiding commitments, which
have some advantages over statistically binding commitments. Specifically, when commitment
schemes are used in constructing larger protocols, one typically needs the binding property to en-
sure the integrity of commitments that are opened during the protocol execution itself, and the
hiding property to ensure that the unopened commitments remain secret even after the protocol
execution. Thus, for the binding property, we need only be concerned with the adversary’s current
resources, and thus it may be safe for this property to be computational. For the hiding property,
however, we need to consider resources that the adversary may gain far into the future, and thus
statistical security is preferable.

Some of the most important examples of cryptographic protocols based on commitments are the
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zero-knowledge protocols for proving membership in an arbitrary NP language [GMW91, BCC88].
In the protocol of [GMW91], the hiding property of the commitment scheme translates to the
zero-knowledge property of the protocol (i.e. the verifier learns nothing other than the fact that
the assertion being proven is true), and the binding property of the commitment translates to the
soundness property of the protocol, (i.e. the prover cannot convince the verifier of a false assertion).
Thus, the existence of statistically hiding commitments implies that arbitrary NP statements can
be proven with statistical zero knowledge and computational soundness; that is, every language in
NP has a statistical zero-knowledge argument system [BCC88, BCY91, NOVY98].

Using statistically hiding commitments and the resulting statistical zero-knowledge arguments
in known reductions [GMW91, GMW87], one can actually transform any two-party protocol that
provides statistical security for one of the parties against a passive (a.k.a. honest-but-curious)
adversary into one that provides statistical security for the same party against a malicious adversary
(while preserving computational security for the other party).

Perfectly hiding commitment schemes and perfect zero-knowledge arguments for NP were first
shown to exist based on specific number-theoretic assumptions [BCC88, BKK90, BCY91, CDG87,
Ped91] or, more generally, based on any collection of claw-free permutations [GMR88, GK96].
The assumption for statistically hiding commitment schemes and statistical zero-knowledge argu-
ments was reduced further to collision-resistant hash functions [NY89, DPP98]. Even though it
seems intuitive that the computational binding property of statistically hiding commitments should
be closely related to collision resistance, the beautiful work of Naor, Ostrovsky, Venkatesan, and
Yung [NOVY98] showed that actually any one-way permutation can be used to construct a perfectly
hiding commitment schemes. Recently, Haitner et. al. [HHK+05] reduced the assumption further
by constructing statistically hiding commitment based on regular one-way functions with known
preimage size, and more generally on one-way functions where the preimage sizes can be efficiently
approximated and also on the so called approximable-size one-way functions. In their recent break-
through result, Nguyen et al. [NOV06] show how to construct statistical zero-knowledge arguments
for NP based on any one-way function. The question of whether one-way functions imply statistical
commitments, however, was left open.

3.1.1 Our Results

In this chapter, we resolve the complexity of statistically hiding commitments.

THEOREM 3.1.1
If one-way functions exist, then statistically hiding commitment schemes exist.

By Impagliazzo and Luby [IL89], the existence of commitment schemes implies the existence of
one-way functions and thus the above result is tight.

3.1.2 Our Techniques

Our protocol combines, in a sense, the following two cryptographic primitives: two-phase commit-
ment schemes recently presented by Nguyen et al. [NOV06] (extending a similar notion given in
[NV06]) and universal one-way hash functions presented by Naor and Yung [NY89]. Following is
an informal description of the primitives (a formal definition appears in Section 3.2).
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Universal one-way hash functions (UOWHFs) Universal one-way hash functions are a re-
laxation of the notion of collision-resistant hash functions. A family of compressing hash
functions is universal one-way if no efficient algorithm succeeds in the following game with
more than negligible probability. The algorithm should first announce a value x. Then, on
a uniformly selected hash function f (given to the algorithm after it announces x), it should
find x′ 6= x such that f(x′) = f(x).

Rompel [Rom90] shows that the existence of one-way functions implies the existence of uni-
versal one-way hash functions, this result was recently rewritten by Katz and Koo [KK05],
adding missing details and fixing some errors.

Two-phase commitments In a two-phase commitment scheme, the sender and the receiver in-
teract in two consecutive phases. In each phase they carry out a commitment protocol (the
commit stage and the reveal stage). The transcript of the first phase is used as input for the
second-phase commitment. A two-phase commitment is statistically hiding, if before each of
the reveal stages the receiver has no information about the committed value. A two-phase
commitment is

(
2
1

)
-binding, if the sender cannot cheat both in the first phase and in the

second phase. Specifically, after the first-phase commit, there is a single value such that if
the sender decommits to any other value, then the second commitment is guaranteed to be
binding (in the standard sense).

Nguyen et al. [NOV06] prove that the existence of one-way functions implies some non-uniform
version of two-phase commitment schemes.

The construction idea. We would like to use a two-phase commitment schemes to construct
a (standard) commitment scheme. A naive attempt to design the commitment scheme may go as
follows: First, the sender commits to some random string x using the first-phase commit stage.
Then, the receiver flips a coin phase ∈ {first, second}, if phase = first then the first-phase commit-
ment is used as the commitment (e.g., the sender sends to the receiver the exclusive-or of its secret
with x). Otherwise (phase = second), the two parties execute the first phase reveal stage and if
successful (i.e., the receiver does not reject), they use the second-phase commitment (invoked with
the transcript of the first-phase as input) as the commitment.

The intuition is that since the commitment is
(
2
1

)
-binding, the sender cannot cheat in both

phases together and thus the receiver would catch a cheating sender with probability half. The
problem is, however, that the sender can decide in which commitment he likes to cheat after knowing
the value of phase. Hence, the sender can cheat successfully in both cases without violating the(
2
1

)
-binding of the underlying protocol.
Our additional idea is to use UOWHFs in order to force the sender to decide in which phase it

is about to cheat before knowing the value of phase. Our implementation is as follows: After the
first-phase commit stage, the receiver selects a random (universal one-way) hash function f and the
sender sends back y = f(x). The protocol proceeds essentially as the naive protocol above, where
any time the first-phase reveal stage is executed in the naive protocol revealing the value x′ (either
in the commit-stage for phase = first or in the reveal stage for phase = second), the receiver also
verifies that f(x′) = y.

Assuming the hash function f is sufficiently compressing, the string x remains quite unpre-
dictable even though f(x) is sent to R (in the new variant of the protocol). Thus, in the case that
phase = first, we can still use the “entropy” remaining in x to hide the sender’s secret (assuming it
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is sufficiently shorter than |x| − |f(x)|). To show the statistical hiding in the complementary case
when phase = second, it is sufficient to note that sending f(x), does not compromise the hiding
property of the second-phase commitment. All in all, the protocol is statistically hiding for both
choices of phase and thus it is statistically hiding.

To argue about the binding of the protocol, recall that the 1-out-of-2-binding property informally
states that with high probability after the first-phase commit stage, there exists a single value x̃
that allows the sender to cheat in the second-phase commitment. Now, if the sender sends y such
that f(x̃) = y, then in order to cheat in the case phase = first, it will have to open the first-phase
commitment to a value x′ 6= x̃ such that f(x′) = y = f(x̃). This would imply the breaking of the
universal one-way hash function. On the other hand, if f(x̃) 6= y, then in the case phase = second
the sender is forced to open the first-phase commitment to a value different than x̃. This guarantees
that the sender cannot cheat in the second-phase commitment and thus in this case our protocol is
binding. In conclusion, since y is sent before phase is chosen, we are guaranteed that our protocol
is weakly binding (since intuitively there always exists a choice of phase that prevent the sender
from cheating). We complete the construction by amplifying the above protocol into a full-fledged
statistically hiding commitment scheme using standard techniques.

3.1.3 Outline

Section 3.2 includes the additional definitions and notations used throughout this chapter. In
Section 3.3, we present our construction of statistically hiding commitment given two-phase com-
mitment and family of universal hash functions, where in Section 3.3 we use the result of Section 3.3
to prove our main result. Discussion and further issues appear in Section 3.5.

3.2 Preliminaries

3.2.1 Universal One-way Hash Family

In order to define a universal one-way hash family, we need to understand what it means for a
family of functions to be polynomial-time computable.

DEFINITION 3.2.1
A family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}`(n)} is polynomial-time computable if

• Every function f ∈ Fn is described by a string of length p(n) for some polynomial p. By abuse
of notation, we also denote this description by f , and write f ← Fn to mean that it is chosen
uniformly at random in {0, 1}p(n). (A more general definition would allow the description of
the function to be selected according to any polynomial-time samplable distribution, even one
that requires private coin tosses. However, our stronger ‘public-coin’ definition is achieved
by existing constructions, and can be useful in applications, such as constructing public-coin
zero-knowledge arguments.

• There exists a deterministic polynomial-time algorithm F such that for every n and every
f ∈ Fn, given the description of the function f and a string x ∈ {0, 1}n, F outputs the value
of f(x).
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DEFINITION 3.2.2
A polynomial-time computable family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}`(n)} is

a universal one-way hash family (UOWHF) if `(n) < n and the for all ppt A the following is
negligible in n

Pr[(x, state) ← A(1n), f ← Fn, x′ ← A(x, state, f) : x′ 6= x
∧

f(x′) = f(x)].

REMARK 3.2.3

• In the above definition, we allow the adversary to transfer additional information, i.e., state,
between the selection of x and finding the collision. This state variable does not appear in the
definition in Katz and Koo [KK05], which is otherwise identical to the above. However, any
universal one-way hash family F meeting their weaker definition can be converted into one
meeting the above definition by selecting f ← F , s ← {0, 1}n, and defining f ′(x) = f(x⊕ s).
(Intuitively, the random shift s turns an arbitrary point x selected by the adversary into a
uniformly random point out of the adversary’s control.)

The original definition of Naor and Yung [NY89] (also used by Rompel [Rom90]) does not
involve the adversary before f is chosen at all, but rather requires that for all x ∈ {0, 1}n,
A(x, f) has a low probability of producing a collision (over the choice of f and A’s coin tosses).
Their definition is suited for the case of nonuniform security (as the arbitrary x can be viewed
as nonuniform advice), in which case it becomes equivalent to ours (since A can also have
state hardwired nonuniformly).

• Although it is more natural for the security be parameterized in terms of the output length,
namely `(n), our applications do not require hash functions that are shrinking by more than
a polynomial factor. Hence for this reason, and in part for consistency, we keep n as our
security parameter.

• Naor and Yung [NY89] showed that starting with a universal one-way hash family that is
compressing by only one bit, namely `(n) = n − 1, more compression can be achieved, say
`(n) ≤ n/2, by iterative application several hash functions chosen from the family. Moreover,
it is easy to verify that the same construction holds also w.r.t. to Definition 3.2.2. Hence,
without loss of generality, we can assume that our universal one-way hash family will have
the feature that `(n) ≤ n/2.

Two properties of a universal one-way hash family. A universal one-way hash family sat-
isfying Definition 3.2.2 has the following two main properties.

Large preimages: most of the preimages have a large size. This follows from the compressing
nature of hash functions: the output length `(n) is much shorter than the input length n.
(Recall that we can get a universal one-way hash family with `(n) ≤ n/2.) We formalize this
in property in Definition 3.2.4.

Target collision resistance: it is hard to find collisions with a value x announced before the hash
function is given. We formalize this in property in Definition 3.2.5
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DEFINITION 3.2.4
A family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}{0, 1}`(n)} has the large preimages property

if for every f ∈ F , most elements in the range of f have large preimage sizes. Stated precisely,
there exists a function α(n) = ω(1) and a negligible function ε, such that for all values of n, the
following holds:

Pr
x←{0,1}n

[∣∣f−1(f(x))
∣∣ ≥ nα(n)

]
≥ 1− ε(n) ,

for every function f ∈ Fn.

DEFINITION 3.2.5
A family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}`(n)} has the statistical [resp., computational]

target collision resistance property if for every [resp., every ppt ] A, the following is negligible in n:

Pr[(x, state) ← A(1n), f ← Fn, x′ ← A(x, state, f) : x′ 6= x
∧

f(x′) = f(x)] .

Large preimages and target collision resistance are opposing properties. Specifically, it is im-
possible for a single family of functions to have large preimages and have statistical target collision
resistance. The power of a universal one-way hash family comes from the fact that it has the large
preimages property and has computational target collision resistance.

LEMMA 3.2.6
If F =

⋃
nFn = {f : {0, 1}n → {0, 1}`(n)}, for `(n) ≤ n/2, is a universal one-way hash family, then F

has both the large preimages and the computational target collision resistance properties.

Proof. The computational target collision resistance property follow directly from Definition 3.2.2.
Hence, all we need to show is that the compressing nature of F , when `(n) ≤ n/2, implies the large
preimages property.

Group the elements with small preimages into a set S = {y ∈ {0, 1}`(n) :
∣∣f−1(y)

∣∣ < 2
3
4
n−`(n)}.

Since `(n) ≤ n/2, every element y /∈ S has a preimage of size
∣∣f−1(y)

∣∣ ≥ 2
3
4
n−`(n) ≥ 2n/4 = nω(1).

To complete, we bound the probability of landing in S, which we do by a union bound over the
elements in S (for which, there are at most 2`(n)):

Pr
x←{0,1}n

[f(x) ∈ S] = Pr [∃y ∈ S with f(Un) = y] <
2

3
4
n−`(n)

2n
· 2`(n) = 2−n/4 = neg(n) . ¤

3.2.2 Commitment Schemes

Another basic primitive of modern cryptography is a (bit) commitment scheme, which is a two-stage
protocol between a sender and a receiver. In the first stage, called the commit stage, the sender
commits to a private bit b. In the second stage, called the reveal stage, the sender reveals b and
proves that it was the bit to which she committed in the first stage. We require two properties
of commitment schemes. The hiding property says that the receiver learns nothing about b in the
commit stage. The binding property says that after the commit stage, the sender is bound to a
particular value of b; that is, she cannot successfully open the commitment to two different bits in
the reveal stage.
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DEFINITION 3.2.7 (commitment schemes)
An commitment scheme is an interactive protocol Com = (S, R) with the following properties:

1. Scheme Com proceeds in two stages: a commit stage and a reveal stage. In both stages, the
sender S and the receiver R receive a security parameter 1n as common input.

2. At the beginning of the commit stage, sender S receives a private input b ∈ {0, 1}, which
denotes the bit that S is supposed to commit to. The commitment stage results in a joint
output, which we call the commitment c = output((S(b), R)(1n)), and a private output for S,
which we call the decommitment string d = outputS(S(b), R)(1n). Without loss of generality,
c can be taken to be the full transcript of the interaction between S and R, and d to be the
private coin tosses of S.

3. In the reveal stage, sender S sends the pair (b, d), where d is the decommitment string for bit
b. Receiver R accepts or rejects based on b, d, and c.

4. The sender S and receiver R algorithms are computable in polynomial time in the security
parameter n.

5. R will always accept (with probability 1) if both sender S and receiver R follow their prescribed
strategy.

A commitment scheme is public coin if all messages sent by the receiver are independent random
coins.

Next, we define the hiding and binding properties of commitment schemes.

DEFINITION 3.2.8 (hiding)
Commitment scheme Com = (S, R) is statistically [resp., computationally] hiding if for every [resp.,
ppt ] R∗, the ensembles {viewR∗(S(0), R∗)(1n)}n∈N and {viewR∗(S(1),R∗)(1n)}n∈N are statistically
[resp., computationally] indistinguishable, where viewR∗(S(b), R∗) denotes the view of R∗ in the
commit stage interacting with S(b).

DEFINITION 3.2.9 (binding)
Commitment scheme Com = (S, R) is statistically [resp., computationally] binding if for every [resp.,
ppt ] S∗, there exists a negligible function ε such that the malicious sender S∗ succeeds in the
following game with probability at most ε(n):

On security parameter 1n, S∗ interacts with R in the commit stage obtaining commit-
ment c. Then S∗ outputs pairs (0, d0) and (1, d1), and succeeds if in the reveal stage,
R(0, d0, c) = R(1, d1, c) = accept.

If the above holds for every nonuniform ppt S∗, we say that Com is computationally binding with
nonuniform security.
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Constructing commitment schemes based on any one-way function. Naor [Nao91] con-
structed commitment schemes that are computationally hiding and statistically binding from any
pseudorandom generator, which in turn can be based on any one-way function [HILL99]. The main
result of this chapter, Theorem 3.1.1, shows that commitments schemes that are statistically hiding
and computationally binding commitments can be based on any one-way function.

3.2.3 Two-phase Commitment Schemes

Two-phase commitment schemes are an alternate variant of commitments introduced by Nguyen
et al. [NOV06] (extending a similar notion given in Nguyen and Vadhan [NV06]). These are
commitment schemes with two sequential and related stages such that in each stage, the sender
commits to and reveals a value.

DEFINITION 3.2.10 (two-phase commitment schemes)
A two-phase commitment scheme (S, R), with security parameter n and message lengths
(k1(n), k2(n)), consists of four interactive protocols: the first commitment stage (S1

c ,R
1
c), the first

reveal stage (S1
r, R

1
r), the second commitment stage (S2

c , R
2
c), and the second reveal stage (S2

r, R
2
r).

For us, both reveal phases will always be noninteractive, consisting of a single message from the
sender to the receiver.

1. In the first commitment stage, S1
c receives a private input σ(1) ∈ {0, 1}k1 and coin tosses rS.

At the end of the interaction, both S1
c and R1

c output a commitment c(1). (Without loss of
generality, we can assume that c(1) is the transcript of the first commitment stage.)

2. In the first (noninteractive) reveal stage, both S1
r and R1

r receive as common inputs the
commitment c(1), and S1

r receives as private input its previous coin tosses rS. S1
r sends R1

r a
pair (σ(1), γ(1)) with γ(1) interpreted as a decommitment for σ(1) ∈ {0, 1}k1 . R1

r accepts or
rejects based on c(1), σ(1), and γ(1). After that, both S1

r and R1
r outputs a string τ . (Without

loss of generality, we can assume that τ is the transcript of the first commitment stage and
the first reveal stage and includes R1

r’s decision to accept or reject.)

3. In the second commitment stage, both S2
c and R2

c receive as common input the string τ , and
S2

c receives a private input σ(2) ∈ {0, 1}k2 and its previous coin tosses rS. At the end of
the interaction, both S2

c and R2
c output a commitment c(2). (Without loss of generality, we

can assume that c(2) is the concatenation of τ and the transcript of the second commitment
stage.)

4. In the second (noninteractive) reveal stage, both S2
r and R2

r receive as common input the
commitment c(2), and S2

r receives as private input its previous coin tosses rS. S2
r sends R2

r a
pair (σ(2), γ(2)) with γ(2) interpreted as a decommitment for σ(2) ∈ {0, 1}k2 . R2

r accepts or
rejects based on c(2), σ(2), and γ(2).

• We insist that scheme (S, R) have perfect completeness. That is to say, if both sender S and
receiver R follow their prescribed strategy, then R will always accept (with probability 1).

• The sender and receiver’s algorithms, denoted by S = (S1, S2) = ((S1
c , S

1
r), (S

2
c , S

2
r)) and R =

(R1, R2) = ((R1
c , R

1
r), (R

2
c , R

2
r)) respectively, are computable in polynomial time.

• Scheme (S,R) is public coin if all messages sent by R to S are independent random coins.
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Hiding for two-phase commitment schemes. As for standard commitment schemes, we de-
fine the security of the sender in terms of a hiding property. Stated informally, the hiding property
for a two-phase commitment scheme says that both commitment phases are hiding. Note that since
the phases are run sequentially, the hiding property for the second commitment stage is required
to hold even given the receiver’s view of the first stage.

DEFINITION 3.2.11
Two-phase commitment scheme (S, R), with security parameter n and message lengths
(k1(n), k2(n)), is statistically hiding if for all adversarial receiver R∗,

1. The views of R∗ when interacting with the sender in the first phase on any two messages are
statistically indistinguishable. Namely, for all σ(1), σ̃(1) ∈ {0, 1}k1 , the probability ensembles{
viewR∗(S1

c(σ
(1)), R∗)(1n)

}
n∈N and

{
viewR∗(S1

c(σ̃
(1)), R∗)(1n)

}
n∈N are statistically indistin-

guishable.

2. The views of R∗ when interacting with the sender in the second phase are statis-
tically indistinguishable no matter what the sender committed to in the first phase.
Namely, for all σ(1) ∈ {0, 1}k1 , and all σ(2), σ̃(2) ∈ {0, 1}k2 , the probability ensem-
bles

{
viewR∗(S2

c(σ
(2)),R∗)(T, 1n)

}
n∈N and

{
viewR∗(S2

c(σ̃
(2)), R∗)(T, 1n)

}
n∈N, where T =

tra(S1(σ(1)), R∗)(1n), are statistically indistinguishable.

We stress that the second condition of the above hiding definition (Definition 3.2.11) requires
that the view of receiver in the second phase be indistinguishable for any two messages even given
the transcript of the first phase, T = tra(S1(σ(1)),R∗)(1n).

1-out-of-2 binding for two-phase commitment schemes. The 1-out-of-2 binding property,
informally stated, says that at least one of the two commitment phases is binding. In other words,
for every ppt malicious sender S∗, at most one of the two phases is bad in that S∗ can decommit
a given commitment to two different messages in that phase. We allow this bad phase to be
determined dynamically by S∗. Moreover, we require that the second phase be statistically binding
if the sender breaks the first phase. Our construction achieves this stronger property, and using it
simplifies some of our proofs.

DEFINITION 3.2.12
Two-phase commitment scheme (S, R), with security parameter n and message lengths
(k1(n), k2(n)), is computationally 1-out-of-2 binding if there exists a set B of first phase transcripts
such that for every function ε(n) = 1/poly(n), the following holds:

1. For all ppt adversary S∗, S∗ succeeds in the following game with probability at most ε(n) for
all sufficiently large n:

(a) S∗ and R1
c interact and output a first-phase commitment c(1).

(b) S∗ outputs two full transcripts λ = (τ, κ) and λ̃ = (τ̃ , κ̃) of both phases with the following
three properties:

• Transcripts λ and λ̃ both start with prefix c(1).
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• Transcript λ contains a successful opening of c(1) to the value σ(1) ∈ {0, 1}k1 using
a first-phase transcript τ not in B, and R1

r and R2
r both accept in λ.

• Transcript λ̃ contains a successful opening of c(1) to the value σ̃(1) ∈ {0, 1}k1 using
a first-phase transcript τ̃ not in B, and R1

r and R2
r both accept in λ̃.

(c) S∗ succeeds if all of the above conditions hold and σ(1) 6= σ̃(1).

2. For every (even computationally unbounded) sender S∗, the first-phase transcripts in B make
the second phase statistically binding. In other words, for all S∗, all τ ∈ B, and all sufficiently
large n, with probability at least 1− ε(n) over c(2) = (S∗,R2

c)(τ), there is at most one value
σ(2) ∈ {0, 1}k2 such that outputR(S∗, R2

r)(c
(2), σ(2)) = accept.

The following theorem was proven in Nguyen et al. [NOV06].

THEOREM 3.2.13
If one way functions exist, then there exists an efficient procedure that on security parameter n, outputs
a collection of public-coin two-phase commitment schemes COM = {Com1, · · · , Comm} with message
lengths (k1, k2) = (n, n), such that:

• there exists an index i ∈ {1, 2, . . . , m} such that scheme Comi is statistically hiding, and

• for every index i ∈ {1, 2, . . . , m}, scheme Comi is computationally 1-out-of-2 binding.

The statistical hiding property above holds regardless of whether or not f is secure (hard to invert). On
the other hand if f is nonuniformly secure, then the 1-out-of-2 binding above will be with nonuniform
security.

3.3 The Construction

We present the transformation algorithm using two-phase commitment scheme and an arbitrary
family of functions F , and will only require F to be a universal one-way hash family when we want
to prove the hiding and binding security properties.

ALGORITHM 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The transformation, denoted as 2-to-1-Transform.

Input: security parameter 1n, two-phase commitment scheme (S, R) with message lengths
(k1, k2) = (n, 1), and a family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}`(n)}.

Output: Commitment scheme (S,R) as described by Protocol 3.3.2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hence, we write the commitment scheme obtained as (S,R) = 2-to-1-Transform((S,R),F).

PROTOCOL 3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Standard commitment scheme (S,R) from two-phase commitment scheme (S,R).

Security parameter: 1n, given as common input to both S and R.
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Sender’s private input: Bit b ∈ {0, 1}.
Commit stage:

1. S selects a uniform σ ← {0, 1}n.

2. S and R engage in (S1
c(σ),R1

c)(1
n), with S acting as S1

c and R acting as R1
c . Let c(1) be

the common output of S1
c and R1

c after the interaction.

3. R chooses f ← Fn and sends it to S.
4. S sends y = f(σ) to R.

5. R flips a random coin, represented by phase ← {1, 2}, and sends phase to S.
If phase = 1, then proceed as follows:

(a) S selects a random hash h ← H, where H is a family of pairwise-independent hash
functions with domain {0, 1}n and range {0, 1}, and sends (h, b⊕ h(σ)) to R.

(b) S and R both output (c(1), f, y, phase = 1, h, b⊕ h(σ)) as the commitment.

If phase = 2, then proceed as follows:

(a) S runs S1
r to obtain the decommitment message γ(1) and first-phase transcript τ

corresponding to both σ and c(1). S sends (σ, γ(1), τ) to R.
(b) S and R engage in (S2

c(b), R
2
c)(1

n, τ), with S acting as S2
c and R acting as R2

c . Let
c(2) be the common output of S2

c and R2
c after the interaction.

(c) S and R both output (c(1), f, y, phase = 2, c(2)) as the commitment.

Reveal stage:
To decommit to bit b, do the following depending the value of phase.

If phase = 1, then:

1. S sends (b, σ) to R;

2. If y = f(σ) and the last component of the commitment equals b⊕ h(σ), then R accepts.
Otherwise, R rejects.

If phase = 2, then:

1. S runs S2
r to obtain the decommitment message γ(2), and sends (b, γ(2)) to R;

2. If y = f(σ) and both R1
r and R2

r accept (c(1), σ, γ(1)) and (c(2), b, γ(2)), respectively, then
R accepts. Otherwise, R rejects.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3.1 Analyzing the Transformation

The hiding and binding security properties of Protocol 3.3.2 will rely on properties of F being a
universal one-way hash family.
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Hiding

We now show that the large preimages property of F (see Lemma 3.2.6) translates to the hiding
property of the commitment scheme (S,R) = 2-to-1-Transform((S, R),F).

LEMMA 3.3.3
If the family of functions F has the large preimages property, and the two-phase commitment scheme
(S, R) is statistically hiding, then scheme (S,R) = 2-to-1-Transform((S, R),F) is statistically hiding.

Proof. What we need to show is that for any adversarial receiver R∗, the views of R∗ in (S(0),R∗) and
(S(1),R∗) are statistically indistinguishable. (In this proof, we drop the security parametrization of
1n because it is clear from context.) We can, without loss of generality, only consider deterministic
R∗ because we can fix the adversary’s coin tosses to maximize its distinguishing advantage. In the
rest of this proof, we use indistinguishability and hiding to mean those of the statistical variant.

Let P denote the value of phase sent by R∗, and we break our hiding analysis to cases when
P = 1 and P = 2. To formalize this case analysis, we say that random variables X and Y are
indistinguishable on event E if for all D, |Pr[D(X) = 1 ∧ E]− Pr[D(X) = 0 ∧ E]| is negligible
(in the security parameter n). What we will show is that the random variables viewR∗(S(0),R∗)
and viewR∗(S(1), R∗) are indistinguishable on both events P = 1 and P = 2, thus allowing us to
conclude that the scheme is hiding.

First, we analyze the case when P = 2. Let the random variables Σ and F denote S’s choice of σ
and the value of f sent by R∗, respectively. Observe that P is a deterministic function of the random
variables V1 = viewR∗(S1

c(Σ), R∗) and Y = F (Σ). In turn, V1 and Y are deterministic functions of
the first-phase transcript T = trans(S1(Σ), R∗), which includes both the commit and reveal stages.
This is because we can compute the view of the receiver from the first-phase transcript, and the
first-phase transcript also contains the value of σ, from which we can compute y = f(σ). For bit
b ∈ {0, 1}, let random variable V2(b) = viewR∗(S2

c(b), R
∗)(T), recalling that T = trans(S1(Σ), R∗).

Because (S,R) is hiding, its two-phase commitments is hiding even given the first-phase transcript:
this means that (V2(0), T) is indistinguishable from (V2(1), T). Since P is a deterministic function
of T, random variables (V2(0),T) and (V2(1), T) are indistinguishable on event P = 2. Since
viewR∗(S(b),R∗)|P=2 is a deterministic function of (V2(b), T)|P=2, for b ∈ {0, 1}, we have that
viewR∗(S(0), R∗) and viewR∗(S(1), R∗) are indistinguishable on event P = 2.

Next, we analyze the case when P = 1. The hiding property of the first phase gives us

(V1, Σ) ≈s (V1, Un) ,

where Un represent a uniform random variable over {0, 1}n, and is independent from V1 and Σ.
Recall that the random variable F denotes the function f sent by R∗. Since F is a deterministic
function of V1, we get

(V1, F, F (Σ),Σ) ≈s (V1, F, F (Un), Un) .

Now, let the random variable H represent the hash function h selected by S when phase = 1. Note
that H is independent of V1, F , Σ, and Un, so

(V1, F, Y, H, H(Σ)) ≈s (V1, F, F (Un),H,H(Un)) , (3.1)

recalling that Y = F (Σ).
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What we need to establish is that H(Un) is close to uniform so that we have hiding. The next
claim does this for us.

CLAIM 3.3.4
Suppose family of functions F =

⋃
nFn has the large preimages property. Let the random

variable H denote a random hash function from a family of pairwise-independent hash
functions with domain {0, 1}n and range {0, 1}, random variable Un denote a uniform
string in {0, 1}n, random variable U ′

1 denote a uniform string in {0, 1}, and that H, Un,
and U ′

1 are all independent. For every f ∈ Fn, (f(Un),H, H(Un)) is indistinguishable from
(f(Un),H, U ′

1).

Proof. The large preimages property of F guarantees that with probability 1− neg(n)
over y ← f(Un), the min-entropy H∞(Un|f(Un)=y) ≥ ω(log n). For y satisfying this
condition, we apply the Leftover Hash Lemma 2.2.4 to get that (y,H, H(Un|f(Un)=y))
is indistinguishable from (y, H,H(Un|f(Un)=y)). ¤

Because H and Un are independent from the rest of the random variables (and are independent
from each other), Claim 3.3.4 states that

(V1, F, F (Un),H,H(Un)) ≈s (V1, F, F (Un),H, U ′
1) , (3.2)

where U ′
1 is an independent random variable representing a uniform random variable over {0, 1}.

Combining (3.1) and (3.2), we get

(V1, F, Y,H, H(Σ)) ≈s (V1, F, F (Un),H, U ′
1) ,

which leads to:

(V1, F, Y, H, 0⊕H(Σ)) ≈s(V1, F, F (Un),H, 0⊕ U ′
1)

≡ (V1, F, F (Un),H, 1⊕ U ′
1)

≈s(V1, F, Y, H, 1⊕H(Σ)) .

