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1 Introduction

Research in the foundations of cryptography is concerned with the construction of provably secure
cryptographic tools. The security of such constructions relies on a growing number of computa-
tional assumptions, and in the last few decades much research has been devoted to demonstrating
the feasibility of particular cryptographic tasks based on the weakest possible assumptions. For
example, the existence of one-way functions has been shown to be equivalent to the existence of
pseudorandom functions and permutations [26, 53], pseudorandom generators [3, 41], universal
one-way hash functions and signature schemes [56, 65], different types of commitment schemes
[38, 39, 41, 54], private-key encryption [25] and other primitives.

Many constructions based on minimal assumptions, however, result in only a theoretical impact
due to their inefficiency, and in practice more efficient constructions based on seemingly stronger
assumptions are being used. Thus, identifying tradeoffs between the efficiency of cryptographic
constructions and the strength of the computational assumptions on which they rely is essential
in order to obtain a better understanding of the relationship between cryptographic tasks and
computational assumptions.

In this paper we follow this line of research, and study the tradeoffs between the round and
communication complexities of cryptographic protocols on one hand, and the strength of their un-
derlying computational assumptions on the other. We provide lower bounds on the round and com-
munication complexities of black-box reduction of statistically hiding and computationally binding
commitment schemes (for short, statistically hiding commitments) from one-way permutations and
from families of trapdoor permutations. Our lower bound matches known upper bounds resulting
from [57]. As a corollary of our main result, we derive similar tight lower bounds for several other
cryptographic protocols, such as single-server private information retrieval, interactive hashing, and
oblivious transfer that guarantees statistical security for one of the parties.

In the following paragraphs we discuss the notion of statistically hiding commitment schemes
and describe the setting in which our lower bounds are proved.

Statistically hiding commitments. A commitment scheme defines a two-stage interactive pro-
tocol between a sender S and a receiver R; informally, after the commit stage, S is bound to (at
most) one value, which stays hidden from R, and in the reveal stage R learns this value. The
two security properties hinted at in this informal description are known as binding (S is bound
to at most one value after the commit stage) and hiding (R does not learn the value to which S
commits before the reveal stage). In a statistically hiding commitment scheme, the hiding property
holds even against all-powerful receivers (i.e., the hiding holds information-theoretically), while the
binding property is required to hold only for polynomially bounded senders.

Statistically hiding commitments can be used as a building block in constructions of statistical
zero-knowledge arguments [6, 57] and of certain coin-tossing protocols [50]. When used within
protocols in which certain commitments are never revealed, statistically hiding commitments have
the following advantage over computationally hiding commitment schemes: in such a scenario,
it should be infeasible to violate the binding property only during the execution of the protocol,
whereas the committed values will remain hidden forever (i.e., regardless of how much time the
receiver invests after the completion of the protocol).

Statistically hiding commitments with a constant number of rounds were shown to exist based
on specific number-theoretic assumptions [4, 6] (or, more generally, based on any collection of claw-
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free permutations [28] with an efficiently recognizable index set [23]), and collision-resistant hash
functions [11, 56]. Protocols with higher round complexity were shown to exist based on different
types of one way functions. (The communication complexity of the aforementioned protocols varies
according to the specific hardness assumption assumed). Protocols with Θ(n/ log n) rounds and
Θ(n) communication complexity (where n is the input length of the underlying function) were based
on one-way permutations [57] and (known-) regular one-way functions [35].1 Finally, protocols with
a polynomial number of rounds (and thus, polynomial communication complexity) were based on
any one-way function [38, 39].2

Black-box reductions. As mentioned above, the focus of this paper is proving lower bounds
on the round and communication complexity of various cryptographic constructions. In particular,
showing that any construction of statistically hiding commitments based on trapdoor permuta-
tions requires a fairly large number of rounds. However, under standard assumptions (e.g., the
existence of collision-resistant hash functions), constant-round statistically hiding commitments do
exist. So if these assumptions hold, the existence of trapdoor permutations implies the existence of
constant-round statistically hiding commitments in a trivial logical sense. Faced with similar diffi-
culties, Impagliazzo and Rudich [43] presented a paradigm for proving impossibility results under
a restricted, yet important, subclass of reductions called black-box reductions. Their method was
extended to showing lower bounds on the efficiency of reductions by Kim, Simon, and Tetali [46].

Intuitively a black-box reduction of a primitive P to a primitive Q, is a construction of P
out of Q that ignores the internal structure of the implementation of Q and just uses it as a
“subroutine” (i.e., as a black-box). In the case of fully black-box reductions, the proof of security
(showing that an adversary that breaks the implementation of P implies an adversary that breaks
the implementation of Q) is also black-box (i.e., the internal structure of the adversary that breaks
the implementation of P is ignored as well). For a more exact treatment of black-box reductions
see Section 2.7.

1.1 Our Results

We study the class of fully black-box reductions of statistically hiding commitment schemes from
families of trapdoor permutations, and prove lower bounds on the round and communication com-
plexities of such constructions. Our lower bounds hold also for enhanced families of trapdoor
permutations: one can efficiently sample a uniformly distributed public key and an element in the
permutation’s domain, so that inverting the element is hard, even when the random coins used
for the above sampling are given as an auxiliary input. Therefore, the bounds stated below imply
similar bounds for reduction from one-way permutations3. Informally, the round complexity lower
bound is as follows:

1The original presentations of the above protocols have Θ(n) rounds. By a natural extension, however, the number
of rounds in these protocols can be reduced to Θ (n/ logn), see [33, 47].

2When provided with a non-uniform advice, the round complexity of [39] reduces to Θ(n/ logn).
3In general, a black-box impossibility result that is proved w.r.t trapdoor permutations does not necessarily hold

w.r.t. one-way permutation as the additional functionality (of having a trapdoor) may also be used by an attacker.
Our result, however, holds even w.r.t. enhanced trapdoor permutations, and these can be used to simulate a one-way
permutation by obliviously sampling a public key (the assumed obliviousness of the sampling algorithm enables to
transform any attack against such a one-way permutation into an attack against the underlying enhanced trapdoor
permutation).
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Theorem 1 (The round complexity lower bound, informal). Any fully black-box reduction of a
statistically hiding commitment scheme from a family of trapdoor permutations over {0, 1}n has
Ω(n/ log n) communication rounds.4

The above lower bound matches the upper bound due to [34, 47] (the scheme of [57] has
Θ(n) rounds), who give a fully black-box construction of an n/(c · log n)-round statistically hiding
commitment scheme from one-way permutations over {0, 1}n, for any c > 0.5 In addition, we
note that our result and its underlying proof technique, in particular rule out fully black-box
reductions of collision-resistant hash functions from one-way function. This provides an alternative
and somewhat “cleaner” proof than that given by Simon [71] (although our proof applies to fully
black-box reductions and Simon’s proof applies even to semi black-box ones).

The separation oracle introduced for proving Theorem 1, yields the following lower bound on
the communication complexity of statistically hiding commitments:

Theorem 2 (The communication complexity lower bound, informal). In any fully black-box reduc-
tion of a statistically hiding commitment scheme from family of trapdoor permutations over {0, 1}n,
the sender communicates Ω(n) bits.6

The above lower bound matches (up to a constant factor) the upper bound due to [57, 34, 47],
who give a fully black-box reduction from a statistically hiding commitment scheme from a family
of trapdoor permutations over {0, 1}n, where the sender sends n−1 bits. We remark, however, that
the above bound says nothing about the number of bits sent by the receiver, a number which in
the case of [57, 34, 47] is Θ(n2), and thus dominates the overall communication complexity of the
protocol. We also note that the above bound does not grow when the number of committed bits
grows, and as such it only matches the bound of [57, 34, 47] when the number of bits committed is
constant (when committing to k bits, the number of bits sent by the sender in [57, 34, 47] is Θ(nk)
but this can be easily reduced to Θ(nk/ log n)).

1.1.1 Any Hardness Reductions

We also consider a more general notion of hardness for trapdoor permutations that extends the
standard polynomial hardness requirement; a trapdoor permutation τ over {0, 1}n is s-hard, if
any probabilistic algorithm running in time s(n) inverts τ on a uniformly chosen image in {0, 1}n
with probability at most 1/s(n). We show that any fully black-box reduction of a statistically
hiding commitment scheme from a family of s-hard trapdoor permutations requires Ω(n/ log s(n))
communication rounds. This bound matches the any hardness reduction given in [34]. Interestingly,
the communication complexity lower bound does not change when considering stronger trapdoor
permutations.

1.1.2 Taking the Security of the Reduction into Account

The informal statements above consider constructions that invoke only trapdoor permutations over
n bits. We would like to extend the result to consider constructions which may invoke the trapdoor

4The result holds even if the hiding is only guaranteed to hold against honest receivers — receivers that follow
the prescribed protocol.

5Their proof of security reduction runs in time poly(n) · 2c logn, and thus efficient only for constant c.
6The result holds even if the hiding is only guaranteed to hold against honest receivers, and the binding is only

guaranteed to hold against honest senders — senders that follow the prescribed protocol in the commit stage.

3



permutations over more than a single domain. In this case, however, better upper bounds are
known. In particular, given security parameter 1n it is possible to apply the scheme of [57] using a
one-way permutation over nε bits. This implies statistically hiding commitments of Θ(nε) rounds,
where the sender communicates Θ(nε) bits. This subtle issue is not unique to our setting, and in
fact arises in any study of the efficiency of cryptographic reductions (see, in particular, [16, 73]).
The common approach for addressing this issue is by restricting the class of constructions (as in the
informal statement of our main theorem above). We follow a less restrictive approach and consider
constructions that are given access to trapdoor permutations over any domain size. Specifically,
we consider an additional parameter, which we refer to as the security-parameter expansion of the
construction. Informally, the proof of security in a fully black-box reduction gives a way to translate
(in a black-box manner) an adversary S̃ that breaks the binding of the commitment scheme into
an adversary A that breaks the security of the trapdoor permutation. Such a reduction is `(n)-
security-parameter expanding, if whenever the machine A tries to invert a permutation over n bits,
it invokes S̃ on security parameters which are at most 1`(n). It should be noted that any reduction
in which `(n) is significantly larger than n, may only be weakly security preserving (for a taxonomy
of security preserving reductions see [52, Lecture 2]).

Our lower bound proof takes into consideration the security parameter expansion, and therefore
our statements apply for the most general form of fully black-box reductions. In particular, in case
that `(n) = O(n), our theorems imply that the required number of rounds is Ω (n/ log n) and the
number of bits send by the sender is Ω(n). In the general case (where `(n) may be any polynomial
in n), our theorems imply that the required number of rounds and the number of bits send by the
sender is nΩ(1) (which as argued above is tight as well).

1.1.3 Additional Implications

Our main results described above can be extended to any cryptographic protocol which implies
statistically hiding commitment schemes in a fully black-box manner, as long as the reduction
essentially preserves the round complexity or the communication complexity of the underlying pro-
tocol. Specifically, we derive similar lower bounds on the round complexity and communication
complexity of fully black-box reductions from trapdoor permutations of single-server private infor-
mation retrieval, interactive hashing, and oblivious transfer that guarantees statistical security for
one of the parties. To obtain the above bounds we use known reductions from the listed primitives
to statistically hiding commitment schemes. The only exception is the lower bound on the com-
munication complexity on single-server private information retrieval. In this case, the parameters
of known reduction (due to Beimel et al. [2]) fail too short to yield the desired lower bound, and
we had to come up with a new reduction (given in Appendix A).

1.2 Related Work and Follow-Up Work

Impagliazzo and Rudich [43] showed that there are no black-box reductions of key-agrement proto-
cols to one-way permutations and substantial additional work in this line followed (cf., [20, 69, 71]).
Kim, Simon, and Tetali [46] initiated a new line of impossibility results, providing a lower bound on
the efficiency of black-box reductions (rather than on their feasibility). They proved a lower bound
on the efficiency, in terms of the number of calls to the underlying primitive, of any black-box
reduction of universal one-way hash functions to one-way permutations. Gennaro and Trevisan
[16] has improved [46] to match the known upper bound, and their technique has yielded tight
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lower bounds on the efficiency of several other black-box reductions [17, 18, 16, 42]. In all the
above results, the measure of efficiency under consideration is the number of calls to the underlying
primitives.

With respect to the round complexity of statistically hiding commitments, Fischlin [15] showed
that every black-box reduction of statistically hiding commitments to trapdoor permutations, has
at least two rounds. His result follows Simon’s oracle separation of collision-resistant hash functions
from one-way permutations [71]. Wee [73] considered a restricted class of black-box reductions of
statistically hiding commitments to one-way permutations; informally, [73] considered constructions
in which the sender first queries the one-way permutation on several independent inputs. Once the
interaction with the receiver starts, the sender only access the outputs of these queries (and not
the inputs) and does not perform any additional queries. Wee [73] showed that every black-box
reduction of the above class has Ω (n/ log n) communication rounds. From the technical point of
view, our techniques are inspired by those of Fischlin [15] and Wee [73] by significantly refining and
generalizing the approach that an oracle-aided attacker can re-sample its view of the protocol (we
refer the reader to Section 1.3 for more details on our approach).

The question of deriving lower bounds on the round complexity of black-box reductions, was
also addressed in the context of zero-knowledge protocols [8, 13, 24, 30, 45, 66], to name a few.
In this context, however, the black-box access is to the, possibly cheating, verifier and not to any
underlying primitive.

Extensions in the spirit of the one we present here to the Gennaro and Trevisan [16] “recon-
struction lemma”, where used in several works, e.g., [32, 61, 62, 12]. In addition, the separation
oracle “Sam” we present here (see Section 1.3), was found to be useful in other separation results
[40, 29, 60, 67, 68, 5].

1.3 Overview of the Technique

For the sake of simplicity we concentrate below on the round complexity lower bound of fully black-
box reductions of statistically hiding commitment from one-way permutations (see Section 1.3.6
for the communication complexity lower bound). We also assume that the sender’s secret in the
commitment protocol is a single uniform bit (i.e., it is a bit commitment). Let us start by considering
Simon’s oracle [71] for ruling out a black-box construction of a family of collision resistant hash
functions from one-way permutations.

1.3.1 Simon’s Oracle ColFinder

Simon’s oracle ColFinder gets as an input a circuit C, possibly with π gates,7 where π is a random
permutation. It then outputs two elements w1 and w2 that are uniformly distributed subject to the
requirement C(w1) = C(w2).8 Clearly, in the presence of ColFinder no family of collision resistant
hash functions exists (the adversary simply queries ColFinder with the hash function circuit to find
a collision). In order to rule out the existence of any two-round statistically hiding commitment
scheme relative to ColFinder, Fischlin [15] used the following adversary S̃ to break any such scheme:

7In fact, ColFinder also accepts circuits C with ColFinder gates. [71] use this extension to give a single oracle with
respect to which one-way permutations exist, but no collision resistance hash functions. Since the focus of our work
is fully black-box reductions, we ignore this extension here and leave it as an open problem to extend our approach
to the semi black-box setting.

8Consider, for example, sampling w1 uniformly at random from the domain of C, and then sampling w2 uniformly
at random from the set C−1(C(w1)).

5



assume without loss of generality that the first message q1 is sent by R and consider the circuit Cq1
defined by q1 and S as follows: Cq1 gets as an input the random coins of S and outputs the answer
that S replies on receiving the message q1 from R. In the commit stage after receiving the message
q1, the cheating S̃ constructs Cq1 , queries ColFinder(Cq1) to get w1 and w2, and answers as S(w1)

would (i.e., by Cq1(w1)). In the reveal stage, S̃ uses both w1 and w2 to open the commitment (i.e.,
once using the random coins w1 and then using w2). Since the protocol is statistically hiding, the
set of the sender’s random coins that are consistent with this commit stage transcript is divided
to almost equal size parts by the values of their secret bits. Therefore, with probability roughly
half w1 and w2 will differ on the value of S’s secret bit and the binding of the commitment will be
violated.

In order to obtain the black-box impossibility results (both of [71] and of [15]), it is left to show
that π is one-way in the presence of ColFinder. Let A be a circuit trying to invert π on a random
y ∈ {0, 1}n using ColFinder, and lets assume for now that A makes only a single call to ColFinder.
Intuitively, the way we could hope this query to ColFinder with input C could help is by “hitting”
y in the following sense: we say that ColFinder hits y on input C, if the computations of C(w1) or
of C(w2) query π on π−1(y). Now we note that for every input circuit C each one of w1 and w2

(the outputs of ColFinder on C) is individually uniform. Therefore, the probability that ColFinder
hits y on input C, may only be larger by a factor two than the probability that evaluating C on a
uniform w queries π on π−1(y). In other words, A does not gain much by querying ColFinder (as
A can evaluate C on a uniform w on its own). Formalizing the above intuition is far from easy,
mainly when we consider A that queries ColFinder more than once. The difficulty lies in formalizing
the claim that the only useful queries are the ones in which ColFinder hits y (after all, the reply to
a query may give us some useful global information on π).9

1.3.2 Finding Collisions in Interactive Protocols

We would like to employ Simon’s oracle for breaking the binding of more interactive protocols (with
more than two rounds). Unfortunately, the “natural” attempts to do so seem to fail miserably. The
first attempt that comes to mind might be the following: in the commit stage, S̃ follows the protocol
and let q1, . . . , qk be the messages that R sent in this stage. In the reveal stage, S̃ queries ColFinder
to get a colliding pair (w1, w2) in Cq1,...,qk — the circuit naturally defined by the code of S and
q1, . . . , qk (i.e., Cq1,...,qk gets as an input the random coins of S and outputs the messages sent by S
when R’s messages are q1, . . . , qk). The problem is that it is very unlikely that the outputs of Sam
on Cq1,...,qk will be consistent with the answers that S̃ already gave in the commit stage (we did not

encounter this problem when breaking two-round protocols, since S̃ could query ColFinder on Cq1
before S̃ sends its first and only message). Alternatively, we could have changed ColFinder such that
it gets as an additional input w1 and returns w2 for which Cq1,...,qk(w1) = Cq1,...,qk(w2) (that is, the
new ColFinder finds second preimages rather than collisions). Indeed, this new ColFinder does imply
the breaking of any commitment scheme, but it also implies the inversion of π.10 We should not
be too surprised that both the above attempts failed as they are both completely oblivious of the
round complexity of (S,R). Since one-way permutations do imply statistically hiding commitments

9The proof of our main theorem (see intuition in Section 1.3.5), implies an alternative proof for the above claim.
10Consider a circuit C, whose input is composed of a bit σ and an n-bit string w. The circuit C is defined by

C(0, w) = π(w) and C(1, w) = w. Thus, in order to compute π−1(y) we can simply invoke the new ColFinder on
input C and w1 = (1, y). With probability half ColFinder will return w2 = (0, π−1(y)).
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(in a black-box manner) [57, 35, 38, 39], any oracle that breaks statistically hiding commitments
could also be used to break the underlying one-way permutations.11

So the goal is to extend Simon’s oracle to handle interactions, while not making it “too strong”
(so that it does not break the one-way permutations). In fact, the more interactive our oracle
will be, the more powerful it will be (eventually, it will allow breaking the one-way permutations).
Quantifying this growth in power is how we get the tight bounds on the round complexity of the
reduction.

