From Non-Adaptive to Adaptive Pseudorandom Functions *

Itay Berman Iftach Haitner[†]

December 2, 2012

Abstract

Unlike the standard notion of pseudorandom functions (PRF), a *non-adaptive* PRF is only required to be indistinguishable from a random function in the eyes of a *non-adaptive* distinguisher (i.e., one that prepares its oracle calls in advance). A recent line of research has studied the possibility of a *direct* construction of adaptive PRFs from non-adaptive ones, where direct means that the constructed adaptive PRF uses only few (ideally, constant number of) calls to the underlying non-adaptive PRF. Unfortunately, this study has only yielded negative results, showing that "natural" such constructions are unlikely to exist (e.g., Myers [EUROCRYPT '04], Pietrzak [CRYPTO '05, EUROCRYPT '06]).

We give an affirmative answer to the above question, presenting a direct construction of adaptive PRFs from non-adaptive ones. The suggested construction is extremely simple, a composition of the non-adaptive PRF with an appropriate pairwise independent hash function.

1 Introduction

A pseudorandom function family (PRF), introduced by Goldreich, Goldwasser, and Micali [13], cannot be distinguished from a family of *truly* random functions by an efficient distinguisher who is given an oracle access to a random member of the family. PRFs have an extremely important role in cryptography, allowing parties, which share a common secret key, to send secure messages, identify themselves and to authenticate messages [12, 15]. In addition, they have many other applications, essentially in any setting that requires random function provided as black-box [2, 5, 8, 9, 16, 20]. Different PRF constructions are known in the literature, whose security is based on different hardness assumption. Constructions relevant to this work are those based on the existence of pseudorandom generators [13] (and thus on the existence of one-way functions [14]), and on, the so called, synthesizers [19].

In this work we study the question of constructing (adaptive) PRFs from *non-adaptive* PRFs. The latter primitive is a (weaker) variant of the standard PRF we mentioned above, whose security is only guaranteed to hold against non-adaptive distinguishers (i.e., ones that "write" all their queries before the first oracle call). Since a non-adaptive PRF can be easily cast as a pseudorandom generator or as a synthesizer, [13, 19] tell us how to construct (adaptive) PRF from a non-adaptive one. In both of these constructions, however, the resulting (adaptive) PRF makes $\Theta(n)$ calls to the underlying non-adaptive PRF (where *n* being the input length of the functions).¹

^{*}A preliminary version appeared in [3].

[†]School of Computer Science, Tel Aviv University. E-mail: itayberm@post.tau.ac.il,iftachh@cs.tau.ac.il.

¹We remark that if one is only interested in *polynomial security* (i.e., no adaptive PPT distinguishes with more than negligible probability), then $w(\log n)$ calls are sufficient (cf., [10, Sec. 3.8.4, Exe. 30]).

A recent line of work has tried to figure out whether more efficient reductions from adaptive to non-adaptive PRF's are likely to exist. In a sequence of works [18, 21, 22, 7], it was shown that several "natural" approaches (e.g., composition or XORing members of the non-adaptive family with itself) are unlikely to work. See more in Section 1.3.

1.1 Our Result

We show that a simple composition of a non-adaptive PRF with an appropriate pairwise independent hash function, yields an adaptive PRF. To state our result more formally, we use the following definitions: a function family \mathcal{F} is T = T(n)-adaptive PRF, if no distinguisher of running time at most T, can tell a random member of \mathcal{F} from a random function with advantage larger than 1/T. The family \mathcal{F} is T-non-adaptive PRF, if the above is only guarantee to hold against non-adaptive distinguishers. Given two function families \mathcal{F}_1 and \mathcal{F}_2 , we let $\mathcal{F}_1 \circ \mathcal{F}_2$ [resp., $\mathcal{F}_1 \bigoplus \mathcal{F}_2$] be the function family whose members are all pairs $(f,g) \in \mathcal{F}_1 \times \mathcal{F}_2$, and the action (f,g)(x) is defined as f(g(x)) [resp., $f(x) \oplus g(x)$]. We prove the following statements (see Section 3 for the formal statements).

Theorem 1.1 (Informal). Let \mathcal{F} be a $(p(n) \cdot T(n))$ -non-adaptive PRF, where $p \in \text{poly}$ is function of the evaluating time of \mathcal{F} , and let \mathcal{H} be an efficient pairwise-independent function family mapping strings of length n to $[T(n)]_{\{0,1\}^n}$, where $[T]_{\{0,1\}^n}$ is the first T elements (in lexicographic order) of $\{0,1\}^n$. Then $\mathcal{F} \circ \mathcal{H}$ is a $(\sqrt[3]{T(n)}/2)$ -adaptive PRF.

For instance, assuming that \mathcal{F} is a $(p(n) \cdot 2^{cn})$ -non-adaptive PRF and that \mathcal{H} maps strings of length n to $[2^{cn}]_{\{0,1\}^n}$, Theorem 1.1 yields that $\mathcal{F} \circ \mathcal{H}$ is a $(2^{\frac{cn}{3}-1})$ -adaptive PRF.

Theorem 1.1 is only useful, however, for polynomial-time computable T's (in this case, the family \mathcal{H} assumed by the theorem exists, see Section 2.2.2). Unfortunately, in the important case where \mathcal{F} is only assumed to be polynomially secure non-adaptive PRF, no useful polynomial-time computable T is guaranteed to exists.²

We suggest two different solutions for handling polynomially secure PRFs. In Appendix A we observe (following Bellare [1]) that a polynomially secure non-adaptive PRF is a *T*-non-adaptive PRF for some $T \in n^{\omega(1)}$. Since this *T* can be assumed without loss of generality to be a power of two, Theorem 1.1 yields a non-uniform (uses $\omega(1)$ -bit advice) polynomially secure adaptive PRF, that makes a single call to the underlying non-adaptive PRF. Our second solution is to use the following "combiner", to construct a (uniform) adaptively secure PRF, which makes $\omega(1)$ parallel calls to the underlying non-adaptive PRF.