Since P is a deterministic function of V1 and Y , random variables (V1, F, Y, H, 0 ⊕ H(Σ)) and
(V1, F, Y,H, 1⊕H(Σ)) are indistinguishable on event P = 1. Since viewR∗(S(b), R∗)|P=1 is a deter-
ministic function of (V1, F, Y, H, b ⊕H(Σ))|P=1, for b ∈ {0, 1}, we have that viewR∗(S(0), R∗) and
viewR∗(S(1), R∗) are indistinguishable on event P = 1. ¤

Binding

We show that the target collision resistance property of F translates to the binding property of
the commitment scheme (S,R) = 2-to-1-Transform((S,R),F) obtained from the 2-to-1-Transform.
Because we will only be able to show that (S,R) is binding with probability close to 1/2, we first
define what it means to for a scheme to be binding with probability δ, for some δ ∈ [0, 1].

DEFINITION 3.3.5
Commitment scheme (S,R) is statistically [resp. computationally] δ(n)-binding if for every [resp.
every ppt ] S∗ and every large enough values of n, sender S∗ succeeds in the following game with
probability at most δ(n):
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On security parameter 1n, S∗ interacts with R in the commit stage obtaining commit-
ment c. Then S∗ outputs pairs (0, d0) and (1, d1), and succeeds if in the reveal stage,
R(0, d0, c) = R(1, d1, c) = accept.

The standard notion of binding as given in Definition 3.2.9 corresponds to being statistically
[resp. computationally] 1/p(n)-binding for every polynomial p.

LEMMA 3.3.6
If the family of functions F is statistically [resp., computationally] target collision resistant, and the two-
phase commitment scheme (S, R) is statistically [resp., computationally]

(
2
1

)
binding, then the scheme

(S,R) = 2-to-1-Transform((S, R),F) is statistically [resp., computationally] (1/2 + 1/p(n))-binding for
every polynomial p and sufficiently large n.

Proof. We will focus on the case of computational binding. The statistical case will follow from the
fact that the proof is “black box”. Specifically, our proof will (implicitly) give efficient reductions
M1, M2 such that given any sender strategy S∗ that breaks the (1/2 + 1/p(n))-binding property
of (S,R) as oracle, either MS∗

1 will break the target collision resistance property of F with non-
negligible probability or MS∗

2 will break the
(
2
1

)
binding property of (S, R). If both F and (S, R)

have statistical [resp., computational] security, then this is impossible for every strategy [resp.,
every ppt strategy] S∗ and we deduce that (S,R) must be statistically [resp., computationally]
(1/2 + 1/p(n))-binding.

Unless stated otherwise, we take probabilities over the entire interaction between S∗ and R in
both the commit and reveal stages. We say that S∗ succeeds if it is able to produce decommitments
to two different messages for commitment Υ in the reveal phase (recall that, the reveal stage is
non-interactive). We want to prove that Pr[S∗ succeeds] ≤ 1/2 + 1/p(n). We will do this by
breaking the probability space into events E1, . . . , E5 corresponding to the various cases in the
intuitive proof outline given in Section 3.1.2. We will show that Pr[

∨
i Ei] = 1, Pr[E1] = 1/2 and

Pr[S∗ succeeds ∧ Ei] ≤ 1/4p(n) for i = 2, . . . , 5, and this will suffice to prove the lemma.
The first event, E1, will depend on the random variables C = viewS∗(S∗, R1

c), representing S∗’s
view of the first phase commit (this determines the entire state of the interaction (S∗, R), since by
Definition 3.2.10 the honest receiver maintains no private state after the commit phase other than
the commitment string); Y , denoting the hash value sent by S∗ after the first-phase commit; P ,
representing the value of phase; and F , representing the choice of the function f ← F . We would
also like to consider whether or not Y equals f(Σ∗), where Σ∗ intuitively represents the value to
which C is a commitment, i.e. the ‘unique’ value that will enable S∗ to break the binding property
of the 2nd phase. However, since the commitment scheme may be only computationally binding,
Σ∗ is not defined information-theoretically. Thus, we define it as the most likely value to which S∗

will open the first-phase commitment (with a transcript not in B). Formally, for each first-phase
commit transcript c ∈ Supp(C), we define:

pσ[c] = Pr
[

(S∗, R) includes an accepting full transcript λ = (τ, κ)
such that τ /∈ B and τ contains an opening to σ

|C = c

]
, (3.3)

where we say full transcript λ is accepting if both R1
r and R2

r accept in λ. With this measure, we
define σ∗[c] = argmaxσ pσ[c], breaking ties arbitrarily (say, by choosing the lexicographic smallest
σ). Then we define the random variable Σ∗ = σ∗[C].
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The intuition described in Section 3.1.2 suggests a case analysis based on whether or not Y =
F (Σ∗). According to that intuition, the scheme will be binding if Y = F (Σ∗) and P = 1 (by target
collision resistance of F) or if Y 6= F (Σ∗) and P = 2 (by the 1-out-of-2 binding property), and
these events happen with probability 1/2 (because P is randomly chosen after Σ∗, F , and Y are
determined). This intuition can be turned directly into a proof in the case that F has nonuniform
target collision resistance, since the value of Σ∗ (which is determined before F ) can be hardwired
into the adversary breaking F . However, to prove our result for uniform adversaries as claimed,
we need to ensure that Σ∗ = σ∗[C] can be efficiently computed (before being given F , as per
Definition 3.2.5). We observe that this is the case if pΣ∗ [C] > 1/4p(n), because then if we simulate
a continuation of the execution of (S∗, R) starting after C, we have a non-negligible probability of
Σ∗ being revealed. On the other hand the case that pΣ∗ [C] ≤ 1/4p(n) turns out to be analyzable
similarly to the case that Y 6= F (Σ∗); in both cases we simply use the fact that S∗ is unlikely to
produce a successful opening to Σ∗.

With the above in mind, we begin by analyzing the event in which we do not expect the scheme
to be binding.

CLAIM 3.3.7
For the event

E1 =
{

[[(Y = F (Σ∗)) ∧ (pΣ∗ [C] > 1/4p(n))] ∧ [P = 2]]
∨ [[(Y 6= F (Σ∗)) ∨ (pΣ∗ [C] ≤ 1/4p(n))] ∧ [P = 1]]

}
,

we have Pr[E1] = 1/2.

CLAIM 3.3.8
P is chosen randomly in {1, 2} after C, Σ∗, F , and Y are determined.

Now we want to show that the scheme is binding on the complement of E1. First we handle the
case that P = 1.

CLAIM 3.3.9
For the event

E2 = {[Y = F (Σ∗)] ∧ [pΣ∗ [C] > 1/4p(n)] ∧ [P = 1]} ,

we have Pr[S∗ succeeds ∧ E2] ≤ 1/4p(n).

Proof. Suppose for contradiction that Pr[S∗ succeeds ∧ E2] > 1/4p(n); we will show
that we can break the target collision resistance property of F with non-negligible
probability. In order to do so, we need to output an element x before seeing the hash
function, and then given a random function f ← F , we need to output x′ 6= x such that
f(x) = f(x′). We do this as follows. First we simulate the interaction between S∗ and
R up to the end of the first-phase commitment, and record c as the sender’s view so far.
Then we continue the interaction from c to the end and set x to be the value of σ sent
by S∗ in the protocol. (In case phase = 1 and S∗ produces two values for σ in breaking
the scheme, choose one of the two at random.) Now we output x and store state = c,
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and receive a random hash function f ← F . We now rerun the interaction between S∗

and R, starting with the view (c, f), and set x′ to be the value of σ sent by S∗ in the
protocol (again choosing randomly if phase = 1 and S∗ produces two values).

To see that this strategy breaks the target collision resistance property with non-
negligible probability, consider the second completed execution of the interaction be-
tween S∗ and R (the one with the given hash function f , which we now denote as a
random variable F ). By assumption, with probability greater than 1/4p(n) in this ex-
ecution, it holds that S∗ succeeds, Y = F (Σ∗), pΣ∗ [C] > 1/4p(n), and P = 1. Since
S∗ succeeds and P = 1, it must be the case that S∗ produces two successful openings
Σ1, Σ2 to the first-phase commit. At least one of these is different from Σ∗, yet both
must satisfy F (Σi) = Y = F (Σ∗). With probability at least 1/2, we output Σi 6= Σ∗ as
x′. Now, conditioned on all this, we argue that we had non-negligible probability (at
least (1/2) · 1/4p(n)) of outputting Σ∗ as x (prior to receiving F ). This follows because
pΣ∗ [C] > 1/4p(n). Therefore, we break the target collision resistance property with
probability at least (1/4p(n)) · (1/2) · (1/2) · (1/4p(n)), which is a contradiction. ¤

Now we turn to the complement of E1 in case P = 2, namely the event

E′ = {[(Y 6= F (Σ∗)) ∨ (pΣ∗ [C] ≤ 1/4p(n))] ∧ [P = 2]} ,

Since we are now restricted to P = 2, there is a single first-phase decommitment value produced
by S∗, which we denote by the random variable Σ.

First we argue that it is almost always the case in E′ that Σ 6= Σ∗ (assuming S∗ succeeds).

CLAIM 3.3.10
For the event

E3 = E′ ∧ (Σ = Σ∗),

we have Pr[S∗ succeeds ∧ E3] ≤ 1/4p(n).

Proof. In E′, we either have Y 6= F (Σ∗), in which S∗ cannot succeed unless Σ 6= Σ∗,
or we have pΣ∗ [C] ≤ (1/4(p(n))), in which case S∗ successfully opens to value Σ∗ with
probability at most 1/4p(n). ¤

So now, instead of E′, we can focus on the event that {[Σ 6= Σ∗] ∧ [P = 2]}. For this, we have two
cases, depending on whether the transcript T of the first-phase commitment (including the reveal)
gives a binding second phase or not.

CLAIM 3.3.11
For the event

E4 = {[Σ 6= Σ∗] ∧ [P = 2] ∧ [T ∈ B]} ,

we have
Pr[S∗ succeeds ∧ E4] ≤ 1/4p(n).

Proof. If T ∈ B, then the second-phase commitment is binding. Since P = 2, S∗ can
only succeed with negligible probability. ¤
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CLAIM 3.3.12
For the event

E5 = {[Σ 6= Σ∗] ∧ [P = 2] ∧ [T /∈ B]} ,

we have
Pr[S∗ succeeds ∧ E5] ≤ 1/4p(n).

Proof. Assume for contradiction that Pr[S∗ succeeds ∧E5] > 1/4p(n). By Markov, this
implies that with probability at least 1/8p(n) over c ← C, it holds that

Pr[S∗ succeeds ∧ E5|C = c] > 1/8p(n). (3.4)

We will use this to break the first-phase binding of R. Similarly to the proof of
Claim 3.3.9, we carry out two executions of (S∗,R) beginning with the same first-phase
commit c. Assume that c satisfies (3.4). Then, with some probability q[c] greater
than (1/8(p(n))), the first execution will produce an accepting full transcript with
an opening to some value σ 6= σ∗ = σ∗[c]. The probability that the second execu-
tion produces an accepting full transcript with an opening to some σ′ 6= σ is greater
q[c]/2; otherwise σ would be the most likely opening conditioned on c, contradicting
the fact that σ 6= σ∗. Thus, we break the first-phase binding with probability at least
(1/8p(n) · q[c] · q[c]/2 = Ω(1/p(n)3), contradicting the security of (S, R). ¤

We the above claims, we complete the proof. By inspection, we have Pr[
∨

i Ei] = 1, and thus:

Pr[S∗ succeeds] ≤ Pr[E1] +
4∑

i=1

Pr[S∗ succeeds ∧ Ei] ≤ 1
2

+
1

p(n)
,

as desired. ¤

Boosting the binding. The commitment scheme (S,R) from Lemma 3.3.6 is only (3
4 +neg(n))-

binding. Nonetheless, by the following “folklore” claim, (S,R) implies a commitment scheme that
is neg(n)-binding and preserves the same hiding property as the original scheme.

CLAIM 3.3.13
There exists an efficient procedure that for any function δ ≥ 1/poly(n) converts a statis-
tically [resp., computationally] (1 − δ(n))-binding commitment scheme (S,R) into a com-
mitment scheme (S, R) that is statistically [resp., computationally] binding. Furthermore,
if (S,R) is statistically [resp., computationally] hiding, so is (S,R).

Proof. The protocol (S,R) is defined as follows: in order to commit to a bit b, the two
parties run t = dn/δe = poly(n) independent executions of the commit stage of (S(b),R)
one after the other, where S and R acting as S and R respectively. In the reveal stage,
S decommits, via the reveal stage of (S,R), all the t commitments and R accepts if and
only if all the commitments are opened successfully to the same value. The hiding of
the above scheme follows by a straightforward hybrid argument. For the binding part,
let S∗ be a ppt trying to break the binding of (S,R). We show that S∗ breaks the
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binding of (S, R) only with negligible probability, and since S∗ was arbitrarily chosen
it follows that (S,R) is computationally binding.

We say that S∗ breaks the binding of the ith execution of (S,R) if while trying
to break the binding of (S, R) it successfully opens the ith commitment into two different
values. Notice that this event depends on several random variables: C<i, the coins of S∗

and the coins of R in the first i− 1 executions; Ci, the coins of R in the i’th execution;
and C>i, the coins of R in executions i+1, . . . , t. For settings (c<i, ci) ∈ Supp(C<i, Ci),
we define qi(c<i, ci) to be the probability over C>i that S∗ breaks the binding of the ith

execution conditioned on (C<i, Ci) = (c<i, ci).
For an arbitrary positive polynomial p, define a prefix c<i to bad if Pr[qi(c<i, Ci) >

1/p(n)] > 1 − δ + 1/p(n), and otherwise call c<i good. We will now show that
Pr[C<i is bad] ≤ 1/p(n). Suppose not. Then we can construct an efficient algorithm
S∗ that breaks the binding of (S,R) with probability 1 − δ + 1/3p(n). In the commit
stage, S∗ first finds a value c<i for which Pr[qi(c<i, Ci) > 1/2p(n)] > 1−δ+1/2p(n) and
“hardwires” this value into S∗. (Note that the above can be done efficiently and with
overwhelming success probability by random sampling, given oracle access to S∗). When
interacting with R, S∗ acts as S∗ does in the ith execution of (S∗, R). With probability
at least 1− δ + 1/2p(n) over the coins ci of R, we have qi(c<i, ci) > 1/2p(n). If this oc-
curs, then by randomly continuing the simulation of (S∗, R) with O(n·p(n)) independent
choices of C>i, S∗ will be able to break the binding with probability 1−neg(n). Thus, S∗
breaks the binding of (S,R) with probability 1−δ+1/2p(n)−neg(n) > 1−δ+1/3p(n).

Let E1 be the event that for some i, C<i is bad. By the above and a union bound,
Pr[E1] ≤ t/p(n). Let E2 be the event that for some i, qi(C<i, Ci) ≤ 1/p(n) but S∗ breaks
the binding of the i’th execution. By the definition of qi, we have Pr[E2] ≤ t/p(n).
Finally, we have

Pr[S∗ breaks the binding ∧ ¬E1 ∧ ¬E2]

≤ Pr

[
t∧

i=1

[(C<i good) ∧ (qi(C<i, Ci) > 1/p(n))]

]

=
t∏

i=1

Pr


(C<i good) ∧ (qi(C<i, Ci) > 1/p(n))

∣∣∣∣∣∣
∧

j<i

[(C<j good) ∧ (qj(C<j , Cj) > 1/p(n))]




≤ (1− δ + 1/p(n))t

= neg(n) + t/p(n),

where the last inequality can be seen by considering any fixed value C<i = c<i, which
fixes the event on which we are conditioning in the i’th factor and whether C<i is good
or bad. If c<i is bad, then the probability in the i’th factor is 0. If c<i is good, then the
probability (over just Ci) is at most (1− δ + 1/p(n)) by the definition of good. Taking
p(n) to be an arbitrarily large polynomial, we deduce that S∗ breaks the binding with
negligible probability. ¤

Having established the appropriate claims and lemmas, we now state what is achievable from
our transformation.
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THEOREM 3.3.14
There exist an efficient procedure, call it 2-to-1-FullTransform, that takes as input a security parameter
1n, a two-phase commitment scheme (S, R) with message lengths (k1, k2) = (n, 1), and a family of
functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}`(n)}, and outputs a commitment scheme (S,R) =

2-to-1-FullTransform((S,R),F) satisfying the following properties:

• If (S, R) is statistically hiding and F has the large preimages property, then (S, R) is statistically
hiding.

• If (S,R) is statistically [resp., computationally]
(
2
1

)
binding and F has statistical [resp., compu-

tational] target collision resistance, then (S,R) is statistically [resp., computationally] binding (in
the standard sense of binding).

• If (S, R) is public coin, then (S, R) is also public coin.

Proof. We describe the 2-to-1-FullTransform algorithm, recapping what we have done thus far, as
follows.

1. Apply Algorithm 3.3.1 on (S, R) and F to obtain a (standard) commitment scheme (S,R).
Lemmas 3.3.3 and 3.3.6 state that for the right properties of both (S′, R′) and F (see the first
two items in 3.3.14 above), (S,R) is hiding and (1/2 + neg(n))-binding.

2. Next, using Claim 3.3.13, boost the binding of (S,R) to obtain a scheme (S, R) that is neg(n)-
binding while not affecting the hiding property. Output (S, R) as our desired scheme.

As for the preservation of the public coin property, observe that the messages sent by R that are
specific to the 2-to-1-Transform are choosing f ← F and selecting phase ← {0, 1}, both of which
are public coin operations. ¤

3.4 Putting it Together

Now, we put together everything from the previous sections to establish our main theorem.

RESTATEMENT OF THEOREM 3.1.1
Given a one-way function f : {0, 1}n → {0, 1}n, we can construct in time polynomial in n a public-coin
commitment scheme (S,R) that is statistically hiding and computationally binding.

The statistical hiding property holds regardless of whether or not f is secure (hard to invert). On
the other hand, if f is nonuniformly secure, than (S,R) will be computationally binding with nonuniform
security.

Proof of Theorem 3.1.1. We start off by constructing a collection of two-phase commitment schemes
from f using Theorem 3.2.13. For any polynomial k(n) (which we will choose below), we can
construct in time polynomial in n a collection of m = poly(n) public-coin two-phase commitment
schemes COM = {Com1, · · · , Comm} with message lengths (k(n), 1) such that:

• there exists an index i ∈ {1, 2, . . . ,m} such that scheme Comi is statistically hiding, and
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• for every index i ∈ {1, 2, . . . , m}, scheme Comi is computationally
(
2
1

)
binding.

(As remarked after Theorem 3.2.13, we can obtain two-phase commitments with message lengths
(k(n), k(n)) for any polynomial k that we choose. Using only 1 bit of the 2nd-phase message
(padding with k − 1 zeroes), we obtain message lengths (k, 1).)

Now in order to apply Theorem 3.3.14, from f we use [Rom90, KK05] to obtain a universal
one-way hash family Fn = {f : {0, 1}2k(n) → {0, 1}k(n)} for some polynomial k (which we use to
determine the message length for the two-phase commitment above).1 Let the resulting (stan-
dard) commitment schemes be Com′

i = 2-to-1-FullTransform(Comi,F). By Theorem 3.3.14 and
Lemma 3.2.6, we know that:

• Com′
i is statistically hiding if Comi is statistically hiding,

• Com′
i is computationally binding if Comi is computationally

(
2
1

)
binding, and

• Com′
i is public coin if Comi is public coin.

This means that we now have a collection of public-coin (standard) commitment schemes
COM′ =

{
Com′

1, · · · , Com′
m

}
, where m = poly(n), such that:

• there exists an index i ∈ {1, 2, . . . ,m} such that scheme Com′
i is statistically hiding, and

• for every index i ∈ {1, 2, . . . , m}, scheme Com′
i is computationally binding (in the standard

sense of binding).

We are almost done, except that we are still left with a collection of commitments instead of a
single commitment scheme. The following claim states that the latter collection can be converted
into the desired commitment scheme.

CLAIM 3.4.1
There is an efficient procedure that converts a polynomial collection of commitment schemes,
at least one of which is statistically hiding and all are computationally binding, into a single
commitment scheme that is statistically hiding and computationally binding. In addition, if
we start off with public-coin schemes, we also end up with a public-coin scheme.

Proof. To commit to a bit b, we randomly secret-share b = b1 ⊕ · · · ⊕ bm and commit
to share bi using the i’th commitment scheme. Alternatively, the proposition can be
deduced from [HHK+05, Thm. 5.2]. ¤

The main theorem statement is now complete since we now have a single commitment scheme
that is statistically hiding and computationally binding, and the only complexity assumption made
is the existence of one-way functions.

We now proceed to the additional properties mentioned. By inspection, we observe that the
statistical hiding properties throughout the construction hold regardless of the security of f . As for

1Since we are using here the uniform definition of universal one-way hash family (i.e., where x is sampled by A),
we need to use the theorem of Katz and Koo [KK05]. In their theorem, however, it is not explicitly defined whether or
not the adversary can encode additional information (i.e. state) between the declaration of x and finding the collision
(see Remark 3.2.3). Fortunately, the stronger version of this theorem required by our proof, follows readily from their
original proof.
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nonuniform security, we observe that our construction is “fully black-box” in the sense of [RTV04];
in particular, the computational binding property is proven by specifying for every polynomial p,
a ppt reduction R such that if S∗ is any sender strategy (of arbitrary complexity) that breaks the
binding property with probability with probability 1/p(n), then RS

∗
inverts f with non-negligible

probability. In particular, if S∗ a nonuniform ppt algorithm, then we obtain a nonuniform ppt in-
verter for f , which cannot exist if f is non-uniformly secure. ¤

3.5 Conclusions

While our result resolves the complexity assumption needed to construct statistically hiding com-
mitment schemes, there is still room for substantial improvements. Both the construction and its
analysis are rather involved; we hope that a simpler and more direct proof can be found. A related
concern is that the construction is very inefficient, and certainly would never be utilized in prac-
tice. In particular, given a one-way function f : {0, 1}n → {0, 1}n, our commitment scheme utilizes
poly(n) invocations of the function f and poly(n) rounds of interaction. It would be interesting
to substantially improve these bounds or argue that they are essentially optimal. It was recently
shown in [HHRS07] (generalizing [Sim98, Wee07]) that any black-box construction of statistically
hiding commitments from even one-way permutations must have Ω(n/ log n) rounds of interaction.
Our construction, as well as that of Naor et al. [NOVY98], is black box; bypassing the lower bound
with a non-black-box construction would be very interesting (even if unlikely to yield something
practical).
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Chapter 4

A New Interactive Hashing Theorem

4.1 Introduction

Interactive hashing, introduced by Naor, Ostrovsky, Venkatesan and Yung [NOVY98], is a protocol
that allows a sender S to commit to a particular value while only revealing to a receiver R some
predefined information of this value. More specifically, S commits to a value y while only revealing
to R the value (h, z = h(y)), where h is some random hash function (we postpone additional details
on the choice of hash function). The two security properties of interactive hashing are binding
(namely, S is bounded by the protocol to at most one value of y) and hiding (namely, R does not
learn any impermissible information about y). In the following we elaborate more on these security
requirements.

Binding. There are several ways in which the above binding requirement can hold. Clearly,
binding holds if after the interaction ends there is only a single element y that is consistent with
the transcript.1 In the computational setting, however, we are interested in the case where a random
h does induce many collisions. Thus, we only require the binding property to hold against efficient
senders. Assuming that h is taken from a family of collision resistant hash functions,2 designing
an interactive hashing protocol with respect to h is straightforward (simply let R send h over to S
and in return S can send h(y) to R). The protocols analyzed in this paper will not rely on collision
resistant hash functions (as we do not want to assume their existence). Following [NOVY98], we
enforce the binding by asking the sender to provide additional information about y (typically, the
honest sender gets this additional information as part of its input).

We formally define the computational binding property in Section 4.3, but in the meanwhile
let us consider the following important example: let f be a one-way permutation and view the
committed value y as an image of f . For the purpose of binding we can now require the sender
to provide x such that y = f(x) is consistent with the transcript (i.e., h(y) = z, where the
transcript equals (h, z)). Thus for breaking the binding of the protocol, a cheating sender needs
not only output y1 6= y2 such that h(y1) = h(y2) = z, but it also needs to output x1 and x2 for
which f(x1) = y1 and f(x2) = y2. Indeed with this additional requirement, [NOVY98] constructs

1Interactive hashing protocols with this strong binding property (known as “information theoretic” interactive
hashing) have many implications including [CCM98, CS06, DHRS04, NV06], to name a few.

2H is a family of collision resistant hash functions if given a random h ∈ H, it is infeasible to find x1 6= x2 for
which h(x1) = h(x2).
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an interactive hashing protocol that allows collisions but is nevertheless binding, more details in
Section 4.1.1.

Hiding. Ideally, we would like to have hiding for interactive hashing in the secure-function-
evaluation sense. That is, we would like the only information that a receiver acquires about y
through the protocol to be its hash value for a uniformly distributed hash function. Forcing such
a strong hiding property against malicious receivers, however, requires using stronger machinery
that we would like to avoid in this paper. Therefore, we only require such a strong hiding property
in the case of semi-honest (a.k.a. honest-but-curious) receivers (these are receivers that follow the
protocol correctly, but may try to extract additional information from their view of the interaction).
In the case of malicious receivers, we require that the only information obtained is the hash value
of y for some, adversatively and possibly adaptively chosen, hash function.3

Perspective. Interactive hashing (in the flavor mentioned above) is closely related and to a large
extent motivated by the fundamental notion of statistically hiding (and computationally binding)
commitments. Statistically hiding commitments can be used as a building block in constructions of
statistical zero-knowledge arguments [BCC88, NOVY98] or certain coin-tossing protocols [Lin03].
Naor et al. [NOVY98] use their interactive hashing protocol, hereafter called the NOVY protocol, in
order to construct statistically hiding commitments based on any one-way permutation. Haitner et
al. [HHK+05] generalized their result by showing that the NOVY protocol can be used to construct
statistically hiding commitments based on regular one-way functions and also on the so called
approximable-size one-way functions. Independently of this work, Haitner and Reingold [HR07],
using the “one out of two binding” commitment scheme of Nguyen et al. [NOV06], constructed
statistically hiding commitments based on any one-way functions. Not surprisingly, interactive
hashing is heavily used in the underlying commitment scheme of [NOV06]. Interactive hashing is
also used by several other cryptographic protocols [GGL98, OVY93a, OVY92, OVY93b].

A possible drawback of [NOV06], and thus of [HR07], is that their construction is rather inef-
ficient and complex. Indeed, a major motivation for looking into interactive hashing is to simplify
constructions of statistically hiding commitment schemes based on any one-way functions. Before
discussing our results and their applications, let us have a closer look into the notion of interactive
hashing.

4.1.1 Interactive Hashing in the Setting of One-Way Permutations

Let f : {0, 1}n 7→ {0, 1}n be a one-way permutation and consider the following two-party protocol
between a sender S, getting as input x ∈ {0, 1}n and y = f(x), and a receiver R: the receiver
selects a random two-to-one hash function h : {0, 1}n 7→ {0, 1}n−1 and sends its description to S,
and S sends z = h(y) back to R. Note that if both parties follow the protocol, then the following
binding property is guaranteed: It is not feasible for S to find x′ ∈ {0, 1}n such that f(x′) 6= f(x)
but h(f(x′)) = h(f(x)) = z, although (exactly one) such element x′ does exist. The reason is that
the task of finding such x′ can be shown to be equivalent in hardness to inverting f on a random
image (whereas the latter task is assumed to be hard by the one-wayness of f). Furthermore,

3We mention that in various settings assuming the existence of one-way functions one can assume without loss
of generality that the receiver is semi-honest (see [GMW91]). In particular, this is the case for statistically hiding
commitments ([HHK+05, Theorem 6.1]).
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we are guaranteed to have the following hiding property: let y1 and y2 be the two preimages of
z with respect to h. Given R’s view of the communication (i.e., given the values h and z), it is
indistinguishable whether the second input element of S (i.e., y) is y1 or y2.

What happens, however, if S selects x only after seeing h? In such a case, it is quite plausible
that S would be able to “cheat” by producing x, x′ ∈ {0, 1}n such that f(x) 6= f(x′) but h(f(x′)) =
h(f(x)) = z.4 The NOVY interactive hashing protocol prevents such cheating. For that it employs
a specific family of hash functions such that each one of its functions h can be decomposed into
n − 1 Boolean functions h1, . . . , hn−1, where h(x) = h1(x), . . . , hn−1(x).5 In the NOVY protocol,
instead of sending h at once as described above, the protocol proceeds in rounds such that R sends a
single Boolean function hi in each round, and in return the sender sends a bit zi, which is supposed
to equal hi(f(x)). Intuitively, a cheating sender has a significantly smaller leeway for cheating as
it can no longer wait in selecting x till it receives the entire description of h. Still, it is highly
non-trivial to argue that restricting the sender by adding interaction as above is sufficient in order
to prevent the sender from cheating. Nevertheless, Naor et al. [NOVY98] have shown that their
protocol has the binding property even against a cheating sender (namely, even a cheating sender
cannot produce x, x′ ∈ {0, 1}n such that f(x) 6= f(x′), but h(f(x′)) = h(f(x)) = z).

REMARK 4.1.1 (application to statistically hiding commitments)
Assuming that one-way permutations exist, the NOVY protocol applies the existence of statistically
hiding commitments as follows:6 we employ the NOVY protocol with a uniformly chosen pair
(x, y = f(x)) as the sender’s input. Let y0 and y1 be the two preimages of the hash value determined
by the protocol (i.e., y0 6= y1 ∈ h−1(z)) and let i ∈ {0, 1} be such that y = yi. The sender commits
to a bit b ∈ {0, 1} by masking it with i (i.e., it sends c = i⊕b to the receiver). In order to decommit,
the sender sends (x, y) to the receiver, who sets b = c⊕ i, where i is as above (e.g., the index of y
in {y0, y1}). It is easy to verify that the binding and hiding this commitment scheme follow by the
security of the NOVY protocol discussed above.

4.1.2 Interactive Hashing in the Sparse Case

How about constructing statistically hiding commitments from, say, regular one-way functions (one-
way functions where every possible output has the same number of preimages)? In such a case we
would like to interactively hash a value y (an output of the one-way function) that is taken from
some subset L(= Im(f)) of {0, 1}n (and not from {0, 1}n as in the case of one-way permutations).
Notice that the NOVY theorem guarantees that when hashing y with h : {0, 1}n 7→ {0, 1}n−1 the
sender is committed to a single value y. In the case of sparse L, however, when h outputs so many
bits then it is most likely that h(y) completely determines y, and we cannot employ the NOVY
protocol (at least not as we did in Remark 4.1.1), to get statistically hiding commitments.

Facing the aforementioned difficulty, Haitner et al. [HHK+05] make the following observation:
the binding of the NOVY protocol holds for every function f that it is hard to invert over the uniform

4Assume for example that the one-way permutation equals the identity function on the set T of all strings that
start with n/4 zeros (where n is the input length). Now given a hash function h all that the cheating sender has
to do is to find a collision y1 6= y2, where y1, y2 ∈ T , such that h(y1) = h(y2). Such a collision is likely to exist by
the birthday paradox, and for many families of hash functions (e.g., linear transformations) finding such a collision
is easy.

5For more details on the definition of this family of hash functions see Section 4.6.
6Actually, the NOVY commitment schemes are even stronger being perfectly hiding.
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distribution on Im(f) (in particular, one-way permutations have this property), where some weak
hiding is guaranteed for every f such that Im(f) is “dense” in {0, 1}n (i.e., of order 2n/poly(n)).
Equipped with this observation, [HHK+05] employ the NOVY protocol with length-preserving
poly-to-one one-way function (i.e., each output has at most polynomial number of preimages in
the image set of f), to get some weak form of statistically hiding commitments that can later be
amplified to full-fledge statistically hiding commitments. To handle any regular one-way function,
[HHK+05] applies additional layer of (non interactive) hashing to reduce to the dense case. This
implies a construction of statistically hiding commitments from any regular one-way function with
known image size. Interactive hashing in the sparse case arises in other works as well, most notably
in the construction of statistical zero-knowledge arguments from any one-way function [NOV06].