1.3.3 The Oracle Sam

It will be useful for us to view Simon’s oracle as performing two sampling tasks: first, it samples w1

uniformly, and then it samples a second preimage w2 with C(w1) = C(w2). As explained above, an
oracle for sampling a second preimage allows inverting the one-way permutations. What saves us
in the case of ColFinder, is that w1 was chosen by ColFinder after C is already given. Therefore, an
adversary A is very limited in setting up the second distribution from which ColFinder samples (i.e.,
the uniform distribution over the preimages of C(w1) under C). In other words, this distribution
is jointly defined by A and ColFinder itself.

Extending the above interpretation of ColFinder, our separation oracle Sam is defined as follows:
Sam is given as input a query q = (w,C,Cnext) and outputs a preimage w′, where w′ is a uniformly
distributed preimage of C(w) (the purpose of the circuit Cnext will be revealed later). In case
C =⊥, algorithm Sam outputs a uniform element in the domain.

While the above Sam can be used for inverting random permutations when used by an arbitrary
algorithm, it is not the case when used by low-depth normal form algorithms; an algorithm A
is in a normal-form, if it makes the query q = (w,C 6=⊥, Cnext) to Sam only if it has previously
made the query q′ = (·, ·, C) to Sam, and got w as the answer (namely, the third input to Sam
is used for “committing” to C before seeing w).12 A normal-form algorithm is of depth d if d is
the length of the longest chain of Sam queries it makes (i.e., Sam(·, ·, C2) = w2, Sam(w2, C2, C3) =
w3, . . . ,Sam(wd, Cd, ·) = wd+1). While restricted, it turns out that normal-form algorithms of depth
(d+1) are strong enough, with the aid of Sam, for breaking d-round statically hiding commitments.13

Assume there exists a fully black-box reduction from an o(n/ log n)-round statically hiding
commitments to one-way permutations. By the above observation, the reduction should invert
a random permutation when given oracle to an o(n/ log n)-depth normal-form algorithm S̃ with
oracle access to Sam. Since the reduction has no direct access to Sam (but only via accessing S̃), it
is easy to see that the reduction itself is an o(n/ log n)-depth normal-form algorithm. This implies
a contradiction, since low-depth normal form algorithms cannot invert random permutations.

11In addition, in both these naive attempts the cheating sender S̃ follows the commit stage honestly (as S would).
It is not hard to come up with two-round protocol that works well for semi-honest commit stage senders (consider
for instance the two-message variant of [57] where the receiver’s queries are all sent in the first round).

12An additional important restriction, that we will not discuss here, is that Cnext is an extension of the circuit C,
where extension means that Cnext(w) = (C(w), C̃(w)) for some circuit C̃ and for every w.

13In the preliminary versions [36, 37], we equipped Sam with a signature-based mechanism to enforces normal-
form behaviour and depth restriction on the queries it is asked upon. While yielding a simpler (and easier to
comprehend) characterization of the power of Sam (i.e., useful for breaking commitments, not useful for inverting
random permutations), the signature-based mechanism had significantly complicated the whole text.
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1.3.4 A (d+ 1)-depth Normal-Form Algorithm that Breaks d-Round Commitments

Given a d-round statistically hiding commitment, the (d+ 1)-depth normal-forma algorithm S̃ for
breaking the commitments operates as follows: after getting the first message q1, it constructs Cq1
(the circuit that computes S’s first message) and queries Sam on (⊥,⊥, Cq1) to get input w1, and

sends Cq1(w1) back to R. On getting the i’th receiver message qi, the adversary S̃ constructs Cq1,...,qi
(the circuit that computes S’s first i messages), queries Sam on (wi−1, Cq1,...,qi−1 , Cq1,...,qi) to get wi,
and sends the i’th message of Cq1,...,qi(wi) back to R. Finally, after completing the commit stage
(when answering the last receiver message qd) it queries Sam on (wd, Cq1,...,qd ,⊥) to get wd+1. Since
both wd and wd+1 are sender’s random inputs that are consistent with the commit-stage transcript,
with probability roughly half they can be used for breaking the binding of the protocol.

1.3.5 Random Permutations Are Hard For o(n/ log n)-Depth Normal-Form Algo-
rithms

To complete our impossibility result, it is left to prove that Sam cannot be used by d(n) ∈
o(n/ log n)-depth normal-form algorithms to invert a random permutation π. Let A be such a
o(n/ log n)-depth normal-form algorithms. A Sam query (·, C, ·) is y-hitting (with respect to π),
if it is answered with w, such that C(w′) queries π on π−1(y). Where A hits on input y, if it
makes a y-hitting query. Given the above definition, our proof is two folded. We first show that a
normal-form algorithm that hits on a random y with high probability, implies an algorithm that,
with significant probability, inverts π without hitting (the proof of this part, influenced by the work
of Wee [73], is the most technical part of the paper). We then extend the reconstruction technique
of Gennaro and Trevisan [16], to show that a non-hitting algorithm is unlikely to invert π.

From normal-form hitting algorithms to non-hitting inverters. Let A be an algorithm
that hits on a random y with high probability. The idea is that if A(y) hits, then it “knew” how to
invert y before making the hitting Sam call. Assume for simplicity of notation that A(y)’s queries
are of the form q1 = (⊥,⊥, C2), q2 = (w2, C2, C3), · · · , qd = (wd, Cd, ·), where wi+1 is Sam answer
on the query qi (this essentially follows from A being in a d-depth normal form). And let i∗ be
such that qi∗ hits y with high probability (this follows from the assumption about A being a good
hitter). Since d ∈ o(n/ log n), there exists a location i such that the probability qi to hit y is larger
than the probability that qi−1 hits y by a arbitrary large polynomial. Further, an average argument
yields that the probability that Ci(wi) queries π on π−1(y), is unlikely to be much smaller than the
probability that qi hits y (which is the probability that Ci(wi+1) queries π on π−1(y)).

Combining the above understandings, we design M that with non-negligible probability, inverts
π on y without hitting. Algorithm M emulates A while following each Sam query (wi, Ci, Ci+1)
made by A receiving a reply wi+1, it evaluates, in addition, Ci+1(wi+1). If Ci+1 queries π on
x = π−1(y), then M halts and outputs x (otherwise, it continues with the emulation of A). We
argue that with sufficiently large probability, if the first hinting query of A is qi = (wi, Ci, Ci+1),
then M’s computation of Ci(wi) queries π on π−1(y). Therefore, M retrieves π−1(y) before making
the hitting query.

Random permutations are hard for non-hitting inverters. Gennaro and Trevisan [16]
presented a very elegant argument for proving that random permutations are hard to invert also
for non-uniform adversaries (previous proofs, e.g., [43], only ruled out uniform adversaries). Let A
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be a circuit and let π be a permutation that A inverts on a non-negligible fraction of its outputs.
[16] showed that π has a “short” description relative to A. (Intuitively, A saves on the description
of π as it allows us to reconstruct π on (many of) the x’s for which Aπ(π(x)) = x). Therefore, by
a counting argument, there is only a tiny fraction of permutations which A inverts well.

The formal proof strongly relies on a bound on the number of π gates in A: when we use A
to reconstruct π on x we need all the π-queries made by Aπ(π(x)) (apart perhaps of the query for
π(x) itself) to already be reconstructed.

Consider an adversary A that, with significant probability, inverts π without hitting. Recall
that when queried on (w,C, ·), the oracle Sam returns a random inverse of C(w). We would like
to apply the argument of [16] to claim that relative to A and Sam there is a short description of
π. We are faced with a substantial obstacle, however, as Sam might make a huge amount of π
queries.14 On the intuitive level, we overcome this obstacle by exploiting the fact that while Sam
does not have an efficient deterministic implementation, it does have an efficient non-deterministic
one: simply guess where the collision occur, and verify that this is indeed the case. Formalizing
the above approach requires much care both in the definition and analysis of Sam, and critically
use the assumption that A is non hitting. We defer more details to Section 5.3.

1.3.6 Low Sender-Communication Commitments

The lower bound for low sender-communication statistically hiding commitment follows from the
fact that the oracle Sam, described above, can be used for breaking the binding of such commit-
ments, and moreover, this can be done by low-depth normal-form algorithms. The idea is fairly
straightforward; given an o(n)-communication commitment, the o(n/ log n)-depth normal-form al-
gorithm S̃ for breaking the commitment, acts honestly in the commit stage (say by committing to
zero), and only then uses Sam for finding decommitments to both zero and one.

Specifically, after the commit phase is over S̃ partitions trans into d ∈ o(n/ log n) blocks
trans1, . . . , transd, where transi contains the (i − 1) · log(n) + 1, · · · , i · log(n) bits sent by S (for
simplicity we assume here that in each round the sender communicates a single bit to the receiver).
Then S̃ iteratively applies Sam, such that after the i’th iteration, S̃ obtains random coins wi that are
consistent with trans1,...,i. If successful, S̃ makes an additional call (wd, Cq1,...,qd ,⊥), where Cq1,...,qd
is as in Section 1.3.4, to obtain additional coins w′d consistent with trans, and then uses wd and w′d
to break the commitment.

It is left to describe how S̃ obtains a consistent wi+1, given that it has previously obtained a
consistent wi. For that, S̃ keeps calling Sam on (wd, Cq1,...,qi , Cq1,...,qi+1) until it is replied with wi+1

that is consistent with trans1, . . . , transi+1. Since transi+1 contains only log n bits sent by S, we
expect S̃ to succeeds with high probability after about n such attempts.

1.4 Paper Organization

Notations and formal definitions are given in Section 2, where the oracle Sam and the separation
oracle discussed above is formally defined in Section 3. In Section 4 we show how to use Sam (by
normal form algorithms) to find collisions in any low-round complexity or low sender communication
protocols, wherein Section 5 we show that in the hands of normal-form algorithms, Sam is not useful
for inverting random permutations. In Section 6 we combine the above fact to derive our lower

14Consider for example C such that on input w it truncates the last bit of π(w) and outputs the result. Finding
collisions in C requires knowledge of π almost entirely.
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bounds on statistically hiding commitment schemes, where applications of the above results to
other cryptographic protocols, are given in Section 7. Finally, in Appendix A we give a refined
reduction of low-communication statistically hiding commitment schemes from low-communication
single-server private information retrieval, that implies a lower bound of low-communication private
information retrieval schemes.

2 Preliminaries

2.1 Conventions and Basic Notations

All logarithms are in base two. We use calligraphic letters to denote sets, uppercase for random
variables, and lowercase for values. Let poly be the set of all polynomials p : N → N. A function
µ : N → [0, 1] is negligible, denoted µ(n) = neg(n), if µ(n) < 1/p(n) for all p ∈ poly and large
enough n. For n ∈ N, let [n] = {1, . . . , n}. For a finite set X , denote by x← X the experiment of
choosing an element of X according to the uniform distribution, and by Un the uniform distribution
over the set {0, 1}n. Similarly, for a distribution D over a set U , denote by u← D the experiment
of choosing an element of U according to the distribution D. The statistical distance between two
distributions P and Q over a set U , denoted SD(P,Q), is defined as 1

2

∑
u∈U |PrP [u]− PrQ [u]|.

Given an event E, we denote by SD(X,Y | E) the statistical distance between the conditional
distributions X|E and Y |E.

2.2 Algorithms and Circuits

Let pptm stand for probabilistic algorithm (i.e., Turing machines) that runs in strict polynomial
time. The input and output length of a circuit C, denoted m(C) and `(C), are the number of input
wires and output wires in C respectively. Given a circuit family C = {Cn}n∈N and input x ∈ {0, 1}n,
let C(x) stands for Cn(x).

An oracle-aided algorithm A is an interactive Turing machines equipped with an additional tape
called the oracle tape; the Turing machine can make a query to the oracle by writing a string q
on its tape. It then receives a string ans (denoting the answer for this query) on the oracle tape.
Giving a deterministic function O, we denote by AO the algorithm defined by A with oracle access
O. The definition naturally extends to circuits, where in this case the circuit is equipped with
oracle gates. In all the above cases, we allow the access to several different oracles, where this is
nothing but a syntactic sugar to denote a single oracle that answers the queries it is asked upon by
the relevant oracle, according to some syntax imposed on the queries (i.e., each query starts with
a string telling the oracle it refers to).15

When dealing with an execution of an oracle-aided Turing-machines, we identify the queries
according to their chronological order, where when dealing with circuits, we assume an arbitrary
order that respects the topological structure of the circuit (i.e., a query asked in a gate of depth i,
appears before any of the queries asked in gates of depth larger than i).

A q-query oracle-aided algorithm asks at most q(n) oracle queries on input of length n, where
in a q-query oracle-aided circuit family {An}n∈N, the circuit Cn has at most q(n) oracle gates.

15The above only consider “oracles” that implement deterministic functions. We will not consider random or
state-full oracles.

10



An oracle-aided function mapping n-bit strings to `(n)-bit strings, stands for a deterministic
oracle-aided algorithm that given access to any oracle and n-bit input, outputs `(n)-bit string.16

2.3 Interactive Protocols

A two-party protocol π = (A,B) is a pair of pptm’s. The communication between the Turing
machines A and B is carried out in rounds. Each round consists of a message sent from A to
B followed by a message sent from the B to A. We call π an m-round protocol, if for every
possible random coins for the parties, the number of rounds is at exactly m. A communication
transcript trans (i.e., the “transcript”) is the list of messages exchanged between the parties in an
execution of the protocol, where trans1,...,j denotes the first j messages in trans. A view of a party
contains its input, its random tape and the messages exchanged by the parties during the execution.
Specifically, A’s view is a tuple vA = (iA, rA, trans), where iA is A’s input, rA are A’s coins, and
trans is the transcript of the execution. Let the random variable 〈(A(iA),B(iB)(i))〉 denote the
common transcript, the parties’ local outputs and the parties’s views in a random execution of
(A(iA),B(iB)(i)) (i.e., the private inputs of A and B are iA and iB respectively, and i is the common
input). We naturally refer to the different parts of 〈·〉 with 〈·〉trans, 〈·〉outA , 〈·〉outB , 〈·〉viewA and
〈·〉viewB , respectively.

The above notation naturally extends to oracle-aided protocols, where the main distinction is
that the view of an oracle-aided party also contains the answers it got from the oracle.

2.4 Random Permutations and One-Way Permutations

For n ∈ N, let Πn be the set of all permutations over {0, 1}n, and let Π be the set all infinite
collections π = (π1, π2, . . . ) with πi ∈ Πi for every n ∈ N (note that the set Π is not countable, and
as a result our probability analysis in this paper deals with non-countable probability spaces). Our
lower bound proof is based on analyzing random instances of such permutation collections.

Definition 3 (random permutations). A random choice of π = {πn}n∈N from Π, denoted π ← Π,
means that πn, for every i ∈ N, is chosen uniformly at random and independently from Πn.

A collection of permutations is hard (i.e., one-way), if no algorithm can invert it with high
probability.

Definition 4 (one-way permutations). A collection of permutations π ∈ Π is s(n)-hard, if for every
oracle-aided algorithm A of running time s(n) and all sufficiently large n, it holds that

Pr
y←{0,1}n

[
Aπ(1n, y) = π−1

n (y)
]
≤ 1

s(n)
,

where the probability is taken also over the random coins of A. The permutation π is polynomially-
hard, if it is s(n)-hard for some s(n) = nω(1).

It is well known (cf., [18, 43]) that random permutations (and also random trapdoor permuta-
tions, see below) are hard to invert when given oracle access to the permutation.

16Since we only consider deterministic stateless oracles, for any fixing of the oracle, such algorithm indeed computes
a function from n bits to `(n) bits.
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Theorem 5 ([18]). For large enough n ∈ N and any 2n/5-query circuit C, it holds that

Pr
πn←Πn

[
Pr

y←{0,1}n
[
Cπn(y) = π−1

n (y)
]
> 2−n/5

]
< 2−2n/2 .

In this paper we make a step further, showing that random permutations (and trapdoor random
permutations) are to invert even in the presence of the exponential-time oracle Sam.

2.5 Random Trapdoor Permutations and One-Way Trapdoor Permutations

A collection of trapdoor permutations is represented as a triplet τ =
(
G,F, F−1

)
. Informally, G

corresponds to a key generation procedure, which is queried on a string td (intended as the “trap-
door”) and produces a corresponding public key pk. The procedure F is the actual permutation,
which is queried on a public key pk and an input x. Finally, the procedure F−1 is the inverse of F
— G(td) = pk and F (pk, x) = y, implies F−1(td, y) = x.