Corollary 1.2 (Informal). Let \mathcal{F} be a polynomially secure non-adaptive PRF, let $\mathcal{H} = {\mathcal{H}_n}_{n \in \mathbb{N}}$ be an efficient pairwise-independent length-preserving function family and let $k(n) \in \omega(1)$ be polynomial-time computable function.

For $n \in \mathbb{N}$ and $i \in [n]$, let $\widehat{\mathcal{H}_n}^i$ be the function family $\widehat{\mathcal{H}_n}^i = \{\widehat{h}: h \in \mathcal{H}\},\$ where $\widehat{h}(x) = 0^{n-i} ||h(x)_{1,...,i}$ ('||' stands for string concatenation). Then the ensemble $\{\bigoplus_{i \in [k(n)]} \left(\mathcal{F}_n \circ \widehat{\mathcal{H}_n}^{\lfloor i \cdot \log n \rfloor} \right)\}_{n \in \mathbb{N}}$ is a polynomially secure adaptive PRF.

²Clearly \mathcal{F} is *p*-non-adaptive PRF for any $p \in \text{poly}$, but applying Theorem 1.1 with $T \in \text{poly}$, does not yield a polynomially secure adaptive PRF.

1.2 Proof Idea

To prove Theorem 1.1 we first show that $\mathcal{F} \circ \mathcal{H}$ is indistinguishable from $\Pi \circ \mathcal{H}$, where Π being the set of *all* functions from $\{0,1\}^n$ to $\{0,1\}^{\ell(n)}$ (letting $\ell(n)$ be \mathcal{F} 's output length), and then conclude the proof by showing that $\Pi \circ \mathcal{H}$ is indistinguishable from Π .

 $\mathcal{F} \circ \mathcal{H}$ is indistinguishable from $\Pi \circ \mathcal{H}$. Let D be (a possibly adaptive) algorithm of running time T(n), which distinguishes $\mathcal{F} \circ \mathcal{H}$ from $\Pi \circ \mathcal{H}$ with advantage $\varepsilon(n)$. We use D to build a *non-adaptive* distinguisher $\widehat{\mathsf{D}}$ of running time $p(n) \cdot T(n)$, which distinguishes \mathcal{F} from Π with advantage $\varepsilon(n)$. Given an oracle access to a function ϕ , the distinguisher $\widehat{\mathsf{D}}^{\phi}(1^n)$ first queries ϕ on all the elements of $[T(n)]_{\{0,1\}^n}$. Next it chooses at uniform $h \in \mathcal{H}$, and uses the stored answers to its queries, to emulate $\mathsf{D}^{\phi \circ h}(1^n)$.

Since $\widehat{\mathsf{D}}$ runs in time $p(n) \cdot T(n)$, for some large enough $p \in \text{poly}$, makes *non-adaptive* queries, and distinguishes \mathcal{F} from Π with advantage $\varepsilon(n)$, the assumed security of \mathcal{F} yields that $\varepsilon(n) < \frac{1}{p(n) \cdot T(n)}$.

 $\Pi \circ \mathcal{H}$ is indistinguishable from Π . We prove that $\Pi \circ \mathcal{H}$ is *statistically* indistinguishable from Π . Namely, even an unbounded distinguisher (that makes bounded number of calls) cannot distinguish between the families. The idea of the proof is fairly simple. Let D be an *s*-query algorithm trying to distinguish between $\Pi \circ \mathcal{H}$ and Π . We first note that the distinguishing advantage of D is bounded by its probability of finding a collision in a random $\phi \in \Pi \circ \mathcal{H}$ (in case no collision occurs, ϕ 's output is uniform). We next argue that in order to find a collision in ϕ , the distinguisher D gains nothing from being adaptive. Indeed, assuming that D found no collision until the *i*'th call, then it has only learned that *h* does not collide on these first *i* queries. Therefore, a random (or even a constant) query as the (i + 1) call, has the same chance to yield a collision, as any other query has. Hence, we assume without loss of generality that D is non-adaptive, and use the pairwise independence of \mathcal{H} to conclude that D's probability in finding a collision, and thus its distinguishing advantage, is bounded by $s(n)^2/T(n)$.

Combining the above two observations, we conclude that an adaptive distinguisher whose running time is bounded by $\frac{1}{2}\sqrt[3]{T(n)}$, cannot distinguish $\mathcal{F} \circ \mathcal{H}$ from Π (i.e., from a random function) with an advantage better than $\frac{T(n)^{\frac{2}{3}}/4}{T(n)} + \frac{1}{p(n)T(n)} \leq 2/\sqrt[3]{T(n)}$. Namely, $\mathcal{F} \circ \mathcal{H}$ is a $\left(\sqrt[3]{T(n)}/2\right)$ -adaptive PRF.

1.3 Related Work

Maurer and Pietrzak [17] were the first to consider the question of building adaptive PRFs from non-adaptive ones. They showed that in the *information theoretic* model, a self composition of a non-adaptive PRF *does* yield an adaptive PRF.³

In contrast, the situation in the *computational model* (which we consider here) seems very different: Myers [18] proved that it is impossible to reprove the result of [17] via fully-black-box reductions. Pietrzak [21] showed that under the Decisional Diffie-Hellman (DDH) assumption,

³Specifically, assuming that the non-adaptive PRF is (Q, ε) -non-adaptively secure, no Q-query non-adaptive algorithm distinguishes it from random with advantage larger than ε , then the resulting PRF is $(Q, \varepsilon(1 + \ln \frac{1}{\varepsilon}))$ -adaptively secure.

composition does not imply adaptive security. Where in [22] he showed that the existence of nonadaptive PRFs whose composition is not adaptively secure, yields that key-agreement protocol exists. Finally, Cho et al. [7] generalized [22] by proving that composition of two non-adaptive PRFs is not adaptively secure, iff (uniform transcript) key agreement protocol exists. We mention that [18, 21, 7], and in a sense also [17], hold also with respect to XORing of the non-adaptive families.