4.1.3 Our Results

We introduce an alternative proof for the NOVY protocol that relies in parts on the original
proof due to [NOVY98] (the NOVY proof), but still seems to us significantly simpler. The proof
follows a simple intuition that is sketched in Section 4.1.6. Moreover, the parameters achieved
by our proof are an improvement compared with the original ones. Given an algorithm A that
breaks the binding property with probability εA(n), we get an algorithm that inverts the one-way
permutation in comparable time and with inverting probability ε2

A(n)

poly(n) (where n is the hash function
input length). This is a substantial improvement over the ε10

A (n) · poly(n) reduction of [NOVY98]
and is much closer to natural limitations of the proof technique (see discussion in Section 4.7).7

In addition to being simpler and more security preserving, the new proof implies a more general
interactive hashing theorem. The new theorem applies to every family of hash functions that is a
“product” of Boolean families of pairwise independent hash functions (i.e., f(x) = (h1(x), . . . hk(x))
where h1 . . . hk are taken from Boolean families of pairwise independent hash functions) and not only
to the special family of two-to-one hash functions used by [NOVY98, NOV06]. More importantly,
the new theorem directly applies to the “sparse case”. Let f : {0, 1}n 7→ {0, 1}n be an efficiently
computable function and let L ⊆ {0, 1}n be sparse (i.e., |L| /2n = neg(n)). As mentioned above,
when hashing a value y ∈ L, the NOVY proof only promises binding when using a hash function
that outputs almost n bits. In such a case, however, y is likely to be completely determined by
h(y) (which makes the protocol not useful for these settings). Our theorem applies as long as
hashing is to roughly m = blog(|L|)c bits. In particular, when h is taken from a family of hash
functions Hm : {0, 1}n 7→ {0, 1}m that is a product of m families of pairwise independent Boolean
hash functions, we can show that a close variant of the NOVY protocol possesses the following
binding property: if f is hard to invert on the uniform distribution over L, then no polynomially-
bounded sender S∗ (even one which arbitrarily deviates from the protocol) can find two elements
x, x′ ∈ f−1(L) such that f(x) 6= f(x′) but h(f(x)) = h(f(x′)) = z (where z is the value determined
by the protocol as h(y)).

Finally, we consider interactive hashing protocols that use pairwise independent hash functions
of arbitrary output length (and not necessarily Boolean). Given a one-way function that is hard
to invert over the uniform distribution by algorithms of running-time 2s(n), our approach yields an
interactive hashing protocol with O(n/s(n)) rounds. When applied to one-way permutations, the
resulting protocol matches the recent lower bound of Haitner et al. [HHRS07],8 and generalizes the

7We mention that independently of our work, [NOV06] presented an
ε3

A(n)

poly(n)
reduction.

8[HHRS07] show that in every fully-black-box reduction from interactive hashing protocol to s(n)-hard permuta-
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one-way permutations based O(n/ log(n))-rounds protocol recently given by [KS06].
As an easy corollary, we use the new theorem to derive a direct construction of statistically

hiding commitment based on regular one-way functions of known regularity (and thus reprove
[HHK+05]). We also believe that our new result can be used to simply the construction of two-phase
commitment schemes given in [HNO+07], and thus to simplify their construction of statistically
hiding commitments from any one-way functions.

4.1.4 Related Work

We mention that independently of our work, Nguyen et al. [NOV06] gave a new proof for the NOVY
protocol. Their proof follows the proof of [NOVY98] more closely than ours but still introduces
various simplifications and parameter improvements. The main goal of their new proof was to
generalize the protocol such that it allows hashing with a hash function that is poly-to-one rather
than two-to-one as in [NOVY98]. In other words, they analyze the NOVY protocol with n−O(log n)
rounds rather than n−1 rounds in [NOVY98].9 For a comparison between the parameters obtained
by [NOVY98], [NOV06] and our work, see Remark 4.4.6.

4.1.5 Generalization to Relations

Following [NOV06], we state our protocol, and analysis, in the more general setting of binary
relations rather than functions. That is, we consider a binary relation W that is hard to satisfy
(i.e., given y it is hard to find x such that (x, y) ∈ W ).10 For such a relation we prove that following
our interactive hashing protocol, S cannot find two pairs (x0, y0), (x1, y1) ∈ W such that both y0

and y1 are consistent with the protocol, but y0 6= y1. We mention that since every function,
f , defines the natural binary relation {(x ∈ {0, 1}∗, f(x))}, every result with respect to binary
relations implies an equivalent result with respect to functions. Finally, we stress that the relations
we consider might not be efficiently verifiable - deciding membership in the given relation might be
hard.

4.1.6 Proof Idea

We outline our binding proof in the most basic setting where f : {0, 1}n 7→ {0, 1}n is a one-way
permutation and L = {0, 1}n (the proof of general case is not significantly different). Let x ∈ {0, 1}n

be S’s input and let y = f(x). Our protocol consists of m = n−O(log(n)) rounds, in each round R
selects a random Boolean pairwise-independent hash function hi and S replies with zi = hi(y). Let
A be an algorithm that plays the sender’s role in the protocol and at the end of the protocol outputs
two elements x1, x2 ∈ {0, 1}n. Assume that with some noticeable probability ε, it holds that f(x1) 6=
f(x2) ∈ Consist(h1, . . . , hm), where Consist(h1, . . . , hm) is the set of elements that are consistent
with the transcript of the protocol (i.e., Consist(h1, . . . , hm) def= {y′ ∈ {0, 1}n : ∀i ∈ [m] hi(y′) = zi}).
Consider the following naive way one may try to invert f using A: given input y, the algorithm

tions (hard for algorithms of running-time at most 2s(n)), the protocol has Ω(n/s(n)) rounds.
9We mention that such a generalization also follows by our analysis, which considers any value for m - the protocol’s

number of rounds.
10Since we are generalizing relations naturally defined by one-way functions (i.e., W = {(x, f(x))}), we chose to

write the witness (i.e., x) as the left hand side parameter, not following the more traditional notation of putting the
witness on the right hand side.
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chooses the hash functions at random and returns one of the two values that A outputs. It is rather
easy to argue that this naive algorithm inverts f with probability at least ε

2n .11

Assume for a second that we are only trying to invert f on the following distribution: the first
k = m − log(1

ε ) − c · log(n) (for some constant c ∈ N determined by the analysis) Boolean hash
functions, h1, . . . , hk, are chosen at random and only then a random element, y, is uniformly drawn
from Consist(h1, . . . , hk). We call the distribution induced on (y, h1, . . . , hk) by the above process
DUni. On the average, A has probability ε to cheat even when conditioned on h1, . . . , hk being
selected. Also note that by the pairwise independence of the h’s, the size of Consist(h1, . . . , hk) is,
with high enough probability, about 2n

2m−k = nc

ε . It follows that the naive algorithm, which selects
the rest of the hash functions at random and returns one of A’s answers, inverts f with probability
close to ε2

nc over DUni.
Now let’s try to emulate the above setting on a random y ∈ {0, 1}n. Namely, given a uniformly

chosen y ∈ {0, 1}n, we will choose h1, . . . , hk so that (y, h1, . . . , hk) will have about the same
distribution as it was drawn from DUni. To do so, we choose h1, . . . , hk one by one, each time we
keep sampling until we find an hash function that its value on y is consistent with A’s answer (if
the answer is inconsistent, we “rewind” A to its state before it was asked the last “faulty” hash
function). We call DSim the distribution the above process induces on (y, h1, . . . , hk). Assuming
that we could prove that the statistical difference between DUni and DSim is smaller than ε2

nc (recall
that this is the inverting probability of the naive algorithm on DUni), we could easily conclude the
proof of the binding property. Unfortunately, we cannot prove such a strong bound.

Note that till now we did not take advantage of the full power of A, since we did not use the
fact that A finds two different outputs of f that are consistent with the protocol and not merely
a single one (indeed the above observations hold also with respect to the honest S). When taking
into account the full powers of A, we manage to prove that the success probability of the naive
algorithm with respect to DUni does not depend on inverting too few elements. More specifically,
the subset of y ∈ Consist(h1, . . . , hk) such that the naive algorithm inverts on them with “high
enough” probability is of relative size

√
ε · |Consist(h1, . . . , hk)|.12

The latter observation turns to be useful, since we also mange to prove the following: for most
choices of h1, . . . , hk (excluding a set of probability much smaller than ε2

nc ), and for most elements
in Consist(h1, . . . , hk) (excluding a set of size much smaller than

√
ε · |Consist(h1, . . . , hk)|), the

probability mass that (y, h1, . . . , hk) has under DUni is within a constant factor from its mass
under DSim. By the above observations, it follows that we can invert y with noticeable probability
over DSim, which directly implies that we can invert f (again, with noticeable probability) on the
uniform distribution over {0, 1}n.

11With probability |Consist(h1, . . . , hm)| /2n, a random y lands in Consist(h1, . . . , hm) (and is uniform there). Now
if f(x1) or f(x2) are in Consist(h1, . . . , hm) (which clearly happens with probability at least ε), then with proba-
bility at least 1/ |Consist(h1, . . . , hm)| either x1 or x2 are the inverse of y. All in all, we invert y with probability
|Consist(H1,...,hm)|

2n · ε · 1
|Consist(h1,...,hm)| = ε

2n .
12Loosely, let T be the set of y’s that A is likely to output their inverse (according to f). A random selection of

hk+1, . . . , hm separates every two elements in T with probability 1−2−(m−k). So unless the size of T is large enough,
one of the two values A output will be forced to be the inverse of an element outside of T . This will contradict the
assumptions that values outside of T are only inverted with small probability.
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4.1.7 Outline

We give our definition of interactive hashing in Section 4.3 and present an interactive hashing
protocol that satisfies this definition in Section 4.4. In Section 4.5 we generalize the result of
Section 4.4 for the case of non-Boolean hash functions, where in Section 4.6 we argue that the new
proof can also be applied to the original NOVY protocol (that uses very specific hash functions).
Discussion and further issues appear in Section 4.7. Finally, in Section 4.8 we show how to use our
new theorem to derive a direct construction of statistically hiding commitment based on known
regular one-way functions.

4.2 Preliminaries

4.2.1 Hard to Satisfy Relations

For a binary relation, W and a string y ∈ {0, 1}∗, we denote the set {x ∈ {0, 1}∗ : W (x, y) = 1} by
Wy. The following definition is a natural generalization of the hardness imposed by the hardness
of a one-way permutation f on the relation {(x, f(x))}.

DEFINITION 4.2.1 (hard to satisfy relations)
Let W be a binary relation, let L ⊆ {0, 1}n and let s : N 7→ N. We say that W is s-hard to satisfy
over L if for every algorithm of running-time at most s(n) it holds that Pry←L[A(y) ∈ Wy] < 1

s(n) .
We say that W is hard to satisfy over L (omitting the parameter s), if it is p-hard to satisfy over L
for every polynomial p.

4.3 Interactive Hashing - Definition

We choose (following [NOV06]) to state our definitions in the setting of binary relations. This
generalizes the original definition due to [NOVY98], which concentrates on the particular relations
that are naturally defined by one-way permutations. In particular, the underlying relation is not
necessarily efficiently computable or even not efficiently verifiable. Moreover, the relation is not
necessarily defined over all strings of a given length, but might rather be defined over some small
subset of the strings.

DEFINITION 4.3.1 (interactive hashing protocol)
Let H be a family of hash functions mapping strings of length n to strings of length `(n). An
H-interactive hashing protocol IH = (S, R) is a probabilistic polynomial-time interactive protocol.
Both parties receive the security parameter 1n as an input and S gets as a private input y ∈ {0, 1}n.
At the end, S locally outputs y and R outputs (h, z) ∈ H×{0, 1}`(n). We require that for every value
of y ∈ {0, 1}n the value of h, induced by the random-coins of S and R, is uniformly distributed in H
and make the following correctness requirement: for all n, all y ∈ {0, 1}n, and every pair (y, (h, z))
that may be output by (S(1n, y),R(1n)), it is the case that h(y) = z.

The security of interactive hashing protocol has two aspects. Binding the sender to y and
concealing some information regarding y from R. In this work we focus on security with respect to
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polynomially-bounded sender and unbounded receiver. The setting where both the receiver and the
sender are unbounded, called information theoretic interactive hashing (a.k.a. interactive hashing
for static sets), is not treated by this work (for details on the information theoretic setting see for
example [CCM98, CS06, DHRS04]). We start by formalizing the hiding property.

4.3.1 Hiding

We use two incomparable hiding definitions. For the semi-honest receiver we require (Defini-
tion 4.3.2) that the only information it acquires through the protocol about y is its hash value for a
uniformly chosen hash function. For malicious receivers, we require (Definition 4.3.3) that the only
information obtained is the hash value of y for some, possibly adaptively chosen, hash function.

DEFINITION 4.3.2 (hiding against semi-honest receivers)
Let H be an efficient family of functions defined over strings of length n and let IH = (S, R) be an H-
interactive-hashing protocol. We say that IH is hiding against semi-honest receivers, if there exists a
polynomial-time simulator Sim such that for every y ∈ {0, 1}n the distributions viewπ

R(S(y), R)(1n)
and Sim(1n, h, h(y))h←H are identical.

DEFINITION 4.3.3 (weakly hiding)
Let H be an efficient family of functions defined over strings of length n and let IH = (S,R) be
an H-interactive-hashing protocol. We say that IH is weakly hiding if for every algorithm R∗ there
exist two polynomial-time algorithms Ext and Sim such that the following hold:

1. given an interaction of R∗ with S(y), algorithm Ext outputs h ∈ H.

2. for r ∈ {0, 1}∗ let R∗r denote the deterministic algorithm obtained from R∗ by fixing its
random-coins to r, and let Ext(r, y) denote the output of Ext that follows the interaction
of R∗r with S(y) (note that Ext(r, y) is a random-variable that depends on the random-coins
Ext and S). Then for every possible value of r ∈ {0, 1}∗ and y ∈ {0, 1}n, it holds that
viewπ

R∗(S(y), R∗r)(1n) and SimR∗r (1n, Ext(r, y)) are identical.

4.3.2 Binding

DEFINITION 4.3.4 (binding)
Let L ⊆ {0, 1}n, let W be a binary relation, let H be a family of hash functions mapping strings of
length n to strings of length `(n) and finally let IH = (S,R) be an H-interactive-hashing protocol.
We say that IH is (computationally) binding for L and W , if no ppt S∗ succeed in the following
game with more than negligible probability.

On security parameter 1n, S∗ interacts with R and R outputs (h, z). Then S∗ outputs
pairs (x0, y0), (x1, y1) ∈ W such that y0 6= y1 ∈ L and h(y0) = h(y1) = z.

4.4 The New Theorem

In this section we give a construction and new proof that match the definition of Section 4.3.
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THEOREM 4.4.1
Let L ⊆ {0, 1}n, let W be a binary relation that is hard to satisfy over L and let m(n) ≥ log(|L|) −
O(log(n)). Then for some efficient family H of functions from {0, 1}n to {0, 1}m(n), there exists an
H-interactive hashing protocol that is binding with respect to with respect to L and W , hiding against
semi-honest receivers and weakly-hiding.

Proof. Consider the following interactive hashing protocol.

4.4.1 The interactive hashing protocol

Let m : N 7→ N and let H be a family of functions mapping strings of length n to strings of length
`(n).

PROTOCOL 4.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interactive-hashing protocol IH = (S, R).

Common input: 1n.

S’s inputs: y ∈ {0, 1}n.

1. For i = 1 to m(n):

(a) R chooses uniformly at random hi ∈ H and sends its description to S.

(b) If h /∈ H, S aborts,
otherwise, S sends zi = hi(y) back to R.

2. S locally outputs y.

3. R outputs (h, z) = ((h1, . . . , hm(n)), (z1, . . . , zm(n))).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It it straight forward that IH is an Hm(n)-interactive-hashing protocol for every efficient family
H. In Section 4.4.2 (Lemma 4.4.3), we show that IH is hiding for every efficient family H. Finally,
in Section 4.4.2 (Corollary 4.4.7), we complete the proof by showing that IH is binding with respect
to L and W , assuming that H is a Boolean efficient family of pairwise independent hash functions
and m(n) ≥ log(|L|)−O(log(n)). ¤

4.4.2 Hiding

LEMMA 4.4.3
For every efficient family H, Protocol 4.4.2 is hiding against semi-honest receivers, and weakly hiding.

Proof. The fact that Protocol 4.4.2 is hiding against semi-honest receivers is immediate (Sim on
input (1n, h, h(y)) outputs (h, h(y))), to prove that it is also weakly hiding (against arbitrary
adversaries) we define algorithm Ext and Sim as follows: given an interaction of an adversarial
receiver R∗ with S, let h1, . . . , hk be the questions of R∗ answered by S (i.e., k = m if S does not
abort). Algorithm Ext selects arbitrary functions hk+1 . . . , hm ∈ h and outputs h = (h1 . . . , hm).
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Given (h1 . . . , hm)(y), algorithm Sim simulates the interaction of R∗r with S(y) as follows: let h′i be
the i’th question of R∗r, if h′i /∈ H then Sim aborts the execution and output the current view of
Rr. Otherwise, Sim forwards hi(y) to R∗r as S’s answer. Finally, assuming the interaction was not
previously aborted, Sim outputs the current view of Rr. It is easy to verify that the view generated
by the Sim is identical to the view of R∗r in the real interaction with S(y). ¤

4.4.3 The Main Lemma - Binding

LEMMA 4.4.4
Let L ⊆ {0, 1}n, W be a binary relation, m(n) ≤ blog(|L|)c and H be an efficient family of pairwise
independent Boolean hash functions defined over strings of length n. Finally, let IH be the instantiation
of Protocol 4.4.2 with the above H and m, and let A be an algorithm that runs in time tA(n) and
breaks the binding of IH with respect to W and L with probability εA(n).

Then there exists an oracle algorithm M (.) that given an oracle access to A, the following holds for
large enough n.

Pry←L[MA(y) ∈ Wy] ∈ Ω(2m(n)

|L| · εA(n)2

n8 ) .

Letting tH(n) be an upper bound of the sampling and computing time of H, the running-time of MA

is O(log(n)(tA(n) + m(n)tH(n))).

REMARK 4.4.5
The constrain in the above lemma that m(n) ≤ blog(|L|)c was only done for keeping the expressions
simple. Using a simple simulation argument, the binding for m(n) > blog(|L|)c can be reduced to
the case of m ≤ blog(|L|)c. We also point out that MA does not need to know L, W or εA.

REMARK 4.4.6 (comparing to [NOVY98] and [NOV06])
The binding proofs [NOVY98] and of [NOV06] hold only in the settings where L = {0, 1}n, W is
the relation naturally defined by a one-way permutation, H is a specific type family of two-to-one
Boolean hash functions and m(n) = n− 1 13. In the following we compare the success probability
and running-time of the inverters the different proofs yield with respect to the above settings.

Let A be an adversary that breaks the binding of the protocol with probability εA. Assuming
that we use hash functions with linear sampling and evaluation time, the success probability and
running-time of our inverter are Ω(εA(n)2

n8 ) and O(log(n)tA(n) + m(n) log(n)n) respectively. The
same holds also when the “NOVY hash functions” are used and not Boolean pairwise independent
hash function (see Section 4.6). This is an improvement in parameters compared with the analysis
in [NOV06, Lemma B.2]. There the algorithm runs in time O(nTA(n) + mn2) and breaks f with
probability Ω(εA(n)3

n6 ). Finally, in [NOVY98, Lemma 2] the algorithm runs in time O(nTA(n)+mn2)

(same as in [NOV06]) and only guarantees to break f with probability Ω(εA(n)10

n8 ).

In the case of efficient adversaries, Lemma 4.4.4 yields the following corollary.

13Actually, the proof of [NOV06] also holds with respect to m(n) = n−O(log n)
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COROLLARY 4.4.7
Let L, W , m(n) and IH be as in Lemma 4.4.4. Assuming that W is hard to satisfy over L and that
m(n) ≥ log(|L|)−O(log(n)), then IH is binding with respect to L and W .

Proof. We assume without lost of generality that m ≤ blog(|L|)c (see Remark 4.4.5) and let A be an
efficient algorithm that breaks the binding of IH with non-negligible probability εA. Lemma 4.4.4
yields the existence of an efficient algorithm MA such that Pry←L[MA(y) ∈ Wy] > 1

2O(log(n)) · εA(n)2

n8 =
εA(n)2

poly(n) , contradicting the hardness of W . ¤

Proof. (of Lemma 4.4.4) We start by arguing that it suffices to consider only deterministic A.
Given a randomized algorithm A that breaks the binding of IH when instantiated with a family of
hash functions H, consider the family of hash function H′ obtained from H by appending random
strings of length tA(n) to the hash functions’ description. Clearly, the deterministic algorithm A′

that emulates A using the randomness given in the hash functions description, breaks the binding
of IH instantiated with H′, with exactly the same probability as A does with respect to H. In the
following proof we assume nothing about H but being pairwise independent. Thus, the assumption
that A is deterministic is indeed without lost of generality.

For simplicity we drop the dependency on n whenever it is clear from the context. We use
throughout the proof the following random variables: for k ∈ [m] and h ∈ Hk, let ACom(h) ∈ {0, 1}k

be A’s answers when questioned by h and let Consist(h) =
{
y ∈ L : h(y) = ACom(h)

}
(i.e., the

set of y’s that are consistent with A’s answers). Finally, we assume without loss of generality that
following any sequence of questions h ∈ Hm, A outputs two pairs of elements (x0, y0), (x1, y1) ∈
{0, 1}∗ × {0, 1}n and denote them by ADec(h). For ofs = max {m, d8 log(n) + log(1/εA)e+ 13}, we
consider the following algorithm for satisfying W on L.

ALGORITHM 4.4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm MA.

Input: y ∈ L

1. Let h ← Searcher(y).

2. Return Inverter(h).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Algorithms Searcher and Inverter are defined as follows.

ALGORITHM 4.4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm Searcher.

Inputs: y ∈ L.

1. For k = 1 to m− ofs:

Do the following 2 log(n) times:

(a) Set a value for hk uniformly at random in H.

(b) If ACom(h1, . . . , hk)k = hk(y), break the inner loop.
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2. Return (h1, . . . , hm−ofs).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ALGORITHM 4.4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm Inverter.

Inputs: h ∈ Hm−ofs.

1. Choose uniformly at random he ∈ Hofs.

2. Set ((x0, y0), (x1, y1)) ← ADec(h, he).

3. Return x0 with probability half and x1 otherwise.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

REMARK 4.4.11
The value ofs depends in our proof on εA. This seems to contradict Remark 4.4.5 that MA does not
need to know εA. Nevertheless, ofs can instead be selected at random with only a factor m decrease
in the success probability of MA. More interestingly, setting ofs = 0 will also guarantee MA the
succuss probability claimed in the theorem. The only affect of decreasing ofs to zero is that he will
be selected by the rewinding method of Searcher rather than uniformly at random by Inverter. For
every value he that satisfies y ∈ Consist(h, he), we have that the probability of selecting it with
the rewinding technique is only larger than the probability of uniformly selecting it. A value of he

such that y 6∈ Consist(h, he) will not contribute in our analysis to the success probability of MA.
It follows that the distinction between Searcher and Inverter is not necessary for the proof. Still,
following [NOVY98], we find this distinction very useful for pedagogical reasons.

Assuming that we use the proper data structure to support the rewinding action, it follows that
the running time of MA is O(log(n)tA(n)+m log(n) · tH(n)). We assume without loss of generality
that m ≥ d8 log(n) + log(1/εA)e+ 13, otherwise we can set ofs = m and conclude the proof of the
theorem directly as follows.

Pr
y←L

[MA(y) ∈ Wy] =
∑

y∈L

1
|L| · Pr[Inverter(Hm) ∈ Wy]

≥ 1
|L|

∑

y∈L

1
2
· Pr

[
((x0, y0), (x1, y1)) ← ADec(Hm) : x0 ∈ Wy ∨ x1 ∈ Wy

]

≥ εA

|L| ∈ Ω
(

2m

|L| ·
ε2
A

n8

)

We consider the success probability of A with respect to the following distributions.

DEFINITION 4.4.12

• DSim
def=

(
h, y

)
y←L,h←Searcher(y)
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• DUni
def=

(
h, y

)
h←Hm−ofs,y←Consist(h)

Given that y is uniformly chosen in L, then DSim is the distribution that Inverter is invoked
upon through the execution of MA. Thus, the probability that Inverter satisfies W over DSim

equals to the success probability of MA. On the other hand, it is rather easy to show that the
probability that Inverter satisfies W over DUni is noticeable (as a function of εA). Intuitively, this
is because the distribution of h in DUni is uniform and this is also the distribution of h that A
encounters when interacting with R. Proving that, however, does not suffice to deduce that the
success probability of Inverter over DSim is also high. The reason is that potentially the success
probability of Inverter over DUni could stem from a relatively few elements that have significantly
smaller probability mass with respect to DSim than with respect to DUni. To overcome this problem,
we prove (Lemma 4.4.13) that the probability that Inverter satisfies W over DUni is well spread
- even if we ignore the contribution to the success probability of some sufficiently small number
of values in the support of DUni, this success probability will remain noticeable. Having that, we
are guaranteed that the success probability of Inverter is high with respect to any distribution that
assigns about the same mass to most elements in Supp(DUni). We then show (Lemma 4.4.14) that
DSim satisfies this property.

Let us turn to a more formal discussion. For h ∈ Hm−ofs we let εh =
Pr[A breaks the binding of IH | (h1, . . . , hm−ofs) = h], where h1, . . . , hm−ofs are the hash functions
chosen by R in the execution of IH. We define the weight of y with respect to h, by w(y | h) =
1
2 Pr[A breaks the binding of IH outputting ((x0, y0), (x1, y1))∧ y ∈ {y0, y1} | (h1, . . . , hm−ofs) = h].
Note that w(y | h) is a lower bound on the probability that Inverter satisfies W on y conditioned
on (h1, . . . , hm−ofs) = h. Finally, for a given set V ⊆ Hm−ofs × {0, 1}n, we let wV (y | h) be zero if
(h, y) ∈ V and w(y | h) otherwise.

In the following we prove two lemmata with respect to the above measures. The first lemma
states that the success probability of A over DUni does not come from small sets, where the second
lemma complete the picture by stating that DSim approximates DUni well over all elements in
Supp(DUni), save but, maybe, a small set.

LEMMA 4.4.13
Let V ⊆ Supp(DUni) such that Pr

[∣∣Consist(Hm−ofs) ∩ V
∣∣ >

√
2ofs−1εHm−ofs

]
< εA/2, then

Ex(h,y)←DUni

[
wV (y | h)

] ∈ Ω(εA2m−ofs/ |L|).

LEMMA 4.4.14
There exists a set V ⊆ Supp(DUni) such that the following hold:

1. for every (h, y) ∈ Supp(DUni)\V it holds that 1
81 ≤ DSim(h,y)

DUni(h,y)
≤ 81,

2. Pr
[∣∣Consist(Hm−ofs) ∩ V

∣∣ > 54n4
] ∈ O(n32m−ofs/ |L|).

Before proving the above lemmata, let us first use the them for proving Lemma 4.4.4. Let V
be the set whose existence is guaranteed by Lemma 4.4.14. The definition of w(·) implies that
Pr[Inverter(h) ∈ Wy] ≥ w(y | h). Thus, Pry←L[MA(y) ∈ Wy] = Pr(h,y)←DSim

[Inverter(h) ∈ Wy] ≥
Ex(h,y)←DSim

[wV (y | h)]. Since DUni approximates DSim well on any element outside V , it follows
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that

Pr
y←L

[MA(y) ∈ Wy] ≥ 1
81

Ex
(h,y)←DUni

[wV (y | h)] (4.1)

A Markov argument yields that the success probability of A is at least εA
2 , even if it is “forced” to

fail on every h ∈ Hm−ofs such that εh < εA
2 . Thus, we can assume without loss of generality that√

2ofs−1εh >
√

2ofs−2εA > 54n4 for every εh > 0. We conclude that

Pr
[∣∣∣Consist(Hm−ofs) ∩ V

∣∣∣ >
√

2ofs−1εHm−ofs

]

≤ Pr
[∣∣∣Consist(Hm−ofs) ∩ V

∣∣∣ > 54n4
]

∈ O(n32m−ofs/ |L|) < εA/2

for sufficiently large n, and the proof of Lemma 4.4.4 follows by Lemma 4.4.13 and Eq(4.1). ¤

Proving Lemma 4.4.13

We start by noticing that in each step of the protocol, the number of elements inside L that are
consistent with the transcript so far is w.h.p. (regardless of A’s answers) not faraway from the
expected value.

DEFINITION 4.4.15
We call h ∈ Hk balanced, for k ∈ [m], if for every j ∈ [k] it holds that |L|

3·2j ≤
∣∣Consist(h1,...,j)

∣∣ ≤ 3·|L|
2j .

CLAIM 4.4.16
For every k ∈ [m− ofs] it holds that Pr[Hk is balanced] ≥ 1− 6n22k/ |L|.
Proof. We say that h ∈ H well partitions the set Consist(h), if Pry←const(h)[y ∈
Consist(h, h)] ∈ [12 − 1

2n , 1
2 + 1

2n ]. Let h ∈ Hk, it is easy to verify that if hj well partitions
Consist(h1,...,j−1) for every j ∈ [k], then h is balanced. By Lemma 2.2.3, for every
j ∈ [k] it holds that P[H does not well partition h1,...,j−1] < 2

∣∣Consist(h1,...,j−1)
∣∣ /n2.

Therefore, we can lower bound the probability that Hk is balanced as follows.

Pr[Hk is not balanced]

≤
k∑

j=1

Pr[Hk
j does not well partition Consist(Hk

1,...,j−1) | Hk
1,...,j−1 is balanced]

≤
k−1∑

j=0

3n22j/ |L| ≤ 6n22k/ |L| .

¤

Having the above we are ready to prove Lemma 4.4.13.
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Proof. (of Lemma 4.4.13) Let’s fix for a moment h ∈ Hm−ofs. We assume for simplicity a non-
increasing order on the elements of Consist(h) according to their weights (i.e., by w(· | h)), and
denote by Consist(h)i the ith element of Consist(h) by this order. The following claim states that

the weight is not concentrated only on the first `h
def=

⌊√
2ofs−1εh

⌋
heaviest elements of Consist(h).

CLAIM 4.4.17
It holds that

∑|Consist(h)|
i=`h+1 w(Consist(h)i | h) ≥ εh/4.