Definition 6 (trapdoor permutations). Let T the set of all function triplets τ = (G,F, F−1) with

1. G ∈ Π.

2. For every n ∈ N and pk ∈ {0, 1}n, the function Fpk over {0, 1}n defined as Fpk(x) = F (pk, x),
is in Πn.

3. For every n ∈ N and sk, x ∈ {0, 1}n, it holds that F−1(sk, F (G(sk), x)) = x.

A tuple τ ∈ T is called a family of trapdoor permutations.

As in the case of standard permutations, we consider random instances of such trapdoor per-
mutations collections.

Definition 7 (random trapdoor permutations). A random choice τ = (G,F, F−1) from T, denoted
τ ← T, means that G ← Π, and every n ∈ N and pk ∈ {0, 1}n, the permutation Fpk, defined in
Definition 6, is chosen uniformly at random and independently from Πn.

A collection of trapdoor permutations is hard, if no algorithm, equipped with only the public
key, can invert it with high probability.

Definition 8. A family of trapdoor permutations τ = (G,F, F−1) ∈ T is s(n)-hard, if

Pr
td←{0,1}n;y←{0,1}n

[
Aτ (1n, G(td), y) = F−1(td, y)

]
≤ 1

s(n)
,

for every oracle-aided algorithm A of running time s(n) and all sufficiently large n, where the
probability is also taken over the random coins of A. The family τ is polynomially hard, if it is
s(n)-hard for some s(n) = nω(1).

Since we are concerned with providing a lower bound, we do not consider the most general
definition of trapdoor permutations. (see [21] for such a definition). In addition, Definition 6 refers
to the difficulty of inverting the permutation Fpk on a uniformly distributed image y, when given
only pk = G(td) and y. Some applications, however, require enhanced hardness conditions. For
example, it may be required (cf., [22, Appendix C ]) that it is hard to invert Fpk on y even given
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the random coins used in the generation of y. Our formulation captures such hardness condition,
and therefore the impossibility results proved in this paper hold also for enhanced trapdoor per-
mutations.17 Finally, since the generator G of an s-hard trapdoor permutations family, of the
above type, is an s-hard one-way permutation (i.e., no algorithm of running time s(n) inverts with
probability better than 1/s(n)), the lower bounds we state here with respect to families of trapdoor
permutations, yield analog bounds for one-way permutation.

2.6 Commitment Schemes

A commitment scheme is a two-stage interactive protocol between a sender and a receiver. Infor-
mally, after the first stage of the protocol, which is referred to as the commit stage, the sender is
bound to at most one value, not yet revealed to the receiver. In the second stage, which is referred
to as the reveal stage, the sender reveals its committed value to the receiver. In this paper, where
we are interested in proving an impossibility result for commitment schemes, it will be sufficient for
us to deal with bit-commitment schemes, i.e., commitment schemes in which the committed value
is only one bit.

Definition 9 (bit-commitment scheme). A bit-commitment scheme is a triplet of pptm’s (S,R,V)
such that

Pr
(decom,com)←〈(S(b),R)(1n)〉

outS,outR

[V(com, decom) = b] = 1,

for both b ∈ {0, 1} and all n ∈ N.18

The security of a commitment scheme can be defined in two complementary ways, protect-
ing against either an all-powerful sender or an all-powerful receiver. In this paper, we deal with
commitment schemes of the latter type, which are referred to as statistically hiding commitments.

Definition 10 (statistical hiding). Let Com = (S, ·, ·) be a bit-commitment scheme. For algorithm

R̃, bit b and integer n, let TransR̃(b, n) = 〈(S(b),R)(1n)〉trans. The scheme Com is ρ(n)-hiding,

if SD
(

TransR̃(0, n),TransR̃(1, n)
)
≤ ρ(n) for any algorithm R̃ and large enough n.19 Com is

statistically hiding, if it is ρ(n)-hiding for some negligible function ρ(n). When limiting the above to
R̃ = R, then Com is called honest-receiver ρ(n)-hiding/statistically hiding.

Definition 11 (computational binding). A bit-commitment scheme Com = (·,R,V) is µ(n)-binding,
if

Pr

[
((decom, decom′), com)←

〈
(S̃,R)(1n)

〉
outS̃,outR

:
V(com, decom) = 0,

V(com, decom′) = 1

]
< µ(n)

17A different enhancement, used by [31], requires the permutations’ domain to be polynomially dense in {0, 1}n.
Clearly, our formulation is polynomially dense.

18Note that there is no loss of generality in assuming that the decommitment stage in non interactive. This is since
any such interactive algorithm can be replaced with a non-interactive one as follows: let decom is the internal state of
S when the decommitment starts, and let V(decom) simulate the sender and the interactive verifier in the interactive
decommitment stage.

19It is more common to require that R̃’s views (and not the transcripts) are statistically close. Since. however, we

put no restriction on the computation power of R̃, the two definitions are equivalent.
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for any pptm S̃ and sufficiently large n. Com is computationally binding, if it is µ(n)-binding
[resp., honest-sender µ(n)-binding] for some negligible function µ(n), and is weakly binding, if it is
(1− 1/p(n))-binding for some polynomial p(n).

When limiting the above S̃ that acts honestly in the commit stage,20 then Com is called honest-
sender µ(n)-binding/computationally binding/weakly binding.

2.7 Black-Box Reductions

A reduction of a primitive P to a primitive Q is a construction of P out of Q. Such a construction
consists of showing that if there exists an implementation C of Q, then there exists an implementa-
tion MC of P . This is equivalent to showing that for every adversary that breaks MC, there exists
an adversary that breaks C. Such a reduction is semi black box, if it ignores the internal structure
of Q’s implementation, and it is fully black box, if the proof of correctness is black-box as well
(i.e., the adversary for breaking Q ignores the internal structure of both Q’s implementation and
of the [alleged] adversary breaking P ). Semi-black-box reductions are less restricted and thus more
powerful than fully black-box reductions. A taxonomy of black-box reductions was provided by
Reingold et al. [64], and the reader is referred to their paper for a more complete and formal view
of these notions.

We now formally define the class of constructions considered in this paper. Our main result is
concerned with the particular setting of fully black-box constructions of weakly binding statistically
hiding commitment schemes from trapdoor permutations. We focus here on a specific definition
for these particular primitives and we refer the reader to [64] for a more general definition.

Definition 12. A fully black-box construction of weakly binding, statistically hiding commitment
scheme from s(n)-hard family of trapdoor permutations, is a quadruple of oracle-aided pptm’s
(S,R,V,A) such that the following hold:

Correctness and hiding The scheme Comτ = (Sτ ,Rτ ,Vτ ) is a correct, honest-receiver statisti-
cally hiding commitment scheme for every τ ∈ T.

Black-box proof of binding: For every τ = (G,F, F−1) ∈ T and every algorithm S̃ such that S̃
breaks the weakly binding of (Sτ ,Rτ ,Vτ ), according to Definition 11, it holds that

Pr
td←{0,1}n;y←{0,1}n

[
Aτ (1n, G(td), y) = F−1(td, y)

]
>

1

s(n)

for infinitely many n’s.21

The construction is of honest-sender commitment, if the above only considers honest senders.

It would be useful for us to consider the following property of fully black-box reduction: consider
a malicious sender S̃ that breaks the binding of the commitment scheme and consider the machine
A that wishes to break the security of the trapdoor permutation. Then, A receives a security

20I.e., in the commitment stage S̃ acts as S̃(b; r), for some b ∈ {0, 1} and r that is uniformly chosen from the
possible coins for S.

21A natural relaxation of Definition 12 is to consider the running time of the “security proof” A as an additional
parameter. Allowing it, for instance, to run at exponential time when the trapdoor permutation of interest are
“exponentially hard” (i.e., s(n) = 2cn). For the sake of presentation clarity, however, we chose no to consider such
generalization.
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parameter 1n and invokes S̃ in a black-box manner. Definition 12, however, does not restrict the
range of security parameters that A is allowed to invoke S̃ on. For example, A may invoke S̃ on
security parameter 1n

2
, or even on security parameter 1Θ(s(n)), where s(n) is the running time of

A. The following definition will enable us to capture this property of the construction, and again,
we present a specific definition for our setting.

Definition 13. A black-box construction (S,R,V,A) according to Definition 12 is `-security-
parameter expanding, if for every malicious sender S̃, the machine A on security parameter 1n

invokes S̃ on security parameter at most 1`(n).

3 The Oracle Sam and the Separation Oracle

In this section we describe the oracle that is later used for proving our lower bounds. The oracle
is of the form

(
τ,Samτ,h

)
, where τ is a family of trapdoor permutations (i.e., τ ∈ T), and Samτ,h

is an oracle that, very informally, receives as input a description of a circuit C (which may contain
τ -gates) and a string w, and outputs (using h as its source of “randomness” as described below) a
uniformly distributed preimage of C(w) under the mapping defined by C. For generality, we define
Sam for an arbitrary oracle O and not necessarily for τ ∈ T. In Section 5 we use this generalization
for first showing that Sam is not useful for inverting random permutations, and then use this result
for proving that Sam is not useful for inverting random trapdoor permutations.

Moving to the formal description, a valid input (i.e., query) to Sam is a tuple of the form
(w,C,Cnext), where C and Cnext are oracle-aided circuits of the same input length m, and w ∈
{0, 1}m. The parameters C and w are allowed to (simultaneously) take the value ⊥. Let Q stand
for the family of all valid queries, and for q = (w,C,Cnext) ∈ Q let m(q) stand for the input length

of Cnext. Let H be the ensemble of permutation families
{
h = {hq}q∈Q : hq ∈ Πm(q)

}
; that is, each

h ∈ H is an infinite set of hash functions, indexed by q ∈ Q. The definition yields that for h← H,
the function hq is uniformly random permutation over {0, 1}m(q).We define Sam as follows.

Algorithm 14 (Sam).

Input: q = (w,C,Cnext) ∈ Q.

Oracles: O and h ∈ H.

Operation: Let m = m(q).

• If C = ⊥, output hq(0
m).

• Else, output hq(v), where v is the lexicographically smallest v ∈ {0, 1}m with CO(hq(v)) =
CO(w).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sam answers arbitrarily on queries not in Q. Note that the input parameter Cnext was merely
used to determine the value of m, but it will be crucial for the bookkeeping we employ below.

As mentioned in the introduction, algorithm Sam can be used for inverting any oracle, and
thus there are no one-way function, or trapdoor permutation, relative to Sam. Below we define
a restricted class of algorithms, called “normal form algorithms”, for which Sam is not useful for
inverting one-way functions, but is useful for breaking the binding of any low round-complexity, or
low sender-communication complexity, commitment.
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(⊥,⊥,C1)→ w1

(w1,C1,C2)→ w2

(w2,C2,C4)→ w4 (w2,C2,C5)→ w5

(w5,C5,C6)→ w6 (w5,C5,C7)→ w7

(w1,C1,C3)→ w3

(⊥,⊥,C8)→ w8

(w8,C8,C9)→ w9

(w9,C9,C10)→ w10

Figure 1: An example of a query forest that consists of two trees.

Normal form algorithms. Towards defining what normal form algorithms are, we associate the
following structure with the queries Sam is asked upon (the reader is referred to Section 3 for a
specific example).

Definition 15 (Query forest). Let q be an ordered list {q1, w1, . . . , qt, wt} of Sam queries/answers.
A query qj = (·, ·,C) ∈ q is the parent, with respect to q, of all queries in q of the from qi = (wj ,C, ·)
with i > j, that do not have a lower index parent in q. We let p(q) = q′ denote that q′ is the parent
of q, and let p(q) =⊥ in case q has no parent according to the above definition. The depth of q is
the depth of the above forest. An oracle-aided algorithm A is of query depth d, denote a d-depth
algorithm, if, when given access to Sam and an n-bit input, the resulting queries/answers list it
makes to Sam is of depth at most d(n).

We also formally define what a “circuit extension” means.

Definition 16 (circuit extension). A circuit C′ is a extension of an m-bit input, o-bit output circuit
C, if C′ has m input wires, and the function defined by the first o output wires of C′ (assuming some
arbitrary order on the wires) is identical to the function defined by the circuit C.

Namely, a circuit C′ is an “extension” of the circuit C, if it contains C as a “sub-circuit”. Equipped
with the above two definitions, we define normal form algorithms as follows.

Definition 17 (normal-form algorithms). An ordered list q = {q1, w1, . . . , qt, wt} of Sam
queries/answers is in a normal form, if q1, . . . , qt ∈ Q, exists no i 6= j ∈ [t] with qi = (·,Cnext) and
qj = (·,Cnext) for the same circuit Cnext, and the following holds for every q = (w,C 6=⊥,Cnext) ∈ q:

1. Cnext is an extension of C, and

2. p(q) 6=⊥.

An oracle-aided algorithm A is of a normal form, if, when given access to Sam, the resulting list of
queries/answers it makes to Sam is always in normal form.
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Note that in the query forest defined by a normal-form algorithms, the roots are all of the form
(·,⊥, ·). The above definitions naturally extend to oracle-aided (families of) circuits, assuming a
reasonable order on the circuit gates (see Section 2.2).

While restricted, normal-from algorithms are not at all useless. Specifically, combining the fully
black-box reduction from Θ(n/ log n)-round statistically hiding commitment to one-way permuta-
tion due to [33, 47] (extending [57]) and Theorem 21, yields the existence of an Θ(n/ log n)-depth
normal-form algorithm, that uses Samπ,· to invert any π ∈ Π. In contrast, in Section 5 we show
that an o(n/ log n)-depth normal-form algorithm cannot invert a random π ∈ Π.

We will also note that an algorithm with oracle access (i.e., black-box access) to a normal-form
algorithm, and without direct access to Sam, is a normal-form algorithm by itself.

Proposition 18. let A be oracle-aided algorithm, let B be a d-depth normal-from algorithm, and
let C be the algorithm that given oracle-access to Sam, acts as ABSam

(in particular A does not make
direct calls to Sam). Then algorithm C is in a normal form. Assume further that on input of length
n, algorithm A calls B on input of maximum length `(n), then C is of depth d(`(n)).

Proof. Since A accesses B in a black-box manner, the interaction of C with Sam is the combined
(possibly partial) interactions of B with Sam done in this execution. Since B is in a normal form,
the list of Sam queries/answers of each of these partial interactions is in a normal form. It follows
that the joint list is in such a from, and therefore so is C.

The depth restriction of C immediately follows from the above observation, and the depth
restriction of B. �

Augmented query complexity. We use the following measure for the query complexity of
Sam-aided algorithms.

Definition 19 (augmented query complexity). The augmented query complexity of an algorithm A
on input x with oracle access to SamO,h, is the number of oracle calls that A makes, counting each
call of the form Sam(·,C, ·) as t(C) — the (standard) query complexity of C. Algorithm A is has
augmented query complexity t (sometimes denoted, A is a t-augQueries algorithm), if on input of
length n, and any choice of O, h, it makes at most t(n) augmented queries.

Trivial circuit extension. While the above definition dictates Sam to use the same “random-
ness” when queried twice on the same query q (same function hq is used), it is simple to effectively
make Sam to use independent randomness on the “same” query (i.e., by making a dummy change,
one that does not effect the circuit input/output behaviour, to the circuit part of q).

Definition 20 (trivial circuit extension). A circuit C′ is a trivial extension of the circuit C, if
both circuits computes the same function. For a circuit C and i ∈ N, let exti(C) be the circuit C
augmented with i OR gates that have no effect on the output (i.e., their output is ignored).

Note that {exti(C)}i∈N are distinct, trivial extensions of C.

4 The Power of Sam

In this section we present normal-form algorithms that use Sam for finding collisions in any protocol
of low round complexity, or of low communication complexity, aided with any oracle. Namely, a
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cheating (normal-form) party can use Sam to interact with the other party such that the following
hold: 1) at the end of the protocol the cheating party outputs several independent random inputs
that are consistent with the execution of the protocol, and 2) the transcript of the resulting execution
has the same distribution as of a random honest execution of the protocol. The case of low round
complexity follows directly from the definition of Sam, where for the low communication complexity
case we have to work slightly harder. Along the way, we show that Sam can be used to find collisions
in any oracle-aided function with “short” outputs (i.e., the function output is significantly shorter
than its input).

The depth parameter of the attackers presented below are functions of the round or communica-
tion complexity of the protocol, or of the function’s output length. For being useful in applications
such as the ones given in Sections 6 and 7, this parameter needs to be “small”. Hence, the attacker
described below are only useful for the type of protocols and functions we considered above.

4.1 Finding Collisions in Protocols of Low Round Complexity

In the following we focus on no-input protocols that get the security parameter 1n as their common
input.

Theorem 21. For every d-round, t-query oracle-aided protocol (A,B), there exists a deterministic
normal-from algorithm Ã such that the following hold for every n, k ∈ N and function O: let H be

uniformly distributed over H and let (T̃rans, (R1, . . . , Rk)) =
〈

(ÃO,Sam
O,H

(1k),BO)(1n)
〉
trans,outÃ

,22

then

1. T̃rans has the same distribution as Trans =
〈
(AO,BO)(1n)

〉
trans

.

2. R1, . . . , Rk are sampled independently from the distribution over the random coins of A that

are consistent with O, T̃rans and 1n.

3. Ã makes queries of depth at most d(n) + 1.

4. Ã makes k + d(n) Sam-queries, all on t(n)-query circuits.

5. Assuming A is a pptm, then Ã runs in time p(n) · k for some p ∈ poly.

Proof. For ease of notation, we assume that B sends the first message in (A,B). We fix n and k,
and omit the security parameter 1n whenever its value is clear from the context.