In a very recent subsequent work, Berman et al. [4] used more sophisticated hashing technique to improve the result presented here. Specifically, [4] use the so called Cuckoo hashing to give an optimal version of Theorem 1.1 – the resulting PRF is an O(T(n))-adaptive PRF.

2 Preliminaries

2.1 Notations

All logarithms considered here are in base two. We let '||' denote string concatenation. We use calligraphic letters to denote sets, uppercase for random variables, and lowercase for values. For an integer t, we let $[t] = \{1, \ldots, t\}$, and for a set $S \subseteq \{0, 1\}^*$ with $|S| \ge t$, we let $[t]_S$ be the first t elements (in increasing lexicographic order) of S. We let poly denote the set all polynomials, and let PPT denote the set of probabilistic algorithms (i.e., Turing machines) that run in *strictly* polynomial time. A function $\mu: \mathbb{N} \to [0, 1]$ is *negligible*, denoted $\mu(n) = \operatorname{neg}(n)$, if $\mu(n) < 1/p(n)$ for every $p \in \text{poly and large enough } n$.

Given a random variable X, we write X(x) to denote $\Pr[X = x]$, and write $x \leftarrow X$ to indicate that x is selected according to X. Similarly, given a finite set S, we let $s \leftarrow S$ denote that s is selected according to the uniform distribution on S. The statistical distance of two distributions P and Q over a finite set \mathcal{U} , denoted as $\operatorname{SD}(P,Q)$, is defined as $\max_{S \subseteq \mathcal{U}} |P(S) - Q(S)| = \frac{1}{2} \sum_{u \in \mathcal{U}} |P(u) - Q(u)|$.

2.2 Ensemble of Function Families

Let $\mathcal{F} = \{\mathcal{F}_n : \mathcal{D}_n \mapsto \mathcal{R}_n\}_{n \in \mathbb{N}}$ stands for an ensemble of function families, where each $f \in \mathcal{F}_n$ has domain \mathcal{D}_n and its range contained in \mathcal{R}_n . Such ensemble is *length preserving*, if $\mathcal{D}_n = \mathcal{R}_n = \{0, 1\}^n$ for every n.

Definition 2.1 (efficient function family ensembles). A function family ensemble $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ is efficient, if the following hold:

- **Samplable.** \mathcal{F} is samplable in polynomial-time: there exists a PPT that given 1^n , outputs (the description of) a uniform element in \mathcal{F}_n .
- **Efficient.** There exists a polynomial-time algorithm that given $x \in \{0,1\}^n$ and (a description of) $f \in \mathcal{F}_n$, outputs f(x).

2.2.1 Operating on Function Families

Definition 2.2 (composition of function families). Let $\mathcal{F}^1 = \{\mathcal{F}_n^1 \colon \mathcal{D}_n^1 \mapsto \mathcal{R}_n^1\}_{n \in \mathbb{N}}$ and $\mathcal{F}^2 = \{\mathcal{F}_n^2 \colon \mathcal{D}_n^2 \mapsto \mathcal{R}_n^2\}_{n \in \mathbb{N}}$ be two ensembles of function families with $\mathcal{R}_n^1 \subseteq \mathcal{D}_n^2$ for every n. We define the composition of \mathcal{F}^1 with \mathcal{F}^2 as $\mathcal{F}^2 \circ \mathcal{F}^1 = \{\mathcal{F}_n^2 \circ \mathcal{F}_n^1 \colon \mathcal{D}_n^1 \mapsto \mathcal{R}_n^2\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n^2 \circ \mathcal{F}_n^1 = \{(f_2, f_1) \in \mathcal{F}_n^2 \times \mathcal{F}_n^1\}$, and $(f_2, f_1)(x) := f_2(f_1(x))$.

Definition 2.3 (XOR of function families). Let $\mathcal{F}^1 = \{\mathcal{F}_n^1 \colon \mathcal{D}_n^1 \mapsto \mathcal{R}_n^1\}_{n \in \mathbb{N}}$ and $\mathcal{F}^2 = \{\mathcal{F}_n^2 \colon \mathcal{D}_n^2 \mapsto \mathcal{R}_n^2\}_{n \in \mathbb{N}}$ be two ensembles of function families with $\mathcal{R}_n^1, \mathcal{R}_n^2 \subseteq \{0, 1\}^{\ell(n)}$ for every n. We define the XOR of \mathcal{F}^1 with \mathcal{F}^2 as $\mathcal{F}^2 \bigoplus \mathcal{F}^1 = \{\mathcal{F}_n^2 \bigoplus \mathcal{F}_n^1 \colon \mathcal{D}_n^1 \cap \mathcal{D}_n^2 \mapsto \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n^2 \bigoplus \mathcal{F}_n^1 = \{(f_2, f_1) \in \mathcal{F}_n^2 \times \mathcal{F}_n^1\}$, and $(f_2, f_1)(x) := f_2(x) \oplus f_1(x)$.

2.2.2 Pairwise Independent Hashing

Definition 2.4 (pairwise independent families). A function family $\mathcal{H} = \{h : \mathcal{D} \mapsto \mathcal{R}\}$ is pairwise independent (with respect to \mathcal{D} and \mathcal{R}), if

$$\Pr_{h \leftarrow \mathcal{H}}[h(x_1) = y_1 \land h(x_2) = y_2] = \frac{1}{|\mathcal{R}|^2},$$

for every distinct $x_1, x_2 \in \mathcal{D}$ and every $y_1, y_2 \in \mathcal{R}$.