Proof. Let Z =
{

Consist(h)1, . . . ,Consist(h)`h

}
, by the pairwise independence of H it

follows that,

Pr[∃y0 6= y1 ∈ Z : Hofs(y0) = Hofs(y1)] ≤ |Z|2
2ofs

≤ 2ofsεh

2 · 2ofs
= εh/2 (4.2)

Let y0 and y1 be the pair of elements returned by A on a successful cheat. Eq(4.2)
yields that the probability that both y0 and y1 are inside Z is at most εh/2. It follows
that the probability that A cheats successfully while at least one of y0 and y1 is outside
Z is at least εh/2. Note that each event where A cheats successfully and outputs an
element yi = y, contributes half its probability to the total weight of y. Thus, the sum
of weights of the elements in Consist(h)\Z is at least εh/4. ¤

Assuming that
∣∣Consist(h) ∩ V

∣∣ ≤
√

2ofs−1εh, Claim 4.4.17 yields that
∑

y∈Consist(h) wV (y | h) ≥ εh
4 . In the following we concentrate on the set Typical ={

h ∈ Hm−ofs :
∣∣Consist(h) ∩ V

∣∣ ≤
√

2ofs−1εh

∧ ∣∣Consist(h)
∣∣ ≤ 3 |L| /2m−ofs

}
. By Claim 4.4.16

and the assumption about V , we have that

Pr[Hm−ofs /∈ Typical)] ≤ εA/2 + O(n22m−ofs/ |L|) ≤ 3 · εA

4
(4.3)

for large enough n. It follows that

Ex
(h,y)←DUni

[
wV (y | h)

]
=

1
|Hofs|

∑

h∈Hm−ofs

1∣∣Consist(h)
∣∣

∑

y∈Consist(h)

wV (y | h)

≥ 1
|Hofs| ·

2m−ofs

3 |L|
∑

h∈Typical

∑

y∈Consist(h)

wV (y | h) ,

and thus Claim 4.4.17 yields that

Ex
(h,y)←DUni

[
wV (y | h)

] ≥ 2m−ofs

12 |L| ·
1

|Hofs|
∑

h∈Typical

εh .

Finally, using Eq(4.3) we conclude that

Ex
(h,y)←DUni

[
wV (y | h)

] ≥ 2m−ofs

12 |L| ·
εA

4
∈ Ω(εA2m−ofs/ |L|) .

¤
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Proving Lemma 4.4.14

We bridge between DUni and DSim using the following hybrid distributions. Let k ∈ {0, . . . ,m− 1}
and let h ∈ Hk. We define the hybrid algorithm Searcherh(y) that sets its first k hash functions
to h and then continues as the original Searcher algorithm does, and use it to define the following
distributions.

• Dh
Sim

def= (y, h)
y←Consist(h),h←Searcherh(y)k+1

• Dh
Uni

def= (y, h)h←H,y←Consist(h,h)

The proof of Lemma 4.4.14 easily follows by the next lemma that relates Dh
Sim to Dh

Uni.

LEMMA 4.4.18
Let k ∈ {0, . . . , m− ofs− 1} and let h ∈ Hk be balanced. Then there exists a set Bad(h) ⊆ Consist(h)
of size at most 54n3 such that the following holds:

Pr
[
∃y ∈ Consist(h,H) \Bad(h) : Dh

Sim(y,H)/Dh
Uni(y, H) /∈ [1− 4

n
, 1 +

4
n

]
]
∈ O(n22k/ |L|) .

Before proving Lemma 4.4.18, let us first use it for proving Lemma 4.4.14.

Proof. (of Lemma 4.4.14) For h ∈ Hk let Diff(h) = {y ∈ Consist(h) : ∃i ∈ [m −
ofs] : D

h1,...,i−1

Sim (y, hi)/D
h1,...,i−1

Uni (y, hi) /∈ [1 − 4
n , 1 + 4

n ]}. By induction, for every y ∈
Consist(h) \Diff(h) it holds that 1

81 ≤ DSim(h, y)/DUni(h, y) ≤ 81. In the following
we prove that w.h.p. Diff(h) is small. Thus, Lemma 4.4.14 follows by letting V ={
(y, h) ∈ Supp(DUni) : y ∈ Diff(h)

}
.

Lemma 4.4.18 yields that Pr[
∣∣Diff(Hm−ofs)

∣∣ > 54n4 | Hm−ofs is balanced] ≤ n · Ω(n22k/ |L|).
Where by Claim 4.4.16 we have that Pr[Hm−ofs is balanced] ≥ 1 − 6n22m−ofs

|L| . It follows that

Pr[
∣∣Diff(Hm−ofs)

∣∣ > 54n4] ≤ n · Ω(n22k/ |L|) + 6n22m−ofs

|L| ∈ Ω(n32m−ofs/ |L|). ¤

Proof. (of Lemma 4.4.18) Consider the Boolean matrix T |Consist(h)|×|H|, where T (y, h) = 1 if
ACom(h, h)k+1 = h(y) and zero otherwise. We identify the indices into T with the set Consist(h)×H.
The distribution Dh

Uni can be described in relation to T as follows. Choose a random column of
T and draw the index of a random one entry from this column (where a “one entry” is simply an
entry of the matrix that is assigned the value one). The distribution Dh

Sim can also be described
in relation to T as follows. Choose a random row of T and for 2 log(n) times draw a random entry
from this raw. If a one entry is drawn, then choose its index and stop drawing, otherwise select the
index of the last drawn entry.

Let us start with an informal discussion. Compare the matrix T with the matrix T̂ |Consist(h)|×|H|,
where T̂ (y, h) = h(y). Note that T can be derived from T̂ by flipping all values in some of its
columns (where the column which corresponds to h is flipped whenever ACom(h, h)k+1 = 0). By
the pairwise independence of H, it follows that most columns of T̂ are balanced (have about the
same number of zeros and ones) and thus the same holds for T . Hence, the mass that Dh

Uni assigns
to most of the one entries of T is close to 1

|H| · 2

|Consist(h)| . Using again the pairwise independent of
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H, we can prove that most rows of T are balanced. Hence, the mass that Dh
Sim assigns to most

one entries in T is also close to 1
|H| · 2

|Consist(h)| . Since the support of Dh
Uni and the indices set of

one entries in T are the same, we conclude that the one indices in a random raw of T (a random
h ∈ H) get about the same mass in Dh

Sim and in Dh
Uni, and the proof of the Lemma 4.4.18 follows.

Let us turn to the formal proof. We define the set Bad(h) as{
y ∈ Consist(h) : Pr[T (H, y) = 1] /∈ [12 − 1

2n , 1
2 + 1

2n ]
}

and start by showing that Bad(h) is
indeed small.

CLAIM 4.4.19
Assuming that h is balanced, then

∣∣Bad(h)
∣∣ < 54n3.

Proof. Let BadLaw(h) =
{
y ∈ Consist(h) : Pr[T (H, y) = 1] < 1

2 − 1
2n

}
. We as-

sume that
∣∣BadLaw(h)

∣∣ > 27n3 and derive a contradiction (the proof that∣∣Bad(h)\BadLaw(h)
∣∣ < 27n3 is analogous). Consider the matrix T |BadLaw

- the re-
striction of T to the rows BadLaw(h). By definition, the rows of T |BadLaw

have more
zeros than ones. Hence, the matrix T |BadLaw

itself has more zeros than ones. On the
other hand, by the pairwise independence of H it follows that most columns of T |BadLaw

are balanced (have about the same number of zeros of ones). Therefore, T |BadLaw
itself

is balanced and a contradiction is derived. More formally, for h ∈ H let Th be the
number of ones in the h column, that is Th =

∑
y∈BadLaw(h) T (y, h). We upper bound

the expectation of Th as follows,

Ex[TH ] = Ex
[ ∑

y∈BadLaw(h)

T (y,H)
]
=

∑

y∈BadLaw(h)

Ex[T (y, H)] < (
1
2
− 1

2n
)
∣∣BadLaw(h)

∣∣ .

Recall that T (h, y) = 1 if ACom(h, h)k+1 = h(y) and zero otherwise. Since the set
BadLaw(h) is large, Lemma 2.2.3 yields that a random h splits w.h.p. the elements of
BadLaw(h) into two almost equals size according to their consistency with A’s answer
on h. That it, Pr

[
TH <

∣∣BadLaw(h)
∣∣ · (1

2 − 1
3n)

]
< 9n2

|BadLaw(h)| ≤
1
3n . Thus,

Ex[TH ] ≥ 1
|H| ·

∑

h∈H : Th≥|BadLaw(h)|·( 1
2
− 1

3n
)

∣∣BadLaw(h)
∣∣ · (1

2
− 1

3n
)

> (1− 1
3n

) · ∣∣BadLaw(h)
∣∣ · (1

2
− 1

3n
) >

∣∣BadLaw(h)
∣∣ · (1

2
− 1

2n
) ,

and a contradiction is derived. ¤

The definition of Bad(h) yields that Pr
(y,h)←Dh

Sim
[ACom(h, h)k+1 = h(y) | y /∈ Bad(h)] >

1 − O(1/n2). Thus for every h ∈ H and every y ∈ Consist(h, h) \Bad(h), it holds that
Dh

Sim(y, h) ∈ [(1 − O(1/n2))γ · 1
1+ 1

n

, γ · 1
1− 1

n

], for γ = 2

|Consist(h)|·|H| . Now let HBad(h) =

{h ∈ H : Pry←Consist(h)[T (h, y) = 1] /∈ [12 − 1
2n , 1

2 + 1
2n ]}. Clearly for every h ∈ H \HBad(h)

and every y ∈ Consist(h, h), it holds that Dh
Uni(y, h) ∈ [γ · 1

1+ 1
n

, γ · 1
1− 1

n

]. It follows that

Dh
Sim(y, h)/Dh

Uni(y, h) ∈ [1 − 4
n , 1 + 4

n ] for every h ∈ H \HBad(h) and y ∈ Consist(h, h) \Bad(h),
and the proof of Lemma 4.4.18 follows by next claim.
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CLAIM 4.4.20
Assuming that h is balanced, then Pr[H ∈ HBad(h)] ∈ Ω(n22k/ |L|).
Proof. Immediate by the pairwise independence of H (see Lemma 2.2.3) ¤

¤

4.5 Protocols with Better Round Complexity

When Protocol 4.4.2 is invoked with Boolean hash functions (as in the proof of Theorem 4.4.1),
it suffers from a linear round complexity. Unfortunately, it seems that such a round complexity is
unavoidable for interactive hashing protocols that are both hiding and binding (for more details,
see the discussion at the end of Section 4.1.3). Having the above, we consider more efficient
protocols whose binding hold with respect to relations that are more than super-polynomial hard.
In particular, we consider Protocol 4.4.2 invoked with hash functions whose output length is roughly
“log the security” of a given relation, and prove the following lemma that generalizes Lemma 4.4.4.

LEMMA 4.5.1
Let W be a binary relation and let L ⊆ {0, 1}n. Let H be an efficient family of pairwise independent

hash functions from strings of length n to strings of length s(n) and let m(n) ≤
⌊

log(|L|)
s(n)

⌋
. Finally, let

IH be the instantiation of Protocol 4.4.2 with H and m, and let A be an algorithm that runs in time
tA(n) and breaks the binding of IH with respect to W and L with probability εA(n).

Then there exists an oracle algorithm M (.) that given an oracle access to A, the following holds for
large enough n.

Pry←L[MA(y) ∈ Wy] ∈ Ω(2m(n)

|L| · εA(n)2

22s(n)n8 ) .

Letting tH(n) be an upper bound of the sampling and computing time of H, the running-time of MA

is O(log(n)2s(n)(tA(n) + m(n)tH(n)).

REMARK 4.5.2
As in Lemma 4.4.4, the binding for m(n) >

⌊
log(|L|)

s(n)

⌋
immediately follows by the binding of the

first
⌊

log(|L|)
s(n)

⌋
rounds. In addition, MA does not need to know L, W or εA.

Proof’s sketch. The proof of Lemma 4.5.1 follows very closely the proof of Lemma 4.4.4 and
we only point out the main differences. When using hash functions of s(n) bit output rather
than Boolean ones, each query made by the receiver partitions the set of consistent elements into
2s(n) different subsets (rather than two subsets as in the Boolean case). For the second part of
the proof to go through (i.e., Lemma 4.4.14), we need to make sure that the size of each of the
subsets induced by a random query is not too far from the expected value. Since we want to use
pairwise independence concentration laws (and in particular, Lemma 2.2.3), we need to make sure
the initial set of consistent elements is large enough. For the same reason, we cannot guarantee
that the set of “bad” elements for which DUni and DSim give different weight (i.e., the set V in
Lemma 4.4.14) is very small, but rather have to compensate a much larger set of about O(n42s(n))
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elements. It turns out that we can adopt Lemma 4.4.14 for hash functions that output s(n) bits
and V of size O(n42s(n)), by taking ofs ∈ Ω(log(n) + log(1/εA) + 2s(n)) and change the main loop
of the Searcher algorithm (where Searcher tries to find a hash function h such that A’s answer on
h is equal to h(y)) to repeat 2 log(n) · 2s(n) times (rather than 2 log(n) times). That is, we get the
following lemma.

LEMMA 4.5.3
There exists a set V ⊆ Supp(DUni) such that the following hold:

1. for every (h, y) ∈ Supp(DUni)\V it holds that 1
81 ≤ DSim(h,y)

DUni(h,y)
≤ 81,

2. Pr
[∣∣Consist(Hm−ofs) ∩ V

∣∣ > 54n42s(n)
] ∈ O(n32m−ofs/ |L|),

where DUni and DSim are as in Definition 4.4.12 but with respect to ofs =
max {m · s(n), d8 log(n) + log(1/εA)e+ 13 + 2s(n)}.

In order to complete the proof of Lemma 4.5.1, it is left to show that we can apply Lemma 4.4.13
with the bound for |V | promised by Lemma 4.5.3 and the new value of ofs. While Lemma 4.4.13
is stated for Boolean hash functions, it is easy to verify that its proof does not use the fact that
the (pairwise independent) hash functions are Boolean rather than an arbitrary sequence of hash
functions with overall output length ofs. Thus, we can use Lemma 4.4.13 for non Boolean hash
functions, and the proof of Lemma 4.5.1 goes through.

4.6 Applying Our New Proof to NOVY

In this section we show the proof of Lemma 4.4.4 can be applied to the following protocol, known
as the NOVY protocol, considered by Naor et al. [NOVY98] and Nguyen et al [NOV06].

4.6.1 The NOVY protocol

For m(n) ∈ N, we define the following protocol.

PROTOCOL 4.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The NOVY protocol IH = (S, R).

Common input: 1n.

S’s inputs: y ∈ {0, 1}n.

1. For i = 1 to m(n):

(a) R chooses uniformly at random ri ∈ {0, 1}n−i and sends hi = 0i−1 ◦ 1 ◦ ri over to S.

(b) S sends zi = 〈hi, y〉2 mod 2 back to R.

2. S locally outputs y.

3. R outputs (h, z) = ((h1, . . . , hm(n)), (z1, . . . , zm(n))).
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

That is, the above protocol is the same as Protocol 4.4.2, but it uses a special type of Boolean
function. For i ∈ {1, . . . ,m(n)} let Hi be the family of functions induced by the selection of hi

described above.

4.6.2 The New Lemma

Our goal is to prove the following version of Lemma 4.4.4.

LEMMA 4.6.2
Let W be a binary relation, let m(n) ≤ n and let (S, R) and {Hi}m(n)

i=1 be as in Protocol 4.6.1. Finally,
let A be an algorithm that runs in time tA(n) and breaks the binding of (S, R) with respect to W with
probability εA(n). Then there exists an oracle algorithm M (.) that given an oracle access to A, the
following holds for large enough n.

Pr[MA(Un) ∈ WUn ] ∈ Ω( 1
2n−m(n) · εA(n)2

n8 ) .

The running-time of MA is O(n log(n) + mn log(n)).

Proof. It is easy to verify that if the families of functions {Hi}n−1
i=1 would have been pairwise

independent, then our proof of Lemma 4.4.4 would hold in this case as well.14 The latter, however,
does not hold and therefore we have to refine our approach. Fortunately, the proof of the theorem
does not require that the families of Boolean hash function to be pairwise independent with respect
to the initial set of inputs L, but rather to be pairwise independent with respect to the elements of
the initial set that are consistent with the protocol so far. It turns out that given that the initial
set is {0, 1}n, the families of Boolean hash functions used by NOVY are “pairwise independent
enough” on the relevant set and thus essentially the same proof as the one we gave for Lemma 4.4.4
goes through.

Let’s us turn to a more formal discussion. For k ∈ [m(n)], h ∈ H1 × · · · × Hk and z ∈
{0, 1}k, let Consist(h, z) be the set of elements inside {0, 1}n that are consistent with h and z (i.e.,{
y ∈ {0, 1}n : h(y) = z

}
). By induction, it follows that for every possible pair (h, z) and element

y2 ∈ {0, 1}n−k, there exists a single element y1 ∈ {0, 1}k (which depends on y2 and on (h, z)) such
that y1 ◦ y2 ∈ Consist(h, z). Hence, for any y ∈ Consist(h, z) there exists exactly one other element
y′ ∈ Consist(h, z) for which yk+2...,n = y′k+2...,n. Thus, for any other element y′′ ∈ Consist(h, z),
which is different than y and y′, it holds that the random variables h(y) and h(y′′) (and also h(y′)
and h(y′′)), where h is a random function from Hk+1, are independent. Therefore, every subset
Z ⊆ Consist(h, z) can be partitioned into two almost equal size subsets (i.e., of difference in size
at most one) such that Hk+1 is pairwise independent with respect to both subsets. Through the
proof of Lemma 4.4.4, we use the pairwise independence property of the hash functions to prove
that the following holds. Every fixed large enough subset Z ⊆ Consist(h, z) is partitioned w.h.p.
by a random Boolean hash function into two parts of almost the same size.15 By our previous

14Note that the proof of Lemma 4.4.4 does not require that the same family is used in each round.
15Actually, save but the proof of Claim 4.4.19, we only need this property with respect to Z = Consist(h, z). Note

that by the above observation about the structure of Consist(h, z), every h ∈ Hk+1 always partitions Consist(h, z)
into two equal parts.
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observation such a partition also happens, with high enough probability, with respect to the family
Hk+1. Thus, the proof of Lemma 4.4.4 applied also for the NOVY protocol. ¤

4.7 Conclusions

One interesting question is to come with a reduction from breaking the binding of an interactive
hashing to violating the hardness of the underlying relation that is even more security preserving
that the one given in Lemma 4.4.4. Particularly, is there such a reduction that is linearly-preserving
[HL92] (i.e., where the time-success ratio of an adversary violating the hardness of the relation
is only larger by a multiplicative polynomial factor than the time-success ratio of an adversary
breaking the binding of the interactive hashing protocol). There are three possible directions for
an improvement: (1) Presenting a more secure protocol than Protocol 4.4.2, (2) Giving a better
reduction from an adversary that breaks the interactive hashing to one that violates the hardness
of the relation, or (3) Improving the analysis of the reduction mentioned in (2).

We mention that our improvement in parameters over the NOVY proof is mainly in the third
item (i.e., the analysis of the reduction). In the following we show that our analysis cannot be
pushed much further. Namely, we present a (non-efficient) adversary A that breaks the binding of
Protocol 4.4.2 (invoked with Boolean pairwise independence hash functions) with probability ε, but
MA breaks the underlying relation (in this case the relation imposed by a one-way permutation)
with probability at most 2 · ε1.4.

Consider an algorithm M for inverting a one-way permutation that uses an adversary A of
Protocol 4.4.2 (or of the NOVY protocol) in the following black-box manner: on y ∈ {0, 1}n, it
keeps sampling random hash functions and rewinding A, until it finds a series of n−1 hash functions
on which A’s answers is consistent with y. Then, it returns one of A’s outputs as the candidate
preimage of y (note that both the NOVY and ours inverting algorithms follow this strategy).
Assume that A operates as follows: for ε > 0, it replies with random answers on the first n− log(1

ε )
questions (hash functions) and then randomly selects two distinct elements, y1, y2 ∈ {0, 1}n, that
are consistent with the protocol so far. For the remaining hash functions A does the following: if
both y1 and y2 yield the same answer then it answers with this value, otherwise, it selects randomly
one of the elements and from now on answers according to this element. At the end of the protocol
A checks whether both y1 and y2 are consistent with the protocol. If the answer is positive, it
inverts f on both y1 and y2 and outputs the result (recall that the reduction does not assume that
A is efficient and therefore it is allowed for example to invert f using exhaustive search), otherwise
it outputs ⊥. Since H is a family of pairwise independent hash functions, the random variables
h(y1) and h(y2), for a randomly chosen hash function h, are independent.16 Thus, the probability
that A breaks the binding of Protocol 4.4.2 is exactly ε. On the other hand, in order for M to
succeed, y has to be selected by A as one of the elements in {y1, y2}. Since the number of elements
the are consistent with the protocol after n− log(1

ε ) steps is 1/ε, it follows that this happens with
probability 2ε. Given that y ∈ {y1, y2}, say that y = y1, M has to choose in each step an hash
function h for which A(h) = h(y) = h(y2). By the independence of h(y) and h(y2), it follows that
the probability that A(h) = h(y) 6= h(y2) is exactly 1

4 . Therefore, the probability that in all the
last log(1

ε ) steps it holds that A(h) = h(y) = h(y2), is at most (3
4)log( 1

ε
) < ε0.4. We conclude that

the overall success probability of MA is at most 2 · ε1.4.
16As mentioned in Section 4.6, the hash functions used by the NOVY protocol are not exactly pairwise independent.

However, almost the same argument holds for the NOVY hash functions.
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In the above case, it is easy to present an algorithm that inverts the one-way permutation, using
black-box access to A, with probability that is very close to ε. Nevertheless, it is possible that one
can generalize and strengthen the above argument to preclude any linearly-preserving black-box
reduction from interactive hashing to violating the underlying relation. Such a separation would
be quite informative (an easier task would be to rule out any black-box proof that the binding of
Protocol 4.4.2 is linearly preserving).

4.8 A Simpler Construction of Statistically Hiding Commitment
from Known Regular One-way Functions

In this section we use our new interactive hashing theorem (Theorem 4.4.1) to give a direct con-
struction of statistically hiding commitment from known regular one-way functions.

A commitment scheme is a two-stage protocol between a sender and a receiver. In the first stage,
called the commit stage, the sender commits to a private string σ. In the second stage, called
the reveal stage, the sender reveals σ and proves that it was the value to which she committed
in the first stage. We require two properties of commitment schemes. The hiding property says
that the receiver learns nothing about σ in the commit stage. The binding property says that after
the commit stage, the sender is bound to a particular value of σ; that is, she cannot successfully
open the commitment to two different values in the reveal stage. In a statistically hiding and
computationally binding commitment scheme, the hiding holds information theoretically (i.e., even
an all powerful learns nothing about σ), where the binding property only guaranteed to hold against
polynomial-time senders. A known regular one-way function is an efficiently computable function
that is hard to invert, and all its images have the same (efficiently computable) number of preimages.
For the formal definitions of these primitives, see for example [HHK+05].

Our construction is achieved by applying an interactive hashing protocol to the output of the
one-way function. The new construction somewhat simplifies the previous construction, and proof,
of Haitner et al. [HHK+05, Theorem 4.4], which uses an additional hashing step before applying
the NOVY protocol.

THEOREM 4.8.1
If there exists known regular one-way functions, then there exists statistically hiding and computationally
binding commitment schemes.

REMARK 4.8.2
[HHK+05, Theorem 4.4] also holds with respect to somewhat more general choice of one-way
functions.17 It is easy to verify, however, that the proofs given here can be extended also to these
settings.

Proof. (of Theorem 4.8.1) We use our new interactive hashing theorem to get a bit commitment
scheme (i.e., the committed string is a single bit) that is “somewhat hiding” in the meaning define
below, and the existence of a full-fledge commitment scheme follows via standard amplification
techniques.

17Informally, [HHK+05] consider the case where the number of preimages is not fixed for all outputs, but rather
can be efficiently approximated.
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DEFINITION 4.8.3 (weakly hiding commitment scheme)
Let δ : N 7→ R+. A commitment scheme Com = (S = (Sc, Sr), R = (Rc, Rr)) is sta-
tistically δ(n)-hiding, if for every algorithm R∗ the ensembles {viewR∗(Sc(0), R∗)(1n)}n∈N and
{viewR∗(Sc(1),R∗)(1n)}n∈N are of statistical distance at most δ(n), where viewR∗(Sc(b), R∗) denotes
the view of R∗ in the commit stage interacting with Sc(b).

Let f : {0, 1}n 7→ {0, 1}n be a regular one-way function18 and let W = {(x, f(x)) : x ∈ {0, 1}n}.
We first note that the regularity of f implies that the distributions f(Un) and the uniform distri-
bution over Im(f) are the same. Since f is hard to invert over f(Un), it follows that W is hard
to satisfy over Im(f). For m = blog |Im(f)|c − 9, let H and IH = (SI ,RI) be the hash family and
interactive hashing protocol guarantees by Theorem 4.4.1 for the above W and L = Im(f). We
use the following bit commitment protocol.

4.8.1 The Weakly Hiding Protocol

Let G be an efficient family of Boolean pairwise independent hash functions defined over strings of
length n and let f , H and IH be as above. We define the bit commitment protocol Com = (S, R)
as follows:

PROTOCOL 4.8.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The commitment scheme Com = (S = (Sc, Sr), R = (Rc, Rr)).

Commit stage.

Common input: 1n.

Sc’s input: b ∈ {0, 1}.

1. Sc chooses uniformly at random x ∈ {0, 1}n and sets y = f(x).

2. (Sc, Rc) runs (SI(y, 1n),RI(1n)), with Sc and Rc acting SI and RI respectively.

Let (h, z) be the output of RI in this execution.

3. Sc chooses uniformly at random g ∈ G and sends g, c = b⊕ g(y) to R.

4. Sc locally outputs x and Rc outputs (h, z, g, c).

Reveal stage.19

Common input: 1n, b ∈ {0, 1} and (h, z, g, c).

Sr’s input: x.

1. Sr sends x to Rr.
18The assumption that f is length-preserving is without lost of generality, see [Gol01a, HHR06].
19Alternatively, we could have used the generic reveal stage - Sr sends the random-coins of Sc and Rr checks for

consistency.
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2. Rr accepts if h(f(x)) = z and g(f(x))⊕ b = c.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In Lemma 4.8.5 we show that Protocol 4.8.4 is computationally binding, where Lemma 4.8.6
states is (statistically) C-hiding for some constant C > 0. Thus, the proof of Theorem 4.8.1 follows
by standard amplification techniques (e.g., [HHK+05, Thm. 5.2]). ¤

LEMMA 4.8.5
Protocol 4.8.4 is computationally binding.

Proof. We show that any adversary that breaks the binding of the bit-commitment protocol can be
trivially used to break the binding of the underlying interactive hashing protocol IH. Specifically,
given an adversary A that breaks the binding of the bit-commitment with non-negligible probability,
the following algorithm, MA, uses A to break the binding of IH. Algorithm MA acts as A in the
interaction with RI , let (h, z) be the public output of RI that follows this interaction. Note that
the only interaction of A with R is the interaction with RI , therefore from A’s point of view it
has just took part in a normal execution of (Sc, Rc). Let (g, c) be A’s message that follows this
interaction. By the contradiction assumption, in the reveal stage A outputs with non-negligible
probability two elements x0 and x1 such that for both i ∈ {0, 1} it holds that h(f(xi)) = z and
g(f(xi))⊕ i = c. In particular, it holds that h(f(x0)) = h(f(x1)) = z and f(x0) 6= f(x1). Thus, by
outputting (x0, f(x0)) and (x1, f(x1)), MA breaks the binding of IH. ¤

LEMMA 4.8.6
Protocol 4.8.4 is statistically 7

8 -hiding.

Proof. Let R∗ be an adversary playing the role of Rc in Com, for b ∈ {0, 1} let VR∗(b) denote R∗’s
view in the interaction with Sc(b). We split VR∗(b) into two parts: the interaction of R∗ with SI

and the last message of Sc (i.e., (g, c), which may be empty), and denote these random variables by
VIH and VG(b) respectively (note that VIH is independent of b). Using the weakly-hiding property
of IH, we show that with sufficient probability VIH is consistent with many y’s. Thus, g partitions
the set of consistent y’s into two subsets of similar size. Since a commitment to 0 when y is taken
from one of these subsets generates the same view as a commitment to 1 when y is taken from the
other subset, it follows that the views in both cases are statistically close. Namely, the protocol is
weakly hiding.

Let us turn to the formal proof. The weakly-hiding property of IH yields the existence of
algorithms Ext and Sim such that for both b ∈ {0, 1} it holds that (SimR∗(H(Y )), VG(b)) and VR∗(b)
have the same distribution, where Y is the value of y (= f(x)) selected by Sc and H = Ext(VIH).
In the following we fix the random-coins of SI , R∗, Ext and Sim (but not the values of y and g) and
prove that (SimR∗(H(Y )), VG(0)) and (SimR∗(H(Y )), VG(1)) are statistically close. Thus, for every
fixing VR∗(0) and VR∗(1) are statistically close, and the proof of the lemma follows.

Fix the random-coins of SI , R∗, Ext and Sim, note that under this fixing SimR∗(H(Y )) is
determined by Y . For z ∈ SimR∗(H(Y )), let Consist(z) be the set of y ∈ Im(f) that are consistent
with z (i.e., conditioned on Y = y it holds that SimR∗(H(Y )) = z). The following holds for every
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z ∈ SimR∗(H(Y )):

∆(VR∗(0), VR∗(1) | SimR∗(H(Y )) = z) (4.4)
= ∆((z, VG(0)), (z, VG(1)) | SimR∗(H(Y )) = z)

≤ 1
2

∑

g∈G,c∈{0,1}

∣∣∣Pr[VG(0) = (g, c) | SimR∗(H(Y )) = z]− Pr[VG(1) = (g, c) | SimR∗(H(Y )) = z]
∣∣∣

=
1

2 |G|
∑

g∈G,c∈{0,1}

∣∣∣∣ Pr
y←Consist(z)

[g(y)⊕ 0 = c]− Pr
y←Consist(z)

[g(y)⊕ 1 = c]
∣∣∣∣ ,

where the inequality is since S might abort in z, which yields that VG(0) and VG(0) are the empty
message. Using the pairwise independence of G (Lemma 2.2.3, letting ` = 1, L = Consist(z)
and δ = 1

2) we have that Prg←G
[
Pry←Consist(z)[g(y) = 0] /∈ [14 , 3

4 ]
]

< 8
|Consist(z)| , which together with

Eq(4.4) yield that

∆(VR∗(0), VR∗(1) | SimR∗(H(Y )) = z) ≤ 16
|Consist(z)| +

1
2

(4.5)

We call z ∈ SimR∗(H(Y )) heavy if |Consist(z)| ≥ 64. By Eq(4.5) we have that ∆(VR∗(0), VR∗(1) |
SimR∗(H(Y )) = z) ≤ 3

4 for every heavy z, and we conclude the proof by proving that SimR∗(H(Y ))
is heavy with high probability.

CLAIM 4.8.7
Pr[SimR∗(H(Y )) is heavy] ≥ 7

8 .