In order for Ã to interact with Sam, it identifies A with the sequence of circuits A1, . . . ,Ad for
which the following is an accurate description of A’s actions: upon reliving the i’th message bi from
B, A sends ai = Ai(rA, (b1, . . . , bi)) to B, where rA are A’s random coins, and b1, . . . , bi−1 are the
first i− 1 messages sent by B. We assume without loss of generality that each message ai contains
the previous messages a1, . . . ai−1 as its prefix, and therefore each circuit Ai is an extension of Ai−1

(as discussed in Section 3). Note that assuming A is a pptm, then descriptions of the circuits
A1, . . . ,Ad can be computed in polynomial-time from the description of A.

Given the above discussion, the oracle-aided interactive algorithm Ã is defined as follows.

Algorithm 22 (Ã).

22I.e., the common transcript and A’s output in a random execution of (ÃSamO,h

(1k),BO)(1n).
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Input: 1n and k ∈ N.

Oracles: O and SamO,h for some h ∈ H.

Operation:

Round 1 ≤ i ≤ d = d(n): upon receiving the i’th message bi from B.

1. Let Ab1,··· ,bi be the circuit Ai defined above with (b1, · · · , bi) fixed as its second input (i.e.,
as B’s first i messages).

2. In case i = 1 (first round), set r1 = SamO,h(⊥,⊥,Ab1).
Otherwise, set ri = SamO,h(ri−1,Ab1,··· ,bi−1

,Ab1,··· ,bi).

3. Send AO(b1,··· ,bi)(ri) back to B.

Output phase:

1. For j ∈ [k] set rd,j = SamO,h(rd,Ab1,··· ,bd , extj(Ab1,··· ,bd)).
23

2. Output rd,1, . . . , rd,k.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that the only role of the circuits {extj(Ab1,··· ,bd))}j∈[d] used in the output phase of the above

description of Ã, is causing Sam to use independent randomness per call (i.e., by using a different
function from h). It is also easy to verify that Ã queries Sam up to depth at most d(n)+1, performs
at most (d(n) + k) · t(n) augmented oracle queries, and that Ã runs in polynomial time (excluding
the oracle calls) assuming that A is a pptm. Since Ã queries Sam up to depth d(n) + 1 and the
assumption that Ai is an extension of Ai−1, yields that Ã is indeed in a normal form. The above
observation yields that rd,1, . . . , rd,k are independently distributed conditioned on trans, where each
of them is uniformly distributed over the random coins of A that are consistent with O and trans –
the transcript generated by the interaction of (ÃSamO,H (1k),BO). Hence, for completing the proof

all we need to prove is that the transcript induced by a random execution of (ÃSamO,H (1k),BO),

which we denote here by T̃rans, has the same distribution as that induced by a random execution
(AO,BO), denoted here as Trans.

Claim 23. T̃rans and Trans are identically distributed.

Proof. Notice that in each round of the protocol, Ã acts exactly like A would on the given (partial)
transcript. That is, like A does on random coins that are sampled according to the right distribution:
the distribution of A’s coin in a random execution of (A,B) that yields this transcript. The formal
(and somewhat tedious) proof follows.

The proof is by induction on i, the number of messages sent so far in the protocol, that T̃rans1,...,i

and Trans1,...,i are identically distributed. The base case i = 0 is trivial. In the following we

condition on T̃rans1,...,i = Trans1,...,i = trans, and prove that under this conditioning T̃rans1,...,i+1

and Trans1,...,i+1 are identically distributed.

Note that both in (ÃSamO,h ,BO) and in (AO,BO), the distribution of the (conditional) parties’
joint view, is a product distribution. (This hold since the only oracle shared by the parties, i.e., O,

23Recall that {extj(Ab1,··· ,bd))}j∈[d] are arbitrary distinct extensions of Ab1,··· ,bd . The role of these extensions is to

make Sam to use fresh randomness in each call (i.e., to apply a different part of h).
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is fixed.) In particular, the distribution of B’s coins in both protocols is uniform over the possible
coins for B that are consistent with O and trans (and the definition of B). Since the next message
of a party is a deterministic function of O, trans and its random coins, in case the i+ 1 message is

in B’s control, it holds that T̃rans1,...,i+1 and Trans1,...,i+1 are identically distributed.

The complimentary case, where the i + 1 message is in Ã’s or in A’s control, is slightly more
complicated. Note that the i + 1 message sent by Ã is determined by the value of ri+1, returned
by Sam, exactly in the same way that the i + 1 message sent by A is determined by its random
coins rA; in both cases, the same deterministic function is applied to O, trans and the coins. We
complete the proof showing that ri+1 and rA are identically distributed.

Similarly to the coins of B discussed above, rA are uniformly distributed over the possible coins
for A that are consistent with O and trans (and the definition of A). The value of ri+1 on the
other hand, is determined by value of Hqi+1 , where qi+1 is the query Ã makes to Sam in the i + 1

round. Since Hqi+1 was not queried by Sam in the first i rounds of (Ã,B), under the above the
conditioning Hqi+1 is a uniformly chosen permutation over the coins of A. Hence, the definition of
Sam yields that, again, under the above conditioning, the coins it returns are uniformly distributed
over the coins of A that are consistent with O and trans, yielding that ri+1 and rA are identically
distributed. �

�

4.2 Inverting Functions of Short Outputs

In this section we show how to use Sam to invert any function (i.e., deterministic algorithm) with
oracle access to a trapdoor permutation oracle, given that the function output is “short”. Combined
with the results of Section 5, this would imply, for instance, that it is impossible to use in a fully
black-box manner an n-bit one-way function to construct an o(n)-bit one-way function.24

Theorem 24. For every t-query oracle-aided function f : {0, 1}n 7→ {0, 1}`(n), there exists a de-
terministic normal-from algorithm Inv such that the following holds for every n, k, d ∈ N, ε ∈ (0, 1]

and a function O: let (X1, . . . , Xk) = InvO,Sam
O,H

(1n, k, d, ε, fO(X)), where X and H are uniformly
chosen from {0, 1}n and H respectively, then

1. Pr[(X1, . . . , Xk) =⊥] ≤ ε.

2. Conditioned on (X1, . . . , Xk) 6=⊥, the variables X1, . . . , Xk are iid over (fO)−1(fO(X)).

3. Inv makes queries of depth at most d+ 1.

4. Inv makes at most k + d · 2d`(n)/de/ε Sam queries, all on t-query circuits.

5. Assuming f is polynomial-time computable, then Inv runs in time p(n) · (2d`(n)/de + k), for
some p ∈ poly.

Proof. Fix n, k and O. For ease of notation we and omit the security parameter 1n and assume
` is a multiple of d. Let v = `/d, and for x ∈ {0, 1}n and i ∈ [v], let f(x)(i) denote the i’th block
of f(x), i.e., f(x)(i−1)d+1,...,id. For i ∈ [d], let fi be the circuit that on input x ∈ {0, 1}n outputs

24Note that the following theorem does not stand in contradicting with the one-wayness of a random permutation
in the presence of Sam, proved in Section 5. The functions in consideration there have long outputs.
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f(x)(1), . . . , f(x)(i). We invert f on y = (y1, . . . , yd) ∈ ({0, 1}v)d, by gradually causing Sam to
output xi with fi(xi) = (y1, . . . , yi) for i = 1 to d. Doing that for i = 1 is easy: keep calling Sam on
input (⊥,⊥, f1), until it returns x1 with f1(x1) = y1. Since a call to Sam(⊥,⊥, f1) returns uniform
and independent element in {0, 1}n, about 2v Sam calls yield the desired answer. Assuming that we
have successfully made Sam to answer on (·, ·, fi−1) with xi−1 such that fi−1(xi−1) = (y1, . . . , yi−1),
we make Sam answer with xi such that fi(xi) = (y1, . . . , yi) using similar means to the ones used
to get xi; keep calling Sam on input (xi−1, fi−1, fi), until it returns the right xi. As in the first
round, about 2v Sam calls suffices to get the desired answer. The formal definition of algorithm Inv
is given below.

Algorithm 25 (Inv).

Input: 1n, k, d ∈ N, ε ∈ (0, 1] and y = (y1, . . . , yd) ∈ ({0, 1}v)d.
Oracles: O and SamO,h, for some h ∈ H.

Operation:

1. For i = 1 to d do:

Set j = 0, and do the following loop:

(a) j++.

(b) Let xi = SamO,h(xi−1, f
∗
i−1, extj(fi)). In the case i = 1, set f∗i−1 = xi−1 =⊥.

(c) If fi(xi) = (y1, . . . , yi), set f∗i = extj(fi) and break the inner loop.

(d) If overall number of Sam calls exceeds d · 2v/ε, return ⊥ and abort.

2. For j = 1 to k: set xd,j = SamO,h(xd, f
∗
d , extj(f

∗
d )).

3. Return xd,1, . . . , xd,k.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The second and third properties of Inv immediately follow from the definition of Sam, so the
only interesting part is showing that Inv aborts (i.e., outputs ⊥) with probability at most ε. Let

Ĩnv be the unbounded version of Inv, i.e., Step 1.(d) is removed. It is clear that Ĩnv’s output is
identical to that of Inv conditioned on Inv not aborting, and that the probability that Inv aborts is
the probability that Ĩnv make more than d · 2v/ε Sam calls. We show that the expected number of

Sam calls made by Ĩnv is bounded by d · 2v, and proof follows by a Markov bound.
We bound the expected number of overall Sam calls made by Ĩnv in a single round of Step 1,

and the proof follows by linearity of expectation. Fix a value for y1, . . . , yi−1. Let Y = f(X)(i)

conditioned that fi−1(X) = y1, . . . , yi−1, and let Yj be the value of f(xi)(i) sampled in the j’th

inner loop of a random execution of Ĩnv(k, d, ε, y1, . . . , yi−1, . . .). If less than j inner loops happen,
we let Yj be an independent copy of Y1. The definition of Sam yields that over a random choice of
h, the variables Y, Y1, Y2, . . . are iid over {0, 1}v. It follows that Pr [Y = Yj ] ≥ 2−v for every j, and
the expected value of the first j with Yj = Y is bounded by 2v. Hence, the expected number of

Sam calls made by Ĩnv (over the choice of X and h) is bounded by d · 2v. �
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4.3 Finding Collisions in Low Communication Complexity Protocols

The following theorems show how to find collision in protocols in which the communication of the
“attacking” party is low.

Theorem 26. Let π = (A,B) oracle-aided protocol in which A, on input of length n, makes at
most t(n) oracle-queries and sends at most c(n) bits. Then there exists a deterministic normal-
from algorithm Inv such that the following holds for every n, k, d ∈ N, ε ∈ (0, 1] and function O:

let H be uniformly distributed over H and let (X1, . . . , Xk) = InvO,Sam
O,H

(1n, 1k, d, ε,Trans), where
Trans =

〈
πO)(1n)

〉
trans

, then

1. Pr[(X1, . . . , Xk) =⊥] ≤ ε,

2. Conditioned on (X1, . . . , Xk) 6=⊥, the variables X1, . . . , Xk are iid over the random coins of
A that are consistent with Trans.

3. Inv makes queries of depth at most d+ 1, and

4. Inv makes at most k + d · 2dc(n)/de/ε Sam-queries, all on t(n)-query circuits.

5. Assuming that π is polynomial-time computable, then Inv runs in time p(n) · (2dc(n)/de + k),
for some p ∈ poly.

Remark 27 (Comparing Theorem 26 to Theorem 21). Both Theorem 21 and Theorem 26 are
useful for finding collisions in the given protocols. While the attacker of Theorem 21 never fails, the
attacker of Theorem 26 (who might fail) has the advantage of not using Sam through the execution,
but only after it ends. We use this property in Section 6.2 to rule out constructions of honest-sender
low sender-communication commitments from trapdoor functions.

Proof of Theorem 26. We start by assuming that B is deterministic. Let f : {0, 1}n 7→ {0, 1}c(n)

map A’s random coins to the messages it send to B in π. Consider the algorithm InvD that on input
(x, trans) returns Invf (x, transA) (with the same oracles), for Invf being the inverter Theorem 24
guarantees for the function f , and transA being A’s part in trans. By Theorem 24, algorithm InvD
satisfies the first three and fifth properties, stated in the theorem, and makes at most k+d·2dc(n)/de/ε
Sam-queries. Algorithm InvD, however, might apply Sam on circuits of query complexity larger than
t(n) (as they contain the queries made by B).

Consider the following variant of InvD. For a transcript trans of π, let gtrans : {0, 1}n 7→ {0, 1}c(n)

map A’s random coins to the messages it sends to B in π, assuming that B sends A the message it
sends in trans. On input (x, trans), algorithm Inv returns Invgtrans(x, transA) (with the same oracles),
for Invgtrans being the inverter Theorem 24 guarantees for the function gtrans, and transA being A’s
part in trans. The point to notice is that by construction, on the same input and a random choice of
h, algorithms Inv and InvD have exactly the same output distribution. In follows that Inv satisfies all
the properties satisfied by InvD, where by construction, on only invoke Sam on t(n)-query circuits.
Furthermore, since the implementation of Inv in obvious to the definition of B, it has the same
success probability also when considering a probabilistic B. �
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5 Random Permutations are Hard for Low-Depth Normal-Form
Algorithms

In this section we prove that for low-depth normal-from algorithms, Sam is not useful for inverting
random permutations and random trapdoor permutations. We start with random permutations,
and then extend the result to random trapdoor permutations.

Following [18], we state our results in the stronger non-uniform setting. Hence, our goal is to
upper bound the success probability of a circuit family having oracle access to Sam in the task of
inverting a uniformly chosen permutation π ∈ Π on a uniformly chosen image y ∈ {0, 1}n. We
relate this success probability to the maximal depth of the Sam-queries made by the circuit family
and to the augmented query complexity of the family (see Definition 19). We prove the following
theorem.

Theorem 28. The following holds for large enough n ∈ N: for every t-augQueries, d-depth,
normal-form circuit A such that t3d+1 < 2n/8, it holds that

Pr
π←Π,h←H
y←{0,1}n

[
Aπ,Sam

π,h

(y) = π−1(y)
]
≤ 2/t.

Before turning to prove Theorem 28, we first provide a brief overview of the structure of the
proof. Consider a normal-from circuit A trying to invert an input y ∈ {0, 1}n (i.e., to find π−1(y)),
while having oracle access to both π and Sam. We distinguish between two cases: one in which A
obtains information on the value π−1(y) via one of its Sam-queries, and the other in which none of
A’s Sam-queries provides sufficient information for retrieving π−1(y). Specifically, we define:

Definition 29 (Hits). An execution Aπ,Sam
π,h

(y) is hitting, denoted by the event HitA,π,h(y), if
A makes a Sam-query q = (·,C, ·), replied with w such that the computation Cπ(w) queries π on
π−1(y).

The proof proceeds in two modular parts. In the first part of the proof, we consider the case that
the event Hit(y) = HitA,π,h(y) does not occur, and prove a “reconstruction lemma” that extends
an information-theoretic argument of Gennaro and Trevisan [16]. They showed that if a circuit A
manages to invert a permutation π on a relatively large set of images, then this permutation has
a rather short representation given A. We generalize their argument to deal with circuits having
oracle access to Sam. In this part we do not restrict the depth of A, neither require it to be in a
normal form.

Lemma 30. The following holds for large enough n ∈ N: let A be a 2n/5-augQueries circuit, then

Pr
π←Π,h←H

[
Pr

y←{0,1}n

[
Aπ,Sam

π,h

(y) = π−1(y) ∧ ¬HitA,π,h(y)
]
≥ 2−n/5

]
≤ 2−2

3n
5 .

Namely in the “non-hitting case”, oracle access to Sam does not improve ones chances to invert
a random permutation.

In the second part of the proof, we show that the case where the event Hit(y) does occur, can
be reduced to the case where the event Hit(y) does not occur. Specifically, given a circuit A that
tries to invert a permutation π, we construct a circuit M that succeeds almost as well as A, without
M’s Sam-queries producing any y-hits. For this part, the query complexity of the circuit, its depth
restriction and it being in a normal form, all play an instrumental role.

23



Lemma 31. For every t-augQueries, d-depth normal-from circuit A there exists a 2t-augQueries
circuit M such that the following holds: assuming that

Pr
π←Π,h←H
y←{0,1}n

[HitA,π,h(y)] ≥ ε

for ε ∈ [0, 1/t], then

Pr
π←Π,h←H
y←{0,1}n

[
Mπ,Samπ,h(y) = π−1(y) ∧ ¬HitM,π,h(y)

]
≥ (ε/2)3d+1.

In what follows we show that Theorem 28 is a straightforward corollary of Lemmas 30 and 31.
In Section 5.1 we extend our statement to deal with trapdoor permutations. Then, in Sections 5.2
and 5.3 we prove Lemmas 30 and 31, respectively.

Proof of Theorem 28. Assume towards a contradiction that for infinitely many n’s, there exists a
t-query, d-depth normal-from circuit A such that t3d+1 < 2n/8 and

Pr
π←Π,h←H
y←{0,1}n

[
Aπ,Sam

π,h

(y) = π−1(y)
]
≥ 2/t.

Consider now the circuit A′ that emulates A and makes sure that whenever A inverts y then the
event HitA′,π,h(y) occurs. Note that A′ can be easily implemented based on A by performing two
additional queries to Sam (containing a circuit with a π-gate that has hardwired the output of A).
Thus, A′ is a (t+ 2)-query d-depth normal-from circuit, and it holds that

Pr
π←Π,h←H
y←{0,1}n

[
HitA′,π,h(y)

]
≥ 2/t.