For every $\ell \in \text{poly}$, the existence of efficient pairwise-independent family ensembles mapping strings of length n to strings of length $\ell(n)$ is well known ([6]). In this paper we use efficient pairwiseindependent function family ensembles mapping strings of length n to the set $[T(n)]_{\{0,1\}^n}$, where $T(n) \leq 2^n$ and is without loss of generality a power of two.⁴ Let \mathcal{H} be an efficient length-preserving, pairwise-independent function family ensemble and assume that $t(n) := \log T(n)$ is polynomial-time computable. Then the function family $\hat{\mathcal{H}} = \{\hat{\mathcal{H}}_n = \{h': h \in \mathcal{H}_n, h'(x) = 0^{n-t(n)} || h(x)_{1,...,t(n)}\}\}$, is an efficient pairwise-independent function family ensemble, mapping strings of length n to the set $[T(n)]_{\{0,1\}^n}$.

2.2.3 Pseudorandom Functions

Definition 2.5 (pseudorandom functions). An efficient function family ensemble $\mathcal{F} = \{\mathcal{F}_n: \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ is a $(T(n), \varepsilon(n))$ -adaptive PRF, if for every oracle-aided algorithm (distinguisher) D of running time T(n) and large enough n, it holds that

$$\left| \Pr_{f \leftarrow \mathcal{F}_n} [\mathsf{D}^f(1^n) = 1] - \Pr_{\pi \leftarrow \Pi_n} [\mathsf{D}^\pi(1^n) = 1] \right| \le \varepsilon(n),$$

where Π_n is the set of all functions from $\{0,1\}^n$ to $\{0,1\}^{\ell(n)}$. If we limit D above to be non-adaptive (i.e., it has to write all his oracle calls before making the first call), then \mathcal{F} is called $(T(n), \varepsilon(n))$ -non-adaptive PRF.

The ensemble \mathcal{F} is a t-adaptive PRF, if it is a (t, 1/t)-adaptive PRF according to the above definition. It is polynomially secure adaptive PRF (for short, adaptive PRF), if it is a p-adaptive PRF for every $p \in \text{poly}$. Finally, it is super-polynomial secure adaptive PRF, if it T-adaptive PRF for some $T(n) \in n^{\omega(1)}$. The same conventions are also used for non-adaptive PRFs.

Clearly, a super-polynomial secure PRF is also polynomially secure. In Appendix A we prove that the converse is also true: a polynomially secure PRF is also super-polynomial secure PRF.

⁴For our applications, see Section 3, we can always consider $T'(n) = 2^{\lfloor \log(T(n)) \rfloor}$, which only causes us a factor of two loss in the resulting security.

3 Our Construction

In this section we present the main contribution of this paper — a direct construction of an adaptive pseudorandom function family from a non-adaptive one.

Theorem 3.1 (restatement of Theorem 1.1). Let T be a polynomial-time computable integer function, let $\mathcal{H} = \{\mathcal{H}_n : \{0,1\}^n \mapsto [T(n)]_{\{0,1\}^n}\}$ be an efficient pairwise independent function family ensemble, and let $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}\}$ be a $(p(n) \cdot T(n), \varepsilon(n))$ -non-adaptive PRF, where $p \in$ poly is determined by the computation time of T, \mathcal{F} and \mathcal{H} . Then $\mathcal{F} \circ \mathcal{H}$ is a $\left(s(n), \varepsilon(n) + \frac{s(n)^2}{T(n)}\right)$ -adaptive PRF for every s(n) < T(n).

Theorem 3.1 yields the following simpler statement.

Corollary 3.2. Let T, p and \mathcal{H} be as in Theorem 3.1. Assuming \mathcal{F} is a (p(n)T(n))-non-adaptive PRF, then $\mathcal{F} \circ \mathcal{H}$ is a $(\sqrt[3]{T(n)}/2)$ -adaptive PRF.

Proof. Applying Theorem 3.1 with respect to $s(n) = \sqrt[3]{T(n)}/2$ and $\varepsilon(n) = \frac{1}{p(n)T(n)}$, yields that $\mathcal{F} \circ \mathcal{H}$ is a $\left(s(n), \frac{1}{p(n)T(n)} + \frac{s(n)^2}{T(n)}\right)$ -adaptive PRF. Since $\frac{1}{p(n)T(n)} < \frac{1}{2s(n)}$ and $\frac{s(n)^2}{T(n)} \leq \frac{1}{2s(n)}$, it follows that $\mathcal{F} \circ \mathcal{H}$ is a (s, 1/s)-adaptive PRF.

To prove Theorem 3.1, we use the (non efficient) function family ensemble $\Pi \circ \mathcal{H}$, where $\Pi = \Pi_{\ell}$ (i.e., the ensemble of all functions from $\{0,1\}^n$ to $\{0,1\}^{\ell}$), and $\ell = \ell(n)$ is the output length of \mathcal{F} . We first show that $\mathcal{F} \circ \mathcal{H}$ is *computationally* indistinguishable from $\Pi \circ \mathcal{H}$, and complete the proof showing that $\Pi \circ \mathcal{H}$ is *statistically* indistinguishable from Π .

3.1 $\mathcal{F} \circ \mathcal{H}$ is Computationally Indistinguishable From $\Pi \circ \mathcal{H}$

Lemma 3.3. Let T, \mathcal{F} and \mathcal{H} be as in Theorem 3.1. Then for every oracle-aided distinguisher D of running time T, there exists a non-adaptive oracle-aided distinguisher \widehat{D} of running time $p(n) \cdot T(n)$, for some $p \in \text{poly}$ (determined by the computation time of T, \mathcal{F} and \mathcal{H}), with

$$\left|\operatorname{Pr}_{g\leftarrow\mathcal{F}_n}[\widehat{\mathsf{D}}^g(1^n)=1] - \operatorname{Pr}_{g\leftarrow\Pi_n}[\widehat{\mathsf{D}}^g(1^n)=1]\right| = \left|\operatorname{Pr}_{g\leftarrow\mathcal{F}_n\circ\mathcal{H}_n}[\mathsf{D}^g(1^n)=1] - \operatorname{Pr}_{g\leftarrow\Pi_n\circ\mathcal{H}_n}[\mathsf{D}^g(1^n)=1]\right|$$

for every $n \in \mathbb{N}$, where Π_n is the set of all functions from $\{0,1\}^n$ to $\{0,1\}^{\ell(n)}$.