Proof. For y ∈ Im(f) let t(y) be the value of H(Y ) conditioned that Y = y. A simple counting
argument (recall that m = blog |Im(f)|c − 9) yields that Pry←Im(f)[t−1(t(y)) ≥ 64] ≥ 7

8 , and the
claim follows since SimR∗(H(Y )) is a deterministic function of t(Y ). ¤

Thus,

∆(VR∗(0), VR∗(1))
= Pr[SimR∗(H(Y )) is heavy] ·∆(VR∗(0), VR∗(1) | SimR∗(H(Y )) is heavy)
+ Pr[SimR∗(H(Y )) is not heavy] ·∆(VR∗(0), VR∗(1) | SimR∗(H(Y )) is not heavy)

≤ 3
4

+ Pr[SimR∗(H(Y )) is not heavy] <
7
8

¤
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Chapter 5

Efficient Pseudorandom Generators

5.1 Introduction

In this work we address two fundamental problems in cryptography: (1) constructing pseudorandom
generators from one-way functions and (2) transforming weak one-way functions into strong one-
way functions. The common thread linking the two problems in our discussion is the technique we
use. This technique that we call the randomized iterate was introduced by Goldreich, Krawczyk
and Luby [GKL93] in the context of constructing pseudorandom generators from regular one-
way functions. We revisit this method, simplify existing proofs and utilize our new perspective
to achieve significantly better parameters for security and efficiency. We demonstrate that the
randomized iterate is also applicable to the construction of pseudorandom generators from any
one-way function. Specifically we revisit the seminal paper of H̊astad, Impagliazzo, Levin and Luby
[HILL99] and show that the randomized iterate can help improve the parameters in this content.
We also give significant improvements to the construction of pseudorandom generators from one-
way functions that are exponentially hard to invert. Finally, we use the randomized iterate both
to simplify and to strengthen previous results regarding efficient hardness amplification of regular
one-way functions.

We start by introducing the randomized iterate in the context of pseudorandom generators, and
postpone the discussion on amplifying weak to strong one-way function to Section 5.1.3.

5.1.1 Pseudorandom Generators and the Randomized Iterate

Pseudorandom Generators, first introduced by Blum and Micali [BM82] and stated in its current,
equivalent form, by Yao [Yao82], are one of the cornerstones of cryptography. Informally, a pseudo-
random generator is a polynomial-time computable function G that stretches a short random string
x into a long string G(x) that “looks” random to any efficient (i.e., polynomial-time) algorithm.
Hence, there is no efficient algorithm that can distinguish between G(x) and a truly random string
of length |G(x)| with more than a negligible probability. Originally introduced in order to convert
a small amount of randomness into a much larger number of effectively random bits, pseudorandom
generators have since proved to be valuable components for various cryptographic applications such
as bit commitments [Nao91], pseudorandom functions [GGM86], and pseudorandom permutations
[LR88], to name a few.
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Previous constructions

The first construction of a pseudorandom generator was given in [BM82] based on a particular
one-way function and was later generalized in [Yao82] into a construction of a pseudorandom
generator based on any one-way permutation. We refer to the resulting construction as the BMY
construction. The BMY generator works by iteratively applying the one-way permutation on its
own output. More precisely, for a given function f and input x define the k’th iterate recursively
as fk(x) = f(fk−1(x)) where f1(x) = f(x). To complete the construction, one needs to take a
hardcore-bit at each iteration. If we denote by b(x) the hardcore-bit of x (take for instance the
Goldreich-Levin [GL89] predicate), then the BMY generator on seed x outputs the hardcore-bits
b(f1(x)), . . . , b(f `(x)).1

The natural question arising from the BMY generator was whether one-way permutations are
actually necessary for pseudorandom generators or can one do with a more relaxed notion. Specifi-
cally, is any one-way function sufficient for pseudorandom generators? Levin [Lev87] observed that
the BMY construction works for any one-way function on its iterates, that is, a one-way function
that remains one-way when applied sequentially on its own outputs. A general one-way function,
however, does not have this property since the output of f may have very little randomness in it,
and a second application of f may be easy to invert. A partial solution was suggested by Goldre-
ich et al. [GKL93] that showed a construction of a pseudorandom generator based on any regular
one-way function (referred to as the GKL generator). A regular function is a function such that
every element in its image has the same number of preimages. The GKL generator introduced
the technique at the core of this work, that we call the randomized iterate. Rather than sim-
ple iterations, an extra randomization step is added between every two applications of f . More
precisely,

DEFINITION 5.1.1 (the randomized iterate (informal))
For function f , input x and random vector of hash functions h = (h1, . . . , h`), recursively define
the k’th randomized iterate (for 2 ≤ k ≤ ` + 1) by:

fk(x, h) = f(hk−1(fk−1(x, h))) ,

where f1(x, h) = f(x).

The rational is that hk(fk(x, h)) is now uniformly distributed, and the challenge is to show
that f , when applied to hk(fk(x, h)), is hard to invert even when the randomizing hash functions
h = (h1, . . . , h`) are made public. Once this is shown, the generator is similar in nature to the
BMY generator (the generator outputs b(f1(x, h)), . . . , b(f `(x, h)), h).

Finally, H̊astad et al. [HILL99] (combining [ILL89a, H̊as90]), culminated this line of research
by showing a construction of a pseudorandom generator using any one-way function (hereafter
called the HILL generator). This result is one of the most fundamental and influential theorems
in cryptography. It introduced many new ideas that have since proved useful in other contexts,
such as the notion of pseudoentropy, and the implicit use of family of pairwise-independent hash
functions as randomness extractors. We mention that HILL departs from GKL in its techniques,
taking a significantly different approach.

1We mention that typically the BMY generator is presented as b(f0(x)), . . . , b(f `−1(x)). However, for consistency
with our results, we present it so that the first hardcore bit is taken after the first iteration.
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The Complexity and Security of the Previous Constructions

While the HILL generator fully answers the question of the plausibility of a generator based on any
one-way function, the construction is highly involved and very inefficient. Other than the evident
contrast between the simplicity and elegance of the BMY generator to the complex construction and
proof of the HILL generator, the parameters achieved in the construction are far worse, rendering
the construction impractical.

In practice, it is not necessarily sufficient that a reduction translates polynomial security into
polynomial security. In order for reductions to be of any practical use, the concrete overhead
introduced by the reduction comes into play. There are various factors involved in determining the
security of a reduction, and in Section 2.3.2 we elaborate on the security of cryptographic reductions
and the classification of reductions in terms of their security. Here, however, we focus only on one
central parameter, which is the length m of the generator’s seed compared to the length n of the
input to the underlying one-way function. The BMY generator takes a seed of length m = Θ(n),
the GKL generator takes a seed of length m = Θ(n3) while the HILL construction produces a
generator with seed length on the order of m = Θ(n8).2

The length of the seed is of great importance to the security of the resulting generator. While
it is not the only parameter, it serves as a lower bound to how good the security may be. For
instance, the HILL generator on m bits has security that is at best comparable to the security of
the underlying one-way function, but only on Θ( 8

√
m) bits. To illustrate the implications of this

deterioration in security, consider the following example: Suppose that we only trust a one-way
function when applied to inputs of at least 100 bits, then the GKL generator can only be trusted
when applied to a seed of length of at least one million bits, while the HILL generator can only be
trusted on seed lengths of 1016 and up (both being highly impractical). Thus, trying to improve the
seed length towards a linear one (as it is in the BMY generator) is of great importance in making
these constructions practical.

Exponentially hard one-way functions and improving the seed length

The BMY and GKL generators demonstrate that assuming restrictions on the underlying one-way
function allows for great improvement of the seed length (or input blowup). The common theme in
these restrictions is that they deal with the structure of the one-way function. A different approach
was recently taken by Holenstein [Hol06a], who builds a pseudorandom generator from any one-way
function with exponential hardness, i.e., for some constant C, no algorithm of running-time at most
2Cn inverts the function with probability better than 2−Cn. This approach is different as it discusses
raw hardness as opposed to structure. The result in [Hol06a] is essentially a generalization of the
HILL generator that also takes into account the parameter stating the hardness of the one-way
function. In its extreme case where the hardness is exponential, the pseudorandom generator takes

a seed length of m = Θ(n5) and has security 2Θ(m
1
5 ). The seed length can be reduced to as low as

Θ(n4 log2 n) when the resulting generator is only required to have super-polynomial security (i.e.
security of nlog n). In its other extreme based on a general one-way function (with superpolynomial
hardness), [Hol06a] forms a formal proof of the best known seed length for the HILL construction
(seed length Θ(n8)).

2 The seed length actually proved in [HILL99] is Θ(n10), however it is mentioned that a more careful analysis can
get to Θ(n8). A formal proof for the Θ(n8) seed length construction is given by Holenstein [Hol06a].
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5.1.2 Our Results on Pseudorandom Generators

Our improvements to the seed length of pseudorandom generators under the various assumptions
are summarized in Figure 5.1. In the upcoming section we elaborate on each of these constructions
and highlight the source of the improvements.

Paper Type of function Seed length
[BM82, Yao82] One-way permutation Θ(n)

[GKL93]
This work

Regular one-way function
Θ(n3)

Θ(n log n)
[Hol06a]

This work
One-way function with exponential hardness

Θ(n5)
Θ(n2)

This work Regular one-way function with exponential hardness Θ(n)
[HILL99]
This work

Any one-way function
Θ(n8)
Θ(n7)

Figure 5.1: Summary of results.

Regular one-way functions

We give a construction of a pseudorandom generator from any regular one-way function with seed
length Θ(n log n). We mention that our approach has the potential of reaching a construction with
a linear seed, the bottleneck being the efficiency of the currently known bounded-space generators.
Our construction follows the randomized iterate method and is achieved in two steps:

• We give a significantly simpler proof that the GKL generator works, allowing the use of a
family of hash functions that is pairwise-independent rather than n-wise independent (as used
in [GKL93]). This gives a construction with seed length m = Θ(n2) (see Theorem 5.3.10).

• The new proof allows for the derandomization of the choice of the randomizing hash functions
via the generator against bounded-space adversaries (for short, bounded-space generator) of
Nisan [Nis92], further reducing the seed length to m = Θ(n log n) (see Theorem 5.3.11).

The proof method. Following is a high-level description of our proof method. For simplicity we
focus on the second randomized iteration (i.e., on f2(x, h) = f(h(f(x))), but the same argument
generalizes to the other iterations. The main task at hand is to show that it is hard to find
f1(x, h) = f(x) when given f2(x, h) and h. This follows by showing that any procedure A for finding
f(x) given (f2(x, h), h) enables to invert the one-way function f (on a random image). Specifically,
we show that for a random image z ∈ f(Un), if we choose a random and independent hash h′ and
feed the pair (z, h′) to A, then A is likely to return a value f(x′) such that h′(f(x′)) ∈ f−1(z) (and
thus we obtain an inverse of z). This is ultimately shown by proving that if A succeeds on the
distribution of (f2(x, h), h), then A is also successful on the distribution of (f2(x, h), h′) where h′

is chosen independently of (x, h).
Our proof is inspired by a technique used by Rackoff in his proof of the Leftover Hash Lemma

(in [IZ89]). Rackoff proves that a distribution is close to uniform by showing that it has collision-
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probability that is very close to that of the uniform distribution.3 We would like to follow this
scheme and consider the collision-probability of the two aforementioned distributions. In our case,
however, the two distributions could actually be very far from each other. Yet, with the analysis of
the collision-probabilities we manage to prove that the probability of any event under the first dis-
tribution is polynomially related to the probability of the same event under the second distribution.
This proof generalizes nicely also to the case of many iterations.

The derandomization using a bounded-space generator follows directly from the new proof. The
point is to introduce a derandomization of the hash functions such that the collision probability of
the randomized iterate remains essentially the same. Since the proof centers around the collision
probability of f `(x, h), h, the proof will hold also for the derandomized version. More precisely,
consider the procedure that given inputs x0, x1 and h = (h1, . . . , h`−1), outputs one if f `(x0, h)
equals f `(x1, h) and zero otherwise. Note that the probability, over a uniform choice of inputs,
that the above procedure outputs one, is exactly the collision-probability of (f `(x, h), h). Also
note that the above procedure can run in linear space, since it simply needs to store the two
intermediate iterates at each step. Therefore, the probability that the above procedure outputs one
while replacing h with the output of a generator against linear space adversaries, is very close the
collision probability of (f `(x, h), h). It follows that the collision probability of (f `(x, h̃), h̃), where
h̃ is now the output of the bounded-space generator is very close to that of (f `(x, h), h), and the
security proof now follows as in the proof when using independent randomizing hash functions.
We mention that derandomization of similar spirit was used by Phillips [Phi93], in his efficient
amplification of weak one-way permutations (see Section 5.1.3).

Exponentially hard one-way functions

We give a construction of a pseudorandom generator from any exponentially-hard one-way function
with seed length m = Θ(n2) and security 2Θ(

√
m). If we only require the security of the resulting

generator to be super-polynomial, then the construction gives seed that is only Θ(n log2 n) long.
We mention that Holenstein’s result applies for any one-way function (but is most efficient when
the one-way function is exponentially hard). Our construction on the other hand is specialized for
one-way functions with exponential hardness, and does not generalize to use significantly weaker
one-way functions. More concretely, our construction can use any one-way function with security
2φ(n), as long as φ(n) ∈ Ω( n

log n).
The core technique of our construction is once again the randomized iterate. Trying to apply

the randomized iterate to a general one-way function, we encounter the following difficulty: For
k ≥ 2, the k’th randomized iteration of a general one-way function may be easy on a large fraction
of the inputs. Our key observation is that the randomized iterate cannot be easy everywhere. Our
Lemma 5.4.1 indicates that for every f , there exists a set Sk of inputs to fk such that the k’th
randomized iteration is hard to invert over inputs taken from this set. Moreover, the density of
Sk is at least 1

k . This means that there is some pseudorandomness to be extracted from the k’th
randomized iterate: Taking a hard-core bit of the k’th randomized iteration gives a bit that with
probability 1

k looks random (to a computationally bounded observer). Our idea is to collect these
bits that contain some pseudoentropy and to then extract from them the pseudorandom output of
the generator.

3The collision-probability of a distribution is the probability of getting the same element twice when taking two
independent samples from the distribution.
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Consider taking m independent copies of the randomized iterate (on m independent inputs)
and for each of the m copies taking a hardcore bit from the k’th iteration. This forms a string of m
bits, of which m

k are expected to be random looking. Our next step would be to run a randomness
extractor on this string, to generate Θ(m

k ) pseudorandom bits. The problem, however, is that
the total number of pseudorandom bits generated, i.e., Θ(

∑m
k=1

m
k ), is too low, and in particular

insufficient to compensate for the mn bits invested in the random seed.
This problem can be remedied by taking more hardcore bits at each iteration. Specifically, if

the one-way function has exponential hardness then a linear number of hardcore bits may be taken
at each iteration (Goldreich and Levin [GL89]). Thus taking m = n independent copies, the total
number of pseudorandom bits generated can be larger than the seed length. The construction gives
a seed that is Θ(n2)-long, as each independent copy of the randomized iterate only runs a constant
number of iterations.

REMARK 5.1.2 (On randomness extractors and pseudorandomness)
The use of randomness extractors in a computational setting, was initiated in [HILL99]. We
give a general “uniform extraction lemma” (Lemma 5.2.2) for this purpose that is proved using a
uniform hardcore Lemma of Holenstein from [Hol05]. We mention that a similar proof was given
independently in [Hol06a].

Any one-way function

The HILL generator takes a totally different path than the GKL generator. The initial step in
the HILL construction takes a one-way function f and generates a bit that has significantly more
pseudoentropy than actual entropy. This gap is then exploited in order to build a full fledged
pseudorandom generator. This initial construction does not use iterations of f at all. We ask
whether the technique of randomized-iterations can be helpful for the case of any one-way function,
and give a positive answer to this question (actually, we are using only the first two iterations).
Specifically, this method also improves the efficiency of the overall construction by an n3 factor
over the original HILL generator and reduces the seed length by a factor of n (which also implies
improvement in the security of the construction). All in all, we present a pseudorandom generator
from any one-way function with seed length Θ(n7) (Theorem 5.5.10) which is the best known to
date.

Our generator replaces the initial step of the HILL generator with a different construction
based on the techniques we have developed. We briefly describe the new initial step. Denote
the degeneracy of y by Degf (y) =

⌈
log

∣∣f−1(y)
∣∣⌉ (this is a measure that divides the images

of f to n categories according to their preimage size). Let b denote a hardcore-bit (again we
take the Goldreich-Levin hardcore-bit [GL89]). Loosely speaking, we consider the bit b(f(x))
when given the value (f2(x, h), h) and make the following observation. When Degf (f(x)) ≥
Degf (f2(x, h)) the value b(f(x)) is (almost) fully determined by (f2(x, h), h), as opposed to
when Degf (f(x)) < Degf (f2(x, h)) where no information about b(f(x)) leaks. But in addition,
if Degf (f(x)) = Degf (f2(x, h)), then b(f(x)) is computationally-indistinguishable from uniform
(that is, looks uniform to any efficient observer), even though it is actually fully determined. The
latter stems from the fact that when Degf (f(x)) = Degf (f2(x, h)) the behavior is close to that of
a regular function.

As a corollary we get that the bit b(f(x)) has entropy of no more than 1
2 (i.e., the proba-
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bility of Degf (f(x)) < Degf (f2(x, h))), but has “entropy of at least 1
2 + 1

Θ(n) in the eyes of any
computationally-bounded observer” (i.e., the probability of Degf (f(x)) ≤ Degf (f2(x, h))). In other
words, b(f(x)) has entropy 1

2 but pseudoentropy of 1
2 + 1

Θ(n) .
4 As in HILL, it is this gap of 1

Θ(n)
between the entropy and pseudoentropy that eventually allows the construction of a pseudorandom
generator.

Comparing to HILL. The HILL construction builds a pair of function and predicate such
that the predicate has entropy p, but pseudoentropy of at least p + 1

Θ(n) (see Appendix 5.6 for
the description of their pair). Unlike in our construction, however, the entropy threshold p in
the HILL construction is unknown (i.e., not efficiently computable). This is a real disadvantage,
since knowledge of this threshold is essential for the overall construction. To overcome this, the
HILL generator enumerates all values for p (up to an accuracy of Θ( 1

n)), runs the generator with
each of these values and eventually combines all generators using an XOR of their outputs. This
enumeration costs an additional factor n to the seed length as well an additional factor of n3 to the
number of calls to the underlying function f , and hence our efficiency and security improvements.

REMARK 5.1.3 (On pseudorandomness in NC1)
For the most part, the HILL construction is “depth” preserving. In particular, given two “non-
uniform” hints of log n bits each (that specify two different properties of the one-way function 5),
the reduction gives generators in NC1 from any one-way function in NC1. Unfortunately, without
these hints, the depth of the construction is polynomial (rather than logarithmic). Our construction
eliminates the need for one of these hints (we still need to know the entropy of the function) and
thus can be viewed as a step towards achieving generators in NC1 from any one-way function
in NC1. Building pseudorandom generators in NC1 (from one-way functions in NC1) would be
highly significant. In particular, since [AIK06] showed that such generators imply pseudorandom
generators in NC0.

5.1.3 One-way Functions - Amplification from Weak to Strong

The existence of one-way functions is essential to almost any task in cryptography (see for exam-
ple [IL89]) and also sufficient for numerous cryptographic primitives such as the pseudorandom
generators discussed above. In general, for constructions based on one-way functions we use what
are called strong one-way functions. That is, functions that can only be inverted efficiently with
negligible success probability. A more relaxed definition is that of a δ-weak one-way function where
δ(n) is a polynomial fraction. This is a function that every efficient algorithm fails to invert on at
least a δ(n) fraction of the inputs. This definition is significantly weaker, yet, Yao [Yao82] showed
how to convert any weak one-way function into a strong one (see proof in [Gol01a]). The new strong
one-way function simply consists of many independent copies of the weak function concatenated to

4It natural to ask why should we consider b(f(x)) as the predicate and not simply b(x). Clearly the pseudoentropy
of b(x), given (f2(x, h), h) is at least as large as that of b(f(x)) (since f(x) is determined by x). The problem is that
the real entropy of b(x) in this case is unknown (and may, in fact, be as high as the pseudoentropy). In other worlds,
when considering b(f(x)) rather than b(x), we reduce the conditional entropy to a known bound, while keeping the
pseudoentropy larger than this bound.

5Consider the random variable induced by applying the one-way function on a uniformly chosen input. One of
these hints relates to the entropy of this random variable, where the other hint, p, relates to its variance.
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each other. The solution of Yao, however, incurs a blow-up factor of ω(log(n)/δ(n)) to the input
length of the strong function, which translates to a significant loss in the security (as in the case of
pseudorandom generators).

Goldreich et al. [GIL+90] pointed out this loss of security problem and gave a solution for one-
way permutations that has just a linear blowup in the length of the input. Their solution was also
generalized to known-regular one-way functions (regular functions whose image size is efficiently
computable), where its input length varied according to the required security. The input length is
linear when the required security is 2O(

√
n), but deteriorates up to Θ(n2) when the required security

is higher (e.g., security 2Θ(n)).6 Their construction uses a variant of randomized iterates where the
randomization is via one random step on an expander graph. Additional attempts to avoid this
loss of security problem were given by [Phi93, DI99] (see below).

Our Contribution to Hardness Amplification

We present an alternative efficient hardness amplification for regular one-way functions. Specifically,
in Theorem 6.2.1 we show that the m’th randomized iterate of a weak one-way function along
with the randomizing hash functions form a strong one-way function (for the right choice of m).
Moreover, this holds also for the derandomized version of the randomized iterate (Theorem 6.2.8),
giving an almost linear construction. Our construction is arguably simpler and has the following
advantages:

1. While the [GIL+90] construction works only for known regular weak one-way functions, our
amplification works for any regular weak one-way function (whether its image size is efficiently
computable or not).

2. The input length of the resulting strong one-way function is Θ(n log n) regardless of the
required security. Thus, for some range of the parameters our solution is better than that of
[GIL+90] (although it is worse than [GIL+90] for other ranges).

We mention that our method may yield a construction with input length Θ(n) if bounded-space
generators with better parameters become available.

The Idea. At the basis of all hardness amplification lies the fact that for any inverting algorithm,
a weak one-way function has a set that the algorithm fails upon, hereafter called the failing-set
of this algorithm. The idea is that a large enough number of randomly chosen inputs are bound
to hit every such failing-set and thus to fail every algorithm. Taking independent random samples
(i.e., f ′(x1, . . . , xm) = (f(x1), . . . , f(xm))) works well ([Yao82]), but with the price of increasing the
input length. An alternative approach (a variant of which was used by [GIL+90]) would be to use
randomized iterations (i.e., to consider the function fm(x, h)). This also amounts to applying f to
m random inputs and therefore bound to hit every failing set. At a first glance, this approach does
not help in decreasing the input blowup, since the description of h is long. Yet, this approach turns
out to be beneficial as will be described shortly. Another obstacle is that when given fm(x, h),
an adversary may invert fm to a different input (x′, h′) (with different and carefully chosen hash
functions) such that the computation of fm(x′, h′) avoids applying f to a relevant failing set. To

6Loosely speaking, one can think of the security as the probability of finding an inverse to a random image f(x)
simply by choosing a random element in the domain.
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overcome this, the hash functions h are also given as part of the output (i.e., we consider the
function g(x, h) = (fm(x, h), h)), hence forcing an inverter to invert to the same hash functions.
Using our core technique (from the pseudorandom generators section) we show that the hardness
of inverting fm is maintained even when h is known.

As mentioned above, a basic problem with this approach is that choosing fully independent
randomizing hash functions requires an input as long as that of Yao’s solution (an input of length
Θ(n · ω(log(n))/δ(n))). What makes this approach appealing, is the derandomization of the hash
functions using space-bounded generators, which reduces the input length to only Θ(n log n). We
mention that since the hardness of fm stems from the fact that a random input hits with high
probability any failing-set, it is required that this is also the case for the derandomized fm (and
not only that the derandomized function maintains low collision-probability as in the pseudorandom
generator case). Fortunately, the derandomization using bounded-space generators also guarantees
this property.

We mention that there have been several attempts to formulate such a construction, using all
of the aforementioned tools. Goldreich et al. [GIL+90] did actually consider following the GKL
methodology, but chose a different (though related) approach. Phillips [Phi93] gives a solution
with input length Θ(n log n) using bounded-space generators, but only for the simple case of per-
mutations (where [GIL+90] has better parameters). Di Crescenzo and Impagliazzo [DI99] give a
solution for regular functions, but only in a model where public randomness is available (in the
mold of [HL92]). Their solution is based on pairwise-independent hash functions that serve as the
public randomness. We are able to combine all these ingredients into one general result, perhaps
due to our simplified proof.

Additional Issues

On non-length-preserving functions. This work focuses on length-preserving one-way func-
tions. We also demonstrate how our proofs may be generalized, with no penalty in the
tightness of the security, to use non-length preserving functions.7 This generalization re-
quires the use of a construction of a family of almost pairwise-independent hash functions
(see Sections 2.3.1 and 5.3.4).

The results in the public randomness model. Similarly to previous works, our results also
give linear reductions in the public randomness model. This model (introduced by Herzberg
and Luby [HL92]) allows the use of public random coins that are not regarded a part of the
input. Our results, however, introduce significant savings in the amount of public randomness
that is necessary.

5.1.4 Outline

Section 5.2 includes the additional definitions and notations used throughout this chapter. In Sec-
tion 5.3 we present our construction of pseudorandom generators from regular one-way functions.
Section 5.4 presents the construction based on exponentially hard one-way functions and in par-
ticular proves a lemma regarding the hardness of inverting the randomized iterate of a general

7Previously used techniques for converting arbitrary one-way functions to length-preserving ones (e.g., padding),
incur serious deterioration in the security of the resulting one-way functions.
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one-way function (Lemma 5.4.1). Finally, in Section 5.5 we present our improvement to the HILL
construction of pseudorandom generators from any one-way function.

5.2 Preliminaries

5.2.1 Hardcore Predicates and Functions

Hard-core predicates/functions have a major role in the construction of pseudorandom generators
based on one-way functions.

DEFINITION 5.2.1 (hardcore functions)
Let t and δ be functions from N to N and from N to [0, 1] respectively, let Ln ⊆ {0, 1}n and let
f : {0, 1}n 7→ {0, 1}∗ and hc : {0, 1}n 7→ {0, 1}`(n) be two functions defined over {0, 1}n. We call
hc a (t(n), δ(n))-hardcore function of f over Ln, if it is polynomial-time computable and for every
algorithm A with running time at most t(n)

∆A
(
(f(x), hc(x))x←Ln , (f(x), U`(n))x←Ln

)
< δ(n) ,

for all but finitely many n’s.
In the case that δ(n) = 1

t(n) , we simply say that hc is a t(n)-hardcore function. If hc is p(n)-
hardcore function for every polynomial p, then we call it an hardcore function of f . As a convention
in the case that Ln = {0, 1}n, it is omitted it form the definition of hc. If hc is a predicate (i.e.,
`(n) = 1), then it is called an hardcore predicate of f . Finally, it is custom to call the value hc(x),
the “hardcore-bits” of f(x).

The following theorem is an immediate generalization of the Goldreich-Levin hardcore function
[GL89, Corollary 1].

THEOREM 5.2.2
There exists an efficiently computable family of functions

{
gli : {0, 1}3n 7→ {0, 1}i

}
i∈[n]

, a constant

c ∈ (0, 1) and a polynomial p such that the following holds. Let Ln ⊆ {0, 1}n, let f and g be two
polynomial-time computable functions from {0, 1}n to {0, 1}n and assuming that for every algorithm A
with running time at most t(n) it holds that

Pr
x←Ln

[A(f(x)) = g(x)] ≤ 1
t(n)

.

Then the following holds for every function t′ satisfying p(n, t′(n)) < t(n). For every value of ` ∈
{1, . . . , bc log(t(n))c}, the function hc : {0, 1}3n 7→ {0, 1}` defined as hc(x, r) = gl`(g(x), r), is a
t′(n)-hardcore function of f ′(x, r) = (f(x), r) over Ln.

5.2.2 A Uniform Extraction Lemma

The following lemma is a generalization of the (uniform version) of Yao’s XOR lemma. Given m
independent (t, 1 − δ)-hardcore bits, we would like to extract approximately δm pseudorandom
bits out of them. The version we present here generalizes [HILL99, Lemma 6.5]), in particular the
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original lemma required the hardcore predicate to have a hardcore-set (i.e., a subset of inputs such
that the value of the predicate is unpredictable [computationally] over this subset), where in the
following lemma this property is no longer required. In addition, the original lemma was tailored
for the specific function and predicate it was used with, where the following lemma suits any hard
predicate. Finally, the original lemma is stated using an efficient family of pairwise-independent
hash functions, while the following lemma is stated using any explicit randomness extractor. The
lemma is proven using Holenstein’s “uniform hardcore lemma” [Hol05].8

LEMMA 5.2.3
Let f : {0, 1}n 7→ {0, 1}`(n) be a polynomial-time computable function, let b be a (t(n), 1 − δ(n))-
hardcore predicate of f and let Ext : {0, 1}m × {0, 1}d 7→ {0, 1}r be a (k, ε)-strong-extractor. We
define hc : {0, 1}mn × {0, 1}d 7→ {0, 1}r as hc(x1, . . . , xm, y) = Ext(y, b(x1), . . . , b(xm)) and let
f ′(x1, . . . , xm, y) = (f(x1), . . . , f(xm), y).

There exists a polynomial p such that the following holds. For any γ(n) > m · 2−n/4 and t′(n)
satisfying p(t′(n), 1/γ(n), 1/δ(n), m, n) < t(n), the function hc is a (t′(n), ε + ρ(n) + γ(n))-hardcore
function of f ′, where ρ(n) is the probability that when taking m independent samples in {0, 1}n less
than k samples are in some fixed subset of density δ(n).

Proof. For clarity we omit the value n whenever it is clear from the context. Let A be an algorithm
that runs in time tA and given f ′(x1, . . . , xm, y), distinguishes the value of hc(x1, . . . , xm, y) from
random with advantage εA > ε+ρ+γ. For a fixed set S ⊆ {0, 1}n of density δ, define the following,
not necessarily efficiently computable, randomized predicate Q : {0, 1}n 7→ {0, 1}.

Q(x) =
{

U1 x ∈ S,
b(x) otherwise.

(5.1)

For any i ∈ {0, . . . , m} we define the distribution Di as:

Di = (f(U1
n), . . . , f(U1

n), Ud,Ext(Ud, b(U1
n), . . . , b(U i

n), Q(U i+1
n ), . . . , Q(Um

n )).

We first note that Dm is equal to (f ′(U1
n, . . . , Um

n , Ud), hc(U1
n, . . . , Um

n , Ud)) (i.e., to the output of
f ′ concatenated with our candidate hardcore function hc). Also, since with probability 1 − ρ the
min-entropy of D0 is k, then by the properties of the extractor we have that the statistical distance
between D0 and (f(U1

n), . . . , f(U1
n), Ud, Ur) is at most ε+ρ. It follows that A distinguishes between

D0 and Dm with advantage εA− ρ− ε > γ. Hence, by a standard hybrid argument we deduce that
there exists a j ∈ {0, . . . , m− 1} such that A distinguishes between Dj and Dj+1 with probability
γ/m. Moreover, Since Dj and Dj+1 are identical when xj+1 /∈ S, it follows that A must achieve
this distinguishing probability between Dj and Dj+1 also when given that xj+1 ∈ S. Finally, note
that the only difference between Dj and Dj+1 given that xj+1 ∈ S is whether the (j + 1)’th input
to Ext is b(xj) or a random input. The following algorithm given oracle access to the characteristic
function χS of any set of density δ, returns, with probability 1 − 2−n, a circuit that distinguishes
between (f(x), b(x))x←S and (f(x), U)x←S with probability γ/m.

8Independently of this work, [Hol06b, Theorem 7.3] presents a different version of Lemma 5.2.3. While their
theorem yields some generalization over the following lemma (informally it also considers the situation where some
information about the hardcore bits leaks to the adversary), it is only stated for the case of polynomial hardness.
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ALGORITHM 5.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm BχS

.