Lemma 31 implies that for infinitely many n’s there exists an (2(t+ 2) ≤ 2n/7)-augQueries circuit
M such that

Pr
π←Π,h←H
y←{0,1}n

[
Mπ,Samπ,h(y) = π−1(y) ∧ ¬HitM,π,h(y)

]
≥
(

1

t

)3d+1

>
1

2n/8
,

in contradiction to Lemma 30. �

5.1 Extension to Trapdoor Permutations

We prove the following theorem:

Theorem 32. For t-augQueries, d-depth normal-form circuit A with (3t)3d+1 < 2n/8 and large
enough n, it holds that

α := Pr
τ=(G,F,F−1)←T,h←H
td←{0,1}n,y←{0,1}n

[
Aτ,Sam

τ,h

(G(td), y) = F−1(td, y)
]
≤ 4/t.

Assume A inverts F with probability 5/t. If A queries F−1(td, ·) with probability 2.5/t, then
it can be used to invert (the random permutation) G with this probability, in contradiction to
Theorem 28. If the latter does not happen, then A inverts F with probability 2.5/t without using
F−1, which is again in contradiction to Theorem 28. Formal proof follows.
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Proof. Let n be sufficiently large as required for Theorem 28. For τ ∈ T and td ∈ {0, 1}n, let τ¬td
be the variant of τ that answers on queries of the form F−1(td, ·) with ⊥. We claim that

β := Pr
τ=(G,F,F−1)←T,h←H
td←{0,1}n,y←{0,1}n

[
Aτ¬td,Sam

τ¬td,h
(G(td), y) = F−1(td, y)

]
> α− 2/t. (1)

Assuming Equation (1) holds, then it still holds for some fixing of G, td and
{
Fpk′

}
pk′ 6=G(tk)

. Hence,

there exists a t-augQueries, d-depth normal-form circuit B, with the above fixing “hardwired” into
it, such that

Pr
Fpk←Π,h←H
y←{0,1}n

[
BFpk,Sam

Fpk,h

(π(y)) = (Fpk)
−1(y)

]
> α− 2/t,

and Theorem 28 yields that α ≤ 4/t.
The rest of the proof is devoted for proving Equation (1). The augmented queries made by an

algorithm with oracle to Sam, are those queries made by the algorithm directly, plus those queries
made by C(w) and C(w′), for each query w′ = Sam(w,C, ·) made by the algorithm. It is easy to
verify that

Pr
τ=(G,F,F−1)←T,h←H
td←{0,1}n,y←{0,1}n

[
Aτ¬td,Sam

τ¬td,h
(G(td), y) makes an augmented query F−1(td, ·)

]
≥ α− β (2)

For a circuit C and pk ∈ {0, 1}n, let Cpk be the variant of C that before each query of the
form F−1(td, ·), it queries G on td, and if the answer is pk, it replies to the query F−1 with
⊥ (without making the call). Let D the variant of Apk that on input (pk, y), replaces each Sam

query (·,C,Cnext) done by Apk, with the query (·,Cpk,Cpknext). That is, Dτ,Sam
τ,h

(G(td), y) emulates

Aτ¬td,Sam
τ¬td,h(G(td), y). It follows that

Pr
τ=(G,F,F−1)←T,h←H
td←{0,1}n,y←{0,1}n

[
Dτ,Sam

τ,h

(pk = G(td), y) makes the augmented query G(td)
]
≥ α− β (3)

Let E be the variant of D, that if one of its augmented queries is of the form G(td′) = pk, it halts
and return td′. It is clear that

Pr
τ=(G,F,F−1)←T,h←H
td←{0,1}n,y←{0,1}n

[
Eτ,Sam

τ,h

(pk = G(td), y) = td
]
≥ α− β (4)

In particular, there exists a fix value (y, F ) for which the above holds with respect to this fixing.25

Let I be the function that inverts F given only the public key. That is, I(pk, y) = (Fpk)
−1 (recall

that Fpk(y) = F (pk, y)). Let M the variant of E with this fixed value of (y, F, I) “hardwired” into
it that replaces each call F−1(td′, y′) made by E, with I(G(td′, y′)). It is clear that

Pr
G←Π,h←H
td←{0,1}n

[
MG,SamG,h(G(td)) = G−1(td)

]
≥ α− β,

and, by inspection, M is a 3t-augQueries, d-depth normal-form circuit. Theorem 28 yields that
α− β ≤ 2/t, and Equation (1) follows. �

25By the definition of T, such fixing does not change the distribution of G (i.e., G is a uniform random permutation
giving this fixing).
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5.2 The Reconstruction Lemma — Proving Lemma 30

The following extends the reconstruction lemma of Gennaro and Trevisan [16]. The idea underlying
the claim is the following: if a circuit A manages to invert a permutation π on some set, then given
the circuit A, the permutation π can be described without specifying its value on a relatively large
fraction of this set.

Claim 33. There exists a deterministic algorithm Decoder such that the following holds for every
t-augQueries circuit A, π ∈ Π, h ∈ H and n ∈ N. Assuming that

Pr
y←{0,1}n

[
Aπ,Sam

π,h

(y) = π−1
n (y) ∧ ¬HitA,π,h(y)

]
≥ ε,

then there exists an
(

2 log
(

2n

a

)
+ log((2n − a)!)

)
-bit string aux, such that Decoder(aux,A, h, π−n) =

πn, where a ≥ ε2n/ (2t) and π−n = {πi}i∈N\{n}.

Proof. Denote by I ⊆ {0, 1}n the set of points y ∈ {0, 1}n on which Aπ,Sam
π,h

successfully in-
verts πn with no y-hits. We claim that there exists a relatively large set Y ⊆ I, such that
the value of π−1

n on the set Y, is determined by the description of, A, h, π−n, and the set
Z =

{
(y, π−1

n (y)) : y ∈ {0, 1}n \ Y
}

.
The set Y is defined via the following process.

Algorithm 34.

Set Y = ∅, and repeat until I = ∅:

1. Remove the lexicographically smallest element y from I and insert it into Y.

2. Let {(w1,C1, ·), w′1, . . . , (wt,Ct, ·), w′t} be the queries made by Aπ,Sam
π,h

(y) to Sam and
their answers, and let y1, . . . , yt be the outputs of the πn-gates in the computations of
Cπ1 (w1),Cπ1 (w′1), . . . ,Cπt (wt),C

π
t (w′t) and the outputs of all A’s direct queries to πn. Then,

remove y1, . . . , yt from I.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since at each iteration of the above process one element is inserted into the set Y and at most
2t elements are removed from the set I, and since the I initially contains at least ε2n elements,
when the process terminates we have that

a := |Y| ≥ ε2n/2t (5)

In addition, note that given the set Y and X = π−1
n (Y), the set Z can be described using log((2n−

|Y|)!) bits (by giving the order of the elements of {0, 1}n \ Y, induced by applying πn on X ). It
follows that Y, can be described by a string aux with

|aux| ≤ 2 log

(
2n

a

)
+ log((2n − a)!) (6)

We complete the proof by presenting the algorithm Decoder that reconstructs πn from the descrip-
tion of A, h, π−n, Y and Z.

Algorithm 35 (Decoder).
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Input: The description of A, h, π−n, Y and Z.

Operation: For each y ∈ Y taken in lexicographical increasing order:

1. Emulate Aπ,Sam
π,h

(y) by answering A’s query as follows:

(a) On a π-query q ∈ {0, 1}∗:
• If π(q) is defined by π−n, the set Z or the previously reconstructed values of πn,

answer with this value.

• Else, halt the emulation and set π−1
n (y) = q.

(b) On a Sam-query q = (w,C,Cnext) ∈ Q:26

i. If C =⊥ answer with hq(0
m), where m is the input length of Cnext.

ii. Else answer with hq(v), where v ∈ {0, 1}n is the minimal element such that Cπ(hq(v))
can be evaluated (i.e., all πn-queries made by C are defined by π−n, the set Z or the
previously reconstructed values of πn) and its resulting value is Cπ(w).

2. If the emulation reached its end and output x, set π−1
n (y) = x.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assume that Decoder has recontracted πn correctly for the first k elements of Y, we proved that
it also does so for the (k+ 1) element y of Y. To do that we show that on each query q asked by A
during the emulation done by Decoder, either Decoder halts on q and then q = π−1

n (y), or Decoder
answers q correctly. (Hence, Decoder sets the right value for π−1

n (y)).
We first handle the case that q is a π-query. It is easy to verify that Decoder answers correctly

in case it does not halt. If halting, it must be the case that q ∈ π−1
n (Y) and πn(q) ≥lex y (otherwise,

πn(q) would have been previously constructed). On the other hand, the definition of Y yields that
πn(q) ≤lex y (otherwise, (πn(q), q) would have added to Z), yielding that q = π−1

n (y).
In case q is a Sam-query (w,C,Cnext) ∈ Q, we assume without loss of generality that C 6=⊥ (the

case C =⊥ is clear), and show that Decoder returns hq(v) for the lexicographically smallest v such
that Cπ(h(v)) = Cπ(w) (hence, it answers correctly). Let v0 be this minimal v. It is sufficient to
show that Decoder has enough information to evaluate Cπ(hq(v0)). Indeed, since no y-hit happens in

the computation of Aπ,Sam
π,h

(y), the evaluation of Cπ(hq(v0)) does not query πn on π−1
n (y). Hence,

the definition of Y guarantees that the answers to all queries asked by Cπ(hq(v0)) are described in
Z, or were previously reconstructed during the emulation of Decoder. �

Now we are able to prove the following lemma, which (by holding for any fix choice of π−n and
h) is a stronger form of Lemma 30.

Lemma 36. The following holds for all sufficiently large n, π−n = {πi ∈ Πi}i∈N\{n}, h ∈ H and

2n/5-augQueries circuit A:

Pr
πn←Πn

[
Pr

y←{0,1}n

[
Aπ,Sam

π,h

(y) = π−1
n (y) ∧ ¬HitA,π,h(y)

]
≥ 2−n/5

]
≤ 2−2

3n
5 .

26We assume without loss of generality that A’s Sam-queries are always in Q, since it can answer other Sam-queries
(i.e., not in Q) by itself (by answering ⊥).
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Proof. Claim 33 implies that the fraction of permutations πn ∈ Πn for which

Pr
y←{0,1}n

[
Aπ,Sam

π,h

(y) = π−1
n (y) ∧ ¬HitA,π,h(y)

]
≥ 2−n/5 (7)

is at most α =
(2n

a )
2
(2n−a)!

2n! =
(2n

a )
a! , for a ≥ 2−n/5 · 2n/(2 · 2n/5) = 2

3n
5 /2. Using the inequalities

a! ≥ (a/e)a and
(

2n

a

)
≤ (2ne/a)a, it holds that α ≤

(
2ne2

a2

)a
≤
(

4e2

2n/5

)a
≤ 2−a for sufficiently large

n. �

5.3 Avoiding y-Hits by Sam – Proving Lemma 31

Fix n ∈ N and a t-augQueries, d-depth normal-from circuit A such that

Pr
π←Π,h←H
y←{0,1}n

[HitA,π,h(y)] ≥ ε (8)

for ε ∈ [0, 1/t]. We prove Lemma 31 by presenting a 2t-augQueries, d-depth normal-from circuit
M, with

Pr
π←Π,h←H
y←{0,1}n

[
Mπ,Samπ,h(y) = π−1(y) ∧ ¬HitM,π,h(y)

]
≥ (ε/2)3d+1 (9)

Let q = (w,C, ·) be a Sam-query asked in ASamπ,h(y) that produces a y-hit (i.e., Cπ(Samπ,h(q))
queries π on π−1(y)). Since A is in a normal form, previously to asking q it made a Sam-query
q′ = (·, ·,C), and answered by w. The main observation (see Sections 5.3.1 and 5.3.2) is that, with
high probability, Cπ(w) also queries π on π−1(y). This suggests the following circuit for inverting
random permutations with no hits.

Algorithm 37 (M).

Input: y ∈ {0, 1}n.

Oracle: π ∈ Π and Sam = Samπ,h for some h ∈ H.

Operation:

1. Emulate Aπ,Sam
π,h

(y) while adding the following check each Sam-query (·, ·,Cnext) that A makes
that answered with w:

If Cπnext(w) queries π on x = π−1(y), return x and halt.

2. Return ⊥.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The rest of the proof is devoted for proving that Equation (9) holds for the above definition of
M. The heart of the proof lies in the following lemma.

Lemma 38. The following holds for every π ∈ Π and y ∈ {0, 1}n. Assume that

Pr
h←H

[HitA,π,h(y)] ≥ δ (10)

for δ ∈ [0, 1/t], then

Pr
h←H

[
Mπ,Samπ,h(y) = π−1(y) ∧ ¬HitM,π,h(y)

]
≥ δ3d.
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We prove Lemma 38 in the next section, but first let us use it for concluding the proof Lemma 31.

Proof of Lemma 31. Let T = {(y, π) ∈ {0, 1}n × Π: Prh←H[Aπ,Sam
π,h

(y) = π−1(y) ∧ HitA,π,h(y)] ≥
ε/2}. The assumed success probability of A (as stated in Equation (8)) together with a simple
averaging argument, yield that

Pr
y←{0,1}n,π←Π

[(y, π) ∈ T ] ≥ ε/2 (11)

Hence, by Lemma 38

Pr
h←H

[
Mπ,Samπ,h(y) = π−1(y) ∧ ¬HitM,π,h(y)

]
≥ (ε/2)3d

for every (y, π) ∈ T . We conclude that

Pr
π←Π,h←H
y←{0,1}n

[
Mπ,Samπ,h(y) = π−1(y) ∧ ¬HitM,π,h(y)

]
≥ Pr

π←Π,y←{0,1}n
[(y, π) ∈ T ] · Pr

π←Π,h←H
y←{0,1}n

[
Mπ,Samπ,h(y) = π−1(y) ∧ ¬HitM,π,h(y) | (y, π) ∈ T

]
≥ ε/2 · (ε/2)3d = (ε/2)3d+1.

�

5.3.1 Proving Lemma 38 — The Single-Path Case

In this section we prove Lemma 38 for a simplified case that captures the main difficulties of the
proof. The extension for the general case is given in Section 5.3.2. In this simplified case A queries
Sam on exactly d queries that lie along a single path — A queries Sam with q1, . . . , qd satisfying
p(qi) = qi−1 for every 2 ≤ i ≤ d (i.e., qi = (wi,Ci,Cnext,i) implies that wi is Sam’s answer on
qi−1 = (·, ·,Ci)).

In the following we fix y ∈ {0, 1}n, π ∈ Π and δ ∈ [0, 1/t] such that

Pr
h←H

[Hit := HitA,π,h(y)] ≥ δ. (12)

We let hit(C, w), for circuit C and string w, be the event that C(w) queries π on π−1(y) (hereafter,
C(x) stands for Cπ(x)), and use the following random variables.

Definition 39. The following random variables are defined with respect to a random execution of
Aπ,Sam

π,H
(y), where H is uniformly drawn from H.27

• Q1 = (W1 =⊥,C1 =⊥,C2), Q2 = (W2,C2,C3), . . . , Qd = (Wd,Cd, ·) denote A’s queries to
Sam.28

• Hiti, for i ∈ [d], is the event hit(Ci,Wi+1), letting hit(⊥, ·) = ∅, and let Hit≤i :=
⋃
j∈[i] Hitj.

(Note that Hit = Hit≤d.)

27Since A is a circuit, and hence deterministic, these random variables are functions of H.
28Our simplifying assumption yields that A’s queries are indeed of the above structure, and that Wi+1 is Sam’s

answer on Qi for every i ∈ [d−1]. In particular, it holds that Q1, . . . , Qi are determined by W1, . . . ,Wi and C1, . . . ,Ci.

29



• Di, for i ∈ [d], is the distribution of Sam’s answer on the i’th query Qi — D1 is the uniform
distribution over {0, 1}m, and for 2 ≤ i ≤ d, Di is the uniform distribution over the set
C−1
i (Ci(Wi)).

• α0 = α1 = 0, and for 2 ≤ i ≤ d let αi = Prw←Di [hit(Ci, w)].

• α-Jumpi, for i ∈ [d], is the event αi > max
{

8
δ2 · αi−1, (

δ2

8 )d+1
}

. α-Jump≤i :=
⋃
j∈[i] α-Jumpj

and α-Jump := α-Jump≤d.

It is instructive to view the interaction between A and Sam as a d round game, where in the
i’th round A chooses a query Qi, and the oracle Sam samples Wi+1 from the distribution Di. The
goal of the circuit A in this game is to cause hit(Ci,Wi+1) (i.e., causing the event Hit to happen).

By Equation (12), A produces a y-hit (i.e., causing the event Hit) with probability at least δ,
and therefore wins the game with at least this probability. Our first observation is that the latter
induces that the event α-Jump occurs with probability at least δ/2. Intuitively, in case α-Jump
does not occur, then the αi’s are too small in order to produce a y-hit with noticeable probability.

Claim 40. Pr[α-Jump] > δ/2.

The proof of Claim 40 immediately follows from the next observation.

Claim 41. Pr
[
∃i ∈ [d] : Hit≤i ∧ ¬α-Jump≤i

]
≤ δ5/512.

Namely, we expect no hit unless a jump has previously occurred.

Proof of Claim 41. We prove that

Pr[Hiti | ¬α-Jump≤i] ≤
1

d
· δ

5

512
(13)

for every 2 ≤ i ≤ d, and the proof of the Claim 41 follows by union bound.
Assuming

{
¬α-Jump≤i

}
, we first show that

αj ≤
(
δ2

8

)d−j+3

(14)

for every 2 ≤ j ≤ i. For j = 2 compute

α2 ≤ max

{
8

δ2
· α1,

(
δ2

8

)d+1
}

= max

{
8

δ2
· 0,
(
δ2

8

)d+1
}

=

(
δ2

8

)d−2+3

, (15)

where the inequality holds since we assume ¬α-Jump≤i. Assuming Equation (14) holds for 2 ≤
j − 1 ≤ i− 1, compute

αj ≤ max

{
8

δ2
· αj−1,

(
δ2

8

)d+1
}

≤ max

{
8

δ2
·
(
δ2

8

)d−j+4

,

(
δ2

8

)d+1
}

=

(
δ2

8

)d−j+3
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proving Equation (14). The first inequality holds since we assume ¬α-Jump≤i, and the second one
by the induction hypothesis. It follows that

Pr[Hiti | ¬α-Jump≤i] ≤
(
δ2

8

)3

≤ 1

d
· δ

5

512
,

where the last inequality holds since (by the statement of the lemma) δ ≤ 1/t ≤ 1/d. �

Given the above, the proof of Claim 40 is immediate.