In particular, the pseudorandomness of \mathcal{F} yields that $\mathcal{F} \circ \mathcal{H}$ is computationally indistinguishable from the ensemble $\{\Pi_n \circ \mathcal{H}_n\}_{n \in \mathbb{N}}$ by an adaptive distinguisher of running time T.

Proof. The distinguisher \widehat{D} is defined as follows:

Algorithm 3.4 (\widehat{D}) .

Input: 1^n .

Oracle: a function ϕ over $\{0,1\}^n$.

- 1. Compute $\phi(x)$ for every $x \in [T(n)]_{\{0,1\}^n}$.
- 2. Set $g = \phi \circ h$, where h is uniformly chosen in \mathcal{H}_n .

3. Emulate $D^{g}(1^{n})$: answer a query x to ϕ made by D with g(x), using the information obtained in Step 1.

Note that $\widehat{\mathsf{D}}$ makes T(n) non-adaptive queries to ϕ , and it can be implemented to run in time p(n)T(n), for large enough $p \in \text{poly}$. We conclude the proof by observing that in case ϕ is uniformly drawn from \mathcal{F}_n , the emulation of D done in $\widehat{\mathsf{D}}^{\phi}$ is identical to a random execution of D^g with $g \leftarrow \mathcal{F}_n \circ \mathcal{H}_n$. Similarly, in case ϕ is uniformly drawn from Π_n , the emulation is identical to a random execution of D^{π} with $\pi \leftarrow \Pi_n \circ \mathcal{H}_n$.

3.2 $\Pi \circ \mathcal{H}$ is Statistically Indistinguishable From Π

The following lemma is commonly used for proving the security of hash based MACs (cf., [11, Proposition 6.3.6]), yet for completeness we give it a full proof below.

Lemma 3.5. Let n, T be integers with $T \leq 2^n$, and let \mathcal{H} be a pairwise-independent function family mapping string of length n to $[T]_{\{0,1\}^n}$. Let D be an (unbounded) s-query oracle-aided algorithm (i.e., making at most s queries), then

$$\left|\Pr_{g \leftarrow \Pi \circ \mathcal{H}} \left[\mathsf{D}^g = 1\right] - \Pr_{\pi \leftarrow \Pi} \left[\mathsf{D}^\pi = 1\right]\right| \le s^2/T,$$

where Π is the set of all functions from $\{0,1\}^n$ to $\{0,1\}^\ell$ (for some $\ell \in \mathbb{N}$).

Proof. We assume for simplicity that D is deterministic (the reduction to the randomized case is standard) and makes exactly s valid (i.e., inside $\{0,1\}^n$) distinct queries, and let $\Omega = (\{0,1\}^{\ell})^s$. Consider the following random process:

Algorithm 3.6.

- 1. Emulate D, while answering the *i*'th query q_i with a uniformly chosen $a_i \in \{0, 1\}^{\ell}$. Set $\overline{q} = (q_1, \ldots, q_s)$ and $\overline{a} = (a_1, \ldots, a_s)$.
- 2. Choose $h \leftarrow \mathcal{H}$.
- 3. Emulate D again, while answering the *i*'th query q'_i with $a'_i = a_i$ (the same a_i from Step 1), if $h(q'_i) \notin \{h(q'_j)\}_{j \in [i-1]}$, and with $a'_i = a_j$, if $h(q'_i) = h(q'_j)$ for some $j \in [i-1]$. Set $\overline{q'} = (q'_1, \ldots, q'_s)$ and $\overline{a'} = (a'_1, \ldots, a'_s)$.

Let \overline{A} , \overline{Q} , $\overline{A'}$, $\overline{Q'}$ and H be the (jointly distributed) random variables induced by the values of \overline{q} , \overline{a} , $\overline{q'}$, $\overline{a'}$ and h respectively, in a random execution of the above process. It is not hard to verify that \overline{A} is distributed the same as the oracle answers in a random execution of D^{π} with $\pi \leftarrow \Pi$, and that $\overline{A'}$ is distributed the same as the oracle answers in a random execution of D^g with $g \leftarrow \Pi \circ \mathcal{H}$. Hence, for proving Lemma 3.5, it suffices to bound the statistical distance between \overline{A} and $\overline{A'}$.

Let Coll be the event that $H(\overline{Q}_i) = H(\overline{Q}_j)$ for some $i \neq j \in [s]$. Since the queries and answers in both emulations of Algorithm 3.6 are the same until a collision with respect to H occurs, it follows that

$$\Pr[\overline{A} \neq \overline{A'}] \le \Pr[\text{Coll}] \tag{1}$$

On the other hand, since H is chosen after \overline{Q} is set, the pairwise independent of \mathcal{H} yields that

$$\Pr[\operatorname{Coll}] \le s^2/T,\tag{2}$$

and therefore $\Pr[\overline{A} \neq \overline{A'}] \leq s^2/T$. It follows that $\Pr[\overline{A} \in C] \leq \Pr[\overline{A'} \in C] + s^2/T$ for every $C \subseteq \Omega$, yielding that $SD(\overline{A}, \overline{A'}) \leq s^2/T$.