1. Find a j ∈ {0, . . . , m− 1} such that, with probability at least 1−2−n, A distinguishes between
Dj and Dj+1 with success probability at least γ/m. This can be done using χS , by sampling
form distributions Dj and Dj+1 and running A on them.9

2. Sample dj , an instance of Dj (again using χS).

3. Return the circuit C that on input (y, b) replaces f(xj+1) and b(xj+1) in dj by y and b
respectively and outputs A(dj).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that tB, the running-time of B, is polynomial in tA, δ, m, δ and n. For any fixed
S ⊆ {0, 1}n of density δ let advS = Ex[C ← BχS

: ∆C((Xn, b(Xn)), (f(Xn), U))], where Xn is
uniformly distributed over Sn and the expectation is over the random coins of B. By the above
observations it follows that advS > γ − 2−n > 2−n/3. By [Hol06a, Propostition 3] there exists
an algorithm that runs in time polynomial in n,m, tB and 1/advS , and distinguishes between
(f(Un), b(Un)) and (f(Un), U) with probability at least 1− δ.10 Thus, choosing p to accommodate
the running time of B and of the algorithm guaranteed by [Hol06a, Propostition 3], the hardness
of b yields that p(tA, 1/γ, 1/δ,m, n) ≥ t(n). ¤

5.2.3 Pseudorandom Generators

DEFINITION 5.2.5 (pseudorandom generators)
Let t and δ be functions from N to N and to [0, 1] respectively, and let G : {0, 1}n 7→ {0, 1}`(n)

be a polynomial-time computable function where `(n) > n. We say that G is a (t(n), δ(n))-
pseudorandom-generator if for every algorithm A with running time at most t(n)

∆A
(
G(Un), U`(n)

)
< δ(n) .

In the case that δ(n) = 1
t(n) , we simply say that G is a t(n)-pseudorandom-generator. G is a

pseudorandom-generator if it is p(n)-pseudorandom-generator for every polynomial p.

5.2.4 Bounded-Space Generators

Bounded-Space generators are pseudorandom generators against bounded-space adversaries. Such
generators plays a central role in derandomization tasks. We are interested in generator for the
following type of adversaries.

DEFINITION 5.2.6 (bounded-width layered branching program - LBP)
A (s, t, v)-LBP M is a directed graph with 2s · (t + 1) vertices, partitioned into t + 1 layers with
2s vertices in each layer. Each vertex in the i’th layer has exactly 2v outgoing labeled edges to the

9Alternatively, one can just pick a random j ∈ {0, . . . , m− 1} and succeed with probability at least 1
m

.
10 The original form of the uniform hardcore lemma, [Hol05, Lemma 2.5], was stated only for super polynomial

hardness and [Hol06a, Propostition 3] generalizes it for any hardness.
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(i + 1)st layer, one for every possible string z ∈ {0, 1}v. The vertices in the last layer (the t layer)
are labeled by 0 or 1.

Denote by Mx such a LBP with starting vertex x ∈ {1, . . . , 2s} in the 0’th level. For a sequence
z ∈ {0, 1}tv, we define the output of the LBP Mx(z) by a walk on the graph starting at vertex x in
layer 0 and advancing to the i’th layer along the edge labeled by zi. Mx(z) accepts if it reaches a
vertex labeled by 1 and rejects otherwise.

DEFINITION 5.2.7
A generator G : {0, 1}m 7→ {0, 1}tv is said to ε-fool a LBP M if for every x ∈ {1, . . . , 2s} we have:

|[Mx(Utv) accepts]− Pr[Mx(G(Um)) accepts]| < ε

THEOREM 5.2.8 [Nis92, INW94]
For every s, t, v there exist a generator BSG : {0, 1}Θ(v+(s+log( t

ε
)) log t) 7→ {0, 1}tv running in time

poly(s, t, v) that ε-fools every (s, t, v)-LBP.

5.3 Pseudorandom Generators from Regular One-way Functions

The following discussion considers only length preserving regular one-way functions. Note that by
Section 5.3.4, this is without lost of generality.

5.3.1 Some Motivation and the Randomized Iterate

Recall that the BMY generator simply iterates the one-way permutation f on itself, and outputs a
hardcore-bit of the intermediate step at each iteration. The crucial point is that the output of the
function is also uniform in {0, 1}n since f is a permutation. Hence, when applying f to the output,
it is hard to invert this last application of f , and therefore hard to predict the new hardcore-bit
(Yao shows [Yao82] that the unpredictability of bits implies pseudorandomness). Since the seed
is essentially just an n bit string and the output is as long as the number of iterations, then the
generator actually stretches the seed.

We want to duplicate this approach for general one-way functions, unfortunately the situation
changes drastically when the function f is not a permutation. After a single application of f , the
output may be very far from uniform, and in fact may be concentrated on a very small and easy
fraction of the inputs to f . Thus reapplying f to this output gives no hardness guarantees at
all. In an attempt to salvage the BMY framework, Goldreich et. al. [GKL93] suggested to add a
randomization step between every two applications of f , thus making the next input to f a truly
random one. This modification that we call randomized iterates lies at the core of our work and is
defined next.

DEFINITION 5.3.1 (the randomized iterate)
Let f : {0, 1}n 7→ {0, 1}n, let H be an efficient family of pairwise-independent length-preserving
hash functions defined over {0, 1}n and let ` ∈ N. For 2 ≤ k ≤ ` + 1, x ∈ {0, 1}n and h ∈ H` define
the k’th randomized iterate fk : {0, 1}n ×H` 7→ Im(f) recursively as

fk(x, h) = f(hk−1(fk−1(x, h))) ,
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where f1(x, h) = f(x). In the following we denote by Hk the random variable uniformly distributed
over Hk.

The application of the randomized iterate for pseudorandom generators is a bit tricky. On the
one hand, such a randomization costs a large number of random bits, much larger than what can
be compensated for by the hardcore-bits generated in each iteration. So in order for the output to
actually be longer than the input, we also output the descriptions of the hash functions. But on
the other hand, handing out the randomizing hash gives information on intermediate values such
as f i(x, h), and f might no longer be hard to invert when applied to such an input. Somewhat
surprisingly, the randomized iterate of a regular one-way function remains hard to invert even when
the hash functions are known. This fact, which is central to the whole approach, was proved in
[GKL93] when using a family of n-wise independent hash functions. As a first step, we give a
simpler proof that extends to pairwise-independent hash functions as well.

5.3.2 The Last Randomized Iteration is Hard to Invert

In this section we formally state and prove the key observation mentioned above. After applying k
randomized-iterations of a regular one-way function f , it is hard to invert the last-iteration, even
if given access to all of the hash functions leading up to this point.

LEMMA 5.3.2
Let f : {0, 1}n 7→ {0, 1}n be a regular (t(n), δ(n))-one-way, let k ∈ poly(n), and let fk and H be as in
Definition 5.3.1. Then there exists a polynomial p, such that for every algorithm A of running-time at
most (t(n)− p(n)) it holds that

Pr[A(fk(Un,Hk−1),Hk−1) = fk−1(Un,Hk−1)] ≤ 3
√

8kδ(n)

for large enough n, where the probability is also taken over the random coins of A.

We briefly give some intuition to the proof, illustrated with regard to the first randomized
iterate. Suppose that we have an algorithm A that always finds f1(x, h) = f(x) given f2(x, h) and
h. In order to invert the one-way function f on an element y ∈ Im(f), we simply need to find
a hash h′ that is consistent with y, in the sense that there exists an x′ such that y = f2(x′, h′).
Now we simply run z = A(y, h′), and output h′(z) (and indeed f(h′(z)) = y). The point is that
if f is a regular function, then finding a consistent hash is easy, simply because a random and
independent h′ is likely to be consistent with y. The actual proof follows this framework, but is far
more involved due to the fact that the reduction starts with an algorithm A that has only a small
(yet polynomial) success probability.

Proof. Let A be an algorithm with running-time tA(n) such that

Pr[A(fk(Un,Hk−1),Hk−1)) = fk−1(Un,Hk−1)] ≥ εA(n) ,

where εA(n) > 3
√

8kδ(n). We show that unless tA is large, we can use A in order to violate the
hardness of f . Consider the procedure MA for this task.
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ALGORITHM 5.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm MA for inverting f .
Input: y ∈ Im(f).

1. Choose uniformly at random h ∈ Hk−1.

2. Apply A(y, h) to get an output x.

3. Output hk−1(x).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Letting p(n) be the sampling and evaluation time of h, we have that the running-time of MA

is at most t(n). The rest of the proof of Lemma 5.3.2 shows that MA succeeds with probability at
least εA(n)3/8k > δ(n) on uniformly chosen y ∈ Im(f), and we conclude that tA(n) > t(n)− p(n).

We start by focusing our attention only on those inputs for which A succeeds reasonably well.
Recall that the success probability of A is taken over the choice of inputs to A as induced by
the choice of x ∈ {0, 1}n and h ∈ Hk−1 and the internal coin-tosses of A. The following Markov
argument implies that the probability of getting an element in the set that A succeeds on is not
very small.

CLAIM 5.3.4
Let SA ⊆ Im(fk)×Hk−1 be the subset defined as

SA =
{

(y, h) ∈ Im(fk)×Hk−1 : Pr[f(hk−1(A(y, h)) = y] > εA(n)/2
}

,

then
Pr[(fk(Un,Hk−1),Hk−1) ∈ SA] ≥ εA(n)/2 .

Proof. Suppose that Pr[(fk(Un,Hk−1),Hk−1) ∈ SA] < εA(n)/2. Then we have:

Pr[A(fk(Un,Hk−1), Hk−1) = fk−1(Un,Hk−1)]

<
εA(n)

2
· Pr[(fk(Un,Hk−1),Hk−1) /∈ SA] + 1 · Pr[(fk(Un, Hk−1),Hk−1) ∈ SA]

<
εA(n)

2
+

εA(n)
2

= εA(n) .

which contradicts the assumption about the success probability of A. ¤

Now that we identified a heavy subset of the inputs that A succeeds upon, we want to say that MA

has a fair chance to hit outputs induced by this subset. This is formally shown in the following
lemma.

LEMMA 5.3.5
For every set T ⊆ Im(fk)×Hk−1, if

Pr[(fk(Un,Hk−1),Hk−1) ∈ T ] ≥ γ ,

then

Pr[(f(Un),Hk−1) ∈ T ] ≥ γ2

k
.
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Assuming Lemma 5.3.5 we may conclude the proof of Lemma 5.3.2. Claim 5.3.4 yields that
Pr[(fk(Un,Hk−1), Hk−1) ∈ SA] ≥ εA(n)

2 . By Lemma 5.3.5 taking T = SA and γ = εA(n)/2 we get
that Pr[(f(Un),Hk−1) ∈ SA] ≥ εA(n)2/4k. Thus MA has a εA(n)2/4k chance of hitting the set SA

on which it will succeed with probability at least εA(n)/2. Altogether, MA succeeds in inverting f
with probability εA(n)3/8k > δ(n). ¤

Proof. (of Lemma 5.3.5) The lemma essentially states that with respect to f̃k(x, h) = (fk(x, h), h)
(i.e, the function defined by concatenating the input hash functions to the output of fk), any large
subset of inputs induces a large subset of outputs. Thus, there is a fairly high probability of hitting
this output set simply by sampling independent y and h. Intuitively, if a large set of inputs induces
a small set of outputs, then there must be many collisions in this set (a collision means that two
different inputs lead to the same output). We show that this is impossible, however, by proving
that the collision-probability of the function (fk(x, h), h) is small.

CLAIM 5.3.6

CP((fk(Un,Hk−1),Hk−1) ≤ k

|H|k−1 · |Im(f)|

Proof. For every two inputs (x0, h0) and (x1, h1) to fk, in order to have a collision we
must first have that h0 = h1, which happens with probability (1/ |H|)k−1. Now, given
that h0 = h1 = h (with a random h ∈ Hk−1), we require also that fk(x0, h) equals
fk(x1, h). If f(x0) = f(x1) (happens with probability 1/ |Im(f)|) then a collision is
assured. Otherwise, there must be an i ∈ [k − 1] for which f i(x0, h) 6= f i(x1, h) but
f i+1(x0, h) = f i+1(x1, h). Since f i(x0, h) 6= f i(x1, h), due to the pairwise-independence
of hi, the values hi(f i(x0, h)) and hi(f i(x1, h)) are uniformly random values in {0, 1}n,
and thus f(hi(f i(x0, h))) = f(hi(f i(x1, h))) happens with probability 1/ |Im(f)|. Alto-
gether, CP((fk(Un,Hk−1),Hk−1) ≤ 1

|H|k−1 · k
|Im(f)| . ¤

On the other hand, we check the probability of getting a collision inside the set T , which is a lower
bound on the probability of getting a collision at all. We first request that both (x0, h0) ∈ T and
(x1, h1) ∈ T . This happens with probability at least γ2. Then, once inside T , we know that the
probability of collision is at least 1/ |T |. Altogether:

CP(fk(Un, Hk−1),Hk−1) ≥ γ2 · 1
|T | . (5.2)

Combining Claim 5.3.6 and (5.2), we get |T |
|H|k−1·|Im(f)| ≥

γ2

k . Since the probability of getting a value

in T when choosing a random element in Im(f) × Hk−1 is exactly |T |
|H|k−1|Im(f)| (this follows since

for a regular function f the distribution f(Un) is the uniform distribution over Im(f)). It follows
that Pr[(y, h) ∈ T ] ≥ γ2/k as requested. ¤

REMARK 5.3.7
The last fact in the proof of Lemma 5.3.5 (that f(Un) is uniformly distributed over Im(f)) is in
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fact the only place where the regularity of the one-way function is required. The proof fails for
general one-way functions where the preimage size of different elements may vary considerably. For
a general function, the collision-probability argument at the heart of this lemma can be made to
hold only as long as the last element in a sequence of applications is at least as heavy as all the
elements along the sequence (see Lemma 5.4.1). While for regular functions this requirement is
always true, for general one-way functions this occurs with probability that deteriorates linearly (in
the length of the sequence). Thus using a long sequence of iterations is likely to lose the hardness
of the original one-way function (see more in Section 5.4).

5.3.3 A Pseudorandom Generator from a Regular One-way Function

After showing that the randomized-iterations of a regular one-way function are hard to invert, it
is natural to follow the footsteps of the BMY construction to construct a pseudorandom gener-
ator. Rather than using simple iterations of the function f , randomized-iterations of f are used
instead, with fresh randomness in each application. As in the BMY case, a hardcore-bit(s) of the
current input is taken at each stage. In order to keep things more readable, we start by giving our
pseudorandom generator based on regular one-way functions with super polynomial hardness (i.e.,
standard one-way functions). In Section 5.3.3 generalize this result to regular one-way functions
with arbitrary hardness. In particular, we get more efficient pseudorandom generators, assuming
that underlying regular one-way functions are exponentially hard.

THEOREM 5.3.8
Let f : {0, 1}n 7→ {0, 1}n be a regular one-way function and let H be an efficient family of pairwise-
independent length preserving hash functions. Define G : {0, 1}n×Hn×{0, 1}2n 7→ {0, 1}n+1×Hn×
{0, 1}2n as

G(x, h, r) = (b(f1(x, h), r), . . . , b(fn+1(x, h), r), h, r),

where:

• b is the Goldreich-Levin hardcore predicate (see Theorem 5.2.2),

• Recall that f1(x, h) = f(x) and for 2 ≤ i ≤ n + 1 it holds that f i(x, h) = f(hi−1(f i−1(x, h))).

Then, G is a pseudorandom generator.

Proof. Lemma 5.3.2 yields that no efficient algorithm can compute fk−1 given (fk, h1, . . . , hk−1)
with non-negligible success probability. Hence, Theorem 5.2.2 guarantees that b(fk−1) is a hardcore
function of f ′(x, h1, . . . , hk−1) = (fk(x, h1, . . . , hk−1), h1, . . . , hk−1). In the following we show that
any algorithm that breaks the pseudorandomness of G too well, violates the hardness of b(fk−1)
for some k ∈ [n + 1].

Yao [Yao82] showed using a hybrid argument that it is, up to linear factor, as hard to distinguish
a pseudorandom sequence from a random one, as it is to predict the next bit of the sequence for every
prefix of the sequence. Since it is as hard to distinguish the sequence (r, h, b(fn+1), . . . , b(f1)) from
random as it is to distinguish the output of G (for ease of notation we omit the input (x, h) to the
fk’s and the input r from the hardcore bits), by [Yao82] it suffices to show that for every k ∈ [n+1]
it is hard to predict b(fk−1) given (r, h, b(fn+1), . . . , b(fk)). Assume toward a contradiction the
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existence of an efficient algorithm A for which Pr[A(r, h, b(fn+1), . . . , b(fk)) = b(fk−1)] > 1
2 +

neg(n). Consider the following efficient algorithm MA for predicting b(fk−1) given (r, h, fk(x, h)).

ALGORITHM 5.3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Predictor MA.
Input: (r, h1, . . . , hk−1, f

k(x, h1, . . . , hk−1)).

1. Choose uniformly at random hk, . . . , hn ∈ H,

2. Generate fk+1, . . . , fn+1 from (fk, hk+1, . . . , hn).

3. Output A(r, h1 . . . , hn, b(fn+1), . . . , b(fk))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

By choosing hk+1, . . . , hn independently at random, MA generates a series (f1, . . . , fn+1) that
has the same distribution as in the evaluation of G. Thus, the procedure MA succeeds in predicting
b(fk−1) with probability at least 1

2 + neg(n), and a contradiction is derived. ¤

From any hardness

The next theorem generalizes Theorem 5.3.8 for regular one-way function with arbitrary hardness.
Since it follows the same lines as the proof of Theorem 5.3.8, the proof of the next theorem is
omitted.

THEOREM 5.3.10
Let f : {0, 1}n 7→ {0, 1}n be a regular t(n)-one-way function and letH be an efficient family of pairwise-
independent length preserving hash functions. Define G : {0, 1}n×Hd−1×{0, 1}2n 7→ {0, 1}d`×Hd−1×
{0, 1}2n as

G(x, h, r) = (gl`(f1(x, h), r), . . . , gl`(fd(x, h), r), h, r),

where:

• ` =
⌊

c
4 · log(t(n))

⌋
and d = dn/`e+ 1, where c is the constant that appears in Theorem 5.2.2,11

• gl` is the Goldreich-Levin hardcore function (see Theorem 5.2.2),

• Recall that f1(x, h) = f(x) and for all i ∈ [d− 1] it holds that f i+1(x, h) = f(hi(f i(x, h))).

There exists a polynomial p such that G is a t′(n)-pseudorandom generator for any t′ satisfying

p(n, t′(n)) < t(n). The input length of G is Θ( n2

log t(n)) and it stretches its input by Ω(log t(n)).

5.3.4 An Almost-Linear-Input Construction from a Regular One-way Function

Assuming that the underlying function is one-way in the usual sense (i.e., of super-polynomial hard-
ness), the pseudorandom generator presented in the previous section (when using Theorem 5.3.10)
stretches a seed of length Θ(n2/ log(n)) by log(n) bits. Although this is an improvement over the
GKL generator, it still translates to a rather high loss of security, since the security of the generator
on m bits relies on the security of regular one-way function on

√
m bits. In this section we give a

11If f is a one-way function in the usual sense (i.e., of super-polynomial hardness), we let ` = blog(n)c.
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modified construction of the pseudorandom generator of Theorem 5.3.8 that takes a seed of length
only m = Θ(n log n).12

Notice that the input length of the generator of Theorem 5.3.8 is dominated by the description
of the n independent hash functions h = (h1, . . . , hn). The idea of the new construction is to give
a derandomization of the choice of the n hash functions. Thus h1, . . . , hn are no longer chosen
independently, but are chosen in a way that is sufficient for the proof to go through. The deran-
domization uses generators against bounded-space distinguishers, and specifically we can use the
generator of Nisan [Nis92], (or that of Impagliazzo, Nisan and Wigderson [INW94]). An important
observation is that calculating the randomized iterate of an input can be viewed as a bounded-space
algorithm, alternatively presented here as a bounded-width layered branching-program. More accu-
rately, at each step the branching program gets a random input hi and produces f i+1 = f(hi(f i)).
We will show that indeed when replacing h1, . . . , hn with the output of a generator that fools
related branching programs, then the proof of security still holds (and specifically the proof of
Lemma 5.3.5).

THEOREM 5.3.11
Let f : {0, 1}n 7→ {0, 1}n be a regular one-way function and let H be an efficient family of
pairwise-independent length preserving hash functions. Let v(H) be the description length of h ∈ H
and let BSG : {0, 1}ñ∈Θ(n log n) 7→ {0, 1}nv(H) be a bounded-space generator that 2−n-fools every
(2n, n, v(H))-LBP.13 Define G′ : {0, 1}n × {0, 1}ñ × {0, 1}2n 7→ {0, 1}n+1+ñ+2n as

G′(x, s, r) = (b(f1(x,BSG(s)), r), . . . , b(fn+1(x,BSG(s)), r), h, r),

where:

• b is the Goldreich-Levin hardcore predicate (see Theorem 5.2.2),

• Recall that f1(x, h) = f(x) and for 2 ≤ i ≤ n + 1 it holds that f i(x, h) = f(hi−1(f i−1(x, h))).

Then, G is a pseudorandom generator.

Proof outline. The proof of the derandomized version follows in the steps of the proof of Theo-
rem 5.3.10. We give a high-level outline of this proof, focusing only on the main technical lemma
that changes slightly. The proof first shows that given the k’th randomized iterate fk(x, h) and h
it is hard to compute fk−1(x, h) (analogously to Lemma 5.3.2), only now this also holds when the
hash functions are chosen as the output of the bounded-space generator. The proof is identical to
the proof of 5.3.2, only replacing appearances of h with the seed s. Again, the key to the proof is
the following technical lemma (slightly modified from Lemma 5.3.5).

LEMMA 5.3.12
For every set T ⊆ Im(f)× {0, 1}ñ, if

Pr[(fk(Un, BSG(Uñ)), Uñ) ∈ T ] ≥ γ ,

12Alternatively, we could apply the same modification to the pseudorandom generator of Theorem 5.3.10. The
final result, however, would be the same while the resulting construction would be somewhat more complicated.

13We mention that the existence of such a generator follows by Theorem 5.2.8.
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then
Pr[(f(Un), Uñ) ∈ T ] ≥ γ2/(k + 1) .

Once we know that fk−1(x,BSG(s)) is hard to compute given fk(x,BSG(s)) and s, we deduce
that one cannot predict a hardcore-bit b(fk−1(x,BSG(s)), r) given fk(x,BSG(s)) and the seed s to
the bounded-space generator. From here, the proof follow just as the proof of Theorem 5.3.10 in
showing that the output of G′ is an unpredictable sequence and therefore a pseudorandom sequence.

Proof. (of Lemma 5.3.12) Denote by g : {0, 1}n × {0, 1}ñ 7→ Im(f) × {0, 1}ñ the function taking
inputs of the form (x, s) to outputs of the form (fk(x,BSG(s)), s). We proceed by giving bounds
on the collision-probability of g. For every two inputs to g, (x0, h̃0) and (x1, h̃1), in order to have
a collision we must first have that h̃0 = h̃1 which happens with probability 1/2ñ. Now, given that
h̃0 = h̃1 = s (with a random s), we analyze the probability of the event that fk(x0,BSG(s)) equals
fk(x1,BSG(s)). Consider the following (2n, n, v(H))-LBP for the input pair (x0, x1):

• Input: The LBP starts at a node labeled by (x0, x1).

• Layer 1: move to the node (f(x0), f(x1)).

• Layer i + 1 (for i ∈ [k]): Get random input hi ∈ H and move from node (xi
0, x

i
1) to the node

(f(hi(xi
1)), f(hi(xi

0))).

• Let (xk+1
0 , xk+1

1 ) be the final node, the LBP accepts if xk+1
0 = xk+1

1 and rejects otherwise.

The LBP described above has parameters s = 2n, t = n and v = 2n. Furthermore, it accepts with
probability that is exactly the desired collision probability, that is, the probability that fk((x0, h)) =
fk((x1, h)) over any distribution on h = (h1, . . . , hk−1). For every pair (x0, x1) with f(x0) 6= f(x1)
this probability over random h was bounded in the proof of Lemma 5.3.5 by:

Pr
h←Hk−1

[fk(x0, h) = fk(x1, h)] ≤ k − 1
|Im(f)|

Since the generator fools the above LBP, then replacing the random inputs h with the output of
the bounded-space generator does not change the probability of acceptance by more than εA(n) =
2−n. Therefore, assuming f(x0) 6= f(x1), we have that

Pr
s←Uñ

[fk(x0, BSG(s)) = fk(x1, BSG(s))] ≤ k − 1
|Im(f)| +

1
2n

≤ k

|Im(f)|
When taking the probability over random (x0, x1) we also add the probability that f(x0) = f(x1).
Thus

Pr
x0,x1←Un,s←Uñ

[fk(x0, BSG(s)) = fk(x1, BSG(s))] ≤ k

|Im(f)| +
1

|Im(f)| =
k + 1
|Im(f)|

When the above is plugged into the calculation of the collision-probability of the function g (recall
that g(x, s) = (fk(x,BSG(s)), s)), we get:

CP(g(Un, Uñ)) ≤ k + 1
2ñ · |Im(f)| (5.3)
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On the other hand, we check the probability of getting a collision inside the set T . We first request
that both (x0, h̃0) ∈ T and (x1, h̃1) ∈ T , which happens with probability at least γ2. Then once
inside T , we know that the probability of collision is at least 1/ |T |. Altogether:

CP(g(Un, Uñ)) ≥ γ2 · 1
|T | (5.4)

Combining (5.3) and (5.4) we get
|T |

2ñ |Im(f)| ≥
γ2

k + 1
.

But the probability of getting a value in T when choosing a random element in Im(f)× {0, 1}ñ is
exactly |T |

2ñ·|Im(f)| . Thus, Pr[(y, s) ∈ T ] ≥ γ2/(k + 1) as requested. ¤

REMARK 5.3.13
It is tempting to think that one should replace Nisan/INW generator in the above proof with the
generator of Nisan and Zuckerman [NZ96]. That generator may have seed of size Θ(n) (rather than
Θ(n log n)) when s = 2n as in our case. Unfortunately, with such a short seed, that generator will
incur an error εA(n) = 2−n1−γ

for some constant γ, which is too high for our proof to work. In
order for the proof to go through we need that εA(n) < poly(n)/ |Im(f)|. Interestingly, this means
that we get a linear-input construction when the image size is significantly smaller than 2n. In
order to achieve a linear-input construction in the general case, we need better generators against
LBPs (that have both short seed and small error).

Dealing with Non Length-preserving Functions

The pseudorandom generators presented in this section assumed that the underlying regular one-
way function is length-preserving. We mention that this is not a necessity and outline how any
regular one-way function can be used. For the simple case that f is shrinking, simply padding
the output to the same length is sufficient. The more interesting case is of a length-expanding
one-way function f . The important point is that we want the generator to be almost linear in
the length of the input to f rather than its output. In Lemma 2.3.4 we show how to transform
an expanding one-way function f from {0, 1}n to {0, 1}`(n) (for simplicity we write just `) into a
length preserving one-way function from {0, 1}2n to {0, 1}2n. This construction, however, does not
maintain the regularity of the one-way function (it maintains only an approximate regularity).

For the regular case we suggest a different solution. Rather than changing the underlying one-
way function to be length preserving, we change the randomizing hash functions to be shrinking.
That is, given a regular one-way function f : {0, 1}n 7→ {0, 1}`, define the randomized iterate of
this function with respect to a family of hash functions from {0, 1}` to {0, 1}n. The randomized
iterate is now well defined, and moreover, we can show that the collision probability hardly changes.
Previously the only way to introduce a new collision was during the application of f (a collision
happened with probability 1/ Im(f) in each iteration). In the new construction a collision can
also be introduced when applying a hash function. But such a collision during hashing happens
with probability only 2−n (by the pairwise independence of the hash). Thus the overall collision
probability at most doubles and the proof of security follows.

The only problem with this approach is that the description of such hash functions is too
long (it is Θ(`) instead of Θ(n)). This is overcome by using an efficient family of almost pairwise-
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independent hash functions from ` bits to n bits with error 2−n (see Definition 2.2.5), which requires
a description of only Θ(n) bits.

5.4 Pseudorandom Generator from an Exponentially Hard One-
way Function

5.4.1 Overview

The randomized iterate and general one-way functions

As mentioned in the introduction, the last randomized iteration of a general one-way function is
not necessarily hard to invert and in fact may be easy to invert. However, this hardness is not
totally diminished, it simply deteriorates in every additional iteration. By refining the techniques
used in the case of regular one-way functions we manage to give a lower bound on this deterioration
of the hardness to invert the function. More precisely, we show in Section 5.4.2 that there exists a
set Sk of inputs to fk with density at least 1

k such that the k’th randomized iteration is hard to
invert over inputs taken from Sk. As a result, a hard core bit of the k’th randomized iteration has
the guarantee that with probability at least 1

k it is pseudorandom.

The multiple randomized iterate

Our goal is to get a string of pseudorandom bits, and the idea is to run m independent copies of the
randomized iterate (on m independent inputs). We call this the multiple randomized iterate.
From each of the m copies we output a hardcore bit of the k’th iteration. This forms a string of
m bits, of which m

k are expected to be random looking. The next step is to run a randomness
extractor on such a string (where the output of the extractor is of length, say, m

2k ). This ensures
that with very high probability, the output of the extractor is a pseudorandom string of bits.

The pseudorandom generator - a first attempt

A first attempt for the pseudorandom generator runs the multiple randomized iterate (on m in-
dependent inputs) for d (to be determined later) iterations. For each k ∈ [d] we extract m

2k bits
at the k’th iteration. These bits are guaranteed to be pseudorandom (even when given all of the
values at the (k + 1)’th iterate and all of the randomizing hash functions). Thus outputting the
concatenation of the pseudorandom strings for the different values of k forms a long pseudorandom
output (by a standard hybrid argument).

This concatenation, however, is still not long enough. It is required that the output of the
generator is longer than its input, which is not the case here. The input contains m strings
x1, . . . , xm and md hash functions. The hash functions are included in the output, so the rest of
the output needs to make up for the mn bits of x1, . . . , xm. At each iteration we output m

2k bits
which adds up to

∑d
k=1

m
2k bits. This is a harmonic progression that is bounded by m log d

2 and in
order to exceed the mn lost bits of the input, we need d > 2n which is far from being efficient.

The pseudorandom generator and exponential hardness

The failed generator from above can be remedied when the exponential hardness comes into play. It
is known that if a function is 2cn-one-way (for some constant c ∈ (0, 1)), then it has a 2c′n-hardcore
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function of c′n bits (for another constant c′). Thus, if the original hardness was exponential,
then in the k’th iteration we can actually extract c′n random looking strings, each of length m

2k .
Altogether we get that the output length is c′n

∑d
k=1

m
2k ≥ c′mn log d. Thus for a choice of d such

that log d > c′, we get that the overall output is a pseudorandom string of length greater than the
input. The input length of the construction is Θ(nm), where m can be taken to be approximately
Θ(log d

ε(n)) where ε(n) is the security of the resulting generator. In particular, in order to get a

2Ω(n)-pseudorandom-generator one needs to take a seed of length Θ(n2).
To sum up, we describe the full construction in a slightly different manner: One first creates a

matrix of size m×d, where each row in the matrix is generated by computing the first d randomized
iterates of f (each row takes independent inputs). Now from each entry in the matrix Θ(cn)
hardcore bits are computed (thus generating a matrix of hardcore bits). The final stage runs a
randomness extractor on each of the columns of the hardcore bits matrix.14 Moreover, the number
of pseudorandom bits extracted from a column deteriorates from one iteration to another (m

k
pseudorandom bits are taken at the columns associated with the k’th randomized iterate).