Proof of Claim 40. Compute

Pr[α-Jump] ≥ Pr[Hit]− Pr[Hit ∧ ¬α-Jump]

≥ δ − δ5/512 > δ/2,

where the second inequality follows by Claim 41. �

Consider M’s point of view in the aforementioned game. Recall that following each query
Qi = (Wi,Ci,Ci+1), the circuit M evaluates Ci+1(Wi+1), and if a π-gate in this computation has
input π−1(y), then M outputs π−1(y) and halts. Algorithm M “wins” the game (i.e., inverts π with
no hit), if it manages to retrieve π−1(y) before A produces any y-hits. Let βi be the probability
that M outputs π−1(y) and halts after query qi.

Definition 42. For i ∈ [d] let βi = Prw←Di [hit(Ci+1, w)].

The game between A and M can be now described as follows: in the i’th round, A chooses a
query qi, which determines βi, and Sam samples wi+1, which determines αi+1. If qi implies “high”
βi, then M has high probability in winning the game (i.e., with high probability the computation
Ci+1(wi+1) done by M finds π−1(y). Therefore to win the game, A should not choose high βi. We
claim, however, that if βi is low, then with high probability αi+1 will be low as well. But if αi+1 is
low, then A has a low probability of producing a y-hit in the next query qi+1. This means that in
order for A to win the game, at some point it must “take a risk” and produce high βi.

The following claim states that conditioned on Q1, . . . , Qi, the expectation of αi+1 is βi. There-
fore, if βi is low then αi+1 is low with high probability. Note that under the above conditioning
(which determines the value of W1 · · · ,Wi), the value of βi is determined, while αi+1 is still a
random variable, to be determined by the value of Wi+1 = Sam(Qi).

Claim 43. E[αi+1 |W1, . . . ,Wi] = βi for every i ∈ [d− 1].

Proof. Fix i ∈ [d − 1] and a fixing w1, . . . , wi for W1, . . . ,Wi (which implies a fixing q1 =
(w1,C1,C2), . . . , qi = (wi,Ci,Ci+1) for Q1, . . . , Qi). We write

E[αi+1] =
∑

z∈{0,1}`
Pr

w←Di
[Ci+1(w) = z] · Pr

w←C−1
i+1(z)

[hit(Ci+1, w)] (16)

=
∑
z

∣∣C−1
i+1(z)

∣∣
|S|

·
∣∣{w ∈ C−1

i+1(z) : hit(Ci+1, w)
}∣∣∣∣C−1

i+1(z)
∣∣

=
∑
z

∣∣{w ∈ C−1
i+1(z) : hit(Ci+1, w)

}∣∣
|S|

,
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where S := C−1
i (Ci(wi)) and ` is the output length of Ci+1. Note that while Qi+1 is not determined

by q1, . . . , qi, the circuit Ci+1 is. In addition, since A is in a normal form,29 the circuit Ci+1 is an
extension of Ci. Thus

E[αi+1] =
∑

z∈{0,1}`

∣∣{w ∈ C−1
i+1(z) : hit(Ci+1, w)

}∣∣
|S|

=
|{w ∈ S : hit(Ci+1, w)}|

|S|
= Pr

w←S
[hit(Ci+1, w)]

= Pr
w←Di

[hit(Ci+1, w)]

= βi.

�

Up to this point, we have reached the conclusion that in order for A to win the game, it must
be that at least one of the αi+1’s is high, implying that α-Jump occurs. We have also seen that
the latter requires A to choose a query qi that determines a high βi. We claim that in this case, it
holds that βi is significantly larger than αi. Formally,

Definition 44. Let αβ-Gapi, for i ∈ [d], be the event

{
βi > max

{
2αi,

(
δ2

8

)d+2 }}
.

The following claim states that with a noticeable probability, there exists an index i such that
αβ-Gapi occurs and α-Jump≤i does not occur. In other words, βi is significantly larger than αj for
all j ≤ i. We later show that this βi enables M to retrieve π−1(y) before A produces any y-hits.

Claim 45. Let GapFirst be the event
{
∃i ∈ [d] : αβ-Gapi ∧ ¬α-Jump≤i

}
, then Pr [GapFirst] ≥ δ/4.

For proving Claim 45 we use the following claim, showing that unless βi is significantly larger
than αi, then αi+1 is not significantly larger than αi.

Claim 46. Pr[α-Jumpi+1 | ¬αβ-Gapi] ≤ δ2/4 for every i ∈ [d− 1].

Proof. We write

Pr
[
α-Jumpi+1 | ¬αβ-Gapi

]
≤ Pr

[
αi+1 > βi · δ2/4

]
+ Pr

[
α-Jumpi+1 | ¬αβ-Gapi ∧

{
αi+1 ≤ βi · δ2/4

}]
(17)

Claim 43 and Markov’s inequality imply that

Pr

[
αi+1 >

4

δ2
· βi
]
≤ δ2/4 (18)

Since the event
{
α-Jumpi+1 ∩ ¬αβ-Gapi ∩

{
αi+1 ≤ 4

δ2 · βi
}}

is empty, we conclude that

Pr
[
α-Jumpi+1 | ¬αβ-Gapi

]
≤ δ2/4.

�
29This is the only place throughout the whole proof, where the normal-from assumption that A is in a normal form

is being used.
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Given Claim 46, we prove Claim 45 as follows.

Proof of Claim 45. Compute

Pr [α-Jump ∧ ¬GapFirst] ≤
∑
i∈[d]

Pr
[
α-Jumpi ∧ ¬α-Jump≤i−1 ∧ ¬αβ-Gapi

]
(19)

≤
∑
i∈[d]

Pr [α-Jumpi | ¬αβ-Gapi]

≤ d · δ2/4

≤ δ/4,

where the before to last inequality holds by Claim 46, and last inequality holds since δ ≤ 1/t ≤ 1/d.
Since (by Claim 40) Pr [α-Jump] ≥ δ/2, it follows that Pr [GapFirst] ≥ δ/4. �

Putting it together Given the above observation, we are ready to prove Lemma 38.

Proof of Lemma 38 (Single-path case). Let I be the smallest index in [d − 1] for which αβ-Gapi
occurs, letting I =⊥ in case no such event happens. Note that whenever GapFirst happens, then
I 6=⊥ and α-Jumpi does not occur for all i ∈ [I]. Compute

Pr[Hit≤I−1 | GapFirst] = Pr[Hit≤I−1 ∧ ¬α-Jump≤I−1 | GapFirst] (20)

≤ Pr
[
∃i ∈ [d] : Hit≤i ∧ ¬α-Jump≤i

]
· 1

Pr[GapFirst]

≤ δ5

512
· 4

δ
< 1/2,

where the second inequality holds by Claims 41 and 45. In addition, for the event E =
{hit(CI+1,WI+1) ∩ ¬hit(CI ,WI+1)} it holds that

Pr[E | GapFirst,¬Hit≤I−1] (21)

≥ Pr [hit(CI+1,WI+1) | GapFirst,¬Hit≤I−1]− Pr [hit(CI ,WI+1) | GapFirst,¬Hit≤I−1]

= E [βI | GapFirst,¬Hit≤I−1]− E [αI | GapFirst,¬Hit≤I−1]

= E [βI − αI | GapFirst,¬Hit≤I−1]

≥ 1

2
·
(
δ2

8

)d+2

,
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where the second inequality holds by the definition of αβ-Gap. We conclude that

Pr
[
Mπ,Samπ,H (y) = π−1(y) ∧ ¬Hit

]
= Pr [∃i : hit(Ci+1,Wi+1) ∧ ¬Hit≤i]
≥ Pr [GapFirst] · Pr [hit(CI+1,WI+1) ∧ ¬Hit≤I | GapFirst]

= Pr [GapFirst] · Pr [E ∧ ¬Hit≤I−1 | GapFirst]

≥ Pr [GapFirst] · Pr[¬Hit≤I−1 | GapFirst] · Pr[E | GapFirst,¬Hit≤I−1]

≥ δ

4
· 1

2
· 1

2
·
(
δ2

8

)d+2

=

(
δ2

8

)d+3

≥ δ3d.

�

5.3.2 Proving Lemma 38 — The General Case

This section extends the proof given in Lemma 38 to the general case where A’s queries are not
necessarily along a single path. The extension below is mainly technical, and requires no more than
refining some events and notations.

Assuming that Q1, . . . , Qt are the Sam-queries asked by A, let p(i), for i ∈ [s], be the index of
the query p(Qi) (i.e., the index of Qi’s parent, see Definition 15) in the above query list, letting
p(i) = 0 in case p(Qj) =⊥. Note that unlike the single-path case studies in Section 5.3.1, the
values of p(1), . . . ,p(t) are not predetermined (in particular p(i) might not be i−1). This difference
reflects the fact that A might repetitively ask the same query, each time dictating Sam to use fresh
randomness by slightly modifying the value of the parameter Cnext, until the answer serves it best:
until there is a big jump in the value of α. It turns out that while repeating a query does increase
the probability of A to “win” the game against M (i.e., to make a y-hit before M inverts y), since the
expected value αi is the value of αp(i), such repetition does not increase the A’s winning probability
by too much.

We now describe in detail the required technical changes to the proof of Lemma 38. Fix
y ∈ {0, 1}n, π ∈ Π and δ ∈ [0, 1/t] such that Prh←H [Hit := HitA,π,h(y)] ≥ δ. The definitions of the
following random variables are natural generalization of those given in Section 5.3.1. Recall that
hit(C, w) is the event that C(w) queries π on π−1(y). The index i in the following definitions takes
values in [t].

Definition 47. The following random variables are defined with respect to a random execution of
Aπ,Sam

π,H
(y), where H is uniformly drawn from H.

• Q1 = (W1,C1,Cnext,1, . . . , Qs = (Wt,Ct,Cnext,t), denote A’s queries to Sam, and
WAns

1 , . . . ,WAns
t denote their answers.30

• Hiti is the event hit(Ci,W
Ans
i ), letting hit(⊥, ·) = ∅, and Hit≤i :=

⋃
j∈[i] Hitj.

30Since A is in a normal form, for every i ∈ [t] it holds that Wi = WAns
p(i) and Ci = Cnext,p(i), letting W0 = Cnext,0 =⊥.

Note that Q1, . . . , Qi are determined by WAns
1 , . . . ,WAns

i−1 and the circuits C1,Cnext,1, . . . ,Ci,Cnext,i.
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• Di is the uniform distribution over C−1
i (Ci(Wi)) in case Wi 6=⊥, and the uniform distribution

over {0, 1}m otherwise.

• αi = Prw←Di [hit(Ci, w)] in case Wi 6=⊥, and αi = 0 otherwise.

• βi = Prw←Di [hit(Cnext,i, w)].

• αβ-Gapi is the event βi > max

{
2αi,

(
δ2

8

)d+2
}

In addition, we make use of the following definition.

Definition 48.

• DDec
i is the uniform distribution over C−1

next,i(Cnext,i(W
Ans
i )), and αDec

i =

Prw←DAns
i

[hit(Cnext,i, w)].31

• α-PJumpi (for “Potential α-Jump”) is the event αAns
i > max

{
8
δ2 · αi

}
.

The following claims are analogues to the claims given in Section 5.3.1.

Claim 49. Pr[α-PJump] > δ/2.

Proof. Same as the proof of Claim 40, replacing Claim 41 with Claim 50. �

Claim 50. Pr
[
∃i ∈ [t] : Hit≤i ∧ ¬α-PJump≤i−1

]
≤ δ5/512.

Proof. Same as the proof of Claim 40, replacing Equation (14) with

αj ≤
(
δ2

8

)d−depth(j)+3

, (22)

where depth(j) = 0 for j = 0, and depth(p(j)) + 1 otherwise. �

Claim 51. E[αAns
i |WAns

1 , . . . ,WAns
i−1 ] = βi for every i ∈ [t].

Proof. Same as the proof of Claim 43, replacing Ci+1 with Cnext,i. �

Claim 52. Let GapFirst the event
{
∃i ∈ [t] : αβ-Gapi ∧ ¬α-PJump≤i−1

}
, then Pr [GapFirst] ≥

δ/4.

Proof. Same as the proof of Claim 45, replacing Claim 46 with Claim 53, and recalling that δ < 1/t.
�

Claim 53. Pr[α-PJumpi | ¬αβ-Gapi] ≤ δ2/4 for every i ∈ [t].

Proof. Same as the proof of Claim 46, replacing αi+1 with αAns
i , and α-Jumpi+1 with α-PJumpi.

�

As in Section 5.3.1, the proof of Lemma 38 (here for the general case) easily follow the above
claims.

Proof of Lemma 38 (General case). Same lines as the proof given in Section 5.3.1, replacing
Claims 41 and 45 with Claims 50 and 52. �

31Note that for any j with p(j) = i, if such exists, it holds that DDec
i = Dj and αDec

i = αj .
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6 Lower Bounds on Statistically Hiding commitments

In this section we combine the results presented in Sections 4 and 5 to derive our lower bounds on
black-box constructions of statistically-hiding commitments from trapdoor permutations. Through-
out the section, we assume for ease of notation that the integer functions d, c and s, measuring
the round and sender communication complexity of the considered commitment scheme, and the
hardness of the considered trapdoor permutations family, respectively, are non-decreasing.

6.1 The Round Complexity Lower Bound

In this section we give lower bound on the round complexity of black-box constructions of sta-
tistically hiding commitment from trapdoor permutations. We first give two results for the case
where the reduction is to polynomially hard families . The first result is for “security-preserving”
constructions, and the second one is for arbitrary ones.

Theorem 54 (restating Theorem 1). Any O(n)-security-parameter-expanding, fully black-box con-
struction of a weakly binding and honest-receiver statistically hiding commitment scheme from a
polynomially hard family of trapdoor permutations has Ω (n/ log n) communication rounds.

Theorem 55. Any fully black-box construction of a weakly binding and honest-receiver statistically
hiding commitment scheme from a polynomially hard family of trapdoor permutations has nΩ(1)

communication rounds.

The above two theorems are in fact corollaries of the more general statement given below, stated
for trapdoor permutations of arbitrary hardness.

Theorem 56. For every `-security-parameter-expanding, fully black-box construction of a d-round
weakly binding and honest-receiver statistically hiding commitment scheme from an s ≥ nω(1)-hard
family of trapdoor permutations, it holds that d(`(n)) ∈ Ω (n/ log s(n)).

Proof. Let (Com = (S,R,V)) be an `-security-parameter-expanding fully black-box construction of
a d-round, δ-binding and honest-receiver, honest-sender, statistically hiding commitment scheme
from an s-hard family of trapdoor permutations, where δ(n) = 1 − 1/p(n) for some p ∈ poly, and
let m = m(n) be a bound on the running time of R on security parameter n. Theorem 21 yields
that relative to most fixing of (τ,Samτ,h), there exists an efficient breaker for the binding of Com.

Claim 57. There exists a (d + 1)-depth, deterministic poly-augQueries, normal-from oracle-
aided algorithm S̃ such that the following holds for every τ ∈ T: for h ∈ H and rR ∈
{0, 1}m let TwoOpeningshn(rR) be the event that V(com, decom) 6= V(com, decom′) ∈ {0, 1} for

((decom, decom′), com) =
〈

(S̃τ,Sam
τ,h
,Rτ (rR))(1n)

〉
outS̃,outR

, and let NoBreakτ,hn be the event that

PrrR←{0,1}m
[
¬TwoOpeningshn(rR)

]
≥ δ(n). Then Prh←H

[
NoBreakhn

]
∈ O(1/n2).

We defer the proof of Claim 57 of to Section 6.1.1, and first use it for proving Theorem 56.
Claim 57 yields that

∞∑
n=1

Pr
h←H

[
NoBreakτ,hn

]
<∞ (23)
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for any τ ∈ T, where S̃ and NoBreakhn are as in the claim statement. By the Borel-Cantelli lemma,
the probability over the choices of h← H that NoBreakhn occurs for infinitely many n’s, is zero. It

follows that with probability one over the choice of (τ, h) ← T ×H, it holds that S̃τ,Sam
τ,h

breaks
the weak binding of Com. Hence, with probability one over the choice of (τ = (G,F, F−1), h), it
holds that

Pr
td←{0,1}n,y←{0,1}n

[
Aτ,S

τ,Samτ,h

(1n, G(td), y) = F−1(td, y)

]
>

1

s(n)
(24)

for infinitely many n’s. Since Equation (24) holds with respect to measure one of the oracles (τ, h),
we have that

Pr
τ←T,h←H

td←{0,1}n,y←{0,1}n

[
Aτ,S̃

τ,Samτ,h

(1n, G(td), y) = F−1(td, y)

]
>

1

s(n)
(25)

for infinitely many n’s.