3.3 Putting It Together

We are now finally ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let D be an oracle-aided algorithm of running time s with s(n) < T(n). Lemma 3.3 yields that $|\Pr_{g \leftarrow \mathcal{F}_n \circ \mathcal{H}_n}[\mathsf{D}^g(1^n) = 1] - \Pr_{g \leftarrow \Pi_n \circ \mathcal{H}_n}[\mathsf{D}^g(1^n) = 1]| \leq \varepsilon(n)$ for large enough n, where Lemma 3.5 yields that $|\Pr_{g \leftarrow \Pi_n \circ \mathcal{H}_n}[\mathsf{D}^g(1^n) = 1] - \Pr_{\pi \leftarrow \Pi_n}[\mathsf{D}^\pi(1^n) = 1]| \leq s(n)^2/T(n)$ for every $n \in \mathbb{N}$. Hence, the triangle inequality yields that $|\Pr_{g \leftarrow \mathcal{F}_n \circ \mathcal{H}_n}[\mathsf{D}^g(1^n) = 1] - \Pr_{\pi \leftarrow \Pi_n}[\mathsf{D}^\pi(1^n) = 1]| \leq \varepsilon(n) + s(n)^2/T(n)$ for large enough n, as requested.

3.4 Handling Polynomial Security

Corollary 3.2 is only useful when the security of the underlying non-adaptive PRF (i.e., T) is efficiently computable (or when considering non-uniform PRF constructions, see Section 1.1). In this section we show how to handle the important case of polynomially secure non-adaptive PRF. We use the following "combiner".

Definition 3.7. Let \mathcal{H} be a function family into $\{0,1\}^n$. For $i \in [n]$, let $\widehat{\mathcal{H}}^i$ be the function family $\widehat{\mathcal{H}}^i = \{\widehat{h} \colon h \in \mathcal{H}\}$, where $\widehat{h}(x) = 0^{n-i} ||h(x)_{1,\dots,i}$.

Corollary 3.8. Let \mathcal{F} be a T(n)-non-adaptive PRF, let $p \in \text{poly be as in the statement of Corollary 3.2, let <math>\mathcal{H}$ be an efficient length-preserving pairwise-independent function family ensemble, and let $\mathcal{I}(n) \subseteq [n]$ be polynomial-time computable (in n) index set. Define the function family ensemble $G = \{G_n\}_{n \in \mathbb{N}}$, where $G_n = \bigoplus_{i \in \mathcal{I}(n)} \left(\mathcal{F}_n \circ \widehat{\mathcal{H}}_n^{i}\right)$.

There exists $q \in \text{poly such that } G$ is a $\left(\sqrt[3]{2^{t(n)}}/(2q(n))\right)$ -adaptive PRF, for every polynomialtime computable integer function t, with $t(n) \in \mathcal{I}(n)$ and $2^{t(n)} \leq T(n)/p(n)$.

Before proving the corollary, let us first use it for constructing adaptive PRF from non-adaptive polynomially secure one.

Corollary 3.9 (restatement of Corollary 1.2). Let \mathcal{F} be a polynomially secure non-adaptive *PRF*, let \mathcal{H} be an efficient pairwise-independent length-preserving function family ensemble and let $k(n) \in \omega(1)$ be polynomial-time computable function. Then $G := \{\bigoplus_{i \in [k(n)]} \left(\mathcal{F}_n \circ \widehat{\mathcal{H}}_n^{\lfloor i \cdot \log n \rfloor} \right) \}_{n \in \mathbb{N}}$ is polynomially secure adaptive *PRF*.

Proof. Let $\mathcal{I}(n) := \{\lfloor \log n \rfloor, \lfloor 2 \cdot \log n \rfloor \dots, \lfloor k(n) \cdot \log n \rfloor\}$. Applying Corollary 3.8 with respect to $\mathcal{F}, \mathcal{H}, \mathcal{I}$ and $t(n) = \lfloor c \cdot \log n \rfloor$, where $c \in \mathbb{N}$, and assuming that q of Corollary 3.8 is n^k , for some $k \in \mathbb{N}$, yields that G is a $O(n^{c/3-k})$ -adaptive PRF. It follows that G is p-adaptive PRF for every $p \in \text{poly.}$ Namely, G is polynomially secure adaptive PRF. \Box

Remark 3.10 (unknown security). Corollary 3.8 is also useful when the security of \mathcal{F} is "not known" in the construction time. Taking $\mathcal{I}(n) = \{1, 2, 4, \ldots, 2^{\lfloor \log n \rfloor}\}$ (resulting in $\log n$ calls to \mathcal{F}) and assuming that \mathcal{F} is found to be T(n)-non-adaptive PRF for some polynomial-time computable T, the resulting PRF is guaranteed to be $O(\sqrt[6]{T(n)})$ -adaptive PRF (neglecting polynomial factors).

Proof of Corollary 3.8. It is easy to see that G is efficient, so it is left to argue for its security. Let t be a polynomial-time computable integer function with $t(n) \in \mathcal{I}(n)$ and $2^{t(n)} \leq T(n)/p(n)$. It follows that $\widehat{\mathcal{H}}^t = \{\widehat{\mathcal{H}_n}^{t(n)}\}_{n \in \mathbb{N}}$ is an efficient pairwise-independent function family ensemble, and Corollary 3.2 yields that $\mathcal{F} \circ \widehat{\mathcal{H}}^t$ is a $(\sqrt[3]{2^{t(n)}}/2)$ -adaptive PRF.

Assume towards a contradiction that there exists an oracle-aided distinguisher D that runs in time $T'(n) = \sqrt[3]{2^{t(n)}}/(2q(n))$ and

$$|\Pr_{g \leftarrow G_n}[\mathsf{D}^g(1^n) = 1] - \Pr_{\pi \leftarrow \Pi_n}[\mathsf{D}^\pi(1^n) = 1]| > 1/T'(n)$$
(3)

for infinitely many n's. We use the following distinguisher for breaking the pseudorandomness of $\mathcal{F} \circ \hat{\mathcal{H}}^t$:

Algorithm 3.11 (\widehat{D}) .