Some Remarks

• Our method also works for 2φ(n)-one-way functions as long as φ ∈ Ω( n
log n). Loosely speaking,

this is because for large values of d, the value 1
d becomes too small to overcome with limited

repetition (and thus requires m to grow substantially).

• The description in this section focuses on length-preserving one-way functions, the results can
be generalized, using Lemma 2.3.4, to use non-length preserving functions.

5.4.2 The Last Randomized Iterate is (sometimes) Hard to Invert

We now formally state and prove the key observation, that there exists a set of inputs of significant
weight for which it is hard to invert the k’th randomized iteration even if given access to all of the
hash functions leading up to this point.

LEMMA 5.4.1
Let f : {0, 1}n 7→ {0, 1}n be a (t(n), δ(n))-one-way, let k ∈ poly(n), and let fk and H be as in
Definition 5.3.1. Finally, let

Sk def=
{

(x, h) ∈ {0, 1}n ×Hk−1 | Df (fk(x, h) = max
j∈[k]

Df (f j(x, h))
}

.

Then there exists a polynomial p, such that for every algorithm A of running-time at most (t(n)−p(n))
it holds that

Pr
(x,h)←Sk

[A(fk(x, h), h) = fk−1(x, h)] ≤ 3
√

16nk2δ(n) ,

where the probability is also taken over the random coins of A.

14Note that each execution of the extractor runs on a column in which each entry consists of a single bit (rather
than Θ(cn) bits). This is a requirement of the proof technique.
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Proof. The proof follows similar lines to the proof of Lemma 5.3.2. We start by showing that Sk is
not too small. By the pairwise independence of the randomizing hash functions h = (h1, . . . , hk−1)
we have that for each i ∈ [k], the value f i(x, h) is independently and randomly chosen from the
distribution f(Un). Thus, simply by a symmetry argument, the k’th (last) iteration has the heaviest
preimage size with probability at least 1

k . Hence,

Pr[(Un,Hk−1) ∈ Sk] ≥ 1
k

(5.5)

Let A be an algorithm with running-time tA(n) such that

Pr
(x,h)←Sk

[A(fk(x, h), h)) = fk−1(x, h)] ≥ εA(n) ,

where εA(n) > 3
√

16nk2δ(n). We show that unless tA is large, we can use A in order to violate the
hardness of f . Consider the procedure MA for this task.

ALGORITHM 5.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm MA for inverting f .
Input: y ∈ Im(f).

1. Choose uniformly at random h ∈ Hk−1.

2. Apply A(y, h) to get an output x.

3. Output hk−1(x).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Letting p(n) be the sampling and evaluation time of h, we have that the running-time of MA is
at most t(n). The rest of the proof of Lemma 5.4.1 shows that MA succeeds with probability at least
εA(n)3/16nk2 > δ(n) on uniformly chosen y ∈ Im(f), and we conclude that tA(n) > t(n)− p(n).

We start by focusing our attention only on those inputs for which A succeeds reasonably well.
The following Markov argument implies that the probability of getting an element in the set that
A succeeds on is not very small.

CLAIM 5.4.3
Let TA ⊆ Im(fk)×Hk−1 be the subset defined as

TA =
{

(y, h) ∈ Im(fk)×Hk−1 : Pr[f(hk−1(A(y, h)) = y] > εA(n)/2
}

,

then
Pr[(fk(Un,Hk−1),Hk−1) ∈ TA ∧ (Un, Hk−1) ∈ Sk] ≥ εA(n)/2k .

Proof. A simple Markov argument (see the proof of Claim 5.3.4) shows that

Pr
(x,h)←Sk

[A(fk(x, h), h)) = fk−1(x, h) ∧ fk(x, h), h) ∈ TA] ≥ εA(n)/2 ,

and since Sk is not too small, the proof of the claim follows. ¤
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Now that we identified a heavy subset of the inputs that A succeeds upon, we want to say that MA

has a fair chance to hit outputs induced by this subset. This is formally shown in the following
lemma.

LEMMA 5.4.4
For every set T ⊆ Im(fk)×Hk−1, if

Pr[(fk(Un,Hk−1),Hk−1) ∈ T ∧ (Un,Hk−1) ∈ Sk] ≥ δ ,

then

Pr[(f(Un),Hk−1) ∈ T ] ≥ δ2

2kn
.

Assuming Lemma 5.4.4 we may conclude the proof of Lemma 5.4.1. By Lemma 5.4.4 (taking
T = TA and δ = εA(n)/2k) yields that Pr[(f(Un),Hk−1) ∈ TA] ≥ εA(n)2/8nk3. Thus MA has a
εA(n)2/8nk3 chance of hitting the set TA on which it will succeed with probability at least εA(n)/2.
Altogether, MA succeeds in inverting f with probability εA(n)3/16nk3 > δ(n). ¤

Proof. (of Lemma 5.4.4) Divide the outputs of the function f into n slices according to their
preimage size. The set T is divided accordingly into n subsets. For every j ∈ [n] define the j’th
slice Tj =

{
(z, h) ∈ T | Df (z) = j

}
. We divide Sk into corresponding slices as well, define the j’th

slice as Sk
j =

{
(x, h) ∈ Sk | Df (fk(x, h)) = j

}
(note that since Sk

j ⊆ Sk for each (x, h) ∈ Sk
j , for

each 0 ≤ r < k it holds that Df (f r(x, h)) ≤ Df (fk(x, h)) = j). The proof of Lemma 5.4.4 follows
the methodology of the analogous lemma for the regular case (Lemma 5.3.5). More precisely, the
proof studies the collision-probability of fk, only here we look at fk when restricted to Sk

j (that is,
we work separately on each slice). Denote this as:

CP(fk(Un,Hk−1) ∧ Sk
j )

= Pr[(fk(x0, h0), h0) = (fk(x1, h1), h1) ∧ (x0, h0), (x1, h1) ∈ Sk
j ] ,

where (x0, h0) and (x1, h1) are uniformly, and independently, chosen in {0, 1}n × Hk−1. We first
give an upper-bound on this collision-probability.

CLAIM 5.4.5

CP(fk(Un,Hk−1) ∧ Sk
j ) ≤ k

|H|k−1 2n−j

Proof. For every two inputs (x0, h0) and (x1, h1), in order to have a collision we must
first have that h0 = h1 which happens with probability (1/ |H|)k. Given that h0 = h1 =
h (with h ∈ Hk−1 being uniform), we require also that fk(x0, h) equals fk(x1, h).

If f(x0) = f(x1) then a collision is assured. Since it is required that (x0, h0) ∈ Sk
j

it holds that Df (f(x0)) ≤ Df (fk(x0, h)) = j and therefore
∣∣f−1(f(x0))

∣∣ ≤ 2j . Thus,
the probability for that x1 ∈ f−1(f(x0)) (and thus of f(x0) = f(x1)) is at most 2j−n.
Otherwise, there must be an j ∈ [k−1] for which f j(x0, h) 6= f j(x1, h), but f j+1(x0, h) =
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f j+1(x1, h). Since f j(x0, h) 6= f j(x1, h), then due to the pairwise-independence of H,
the values hj(f j(x0, h)) and hj(f j(x1, h)) are uniformly random values in {0, 1}n, and
thus f(hj(f j(x0, h))) = f(hj(f j(x1, h))) also happens with probability at most 2j−n.
Altogether,

CP(fk(Un,Hk−1) ∧ Sk
j ) ≤ 1

|H|k−1
(k + 1)2j−n =

k

|H|k−1 · 2n−j
.

¤

On the other hand, we give a lower-bound for the above collision-probability. We seek the proba-
bility of getting a collision inside Sk

j and further restrict our calculation to collisions whose output
lies in the set Tj (this further restriction may only reduce the collision probability and thus the
lower bound holds also without the restriction). For each slice, denote δj = Pr[(fk(x, h), h) ∈
Tj ∧ (x, h) ∈ Sk

j ]. In order to have this kind of collision, we first request that both inputs are in
Sk

j and generate outputs in Tj , which happens with probability δ2
j . Then once inside Tj we require

that both outputs collide, which happens with probability at least 1
|Tj | . Altogether:

CP(fk(Un,Hk−1) ∧ Sk
j ) ≥ δ2

j

|Tj | (5.6)

Combining Claim 5.4.5 and Equation 5.6 we get:

|Tj | · 2j−n−1

|H|k−1
≥ δ2

j

2k
(5.7)

However, note that when taking a random output z and independent hash functions h, the
probability of hitting an element in Tj is at least 2j−n−1/ |H|k−1 (since each output in Tj

has preimage at least 2j−1). This means that Pr[(z, h) ∈ Tj ] ≥ |Tj | · 2j−n−1/ |H|k−1 and by

Equation (5.7) we deduce that Pr[(z, h) ∈ Tj ] ≥ δ2
j

2k . Finally, the probability of hitting T is
Pr[(z, h) ∈ T ] =

∑
j Pr[(z, h) ∈ Tj ] ≥

∑
j δ2

j 2k. Since
∑

j δ2
j ≥ (

∑
j δj)2/n and (by definition)∑

j δj = δ, it holds that Pr[(z, h) ∈ T ] ≥ δ2

2kn as claimed. ¤

A Hardcore Function for the Randomized Iterate

A hardcore function of the k’th randomized iteration is taken as a simple generalization of the
Goldreich-Levin hardcore function [GL89]. The number of bits taken in this construction depends
on the hardness of the function at hand (that is on the hardness of inverting the last iteration of
the randomized iterate). Thus, combining Lemma 5.4.1 regarding the hardness of inverting the last
iteration and Theorem 5.2.2, we get the following lemma.

LEMMA 5.4.6
Let f : {0, 1}n 7→ {0, 1}n be a t(n)-one-way function, let k ∈ poly(n), and let fk and Sk be as in
Lemma 5.4.1. Let {gli} and c be as in Theorem 5.2.2 and let `k =

⌊
c
4(log(t(n)− log(k))

⌋
.

Then there exist a polynomial p such that the following holds. The function hck : D(fk)×{0, 1}2n 7→
{0, 1}` defined as hck(x, h, r) = gl`k

(fk−1(x, h), r), is a t′(n)-hardcore function of f̃k(x, h, r) =
(fk(x, h), h, r) over Sk, for any t′ satisfying p(n, t′(n)) < t(n).
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The following corollary will enable us to apply our extraction lemma (Lemma 5.2.2) to the
hardcore function hck.

COROLLARY 5.4.7
Let f , `k, hck and f̃k be as in Lemma 5.4.6, then there exist a polynomial p such that the following holds.
For any constant β ∈ (0, 1) and i ∈ [`k], the predicate hck

i (z) = hck(z)i (i.e., the i’th bit of hck(z))
is a (t′(n), 1− β

k ) hardcore predicate of the function f̂k(x, h, r) = (f̃k(x, h, r), hck(x, h, r)1,...,i−1), for
any t′ satisfying p(n, t′(n)) < t(n).

Proof. By the pairwise independence of H, we have that for each 0 ≤ j ≤ k the value f j(x, h)
is independently and randomly chosen from the distribution f(Un). Thus, simply by a symmetry
argument, the k’th (last) iteration has the heaviest preimage size with probability at least 1

k . It
follows that Pr[(Un, Hk−1) ∈ Sk] ≥ 1

k , and the proof follows by Lemma 5.4.6. ¤

5.4.3 The Multiple Randomized Iterate

In this section we consider the function fm×k which consists of m independent copies of the ran-
domized iterate fk.

CONSTRUCTION 5.4.8 (the k’th multiple randomized iterate)
Let m, k ∈ N, and let fk and H be as in Definition 5.3.1. We define the k’th Multiple Randomized
Iterate fm×k : {0, 1}mn ×Hmk 7→ Im(f)m as:

fm×k(x, V ) = fk(x1, V1), . . . , fk(xm, Vm),

where x ∈ {0, 1}mn and V ∈ Hm×(k−1). We let Hm×j be the random variable uniformly distributed
over Hm×j .

For each of the m outputs of fm×k we look at its hardcore function hck. By Lemma 5.4.6 it
holds that m/k of these m hardcore strings are expected to fall inside the “hard-set” of fk (and
thus are indeed pseudorandom given (fm×k(x, V ), V )). The next step is to invoke a randomness
extractor on a concatenation of one bit from each of the different independent hardcore strings.
The output of the extractor is taken to be of length

⌊
m
4k

⌋
. The intuition being that with high

probability, the concatenation of single bits from the different outputs of hck contains at least m
2k

pseudoentropy. Thus, the output of the extractor forms a pseudorandom string and might serve as
a hardcore function of the multiple randomized iterate fm×k.

LEMMA 5.4.9 (hardcore function for the multiple randomized iterate)
Let f : {0, 1}n 7→ {0, 1}n be a t(n)-one-way function, let k ∈ poly(n), let fm×k and hck :
D(fk) × {0, 1}2n 7→ {0, 1}`k be as in Construction 5.4.8 and Lemma 5.4.6 respectively, and let

Ext : {0, 1}n × {0, 1}m 7→ {0, 1}bm
4kc be a (

⌊
m
2k

⌋
, εk)-strong extractor. We define hcm×k : D(fm×k)×

{0, 1}3n 7→ {0, 1}`k·bm
4kc as hcm×k(x, V, r, y) = (w1(x, V, r, y), . . . , wd(x, V, r, y)), where x ∈ {0, 1}mn,

V ∈ Hm×(k−1), r ∈ {0, 1}2n and y ∈ {0, 1}n, and for every i ∈ [`k]
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wi(x, V, r, y) def= Ext(y, (hck(x1, V1), r)i, . . . , (hck(xm, Vm), r)i)). Finally, we let

f̃m×k(x, V, r, y) = (fm×k(x, V ), V, r, y)
Then, there exists a polynomial p such that the following holds. For every γ(n) > m·2−n/4 and t′(n)

satisfying p(t′(n), n, m, k, 1/γ(n)) < t(n), the function hcm×k is a `k(εk +ρk +γ))-hardcore function of

f̃m×k, where ρk is the probability is the probability that when taking m independent samples in D(fk),
less than

⌊
m
2k

⌋
samples are in a fixed subset of density 2/3k.

Proof. Let A be an algorithm that given f̃m×k, distinguishes between a uniform string and the
hardcore function with advantage δA. By a standard hybrid argument, there exists an algorithm
A′ and that runs essentially in the same as A, and for some j ∈ [`k] distinguishes the value of wj

from random with advantage δA/`k, given f̃m×k and
{
hck(xs, Vs), r)i : s ∈ [m], i ∈ [j − 1]

}
. The key

observation is that given the hardcore properties of hck guaranteed by Corollary 5.4.7, Lemma 5.2.2
yields that it is hard to distinguish wj from random with advantage more than ε + ρk + γ, for any
algorithm of running-time that is not too large. Namely, p′(tA(n), n, m, k, 1/γ(n)) < tc(n), for some
polynomial p′ and a constant c ∈ (0, 1). We conclude that for the right choice of p it holds that
p(tA(n), n,m, k, 1/γ(n)) < t(n). ¤

5.4.4 A Pseudorandom Generator from Exponentially Hard One-way Functions

We are now ready to present our pseudorandom generator. After deriving a hardcore function for
the multiple randomized iterate, the generator is similar to the construction from regular one-way
function. That is, run randomized iterations and output hardcore bits. The major difference in
our construction is that, for starters, it uses hardcore functions rather than hardcore bits. More
importantly, the amount of hardcore bits extracted at each iteration is not constant and deteriorates
with every additional iteration. The following theorem follows immediately by Lemma 5.4.9 and a
standard BMY like indistinguishability argument (see for example the proof of Theorem 5.3.10).

THEOREM 5.4.10 (the pseudorandom generator)
Let f : {0, 1}n 7→ {0, 1}n be a t(n)-one-way function and let d, m ∈ poly(n). For k ∈ [d] let

Extk : {0, 1}n × {0, 1}m 7→ {0, 1}bm
4kc be a (

⌊
m
2k

⌋
, εk)-strong extractor and let hcm×k : D(fm×k) ×

{0, 1}3n 7→ {0, 1}`k·bm
4kc be the hardcore function defined in Lemma 5.4.9 w.r.t. f and Extk. We define

G as

G(x, V, r, y) = (hcm1(x, V, r, y) . . . , hcmd(x, V, r, y), V, r, y) ,

where x ∈ {0, 1}mn, V ∈ Hm×(d−1), r ∈ {0, 1}2n and y ∈ {0, 1}n.
Then there exists a polynomial p such that the following holds. Assuming that d ∈ poly(n) and that

G stretches its input, then for every γ(n) > m · 2−n/3 and t′(n) such that p(t′(n), n,m, d, 1/γ(n)) <
t(n), G is a (t′(n), dn·maxk∈[d] {εk + ρk + γ})-pseudorandom generator, where ρk is as in Lemma 5.4.9.

With the appropriate choice of parameters we get the following pseudorandom generators.

COROLLARY 5.4.11
Let φ(n) ∈ Ω(n/ log(n)) and let f : {0, 1}n 7→ {0, 1}n be a 2φ(n)-one-way function. Then there exists
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a value d = 2Ω(n/φ(n)) such that the following holds. For any m ∈ poly(n) such that m > 8d, there
exists a choice of {Extk}k∈[d] for which the function G of Theorem 5.4.10, w.r.t. f , d, m and {Extk},
is a 2Ω(min{n,m/d2})-pseudorandom generator. The input length of G is Θ(mnd) and it stretches its
input by Ω(mφ(n)/d). In particular, for φ(n) ∈ Ω(n) and m = n, we get a generator with quadratic
seed length and exponential hardness.

Proof. Note that the input length of G is m |x| + |V | + |r| + |y| and since it is dominated by the
description of V it is in Θ(mdn). On the other hand, the output length of G is m(

∑d
k=1 `k

⌊
m
4k

⌋
) +

|V | + |r| + |y|. Thus, G stretches its input by (
∑d

k=1 `k

⌊
m
4k

⌋ − mn ≥ (bc · log(t(n))c (
∑d

k=1(1 −
log(k))

⌊
m
4k

⌋
)−mn, for some universal constant c ∈ (0, 1). Since we consider super-polynomial values

for t(n), d ∈ poly(n) and m ≥ 8d, G stretches its input by at least m(
⌊

c
8 log(t(n))

⌋ · (∑d
k=1

1
k )−n).

It follows that there exist a universal constant γ > 1, which depends on the above c, such that G
stretches its input by Ω(mφ(n)/d), for d = 2γn/φ(n) and m > 9d.

For the security of G, we note that for every k ∈ [d] it holds that ρk ≤ ρd, and by the Chernoff
bound it follows that ρk ≤ 2−Ω(m/d2). In addition, for the proper choice of {Extk}15 we have that
Extk ≤ Extd ≤ 2−Ω(min{n,m/d}). Thus, Theorem 5.4.10 yields that G is a
2Ω(min{n,m/d2})-pseudorandom generator. ¤

5.5 Pseudorandom Generator from Any One-way Function

Our implementation of a pseudorandom generator from any one-way function follows the route of
[HILL99], but takes a totally different approach in the implementation of its initial step. More
precisely, we follow the outline of Holenstein [Hol06a], which gave a new proof to [HILL99] and
includes a description and proof of a pseudorandom generator with seed length Θ(n8).16

The basic building block of the HILL generator is a pseudoentropy pair.17 A distribution is
said to have pseudoentropy at least k if it is computationally-indistinguishable from some distribu-
tion that has entropy k. Informally, the a pseudoentropy pair is a pair of a function and predicate
on the same input with the following property: The pseudoentropy of the predicate’s output when
given the output of the function is noticeably larger than the real (conditional) entropy of this
bit. In their construction, [HILL99] exploit this gap between real entropy and pseudoentropy to
construct a pseudorandom generator. We show that the second randomized iterate of a one-way
function together with a standard hardcore predicate forms a pseudoentropy pair with better prop-
erties than the [HILL99] one. Hence, plugging our pseudoentropy pair as the first step of the HILL
construction, results in a better overall construction. Let us now turn to a more formal discussion.
We define the pseudoentropy pair as follows.

DEFINITION 5.5.1 (pseudoentropy pair (PEP))
Let g : {0, 1}n 7→ {0, 1}`(n) and b : {0, 1}n 7→ {0, 1} be polynomial-time computable functions. The
pair (g, b) is a (t(n), δ(n), γ(n))-PEP if

15For example, the leftover hash lemma ([IL89]) yields that Extk(x, h) = (h(x), h), where H is a family of pairwise

independent hash functions from {0, 1}n to {0, 1}bm
4k c, is a good choice.

16 In [HILL99], an explicit construction was given only for a pseudorandom generator with seed length Θ(n10).
The existence of the more efficient construction was claimed without being presented or proved.

17The notion of pseudoentropy pair is implicitly used in [HILL99], and was formally defined in [HHR06].
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1. H(b(Un) | g(Un)) ≤ δ(n),

2. b is a (t(n), 1− δ(n)− γ(n))-hardcore predicate of g.

We write that (g, b) is a (δ(n), γ(n))-PEP, it is (t(n), δ(n), γ(n))-PEP for every polynomial t(n).

[HILL99] show how to use any one-way function in order to construct a (δ, γ)-PEP, where
δ ∈ [0, 1] is an unknown value and γ is a fraction noticeably smaller than 1

2n (i.e., smaller than
1
2n − 1

p(n) for some polynomial p). They then present a construction of a pseudorandom generator
using a (δ, 1

Θ(n))-PEP where δ is known. To overcome this gap, the HILL generator enumerates
all values for δ (up to an accuracy of Ω( 1

n)), invokes the generator with every one of these values
and eventually combines all generators using an XOR of their outputs. This enumeration costs an
additional factor of n to the seed length as well as n3 times more calls to the underlying one-way
function.

In Section 5.5.1 we prove that the second randomized iterate of a one-way function can be used
to construct a (1

2 , γ)-PEP, where γ is a fraction noticeably smaller than 1
2n .18 In Section 5.5.2 we

show that by combining our PEP with the second part of [Hol06a] construction, we get a pseudo-
random generator that is more efficient and has better security19 than the original construction of
[HILL99]/[Hol06a] (the efficiency improves by a factor of n3 and the security by a factor of n). For
comparison, we present the PEP used by [HILL99] in Appendix 5.6.

5.5.1 A Pseudoentropy Pair Based on the Randomized Iterate

Recall that for a given function f , we have defined (Definition 5.3.1) its second randomized iterate
as f2(x, h) = f(h(f(x))). We would like to prove that the second iterate of a one-way function gives
rise to a PEP . Indeed, since the randomized iterate maintains some of the hardness of a function
(Lemma 5.4.1), we have that with probability 1

2 + Ω( 1
n) it is hard to compute the value of f(x)

given the output f2(x, h). We want to complement this fact by saying that with probability 1
2 the

value of f(x) can be essentially determined from the output. The latter statement is almost true,
except that there typically remains a small amount of uncertainty regarding f(x). To overcome
this, we add to the output a small amount of random information about f(x). Specifically, we
define the extended randomized iterate to include some additional random information about f(x).
This information (of Θ(log(n) bits) is small enough to diminish any entropy left in f(x) (in 1

2 of
the inputs), yet is not significant enough to drastically change its pseudoentropy.

The extended randomized iterate of any one-way function

For simplicity we assume that the one-way function is length-preserving, the adaptation to any
one-way function is done via Lemma 2.3.4. We use the following extended version of the second
randomized iterate.

18Actually, we prove the more general result that γ ∈ Ω( log t(n)
n

), assuming that f is t(n)-one-way.
19By “security” we mean that the proof of security of the reduction to the underlying one-way function has better

parameters, see Section 2.3.2 for a more detailed discussion.
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DEFINITION 5.5.2 (the extended randomized iterate)
Let f : {0, 1}n 7→ {0, 1}n, let m = d3 log(n) + 8e, and let H and HE be two families of pairwise-
independent hash functions from {0, 1}n to {0, 1}n and {0, 1}n to {0, 1}m respectively. We define
g, the extended randomized iterate of f , as:

g(x, h, hE) def= (f2(x, h), h, hE(f(x)), hE)

where x ∈ {0, 1}n, h ∈ H and hE ∈ HE . In the following we denote by H and HE the random
variables uniformly distributed over H and HE respectively.

REMARK 5.5.3
We stress that while the role of HE in the above construction and the role of H in the HILL’s
PEP are syntactically similar (see Appendix 5.6), their actual role is different. In the above
construction the purpose of using HE is to reveal a small amount of information (i.e., Θ(log(n)))
about f(x), which in turn slightly reduces the uncertainty of f(x) when given g(x, h, hE). Thus
HE is used to widen the gap between the real and the pseudoentropy of f(x) given g(x, h, hE).
This extra information is not of major importance and indeed even without using HE (i.e. using
g′(x, h, hE) def= (f(h(f(x))), h)), we can still construct a PEP, though parameters will not be as
good. On the other hand, in the HILL’s PEP there are settings where the hash function reveals
a significant amount of information (i.e., Ω(n)) about the input of the function. Thus, removing
the hash function altogether guarantees no gap between the real and the pseudoentropy, and in
particular the resulting pair is not likely to be a PEP.

The heart of this section are the following two lemmata. In Lemma 5.5.4 we show that with
probability 1

2 +Ω( log t(n)
n ) it is hard to compute the value of f(x) given a random output g(x, h, hE).

While in Lemma 5.5.6 we show that the value of f(x) is determined w.h.p. by the value of g(x, h, hE).

LEMMA 5.5.4
Let f be a t(n)-one-way function and let g be as in Definition 5.5.2. Then there exists a set V ⊆ D(g)
of density 1

2 + log t(n)
3n and a polynomial p such that the following holds. For every algorithm A of

running-time t′(n) satisfying p(n, t′(n)) < t(n), it holds that

Pr
(x,h,hE)←V×HE

[A(g(x, h, hE)) = f(x)] <
1

t′(n)
,

where the probability is also taken over the random coins of A.

Proof. Let V
def= {(x, h, hE) ∈ D(g) : Degf (f(x)) ≤ Degf (f2(x, h) + log t(n)

2n } and let R0 and R1

be distributed according to
⌈

2·Degf (f(Un))

log t(n)

⌉
and

⌈
2·Degf (f2(Un,H))

log t(n)

⌉
respectively. Since f(Un) and

f2(Un,H) = f(H(f(Un))) are two independent instances of a random variable distributed over
Im(f), it follows that R0 and R1 are two independent instances of a random variable distributed
over [d2n/ log t(n)e]. By symmetry, Pr[R0 � R1] = Pr[R0  R1] and since the collision-probability
of a random variable is minimal when the distribution is uniform, we have that Pr[R0 = R1] ≥

1
d2n/ log t(n)e . Combining the above equations yields that Pr[R0 ≤ R1] ≥ 1

2 + 1
d2n/ log t(n)e ≥ 1

2 + log t(n)
3n
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and thus

|V |
|{0, 1}n ×H×HE | = Pr[Degf (f(Un)) ≤ Degf (f2(Un,H)) +

log t(n)
2

]

≥ Pr[R0 ≤ R1] ≥ 1
2

+
log t(n)

3n
.

In order to prove the hardness of g over V , let A be an algorithm that runs in time tA(n)
and Pr(x,h,hE)←V×HE

[A(g(x, h, hE)) = f(x)] ≥ 1/tA(n). Therefore, there exists an efficient algo-
rithm A′, with oracle access to A, that computes f(x) with probability at least 1

2mtA
, given only

(f2(x, h), h), i.e. A′ on input (f2(x, h), h) chooses a random value z for (hE , hE(f(x))) and returns
A(f2(x, h), h, z). The proof Lemma 5.5.4 follows by the next lemma, which is a straight forward
generalization Lemma 5.4.1.

LEMMA 5.5.5 (generalization of Lemma 5.4.1)
Let f : {0, 1}n 7→ {0, 1}n be a (t(n), δ(n))-one-way, let k ∈ poly(n), and let fk and H be as in
Definition 5.3.1. For any value of gap ∈ [n] we let

Sk,gap def=
{

(x, h) ∈ ({0, 1}n ×Hk) | Degf (fk(x, h) + gap ≥ max
j∈[k]

Degf (f j(x, h))
}

.

Then there exists a polynomial p, such that for every algorithm A of running-time at most (t(n)−p(n))
it holds that

Pr
(x,h)←Sk,gap

[A(fk(x, h), h) = fk−1(x, h)] ≤ 2gap · 3
√

32nk2δ(n) ,

where the probability is also taken over the random coins of A.

Hence, the above lemma (taking k = 2 and gap =
⌈

log t(n)
2

⌉
) yields that p(n, t′(n)) > t(n), for

the right choice of p. ¤

LEMMA 5.5.6
Let f be a t(n)-one-way function and let g be as in Definition 5.5.2. Then there exists a set L ⊆ D(g)
of density at least 1

2 + 1
4n such that the following holds for every (x, h, hE) ∈ L.

Pr
(x′,h′,h′E)←D(g)

[f(x′) = f(x) | g(x′, h′, h′E) = g(x, h, hE)] > 1− 1
16n2

.

Proof. Let Heavy =
{
(x, h, hE) ∈ D(g) : Degf (f(x)) ≥ Degf (f2(x, h)

}
. By symmetry (as in the

proof of Lemma 5.5.4) it holds that |Heavy| / |D(g)| ≥ 1
2 + 1

2n . The following claim states that we
can set L to be most of the elements inside Heavy.
CLAIM 5.5.7

Pr
[
Pr[g(U ′

n,H ′,H ′
E) = g(Un,H,HE)

∧
f(U ′

n) = f(Un)]
Pr[g(U ′

n,H ′,H ′
E) = g(Un,H,HE)]

≥ 1− 1
16n2

| (Un,H, HE) ∈ Heavy
]

≥ 1− 1
4n

.
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Thus, the proof of Lemma 5.5.6 follows by letting
L =

{
(x, h, hE) ∈ D(g) : Pr[g(Un,H,HE)=g(x,h,hE)

∧
f(Un)=f(x)]

Pr[g(Un,H,HE)=g(x,h,hE)] ≥ 1− 1
16n2

}
. Note that indeed,

Pr[(Un,H,HE) ∈ L]

≥ Pr
[
(Un,H, HE) ∈ Heavy∧Pr[g(U ′

n,H ′,H ′
E) = g(Un,H, HE)

∧
f(U ′

n) = f(Un)]
Pr[g(U ′

n,H ′,H ′
E) = g(Un,H, HE)]

≥ 1− 1
16n2

]

≥ 1
2

+
1
2n

− 1
4n

=
1
2

+
1
4n

.

¤

Proof. (of Claim 5.5.7) Let (x, h) be a random element inside {0, 1}n ×H. The pairwise indepen-

dence of H implies that w.h.p. |{x′∈{0,1}n:f2(x′,h)=f2(x,h)∧f(x′)6=f(x)}|
|{0,1}n| ≤ 2Degf (f2(x,h))−n. When

considering also a random hE , it follows that w.h.p |{x′∈{0,1}n:g(x′,h,hE)=g(x,h,hE)∧f(x′) 6=f(x)}|
|{0,1}n| ≤

2Degf (f2(x,h))−n−m. On the other hand for every (x, h, hE) ∈ Heavy it holds that
|f−1(f(x))|
|{0,1}n| ≥ 2Degf (f2(x,h))−n, and we conclude that for a random (x, h, hE) ∈ Heavy, w.h.p.