By Proposition 18, the circuit AS̃ (i.e., the circuit that given oracle access to τ and Samτ,h, acts

as Aτ,S̃
τ,Samτ,h

) is in a normal form and of depth d′(n) = d(`(n))+1. Hence, Equation (25) yields the

existence of an t = 4s-augQueries, normal form, d′-depth, oracle-aided circuit family Ã =
{
Ãn
}
n∈N

with

Pr
τ←T,h←H

td←{0,1}n,y←{0,1}n

[
Ãτ,Sam

τ,h

n (G(td), y) = F−1(td, y)
]
>

4

t(n)
(26)

for infinitely many n’s.
Theorem 32 yields that 2n/8 ≤ (4t(n))3d(`(n))+1 ≤ (4s(n))6d(`(n))+2, implying that d(`(n)) ∈

Ω(n/ log s(n)). �

6.1.1 Proving Claim 57

Proof Claim 57. Let Ã be the deterministic, polynomial-augQueries algorithm guaranteed by The-
orem 21 for the protocol (S,R). Recall the following holds for every h ∈ H and k ∈ N: following

the execution of (ÃSamτ,h(1k),Rτ )(1n)) that yields a transcript trans, algorithm A outputs a set
{(bi, ri))}i∈[k] such that the k pairs are independent uniform values for the input and random coins
of S, consistent with trans. Also recall that over a uniform choice of h← H, the value of trans has
the same distribution has the one induced by 〈Sτ ,Rτ )(1n)〉.

Algorithm S with oracle access to τ and Samτ,h, acts through the interaction with R as Aτ,Sam
τ,h

would on input (1n, 1n) (i.e., we set k = n). If in the set output by A there exist two pairs (0, r0)
and (1, r1), S̃ uses them to generate two decommitments decom0 and decom1. Note that, if such
pairs were found, then it holds that V(com, decom0) = 0 and V(com, decom1) = 1, where com is the
commitment output by R when interacting with S̃. In the following we prove that S̃ finds such a
good couple of pairs with save but negligible probability over the choice of h ∈ H.

We next define a set of “good” transcripts that enable S̃ to reveal to both 0 and 1 with
overwhelming probability. For n ∈ N and b ∈ {0, 1}, let Transbn = 〈Sτ (b),Rτ )(1n)〉trans
(i.e., the random variable induced by the transcript of a random execution of (Sτ ,Rτ ),
where S’s input bit is b), let Trans = Transun, for u ← {0, 1}, and let Balancedn =

37



{
trans ∈ Supp(Transn) : 1

2 ≤
Pr

Trans0n
[trans]

Pr
Trans1n

[trans] ≤
3
2

}
. Since Com is statistically hiding (at least, against

the honest receiver), it follows that

Pr
Transn

[¬Balancedn] = neg(n) (27)

For h ∈ H and r ∈ {0, 1}m, let transh,rRn =
〈
S̃τ,Sam

τ,h
,Rτ (rR))(1n)

〉
trans

. Theorem 21 yields that

transh,rRn , for uniformly chosen values of h and rR, and Transn, are identically distributed, and that

E
h←H,rR←{0,1}m

[
¬TwoOpeningshn(rR) | transh,rRn ∈ Balanced

]
≤
(

2

3

)n−1

(28)

We conclude that

Pr
h←H

[
NoBreakhn

]
= Pr

h←H

[
Pr

rR←{0,1}m

[
¬TwoOpeningshn(rR)

]
≥ δ(n)

]
≤

Eh←H,rR←{0,1}m
[
¬TwoOpeningshn(rR)

]
δ(n)

≤ 1

δ(n)
·
(

Pr
Transn

[¬Balancedn] + E
h←H,rR←{0,1}m

[
¬TwoOpeningshn(rR) | transh,rRn ∈ Balanced

])
≤ neg(n),

where the last inequality follows from Equations (27) and (28). �

6.2 The Communication Complexity Lower Bound

In this section we give lower bound on the sender communication complexity of black-box construc-
tions of statistically hiding commitment from trapdoor permutations. We first give two results
for the case where the reduction is to polynomially hard families. The first result is for “security-
preserving” construction, and the second one is for arbitrary one.

Theorem 58 (restating Theorem 2). In every O(n)-security-parameter-expanding, fully black-box
construction of a weakly binding, honest-receiver, honest-sender statistically hiding commitment
scheme from a polynomially hard family of trapdoor permutations, the sender sends Ω(n) bit.

Theorem 59. In every fully black-box construction of a weakly binding and honest-receiver, honest-
receiver statistically hiding commitment scheme from a polynomially hard family of trapdoor per-
mutations, the sender sends nΩ(1) bits.

The above two theorems are in fact corollaries of the more general statement given below, for
trapdoor permutations of arbitrary hardness.

Theorem 60. In every `-security-parameter-expanding fully black-box construction of a d-round
weakly binding and honest-receiver, and honest-receiver statistically hiding commitment scheme
from an s(n) ≥ nω(1)-hard family of trapdoor permutations in which the sender communicates c(·)
bits, it holds that c(`(n)) ∈ Ω(n).
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Proof. The proof follows in large parts the proof of Theorem 56 given above, so we only mention
the significant differences.

Let (Com = (S,R,V)) be an `-security-parameter-expanding fully black-box construction of
a c-communication-complexity, δ-binding and honest-receiver, honest-sender, statistically hiding
commitment scheme from an s-hard family of trapdoor permutations, where δ(n) = 1− 1/p(n) for
some p ∈ poly, and let m = m(n) be a bound on the running time of S and R on security parameter
n. Theorem 26 yields that the following holds.

Claim 61. There exists a d =
(⌈

4c
log s

⌉
+ 1
)

-depth, deterministic O( 3
√
s)-augQueries, normal-from

oracle-aided algorithm S̃ such that the following holds for every τ ∈ T: for h ∈ H and rS, rR ∈
{0, 1}m, let TwoOpeningshn(rS, rR) be one if and only if V(com, decom) 6= V(com, decom′) ∈ {0, 1}
for com = 〈(Sτ (0, rS),R(rR)τ )(1n)〉outR and (decom, decom′) = S̃τ,Sam

τ,h
(com), and let NoBreakτ,hn be

the event that PrrS←{0,1}m,rR←{0,1}m
[
¬TwoOpeningshn(rS, rR)

]
≥ δ(n). Then Prh←H

[
NoBreakhn

]
∈

O(1/n2).

The proof of Claim 61 follows similar lines to that of Claim 57, see more details in Section 6.2.1.
Similarly to the proof of Theorem 56, Claim 61 yields that there exists an t = 4s-augQueries,

normal form, d+ 1-depth, oracle-aided circuit family Ã =
{
Ãn
}
n∈N

with

Pr
τ←T,h←H

td←{0,1}n,y←{0,1}n

[
Ãτ,Sam

τ,h

n (G(td), y) = F−1(td, y)
]
>

4

t(n)
(29)

for infinitely many n’s. By Theorem 32, it follows that d(`(n)) ∈ Ω(n/ log s(n)). Since, by our

simplifying assumption, s is non-decreasing, it follows that c(`(n)) ∈ Ω
(
n·log(s(`(n)))

log s(n)

)
∈ Ω(n). �

6.2.1 Proving Claim 61

Proof Claim 61. The proof follows in large parts the proof of Claim 57 given above, so we only
mention the significant differences.

Let Inv be the algorithm guaranteed Theorem 26 for the protocol (S,R). Following an execution

〈(Sτ (0),Rτ )(1n)〉 resulting in transcript trans, algorithm Sτ,Sam
τ,h

calls Invτ,Sam
τ,h

(1n, 1n, d(n) −
1, ε(n) = δ(n)/n2, trans) to get set of pairs {(bi, ri))}i∈[n]. If there exists two pairs (0, r0) and (1, r1)

in the above set, S̃ uses them to generate two decommitments decom0 and decom1. Note that
number of augmented queries done by S̃ is bounded by poly(n) · 2dc(n)/d(n)e ≤ poly(n) · 4

√
s(n) ∈

O( 3
√
s(n)).

Let Balancedn be as in Claim 61, and for rS, rR ∈ {0, 1}m, let transrS,rRn =
〈(Sτ (0, rS),Rτ (rR))(1n)〉trans. Since Com is statistically hiding, it follows (see Claim 61) that

Pr
rS←{0,1}m,rR←{0,1}m

[transrS,rRn /∈ Balancedn] = neg(n) (30)

Let Failn =
{

(h, rS, rR) ∈ H × ({0, 1}m)2 : Invτ,Sam
τ,h

(1n, 1n, d(n)− 1, ε(n), transrS,rRn ) =⊥
}

. Theo-

rem 21 yields that

Pr
h←H,rS←{0,1}m,rR←{0,1}m

[Failn] ≤ ε(n) (31)
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It is also easy to verify that (see again Claim 61) that

E
h←H,rS←{0,1}

m

rR←{0,1}
m

[
¬TwoOpeningshn(rS, rR) | transrRn ∈ Balancedn ∧ (h, rS, rR) /∈ Failn

]
= neg(n) (32)

We conclude that

Pr
h←H

[
NoBreakhn

]
= Pr

h←H

[
Pr

rS←{0,1}m,rR←{0,1}m

[
¬TwoOpeningshn(rS, rR)

]
≥ δ(n)

]
≤

Eh←H,rS←{0,1}m,rR←{0,1}m
[
¬TwoOpeningshn(rS, rR)

]
δ(n)

≤ 1

δ(n)
·
(

Pr
h←H,rS←{0,1}m,rR←{0,1}m

[transrS,rRn /∈ Balancedn ∨ (h, rS, rR) ∈ Failn]

+ E
h←H,rR←{0,1}m

[
¬TwoOpeningshn(rS, rR) | transh,rS,rRn ∈ Balanced ∧ (h, rS, rR) /∈ Failn

])
≤ ε(n) + neg(n)

δ(n)
∈ O(1/n2),

where the last inequality follows from Equations (30) to (32) �

7 Implications to Other Cryptographic Protocols

Our lower bounds on the round complexity and the communication complexity of statistically hid-
ing commitment schemes imply similar lower bounds for several other cryptographic protocols.
Specifically, our results can be extended to any cryptographic protocol that can be used to con-
struct a weakly-binding statistically hiding commitment scheme in a fully-black-box manner while
essentially preserving the round complexity or communication complexity of the underlying proto-
col. In this section we derive new such lower bound for interactive hashing, oblivious transfer, and
single-server private information retrieval protocols. For simplicity, we state these lower bounds for
constructions that are security preserving (i.e., O(n)-security-parameter expanding), and we note
that more general statements, as in Theorem 56, could be derived as well.

We note that our lower bound proof for the round complexity of statistically hiding commit-
ment schemes did not rely on any malicious behavior by the receiver. Therefore, our lower bound
holds even for schemes in which the statistical hiding property is guaranteed only against honest
receivers. Similarly, our lower bound proof for the communication complexity of statistically hid-
ing commitment schemes did not rely on any malicious behavior by the sender during the commit
stage. Therefore, our lower bound holds even for schemes in which the (weak) binding property is
guaranteed only against honest senders.

7.1 Interactive Hashing

Interactive hashing was introduced by Naor et al. [57] and is a protocol that allows a sender S
to commit to a value y while only revealing to the receiver R the value (h, z = h(y)), where h is
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a 2-to-1 hash function chosen interactively during the protocol.32 The two security properties of
interactive hashing are binding (S is bound by the protocol to producing at most one value of y
which is consistent with the transcript) and hiding (R does not obtain any information about y,
except for h(y)).

Naor et al. constructed an interactive hashing protocol from any one-way permutation, and
showed that it implies in a fully black-box manner a statistically-hiding commitment scheme. The
construction of Naor et al. preserves the communication complexity of the underlying interactive
hashing protocol, but it does not preserve the round complexity. However, in subsequent work
[34, 47] it was shown that it is in fact possible to preserve the number of rounds. Combined with
our lower bounds on the round complexity and communication complexity of statistically-hiding
commitment schemes, this directly implies the following corollary:

Corollary 62. Any O(n)-security-parameter expanding fully black-box construction of an interac-
tive hashing protocol from a family of trapdoor permutations has round complexity Ω(n/ log n) and
communication complexity Ω(n).

We note that Wee [73] showed that a restricted class of fully black-box constructions of inter-
active hashing from one-way permutations has Ω (n/ log n) rounds. Thus, Corollary 62 extends
Wee’s lower bound both to include the most general form of such constructions, and to trapdoor
permutations.

7.2 Oblivious Transfer

Oblivious transfer (OT), introduced by Rabin [63], is a fundamental primitive in cryptography.
In particular, it was shown to imply secure multiparty computation [27, 44, 75]. OT has several
equivalent formulations, and we consider the formulation of

(
2
1

)
-OT, defined by Even, Goldreich,

and Lempel [14].
(

2
1

)
-OT is a protocol between two parties, a sender and a receiver. The sender’s

input consists of two secret bits (b0, b1), and the receiver’s input consists of a value i ∈ {0, 1}. At
the end of the protocol, the receiver should learn the bit bi while the sender does not learn the
value i. The security of the protocol guarantees that even a cheating receiver should not be able
to learn the bit b1−i, and a cheating sender should not be able to learn i.

Given any
(

2
1

)
-OT protocol that guarantees statistical security for the sender, Fischlin [15]

showed how to construct a weakly-binding statistically hiding commitment scheme. The construc-
tion is fully black-box and preserves the round complexity and the communication complexity. In
addition, Wolf and Wullschleger [74] showed that any

(
2
1

)
-OT protocol that guarantees statistical

security for the sender can be transformed into a
(

2
1

)
-OT protocol that guarantees statistical se-

curity for the receiver. Their transformation is full black-box and preserves the round complexity
and the communication complexity. Thus, by combining these with our lower bounds we obtain
the following corollary:

Corollary 63. Any O(n)-security-parameter expanding fully black-box construction of a
(

2
1

)
-OT

protocol that guarantees statistical security for one of the parties from a family of trapdoor permu-
tations has round complexity Ω(n/ log n) and communication complexity Ω(n).

We stress that there exist constructions of semi-honest receiver
(

2
1

)
-OT protocols, relying on

specific number-theoretic assumptions, where the sender enjoys statistical security with a con-
stant number of rounds (e.g., Aiello et al. [1] and Naor and Pinkas [55]). Hence, as for statistically

32Several extensions to this definition were suggested, see [34, 58].
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hiding commitment schemes, we demonstrate a large gap between the round complexity of OT con-
structions based on general assumptions and OT constructions based on specific number-theoretic
assumptions.

7.3 Single-Server Private Information Retrieval

A single-server private information retrieval (PIR) scheme [10] is a protocol between a server and a
user. The server holds a database x ∈ {0, 1}n, and the user holds an index i ∈ [n] to an entry of the
database. Informally, the user wishes to retrieve the i’th entry of the database, without revealing
to the server the value i. A naive solution is to have the user download the entire database,
however, the total communication complexity of this solution is n bits. Based on specific number-
theoretic assumptions, several schemes with sublinear communication complexity were developed
(see [7, 9, 19, 51, 48], and a recent survey by Ostrovsky and Skeith [59]). The only non-trivial
construction based on general computational assumptions is due to Kushilevitz and Ostrovsky [49].
Assuming the existence of trapdoor permutations, they constructed an interactive protocol whose
communication complexity is n− o(n) bits.

Beimel, Ishai, Kushilevitz, and Malkin [2] showed that any single-server PIR protocol with com-
munication complexity of at most n/2 bits, can be used to construct a weakly-binding statistically
hiding commitment scheme. Their construction is fully black-box and preserves the number of
rounds. Thus, by combining this with our lower bound on the round complexity for statistically
hiding commitment schemes, we obtain the following corollary:

Corollary 64. Any O(n)-security-parameter expanding fully black-box construction of a single-
server PIR protocol for an n-bit database from a family of trapdoor permutations, in which the
server communicates less than n/2 bits, has communication complexity Ω (n/ log n).

Corollary 62 yields in particular an Ω (n/ log n) lower bound on the communication complexity
of such single-server PIR protocols (and, in particular, on the number of bits that the server must
communicate). We note that the construction of Beimel et al. does not preserve the communication
complexity of the underlying PIR protocol. Therefore, our lower bound on the communication
complexity of statistically hiding commitment schemes cannot be directly used for deriving a similar
lower bound for PIR protocols. Nevertheless, in Appendix A we refine the construction of Beimel
et al. to a construction which, in particular, preserves the communication complexity. We thus
obtain the following corollary:

Corollary 65. In any O(n)-security-parameter expanding fully black-box construction of a single-
server PIR protocol for an n-bit database from a family of trapdoor permutations, the server com-
municates Ω(n) bits.
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A From PIR to Statistically-Hiding Commitments

The relation between single-server PIR and commitment schemes was first explored by Beimel,
Ishai, Kushilevitz, and Malkin [2], who showed that any single-server PIR protocol in which the
server communicates at most n/2 bits to the user (where n is the size of the server’s database), can
be used to construct a weakly binding statistically hiding bit-commitment scheme. In particular,
this served as the first indication that the existence of low-communication PIR protocols implies the
existence of one-way functions. In this section we refine the relation between these two fundamental
primitives by improving their reduction. Our improvements are the following:

1. The construction of [2] preserves the round complexity of the underlying single-server PIR,
but it does not preserve its communication complexity. In their construction the sender
is always required to send Ω(n) bits during the commit stage of the commitment scheme.
We show that it is possible to preserve both the round complexity and the communication
complexity. In our construction the number of bits sent by the sender during the commit
stage of the commitment scheme is essentially the number of bits sent by the server in the
PIR protocol.

2. The construction of [2] requires an execution of the single-server PIR protocol for every
committed bit (that is, they constructed a bit-commitment scheme). We show that it is
possible to commit to a super-logarithmic number of bits while executing the underlying
single-server PIR protocol only once.

3. The construction of [2] was presented for single-server PIR protocols in which the server
communicates at most n/2 bits. Our construction applies to any single-server PIR protocol
in which the server communicates up to n− ω(log n) bits.

In the remainder of this section we first state the theorem resulting from our construction.
Then, we formally define single-server PIR, provide a few additional preliminaries, and present our
construction.