Input: 1^n .

Oracle: a function ϕ over $\{0, 1\}^n$.

- 1. For every $i \in \mathcal{I}(n) \setminus \{t(n)\}$, choose $g^i \leftarrow \mathcal{F}_n \circ \widehat{\mathcal{H}_n}^i$.
- 2. Set $g := \phi \oplus \bigoplus_{i \in \mathcal{I}(n) \setminus \{t(n)\}} g^i$.
- 3. Emulate $\mathsf{D}^g(1^n)$.

Note that \widehat{D} can be implemented to run in time $|\mathcal{I}(n)| \cdot r(n) \cdot T'(n)$ for some $r \in \text{poly}$, which is smaller than $\sqrt[3]{2^{t(n)}}/2$ for large enough q. Also note that in case ϕ is uniformly distributed over Π_n , then g (selected by $\widehat{D}^{\phi}(1^n)$) is uniformly distributed in Π_n , where in case ϕ is uniformly distributed in $\mathcal{F}_n \circ \widehat{\mathcal{H}_n}^{t(n)}$, then g is uniformly distributed in G_n . It follows that

$$\left|\operatorname{Pr}_{g\leftarrow(\mathcal{F}\circ\widehat{\mathcal{H}}^t)_n}[\widehat{\mathsf{D}}^g(1^n)=1] - \operatorname{Pr}_{\pi\leftarrow\Pi_n}[\widehat{\mathsf{D}}^\pi(1^n)=1]\right| = \left|\operatorname{Pr}_{g\leftarrow G_n}[\mathsf{D}^g(1^n)=1] - \operatorname{Pr}_{\pi\leftarrow\Pi_n}[\mathsf{D}^\pi(1^n)=1]\right|$$

$$(4)$$

for every $n \in \mathbb{N}$. In particular, Equation (3) yields that

$$\left|\operatorname{Pr}_{g\leftarrow(\mathcal{F}\circ\widehat{\mathcal{H}}^t)_n}[\widehat{\mathsf{D}}^g(1^n)=1] - \operatorname{Pr}_{\pi\leftarrow\Pi_n}[\widehat{\mathsf{D}}^\pi(1^n)=1]\right| > \frac{2q(n)}{\sqrt[3]{2^{t(n)}}} > \frac{2}{\sqrt[3]{2^{t(n)}}}$$

for infinitely many n's, in contradiction to the pseudorandomness of $\mathcal{F} \circ \widehat{\mathcal{H}}^t$ we proved above. \Box

Acknowledgment

We are very grateful to Omer Reingold for very useful discussions, and for challenging the second author with this research question a long while ago.

References

- [1] M. Bellare. A note on negligible functions. Journal of Cryptology, pages 271–284, 2002.
- [2] M. Bellare and S. Goldwasser. New paradigms for digital signatures and message authentication based on non-interative zero knowledge proofs. In Advances in Cryptology – CRYPTO '89, pages 194–211, 1989.
- [3] I. Berman and I. Haitner. From non-adaptive to adaptive pseudorandom functions. In Theory of Cryptography, 9th Theory of Cryptography Conference, TCC 2008, pages 357–368, 2012.
- [4] I. Berman, I. Haitner, I. Komargodski, and M. Naor. Hardness preserving reductions via cuckoo hashing.
- [5] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of memories. *Algorithmica*, 12(2/3):225–244, 1994.
- [6] L. J. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer and System Sciences, pages 143–154, 1979.
- [7] C. Cho, C.-K. Lee, and R. Ostrovsky. Equivalence of uniform key agreement and composition insecurity. In Advances in Cryptology – CRYPTO 2010, pages 447–464, 2010.
- [8] B. Chor, A. Fiat, M. Naor, and B. Pinkas. Tracing traitors. *IEEE Transactions on Information Theory*, 46(3):893–910, 2000.
- [9] O. Goldreich. Towards a theory of software protection. In Advances in Cryptology CRYPTO '86, pages 426–439, 1986.
- [10] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.
- [11] O. Goldreich. Foundations of Cryptography VOLUME 2: Basic Applications. Cambridge University Press, 2004.
- [12] O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applications of random functions. pages 276–288, 1984.
- [13] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the ACM, pages 792–807, 1986.
- [14] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM Journal on Computing, pages 1364–1396, 1999.
- [15] M. Luby. *Pseudorandomness and cryptographic applications*. Princeton computer science notes. Princeton University Press, 1996. ISBN 978-0-691-02546-9.
- [16] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions. SIAM Journal on Computing.
- [17] U. M. Maurer and K. Pietrzak. Composition of random systems: When two weak make one strong. In *Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004*, pages 410–427, 2004.

- [18] S. Myers. Black-box composition does not imply adaptive security. In Advances in Cryptology - EUROCRYPT 2004, pages 189–206, 2004.
- [19] M. Naor and O. Reingold. Synthesizers and their application to the parallel construction of psuedo-random functions. In *Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS)*, pages 170–181, 1995.
- [20] R. Ostrovsky. An efficient software protection scheme. In Advances in Cryptology CRYPTO '89, 1989.
- [21] K. Pietrzak. Composition does not imply adaptive security. In Advances in Cryptology CRYPTO 2005, pages 55–65, 2005.
- [22] K. Pietrzak. Composition implies adaptive security in minicrypt. In Advances in Cryptology - EUROCRYPT 2006, pages 328–338, 2006.

A From Polynomial to Super-Polynomial Security

The standard security definition for cryptographic primitives is *polynomial security*: any PPT trying to break the primitive has only negligible success probability. Bellare [1] showed that for any polynomially secure primitive there exists a *single* negligible function μ , such that no PPT can break the primitive with probability larger than μ . Here we take his approach a step further, showing that for a polynomially secure primitive there exists a super-polynomial function T, such that no adversary of running time T breaks the primitive with probability larger than 1/T.