Pr[g(Un,H,HE)=g(x,h,hE)
∧

f(Un)=f(x)]
Pr[g(Un,H,HE)=g(x,h,hE)] ≥ 1− 1

16n2 .
Let us turn to a more formal discussion. Let x ∈ {0, 1}n, (z1, z2) ∈ Im(f) × {0, 1}m and

define Sx,z1,z2 = {(h, hE) ∈ H ×HE : g(x, h, hE) = (z1, h, z2, hE)}. For x′ /∈ f−1(f(x)), the pairwise
independence ofH andHE implies that Pr(h,hE)←Sx,z1,z2

[g(x, h, hE) = g(x′, h, hE)] ≤ 2Degf (z1)−n−m.
Therefore,

Pr(h,hE)←Sx,z1,z2
[g(Un, h, hE) = g(x, h, hE)

∧
f(Un) 6= f(x)] < 2Degf (z1)−n−m (5.8)

Let Ix,h,hE
be the indicator random-variable that equals 1 if Pr[g(Un, h, hE) = g(x, h, hE)

∧
f(Un) 6=

f(x)] < 8n · 2Degf (f2(x,h))−n−m. By (5.8) and Markov’s inequality we get that,
Pr(h,hE)←Sx,z1,z2

[Ix,h,hE
= 1] ≥ 1 − 1

8n . The uniform distribution over H × HE can be viewed
as the distribution induced by choosing a random subset Sx,z1,z2 ⊂ H ×HE according to its den-
sity (i.e., Sx,z1,z2 is chosen with probability |Sx,z1,z2 | / |H ×HE |) and then choosing a uniform pair
(h, hE) in Sx,z1,z2 . It follows that Pr[Ix,H,HE

= 1] ≥ 1− 1
8n (probability here is taken over uniform

choice of H and HE). Recall that |Heavy| / |D(g)| ≥ 1
2 + 1

2n . Thus, by averaging over all x ∈ {0, 1}n

we have that Pr[IUn,H,HE
= 1 | (Un,H,HE) ∈ Heavy] ≥ 1− 1

4n (where probability is taken over the
uniform choice of x ∈ Un and H, HE). Since m = d3 log(n) + 8e, it follows that

Pr
[

Pr[g(U ′
n,H,HE) = g(Un,H, HE)

∧
f(U ′

n) 6= f(Un)] <
2Degf (f2(Un,H))−n

32n2
(5.9)

| (Un, H, HE) ∈ Heavy
]
≥ 1− 1

4n
.

On the other hand, for any (x, h, hE) ∈ D(g) it holds that Pr[g(Un, h, hE) = g(U ′
n, h′, h′E)] ≥

2Degf (f2(Un,H))−n−1 and we conclude that

Pr
[
Pr[g(U ′

n,H ′,H ′
E) = g(Un,H, HE)

∧
f(U ′

n) 6= f(Un)]
Pr[g(U ′

n,H ′,H ′
E) = g(Un,H, HE)

≤ 1
16n2

| (Un,H,HE) ∈ Heavy
]

≥ 1− 1
4n

.

¤
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Constructing the pseudoentropy pair

Recall that the PEP consists of a function and a corresponding predicate. For the function we
use the extended randomized iterate, and for the predicate we basically take a Goldreich-Levin
hardcore bit. The twist here is that unlike a standard GL predicate, we take the hardcore bit from
the intermediate value f(x) rather than from the actual input x. While a hardcore bit taken from x
has the required computational hardness, it may also have entropy to it. On the other hand, taking
the predicate from f(x) is what gives the desired gap between entropy and pseudoentropy. In the
following formal theorem we use a slightly modified version of g to incorporate the randomness
required by the hardcore predicate. The function and predicate are proved to form a (1

2 , log t(n)
4n )-

PEP.

THEOREM 5.5.8
Let f be a t(n)-one-way function, and let H, HE and g be as in Definition 5.5.2. For r ∈ {0, 1}n, let
g′(x, h, hE , r) = (g(x, h, hE), r) and b(x, h, hE , r) = 〈f(x), r〉2. Then there exists a polynomial p such

that the pair (g′, b) is a (t′(n), 1
2 , log t(n)

4n ))-PEP , for every t′ satisfying p(n, t′(n)) < t(n).

Proof. The computational side of the theorem follows directly from Lemma 5.5.4[2] and Theo-
rem 5.2.2 (i.e., there exists a polynomial p for which b is a (t′(n), 1

2 + log t(n)
4n ))-hardcore predicate

of g′ for any t′ satisfying p(n, t′(n)) < t(n)). It is left to prove that H(b′(Wn, Un) | g′(Wn, Un)) ≤ 1
2 ,

where Wn is uniformly distributed over {0, 1}n × H × HE . By Lemma 5.5.6 there exists a set
L ⊆ D(g) of density 1

2 + 1
4n such that for every (x, h, hE) ∈ L it holds that Pr(x′,h′,h′E)←D(g)[f(x′) =

f(x) | g(x′, h′, h′E) = g(x, h, hE)] > 1− 1
16n2 . Hence,

H(b(Wn, Un) | g′(Wn, Un)) = H(b(Wn, Un) | g(Wn), Un))

≤ (
1
2

+
1
4n

) ·H(
1

16n2
, 1− 1

16n2
) + (

1
2
− 1

4n
)

< (
1
2

+
1
4n

)
(

1
16n2

(1− 1
16n2

)
)1/2

+ (
1
2
− 1

4n
) <

1
8n

+
1

16n2
+ (

1
2
− 1

4n
) <

1
2

,

where the second inequality is due to the fact that H(q, 1 − q) ≤ 2(q(1 − q))1/ ln(4) (c.f., [Top01,
Theorem 1.2]) and since for small enough q (i.e., q < 1/100) it holds that 2(q(1 − q))1/ ln(4) <
(q(1− q))1/2. ¤

5.5.2 The Pseudorandom Generator

The following is adapted from [Hol06a, Lemma 5].

PROPOSITION 5.5.9
Let γ(n) > 1

n be a polynomial computable function and let (g, b) be a (t(n), δ(n), γ(n))-PEP. Suppose

we are given two non-uniform advices αn, βn (for any n) satisfying αn ≤ δ(n) ≤ αn + γ(n)
4 and

βn ≤ H(g(Un)) ≤ βn + γ(n)
4 . Then there exists a polynomial p such that the following holds for every

polynomial computable function ε : N 7→ [0, 1]. There exists a Ω(min
{

t′(n), 1
ε(n)

}
)-pseudorandom

generator, with input length is Θ(
n3·log 1

ε(n)

γ(n)2
), for any t′ satisfying p(n, t′(n)) < t(n).
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Combining the above proposition and Theorem 5.5.8 we get the main result of this section.

THEOREM 5.5.10
Let f : {0, 1}n 7→ {0, 1}`(n) be a t(n)-one-way function and assume that log(t(n)) is polynomially
approximable up to a constant ratio. Then there exists a polynomial p such that the following holds for

any ε : N 7→ [0, 1]. There exists an Ω(min
{

t′(n), 1
ε(n)

}
)-pseudorandom generator, with input length

is Θ(
n7·log 1

ε(n)

(log t(n))3
), for any t′ satisfying p(n, t′(n)) < t(n). In particular, by taking ε(n) = 1

t(n) we get a

generator with input length Θ(n7).

Proof. Let γ(n) = log(t(n))/3n. Theorem 5.5.8 guarantees the existence of a polynomial p′ for
which of a pair (g, b) which is (t(n), 1

2 , γ(n))-PEP for any t′ satisfying p′(n, t′(n)) < t(n) (in the
following we assume wlog that γ(n) is polynomially computable, the case where we can only ap-
proximate log(t(n)) easily follows along the same lines). Since the value of δ(n) is fixed (i.e., 1

2),
we do not need the advice αn. Therefore, it is left to take care of the non-uniform advice βn (note
that the value of H(g(Wn)) is not necessarily efficiently approximable). The overcome this problem
we used the following pseudorandom generators “combiner”. (Since the combiner we are using was
previously used by other applications, e.g., [HILL99, Proposition 4.17] and [Hol06a, Theorem 1], we
only give a high-level overview of its construction and proof.). For any λ ∈ [0, 1], let Gλ be the gen-
erator resulting from applying Proposition 5.5.9 with βn = λ. Let G′

λ be the result of applying the
[GGM86] length-extension method to Gλ such that the output length of G′

λ is m = d4n/γ(n)e times
longer than the input length of Gλ. Finally let G(x1, . . . , xm) =

⊕m
i=0 G′

i
m

(xi). Clearly G is length

expanding, polynomial-time computable and has input length Θ(
n4·log 1

ε(n)

γ(n)3
) = Θ(

n7·log 1
ε(n)

(log t(n))3
). By a

standard hybrid argument, any algorithm B of running-time tB(n), which distinguishes between
the output of G from the uniform distribution with advantage 1

tB(n) , implies the following for any
i ∈ [m]. There exist an efficient algorithm MB

i , with oracle access to B, that distinguishes between
the output of G i

m
from the uniform distribution with advantage Ω( 1

tB(n)·poly(n)). We conclude that
for large enough p, it holds that p(n, tB(n)) > t(n). ¤

5.6 HILL’s Pseudo-Entropy Pair

In the following we complete the picture of Section 5.5 by presenting the pseudoentropy pair used
in [HILL99].

CONSTRUCTION 5.6.1 (the HILL PEP)
Let f : {0, 1}n 7→ {0, 1}`(n) be a one-way function and let b be any hardcore predicate of f . Let H
be an efficient family of pairwise-independent hash functions from {0, 1}n to {0, 1}n. Let fH(x, h, i) =
(f(x), hi+2dlog(n)e(x), h, i) and bH(x, h, i) = b(x), where x ∈ {0, 1}n, h ∈ H, i ∈ [n] and hk(x) stands
for the first k bits of h(x).

[HILL99] proves that (fH, bH) is a (p + 1
2n , α)-PEP, where p

def= Pr(x,i)←(Un,[n])[Df (f(x)) < i]
and α is any fraction noticeably smaller than 1

n . The proof goes by showing that it is hard to
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predict the hardcore-bit of an input element (x, h, i) ∈ Im(fH) whenever i ≤ Df (f(x)). Roughly
speaking, the reason is that in such a case, (hi+2dlog(n)e(x), h, i) does not contain any noticeable
information about x. Thus, it is essentially as hard to predict bH(x, h, i) = b(x) given fH(x, h, i) as
it is to predict b(x) given f(x). Since the probability that i = Df (x) is 1

n , it follows that for any α
noticeably smaller than 1

n it holds that bH is a (p + α)-hard predicate of fH.
On the other hand, by the pairwise independence of H, whenever i ≥ Df (x) there is almost no

entropy (i.e., less then 1/2n) in bH(x, h, i) given fH(x, h, i). Thus, the entropy of bH(x, h, i) given
fH(x, h, i) is not more than p + 1

2n .

REMARK 5.6.2
Note that the above bH is not only (t(n), 1 − δ(n) − α(n))-hardcore of fH, but its hardness comes
from the existence of a “hardcore-set” of density δ +α(n). Where the latter is a subset of the input
such that the value of bH is computationally unpredictable over it. This additional property was
used by [HILL99] original implementation of pseudorandom generator, but it is not required by the
new proof due to [Hol06a]. We note, however, that our PEP presented in Section 5.5 also has such
a hardcore set.
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Chapter 6

Hardness Amplification of Regular
One-way Functions

6.1 Introduction

The existence of one-way functions is essential to almost any task in cryptography (see for example
[IL89]) and also sufficient for numerous cryptographic primitives, such as the pseudorandom gen-
erators discussed above. In general, for constructions based on one-way functions we use what are
called strong one-way functions. That is, functions that can only be inverted efficiently with neg-
ligible success probability. A more relaxed definition is that of an δ-weak one-way function where
δ(n) is a polynomial fraction. This is a function that no efficient algorithm inverts with probability
better than 1−δ(n). This definition is significantly weaker, yet Yao [Yao82] showed how to convert
any weak one-way function into a strong one. The new strong one-way function simply consists of
many independent copies of the weak function concatenated to each other. The solution of Yao,
however, incurs a blow-up factor of at least ω(1)/δ(n) to the input length of the strong function, 1

which translates to a significant loss in the security (as in the case of pseudorandom generators).
With this security loss in mind, several works have tried to present an efficient method of am-

plification from weak to strong. Goldreich et al. [GIL+90] give a solution for one-way permutations
that has just a linear blowup in the length of the input. This solution generalizes to known-regular
one-way functions (regular functions whose image size is efficiently computable), where its input
length varies according to the required security. The input length is linear when security is at
most 2Ω(

√
n), but deteriorates up to O(n2) when the required security is higher (e.g., security

2O(n)).2 Their construction uses a variant of randomized iterates discussed in Chapter 5, where the
randomization is via one random step on an expander graph.

6.1.1 Our Results

We present an alternative efficient hardness amplification for regular one-way functions. Specifically,
in Theorem 6.2.1 we show that the m’th randomized iterate of a weak one-way function along

1 The ω(1) factor stands for the logarithm of the required security. For example, if the security is 2O(n) then this
factor is of order n.

2Loosely speaking, one can think of the security as the probability of finding an inverse to a random image f(x)
simply by choosing a random element in the domain.

97



6. Hardness Amplification of Regular One-way Functions 6.1. Introduction

with the randomizing hash functions form a strong one-way function (for the right parameter m).
Moreover, this holds also for the derandomized version of the randomized iterate (Theorem 6.2.8),
giving an almost linear construction. Our construction is arguably simpler and has the following
advantages:

1. While the [GIL+90] construction works only for known regular weak one-way functions, our
amplification works for any regular weak one-way functions (whether its image size is effi-
ciently computable or not).

2. The input length of the resulting strong one-way function is O(n log n) regardless of the
required security. Thus, for some range of the parameters our solution is better than that of
[GIL+90] (although it is worse than [GIL+90] for other ranges).

Note that our method may yield an O(n) input construction if bounded-space generators with
better parameters become available.

6.1.2 Our Techniques

At the basis of all hardness amplification lies the fact that for any inverting algorithm, a weak one-
way function has a set that the algorithm fails upon, called here the failing-set of this algorithm.
The idea is that a large enough number of randomly chosen inputs are bound to hit every such
failing-set and thus fail every algorithm. Taking independent random samples works well, but when
trying to generate the inputs to f sequentially this rationale fails. The reason is that sequential
applications of f are not likely to give random output, and hence are not guaranteed to hit a
failing-set. Instead, the natural solution is to use randomized iterations. It might be easy, however,
for an inverter to find some choice of randomizing hash functions so that all the iterates are outside
of the required failing-set. To overcome this, the randomizing hash functions are also added to the
output, and thus the inverter is required to find an inverse that includes the original randomizing
hash functions. In the case of permutations it is obvious that outputting the randomizing hash
functions is harmless, and thus the k’th randomized iterate of a weak one-way permutation is a
strong one-way permutation. The case of regular functions, however, requires our analysis that
shows that the randomized iterate of a regular one-way function remains hard to invert when the
randomizing hash functions are public. We also note that the proof for regular functions has another
subtlety. For permutations the randomized iterate remains a permutation and therefore has only
a single inverse. Regular functions, on the other hand, can have many inverses. This comes into
play in the proof, when an inverting algorithm might not return the right inverse that is actually
needed by the proof.

A major problem with the randomized iterate approach is that choosing fully independent
randomizing hash functions requires an input as long as that of Yao’s solution (an input of length
O(n·ω(1)/δ(n))). What makes this approach appealing after all, is the derandomization of the hash
functions using space-bounded generators, which reduces the input length to only O(n log n). Note
that in this application of the derandomization, it is required that the bounded-space generator not
only approximate the collision-probability well, but also maintain the high probability of hitting
any failing-set.

We note that there have been several attempts to formulate such a construction, using all
of the tools mentioned above. Goldreich et al. [GIL+90] did actually consider following the GKL
methodology, but chose a different (though related) approach. Phillips [Phi93] gives a solution with
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input length O(n log n) using bounded-space generators but only for the simple case of permutations
(where [GIL+90] has better parameters). Di Crescenzo and Impagliazzo [DI99] give a solution for
regular functions, but only in a model where public randomness is available (in the mold of [HL92]).
Their solution is based on pairwise-independent hash functions that serve as the public randomness.
We are able to combine all of these ingredients into one general result, perhaps due to our simplified
proof.

6.2 The Amplification

We start (Section 6.2.1) with a basic construction that archives the required amplification, but is
not more efficient than Yao’s construction for general one-way functions. We then (Section 6.2.2)
apply the same ideas as in Section 5.3.4 to get our efficient amplification.

6.2.1 The Basic Construction

For simplicity we assume that the underlying weak one-way function is length-preserving, where
the adaptation to any regular one-way function is the same as in Section 5.3. As a first step, we
show that g(x, h) = (fm(x, h), h) is a strong one-way function (for the proper choice of m). The
basic intuition is that every iteration of the randomized iterate gives a random element in Im(f)
and thus these iterations are bound to hit every significantly large failing-set. The actual proof,
however, is more subtle than this.

THEOREM 6.2.1
Let δ(n) > 1/poly(n) and let f : {0, 1}n 7→ {0, 1}n be a (t(n), 1 − δ(n))-one-way function. Let

m =
⌈

4n
δ(n)

⌉
, and let H and fk be as in Definition 5.3.1. We define g : {0, 1}n ×Hm 7→ Im(f)×Hm

as g(x, h) = (fm(x, h), h). Then there exists a polynomial p such that g is a t′(n)-one-way for any t′

satisfying p(n, t′(n)) < t(n).

Proof. We start by showing that f has a large failing-set, and then show that any algorithm that
inverts g too well, contradicts the existence of such a set.

DEFINITION 6.2.2 (failing-set)
Let f : {0, 1}n 7→ {0, 1}`(n), let ε, δ : N 7→ [0, 1] and let A be an algorithm trying to invert f . The set
S ⊆ Im(f({0, 1}n) is a (ε, δ)-failing-set for A, if Pr[f(Un) ∈ S] ≥ δ(n) and Pr[A(y) ∈ f−1(y)] < ε(n)
for every y ∈ S.

LEMMA 6.2.3
Let δ(n) > 2−n+1 and let f : {0, 1}n 7→ {0, 1}`(n) be a (t(n), 1− δ(n))-one-way function. Then there
exists a polynomial p such that every algorithm of running at most t′(n) satisfying p(n, t′(n)) < t(n),
has a (1/t′(n), δ(n)/2)-failing-set.

Proof. Let A be an algorithm of running-time at most tA(n) trying to invert f and let S ⊆ Im(f)
be the set of elements that A inverts with probability less than 1/tA(n) (i.e., for each y ∈ S it
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holds that Pr[A(y) ∈ f−1(y)] < 1/tA(n)). Assume that Pr[f(Un) ∈ S] < δ(n)/2 and consider
the algorithm A′ for inverting f . On each input (y ∈ Im(f)) the algorithm invokes A for ntA(n)
independent times (with fresh random coins) and returns a preimage of y if at least one of the
instances of A finds such a preimage. The running time of A′ is O(n · tA(n)(tA(n) + tf (n))), where
tf (n) is the evaluation time of f . Also, on the elements outside S, it is guaranteed that A′ fails to
invert f with probability at most (1 − 1

tA(n))
ntA(n) < 2−n. Thus, overall A′ succeeds in inverting

f with probability at least 1 − δ(n)
2 − 2−n > 1 − δ(n). it follows, by the properties of f , that the

running-time of A′ has to be at least t(n). Thus, for the right choice of p we get p(n, tA(n)) > t(n)
as required. ¤

Let A be an algorithm that runs in time tA(n) and inverts g with probability 1/tA(n). The
next lemma shows that there exists an algorithm MA, that runs in time tM (n) ≤ p(n, tA(n)) for
some polynomial p, yet has no (1/tM (n), δ(n)/2)-failing-set for f . It therefore implies that tA(n)
must be large; namely, that g is one-way.

LEMMA 6.2.4
Let f and g be as in Theorem 6.2.1. There exists an oracle aided algorithm M (·) and a polynomial
p such that the following holds. Let A be an algorithm that runs in time tA(n) and inverts g with
probability 1/tA(n). If algorithm MA runs in time tMA(n) < p(n, tA(n)) then for every set S with
Pr[f(Un) ∈ S] ≥ δ

2 , it holds that Pr[MA(f(Un)) = f−1(Un) ∧ f(Un) ∈ S] ≥ 1
t
MA (n) .

Before proving Lemma 6.2.4 we first show how to use it for proving Theorem 6.2.1. The
lemma states that for every set S for which Pr[f(Un) ∈ S] ≥ δ

2 , there exists y ∈ S such that
Pr[MA(y) = f−1(y)] ≥ 1

t
MA (n) . Thus, f does not have a (1/tM (n), δ(n)/2)-failing-set and by

Lemma 6.2.3 it must be that p′(n, tM (n)) > t(n) for some polynomial p′. ¤

Proof. (of Lemma 6.2.4) For every i ∈ [m] we define MA
i as the algorithm that tries to use the i’th

iteration in order to invert the function f . Specifically:

ALGORITHM 6.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm MA

i for inverting the last-iteration of f i.

Input: (y, h1 . . . , hi) ∈ Im(f)×Hi.

1. Choose uniformly and independently at random hi+1, . . . , hm ∈ H and let w =
fm−i(y, hi+1, . . . , hm).

2. Apply A(w, h1, . . . , hm) to get (x, h′1, . . . , h
′
m).

3. Return hi(f i−1(x, h1, . . . , hi−1)).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The algorithm MA then tries using each of the possible iterations for inverting f . Formally:

ALGORITHM 6.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm MA for inverting f .
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Input: y ∈ Im(f).

1. Choose a random h1, . . . , hm ∈ H.

2. For each i ∈ [m] set xi = MA
i (y, h1, . . . , hi).

3. If there exists an i such that f(xi) = y output xi, otherwise abort.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For clarity we omit the value n whenever it is clear from the context (i.e., we write δ rather than
δ(n)). To prove Lemma 6.2.4 we need to show that MA succeeds in inverting f over every large
enough set S. This follows by first showing (in Claim 6.2.7) that there exists at least one iteration
i ∈ [m] that MA

i succeeds on. Namely, MA
i succeeds in inverting the i’th randomized iteration of

f . This is then combined with the fact that inverting the i’th randomized iterate can be used to
invert f (as shown in section 5.3, Lemma 5.3.5).
CLAIM 6.2.7
For any subset S ⊆ Im(f) of density at least δ/2 there exists an index j ∈ [m] for which
Pr[f(MA

j (f j(Un, Hj),Hj)) = f j(Un,Hj) ∧ f j(Un,Hj) ∈ S] ∈ Ω( 1
t2A·m2 ).

We defer for now the proof of Claim 6.2.7 and first use it to prove Lemma 6.2.4. For ease of
notation, define αm,A = maxj∈[m]{Pr[f(MA

j (f j(Un, Hj), Hj)) = f j(Un, Hj) ∧ f j(Un,Hj) ∈ S]}.
That is, the claim above states that αm,A ∈ Ω( 1

t2A·m2 ). Let S ⊆ Im(f) be any subset of density

at least δ/2. For i ∈ [m] let Li
def=

{
(y, h) ∈ S ×Hi : Pr[f(MA

i (y, h)) = y] ≥ αm,A/2
}
, where the

probability is over the random coins of MA
i (namely, Li is the set of elements that MA

i inverts their
last iteration w.h.p.). Note that for every i ∈ [m] it holds that

Pr[f(MA
i (f i(Un,H i),H i)) = f i(Un,H i) ∧ f i(Un,H i) ∈ S]

= Pr[f(MA
i (f i(Un,H i),H i)) = f i(Un,H i) ∧ f i(Un,H i) ∈ S ∧ (f i(Un, H i),H i) ∈ Li]

+ Pr[f(MA
i (f i(Un,H i),H i)) = f i(Un,H i) ∧ f i(Un,H i) ∈ S ∧ (f i(Un, H i),H i) /∈ Li]

≤ Pr[(f i(Un,H i),H i) ∈ Li] + αm,A/2 .

Thus, there exists j ∈ [m] such that Pr[(f j(Un,Hj),Hj) ∈ Lj ] ≥ αm,A/2. By Lemma 5.3.5 (letting
T = Lj) it follows that Pr[(f(Un),Hj) ∈ Lj ] ∈ Ω(α2

m,A/m). Since MA
j inverts the last-iteration of

each of the elements in Lj with probability αm,A/2, it follows that

Pr[MA(f(Un)) = f−1(Un) ∧ f(Un) ∈ S]

≥ Pr[f(MA
j (f(Un),Hj)) = f(Un) ∧ f(Un) ∈ S] ∈ Ω(α3

m,A/m) = Ω(
1

t6A ·m7
) .

Finally, since each invocation of MA
i involves m invocations of f and a single invocation of A,we

have that tM (n) < p(n, tA(n)) for the right choice of p. ¤

Proof. (of Claim 6.2.7) Through the rest of this section we allow ourselves to view g and fm as
functions over Im(f)×Hm rather than over {0, 1}n ×Hm, where for y ∈ Im(f) we let fm(y, h) =
fm(x, h) for some x ∈ f−1(y).3 For any (w, h) ∈ Im(g) let Bw,h

def=
{
y ∈ Im(f) : fm(y, h) = w

}
.

3Note that the above is well defined since for any x, x′ ∈ f−1(y) it holds that fm(x, h) = fm(x′, h)).
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It readily follows from the proof of Claim 5.3.6 that for any y 6= y′ ∈ Im(f) it holds that
Pr[fm(y,Hm) = fm(y′,Hm)] ≤ m

|Im(f)| . Thus, for any y ∈ Im(f) it holds that Ex[|Bg(y,Hm)|] =
1 +

∑
y′ 6=y∈Im(f) Ex [fm(y′,Hm) = fm(y,Hm)] < m + 1. By Markov’s inequality Pr[|Bg(x,h)| >

4m · tA] < 1
2·tA and therefore

Pr[A(g(Un,Hm)) ∈ g−1(g(Un,Hm)) ∧ |Bg(Un,Hm)| ≤ 4m · tA] >
1

2 · tA (6.1)

Now let S ⊆ Im(f) be a set of density δ/2. By the pairwise independence of H (actually one-wise
independence suffices for this part), we have that for every y ∈ Im(f), i ∈ [m] and h ∈ Hi−1, it holds
that Pr[f i(y, (h, H)) ∈ S] ≥ δ/2. Hence, for any y ∈ Im(f) it holds that Pr[∃i ∈ [m] : f i(y, Hm) ∈
S] > 1− 2−2n (recall that m =

⌈
4n
δ

⌉
). By a union bound,

Pr[∀y ∈ Bg(Un,Hm) ∃i ∈ [m] : f i(y,Hm) ∈ S] (6.2)

> 1− |Bg(Un,Hm)| · 2−2n ≥ 1− 2−n

Combining (6.1) and (6.2) yields that,

Pr
[

A(g(Un,Hm)) ∈ g−1(g(Un,Hm)) ∧ |Bg(Un,Hm)| ≤ 4m · tA
∧ ∀y ∈ Bg(Un,Hm) ∃i ∈ [m] : f i(y,Hm) ∈ S

]
>

1
2 · tA − 2−n >

1
4 · tA ,

where the last inequality follows since wlog tA < 2n/2. Since for any (x′, h′) ∈ g−1(z) it holds that
then f(x′) ∈ Bz, we have that

Pr
[

A(g(Un,Hm)) ∈ g−1(g(Un,Hm)) ∧ |Bg(Un,Hm)| ≤ 4m · tA
∧∃i ∈ [m] : f i(A(g(Un,Hm))) ∈ S

]
>

1
4 · tA .

Thus, by an averaging argument there exists an index j ∈ [m] such that,

Pr[A(g(Un,Hm)) ∈ g−1(g(Un,Hm)) ∧ |Bg(Un,Hm)| ≤ 4m · tA ∧ f j(A(g(Un,Hm))) ∈ S] >
1

4 · tA .

For z ∈ Im(g) let A(z)1 be the first part of A(z) = (x, h) (i.e., x). The regularity of f yields that

Pr[f(A(g(Un,Hm))1) = f(Un) ∧ f j(A(g(Un,Hm))) ∈ S] >
m

4 · tA · m

4 · tA =
m2

16 · t2A
,

and we conclude that

Pr[f(MA
j (f j(Un,Hj),Hj)) = f j(Un,Hj) ∧ f j(Un,Hj) ∈ S]

= Pr[f(A(g(Un,Hm))1) = f(Un) ∧ f j(A(g(Un,Hm))) ∈ S]

>
m2

16 · t2A
.

¤
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6.2.2 An Almost-Linear-Input Construction

In this section we derandomize the randomized iterate used in Section 6.2.1 to get a (strong) one-
way function with input length O(n log n). We use the bounded-space generator of either [Nis92]
or [INW94] (see Section 5.2.4).

THEOREM 6.2.8
Let f , m, H and fm be as in Theorem 6.2.1. Let v(H) be the description length of h ∈ H and let BSG :
{0, 1}ñ∈O(n log n) 7→ {0, 1}mv(H) be a bounded-space generator that 2−2n-fools every (2n,m, v(H))-
LBP. Define g′ : {0, 1}n × {0, 1}ñ 7→ {0, 1}n × {0, 1}ñ as g(x, h̃) = (fm(x, BSG(h̃)), h̃), where
x ∈ {0, 1}n and h̃ ∈ {0, 1}ñ.

Then there exists a polynomial p such that g′ is a (t′(n), 1
t′(n))-one-way for any t′ satisfying

p(n, t′(n)) < t(n).

Proof idea: The proof of the derandomized version follows the proof of Theorem 6.2.1. In the
proof we used the following properties of the family H.

Collision-probability - for any y 6= y′ ∈ Im(f) and i ∈ {0, . . . , m}

Pr[f i(y,H i) = f i(y′,H i)] =
i

|Im(f)|

Hitting - for all y ∈ Im(f) and S ⊆ Im(f) of density δ/2

Pr[∃i ∈ [m] : fm(y, Hm) ∈ S] > 1− 2−2n

Note that the above two properties can be verified by an (n,m, v(H))-LBP. Since, BSG 2−2n-fools
such LBP’s, the above properties hold with deviation at most 2−2n w.r.t. to h = BSG(ñ). Going
through the proof of Theorem 6.2.1, it is not hard to verify that the proof remains valid also when
the above deviations are taking into account. (See the proof of Theorem 5.3.11 for a more detailed
proof on a similar derandomization).
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Publications and Statement of
Originality

Most of the results presented in this dissertation have been published as follows.

1. Iftach Haitner and Omer Reingold. Statistically-hiding commitment from any one-way func-
tion. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC).
ACM Press, 2007.

Presented in Chapter 3, parts of the write-up are taken from [HNO+07].

2. Iftach Haitner and Omer Reingold. A new interactive hashing theorem. In Proceedings of the
18th Annual IEEE Conference on Computational Complexity, 2007.

Presented in Chapter 4.

3. Iftach Haitner, Danny Harnik, and Omer Reingold. Efficient pseudorandom generators from
exponentially hard one-way functions. In Automata, Languages and Programming, 24th In-
ternational Colloquium, ICALP, 2006.

Presented in Chapters 5 and 6.

4. Iftach Haitner, Danny Harnik, and Omer Reingold. On the power of the randomized iterate.
In Advances in Cryptology – CRYPTO 2006, 2006.

Presented in Chapter 5.

The dissertation contains additional results beyond the aforementioned publications.
All results presented in this dissertation are, where not stated otherwise, original research. Most

of this research was done in collaboration with other investigators, as reflected in the aforemen-
tioned publications. My personal contribution to each of these publications was substantial at the
conceptual, technical and editorial levels.
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