Theorem 66. Assume there exists a single-server PIR protocol in which the server communicates
n− k(n) bits, where n is the size of the server’s database and k(n) ≥ 2d(n) for d(n) ∈ ω(log n).

Then, there exists a weakly binding statistically hiding commitment scheme for d(n)/6 bits, in
which the sender communicates at most n− k(n) + 2d(n) bits during the commit stage. Moreover,
the construction is fully black box.

An overview of the construction. Let (Server,User) be a single-server PIR protocol in which
the server communicates n − ω(log n) bits, where n is the size of the server’s database. Consider
the following commitment scheme to a string s. The commit stage consists of the sender and the
receiver first choosing random inputs x ∈ {0, 1}n and i ∈ [n], respectively, and executing the PIR
protocol (Server,User) on these inputs (that is, the sender plays the role of the server with database
x, and the receiver plays the role of the user with index i). As a consequence, the receiver obtains
a bit xi, which by the correctness of the PIR protocol is the i’th bit of x. Notice that since the
sender communicated only n− ω(log n), the random variable corresponding to x still has ω(log n)
min-entropy from the receiver’s point of view. We take advantage of this fact, and have the sender
choose a uniform seed t for a strong-extractor Ext, and send the pair (t,Ext(x, t)⊕s) to the receiver.
That is, we exploit the remaining min-entropy of the database x in order to mask the committed
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string s in a statistical manner. In the reveal stage, the sender sends the pair (x, s) to the receiver.
The binding property follows from the security of the PIR protocol: in the reveal stage, the sender
must send a value x whose i’th bit is consistent with the bit obtained by the receiver during the
commit stage – but this bit not known to the sender.

A.1 Single-Server Private Information Retrieval — Definition

A single-server Private Information Retrieval (PIR) scheme is a protocol between a server and a
user. The server holds a database x ∈ {0, 1}n and the user holds an index i ∈ [n] to an entry of the
database. The user wishes to retrieve the i’th entry of the database, without revealing the index
i to the server. More formally, a single-server PIR scheme is defined via a pair of probabilistic
polynomial-time Turing-machines (Server,User) such that:

• Server receives as input a string x ∈ {0, 1}n. Following its interaction it does not have any
output.

• User receives as input an index i ∈ [n]. Following its interaction it outputs a value b ∈
{0, 1,⊥}.

Denote by b← 〈Server(x),User(i)〉 the experiment in which Server and User interact (using the
given inputs and uniformly chosen random coins), and then User outputs the value b. It is required
that there exists a negligible function ν(n), such that for all sufficiently large n, and for every string
x = x1 ◦ · · · ◦ xn ∈ {0, 1}n, it holds that xi ← 〈Server(x),User(i)〉 with probability at least 1− ν(n)
over the random coins of both Server and User.

In order to define the security properties of such schemes, we first introduce the following

notation. Given a single-server PIR scheme (Server,User) and a Turing-machine S̃erver (a malicious

server), we denote by view〈S̃erver,User(i)〉(n) the distribution on the view of S̃erver when interacting

with User(i) where i ∈ [n]. This view consists of its random coins and of the sequence of messages

it receives from User, and the distribution is taken over the random coins of both S̃erver and User.

Definition 67. A single-server PIR scheme (Server,User) is secure if for every probabilistic

polynomial-time Turing-machines S̃erver and D, and for every two sequences of indices {in}∞n=1

and {jn}∞n=1 where in, jn ∈ [n] for every n, it holds that∣∣∣Pr
[
v ← view〈S̃erver,User(in)〉(n) : D(v) = 1

]
− Pr

[
v ← view〈S̃erver,User(jn)〉(n) : D(v) = 1

]∣∣∣ ≤ ν(n),

for some negligible function ν(n) and for all sufficiently large n.

A.2 Additional Preliminaries

The min-entropy of a distribution D over a set X is defined as H∞(D) = minx∈X log 1/PrD [x].
The following standard fact (cf., [70, Fact 2.6]) will be useful for us in analyzing statistically close
distributions.

Fact 68. Let P and Q be two distributions with SD(P,Q) < ε, then

Pr
x←P

[
(1−

√
ε) · Pr

P
[x] < Pr

Q
[x] < (1 +

√
ε) · Pr

P
[x]

]
≥ 1− 2

√
ε.
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Definition 69. A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor, if for every distri-
bution X over {0, 1}n with H∞(X) ≥ k the distribution E(X,Ud) is ε-close to uniform. E is a
strong (k, ε)-extractor, if the function E′(x, y) = y ◦ E(x, y) is a (k, ε)-extractor (where ◦ denotes
concatenation).

In our construction of a statistically hiding commitment from single-server PIR, we will be
using the following explicit construction of strong extractors, which is an immediate corollary of
[72, Corollary 3.4].

Proposition 70. For any k ∈ ω(log n), there exists an explicit strong (k, 21−k)-extractor

Ext: {0, 1}n × {0, 1}3k → {0, 1}k/2.

A.3 The Construction

Fix d(n), k(n) and a single-server PIR protocol P = (Server,User) as in Theorem 66. Protocol 71
describes our construction of the commitment scheme Com = (S,R). In the construction we use

a strong
(
d(n)/3, 21−d(n)/3

)
-extractor Ext: {0, 1}n × {0, 1}d(n) → {0, 1}d(n)/6 whose existence is

guaranteed by Proposition 70.

Protocol 71 (Protocol Com = (S,R)).

Common input: security parameter 1n.

Sender’s input: s ∈ {0, 1}d(n)/6.

Commit stage:

1. S chooses a uniformly distributed x ∈ {0, 1}n.

2. R chooses a uniformly distributed index i ∈ [n].

3. S and R execute the single-server PIR protocol (Server,User) for database of length n, where
S acts as the server with input x and R acts as the user with input i. As a result, R obtains
a bit xi ∈ {0, 1}.

4. S chooses a uniformly distributed seed t ∈ {0, 1}d(n), computes y = Ext(x, t) ⊕ s, and sends
(t, y) to R.

Reveal stage:

1. S sends (s, x) to R.

2. If the i’th bit of x equals xi and y = Ext(x, t)⊕ s, then R outputs s.

Otherwise, R outputs ⊥.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The correctness of Com follows directly from the correctness of the PIR protocol. In addition,
notice that the total number of bits communicated by the sender in the commit stage is the total
number of bits that the server communicates in the PIR protocol plus the seed length and the
output length of the extractor Ext. Thus, the sender communicates less than n− k(n) + 2d(n) bits
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during the commit stage. In Lemma 72 we prove that Com is statistically hiding, and in Lemma 74
we prove that Com is weakly binding. We note that the proof of hiding does not rely on any
computational properties of the underlying PIR protocol, but only on the assumed bound on the
number of bits communicated by the server.

Lemma 72. Com is statistically hiding.

Proof. We have to show that for any computationally unbounded receiver R∗ and for any
two strings s0 and s1, the statistical distance between the distributions {view〈S(s0),R∗〉(n)} and
{view〈S(s1),R∗〉(n)} (see Definition 11) is negligible in n. The transcript of the commit stage con-
sists of the transcript transP of the execution of P and of the pair (t,Ext(x, t)⊕ s), where s is the
committed string. Note that since transP is independent of the committed string, it is sufficient to
prove that the statistically distance between the distribution of (t,Ext(x, t)) given transP and the
uniform distribution is negligible in n.

We argue that due to the bound on the number of bits communicated by the server in P, then
even after executing P, the database x still has sufficient min-entropy in order to guarantee that
(t,Ext(x, t)) is sufficiently close to uniform. More specifically, let R∗ be an all-powerful receiver
(recall that without loss of generality such an R∗ is deterministic), and denote by X the random
variable corresponding to the value x in Com. The following claim states the with high probability
X has high min-entropy from R∗’s point of view.

Claim 73. It holds that

Pr
transP←Com

[
H∞(X | transP) <

k(n)

6

]
< 2−

k(n)
4 ,

where transP is the transcript of the embedded execution of P in Com.

Proof. For any value of r, the random coins used by S in the execution of P, let fr : {0, 1}n 7→
{0, 1}n−k(n) be the function that maps x to the value of transP generated by the interaction of
(S(x, r),R∗), and let Col(x, r) := {x′ ∈ {0, 1}n : fr(x

′) = fr(x)}. Since fr has at most 2n−k(n)

possible outputs, it follows that

Pr
x,r

[
|Col(x, r)| < 2

k(n)
2

+1
]
<

2n−k(n) · 2
k(n)

2
+1

2n
= 21− k(n)

2 . (33)

Let

BAD =

{
transP : Pr

x,r

[
|Col(x, r)| < 2

k(n)
2

+1
∣∣∣ transP

]
> 2

k(n)
4 · 21− k(n)

2

}
,

a a standard averaging argument yields that

Pr
transP←Com

[transP ∈ BAD] ≤ 2−
k(n)

4 (34)

Denote by Ur the random variable corresponding to r in the execution of Com. The following
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holds every value of x and transP:

Pr [X = x | transP] (35)

= Pr
[
X = x ∧ |Col(X,Ur)| < 2

k(n)
2

+1
∣∣∣ transP

]
+ Pr

[
X = x ∧ |Col(X,Ur)| ≥ 2

k(n)
2

+1
∣∣∣ transP

]
≤ Pr

[
|Col(X,Ur)| < 2

k(n)
2

+1
∣∣∣ transP

]
+ 2
−
(
k(n)

2
+1
)
.

Note that if H∞(X | transP) < k(n)/6 for some transP, then there exists an x for which

Pr [X = x | transP] ≥ 2−
k(n)

6 ,

and therefore Equation (35) implies that

Pr
[
|Col(X,Ur)| < 2

k(n)
2

+1
∣∣∣ transP

]
> 2−

k(n)
6 − 2

−
(
k(n)

2
+1
)
> 21− k(n)

4 (36)

Thus,

Pr
transP←Com

[
H∞(X | transP) <

k(n)

6

]
≤ Pr

transP←Com

[
Pr
[
|Col(X,Ur)| < 2

k(n)
2

+1
∣∣∣ transP

]
> 21− k(n)

4

]
≤ Pr

transP←Com
[transP ∈ BAD]

≤ 2−
k(n)

4 .

�

Since d(n) ∈ ω(log n) and k(n)/6 ≥ d(n)/3, Claim 73 implies that with probability 1− neg(n),
the extractor Ext guarantees that the statistical distance between the pair (t,Ext(x, t)) (given
transP) and the uniform distribution is at most 21−d(n)/3 (which is again negligible in n). Therefore

Com is statistically hiding. More specifically, for every string s ∈ {0, 1}d(n)/6 it holds that

SD
(
{transP, t,Ext(X, t)⊕ s}, {transP, U7d(n)/6}

)
(37)

≤ Pr

[
H∞(X | transP) <

k(n)

6

]
+ SD

(
{transP, t,Ext(X, t)⊕ s}, {transP, U7d(n)/6}

∣∣∣∣ H∞(X | transP) ≥ k(n)

6

)
≤ 2−

k(n)
4 + 21− d(n)

3 .

Therefore, for any two strings s0, s1 ∈ {0, 1}d(n)/6 it holds that

SD
({

view〈S(s0),R∗〉(n)
}
,
{
view〈S(s1),R∗〉(n)

})
= SD ({transP, t,Ext(X, t)⊕ s0}, {transP, t,Ext(X, t)⊕ s1})

≤ 2 ·
(

2−
k(n)

4 + 21− d(n)
3

)
,

which is negligible in n as required. �
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Let Ur be the random variable taking the value of r in the execution of Com. By the above
equation, the following holds every value of x and transP.

Pr[X = x | transP]

= Pr[X = x ∧ |Col(X,Ur)| < 2
k(n)

2
+1 | transP] + Pr[X = x ∧ |Col(X,Ur)| ≥ 2

k(n)
2

+1 | transP]

≤ Pr[|Col(X,Ur)| < 2
k(n)

2
+1 | transP] + 2−(

k(n)
2

+1).

We conclude that,

Pr[transP ← Com : H∞(X | transP) <
k(n)

2
]

= Pr
[
transP ← Com : max

x∈{0,1}n
{Pr[X = x | transP]} > 2

k(n)
2
]

≤ Pr
[
transP ← Com : Pr[|Col(X,Ur)| < 2

k(n)
2

+1 | transP]
]

= Pr[|Col(X,Ur)| < 2
k(n)

2
+1] < 21−k(n)/2.

Recall that R∗’s view is the concatenation of the values of transP, Ext(x, t) ⊕ s and t. Using

standard reduction it follows that for any two strings s1, s2 ∈ {0, 1}bd(n)/2c, the statistical difference
between view[s1] and view[s2] is at most twice the statistical difference between (transP,Ext(x, t), t)
and (transP, Ubd(n)/2c, t), where the values of transP, x and t are induced by a random execution
of Com. The following concludes the proof of the lemma by showing that the latter distance is
negligible.

SD

(
(transP,Ext(X, t), t), (transP, Ubd(n)/2c, t)

)
≤ Pr

[
H∞(X | transP) <

k(n)

2

]
+ SD

(
(transP,Ext(X, t), t), (transP, Ubd(n)/2c, t) | H∞(X | transP) ≥ k(n)

2

)
≤ 21− k(n)

2 + 22− d(n)
3 = neg(n).

Lemma 74. Com is weakly binding.

Proof. We show that Com is (1 − 1/n2)-binding. Given any malicious sender S̃ that violates the
binding of the commitment scheme Com with probability at least 1−1/n2, we construct a malicious

server S̃erver that breaks the security of the single-server PIR protocol P.
Let S̃ be a polynomial-time malicious sender that violates the binding of Com with probability

at least 1 − 1/n2. As an intermediate step, we first construct a malicious server that has a non-
negligible advantage in predicting a uniformly chosen index held by the user in P. More specifically,

we construct a malicious server S̃erver and a predictor D′ such that

Pr
[
v ← view〈S̃erver,User(i)〉(n) : D′(v) = i

]
≥ 1

n
+

1

n2
,

where the probability is taken over the uniform choice of i ∈ [n] and over the coin tosses of S̃erver,

D′ and User. Recall that view〈S̃erver,User(i)〉(n) denotes the distribution on the view of S̃erver when
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interacting with User(i) where i ∈ [n]. This view consists of its random coins and of the sequence
of messages it receives from User.

The malicious server S̃erver follows the malicious sender S̃ in the embedded execution of P in
Com. Following the interaction, S̃erver proceeds the execution of S̃ to obtain a pair (t, y) and two

decommitments (x1, s1) and (x2, s2). If x1 = x2, then S̃erver fails. Otherwise, denote by j ∈ [n]
the minimal index such that x1[j] 6= x2[j]. Now, the predictor D′ outputs a uniformly distributed
value i′ from the set [n] \ {j}.

In order to analyze the success probability in predicting i, note that if (x1, s1) and (x2, s2) are
valid decommitments and s1 6= s2 (i.e., S̃ broke the binding of Com), then it must hold that x1 6= x2.
In this case, let j ∈ [n] be the minimal index such that x1[j] 6= x2[j], then it must be the case that
i 6= j, as otherwise R will not accept the two decommitments. Therefore, when the predictor D′

outputs a uniformly distributed i′ ∈ [n] \ {j}, it will output i with probability 1/(n− 1). Thus,

Pr
[
v ← view〈S̃erver,User(i)〉(n) : D′(v) = i

]
≥
(

1− 1

n2

)
· 1

n− 1
(38)

=
n+ 1

n2

=
1

n
+

1

n2
.

In the remainder of the proof we apply a rather standard argument in order to be fully consistent
with Definition 67 of the security of single-server PIR. That is, we show that there exists a pair of

indices i, j ∈ [n], a malicious server S̃erver and a distinguisher D such that∣∣∣Pr
[
v ← view〈S̃erver,User(i)〉(n) : D(v) = 1

]
− Pr

[
v ← view〈S̃erver,User(j)〉(n) : D(v) = 1

]∣∣∣ ≥ 1

p(n)
,

(39)

for some polynomial p(n). We prove that this holds for independently and uniformly chosen i, j ∈ [n]

(and therefore there exist i and j for which this holds) where S̃erver is the malicious server described
above, and D = Di,j is a distinguisher that uses D′ as follows:

• If D′ outputs i, then D outputs 1.

• If D′ outputs j, then D outputs 0.

• Otherwise, D outputs a uniformly distributed b ∈ {0, 1}.

It follows that

Pr
[
v ← view〈S̃erver,User(i)〉(n) : D(v) = 1

]
(40)

= Pr
[
v ← view〈S̃erver,User(i)〉(n) : D′(v) = i

]
+

1

2
· Pr

[
v ← view〈S̃erver,User(i)〉(n) : D′(v) /∈ {i, j}

]
≥ 1

n
+

1

n2
+

1

2
· Pr

[
v ← view〈S̃erver,User(i)〉(n) : D′(v) /∈ {i, j}

]
,
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and

Pr
[
v ← view〈S̃erver,User(j)〉(n) : D(v) = 1

]
(41)

= Pr
[
v ← view〈S̃erver,User(j)〉(n) : D′(v) = i

]
+

1

2
· Pr

[
v ← view〈S̃erver,User(j)〉(n) : D′(v) /∈ {i, j}

]
=

1

n
+

1

2
· Pr

[
v ← view〈S̃erver,User(j)〉(n) : D′(v) /∈ {i, j}

]
,

where the last equality holds since both i and j are independently chosen. Finally, note that

Pr
[
v ← view〈S̃erver,User(i)〉(n) : D′(v) /∈ {i, j}

]
= Pr

[
v ← view〈S̃erver,User(j)〉(n) : D′(v) /∈ {i, j}

]
,

and we conclude that∣∣∣Pr
[
v ← view〈S̃erver,User(i)〉(n) : D(v) = 1

]
− Pr

[
v ← view〈S̃erver,User(j)〉(n) : D(v) = 1

]∣∣∣ ≥ 1

n2
.

�
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