In the following we identify algorithms with their string description. In particular, when considering algorithm A, we mean the algorithm defined by the string A (according to some canonical representation). We prove the following result.

Theorem A.1. Let $v: \{0,1\}^* \times \mathbb{N} \mapsto [0,1]$ be a function with the following properties: 1) $v(\mathsf{A},n) =$ neg(n) for every oracle-aided PPT A; and 2) if the distributions induced by random executions of $\mathsf{A}^f(x)$ and $\mathsf{B}^f(x)$ are the same for any input $x \in \{0,1\}^n$ and function f (each distribution describes the algorithm's output and oracle queries), then $v(\mathsf{A},n) = v(\mathsf{B},n)$.

Then there exists a non-decreasing integer function $T(n) \in n^{\omega(1)}$ such that following holds: for any algorithm A of running time at most T(n), it holds that $v(A, n) \leq 1/T(n)$ for large enough n.

Remark A.2 (Applications). Let f be a polynomially secure OWF (i.e., $\Pr[A(f(U_n)) \in f^{-1}(f(U_n))] = \operatorname{neg}(n)$ for any PPT A). Applying Theorem A.1 with $v(A, n) := \Pr[A(f(U_n)) \in f^{-1}(f(U_n))]$ (where if A expects to get an oracle, provide him with the constant function $\phi(x) = 1$), yields that f is super-polynomial secure OWF (i.e., exists $T(n) \in n^{\omega(1)}$ such that $\Pr[A(f(U_n)) \in f^{-1}(f(U_n))] \leq 1/T(n)$ for any algorithm of running time T and large enough n).

Similarly, for a polynomially secure $PRF \mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ (see Definition 2.5), applying Theorem A.1 with $v(A, n) := |\Pr_{f \leftarrow \mathcal{F}_n}[A^f(1^n) = 1] - \Pr_{\pi \leftarrow \Pi_n}[A^{\pi}(1^n) = 1]|$, where Π_n is the set of all functions with the same domain/range as \mathcal{F}_n , yields that \mathcal{F} is super-polynomial secure PRF.

Proof of Theorem A.1. Given a probabilistic algorithm A and an integer *i*, let A_i denote the variant of A that on input of length *n*, halts after n^i steps (hence, A_i is a PPT). Let S_i be the first *i*

strings in $\{0,1\}^*$, according to some canonical order, viewed as descriptions of *i* algorithms. Let $\mathcal{I}(n) = \{1\} \cup \{i \in [n] : \forall A \in S_i, k \ge n : v(A_i, k) < 1/k^i\}$, let $t(n) = \max \mathcal{I}(n)$ and $T(n) = n^{t(n)}$.

Let A be an algorithm of running time T(n), and let i_A be the first integer such that $A \in S_{i_A}$. It follows from Claim A.3 that $t(n) > i_A$ for any large enough n. For any such n, the definition of t guarantees that $v(A_{t(n)}, n) < 1/n^{t(n)} = 1/T(n)$. Since A is of running time T(n), the second property of v yields that $v(A, n) = v(A_{t(n)}, n)$, and therefore v(A, n) < 1/T(n).

Claim A.3. The function t(n) is a non-decreasing unbounded integer function.

Proof. To see that t(n) is non-decreasing, observe (intuitively) that once an algorithm is taken into consideration in $\mathcal{I}(n')$, for some $n' \in \mathbb{N}$, it will be taken into consideration in $\mathcal{I}(n)$, for any $n \ge n'$. Formally, for some $n', i \in \mathbb{N}$ assume that t(n') = i, and let $n \ge n'$. We show that $t(n) \ge i$. From the definition of t, is holds that for every $A \in \mathcal{S}_i$ and every $k \ge n'$ it holds that $v(A_i, k) \le 1/k^i$. Hence, $[i] \subseteq \mathcal{I}(n)$, and thus $t(n) \ge i$.

To see that t(n) is unbounded, fix $i \in \mathbb{N}$. For each $\mathsf{A} \in \mathcal{S}_i$, let n_A be the first integer such that $v(\mathsf{A}_i, n) \leq 1/n^i$ for every $n \geq n_\mathsf{A}$ (note that such n_A exists by the first property of v), and let $n_i = \max\{n_\mathsf{A} : \mathsf{A} \in \mathcal{S}_i\}$. It follows that $v(\mathsf{A}_i, n) \leq 1/n^i$ for every $n \geq n_i$ and $\mathsf{A} \in \mathcal{S}_i$, and therefore $t(n_i) \geq i$.

A.1 Non Uniform Security

Theorem A.1 and its proof holds only with respect to uniform algorithms (i.e., Turing machines). Here we prove a similar result for the non uniform case (i.e., polynomially bounded circuits). In the following we consider adversaries that are families of circuits, denoted with $\mathcal{A} = \{A_n\}_{n \in \mathbb{N}}$. A circuit A is s-size circuit if $|A| \leq s$ and a family $\mathcal{A} = \{A_n\}_{n \in \mathbb{N}}$ is T(n)-size if A_n is T(n)-size circuit for every $n \in \mathbb{N}$. The family \mathcal{A} is polynomially bounded, if for some $p \in \text{poly}$, \mathcal{A} is p(n)-size.

Theorem A.4. Let S be the set of all circuits and let $v: S \times \mathbb{N} \mapsto [0,1]$ be a function with $v(\mathsf{A}_n, n) = \operatorname{neg}(n)$ for every oracle-aided polynomially bounded circuit family $\mathcal{A} = \{\mathsf{A}_n\}_{n \in \mathbb{N}}$. Then there exists a non-decreasing integer function $T(n) \in n^{\omega(1)}$ and $n' \in \mathbb{N}$, such that $v(\mathsf{A}, n) \leq 1/T(n)$ for every T(n)-size circuit A and $n \geq n'$.

Proof. We use the following approach (adopted from [1]): for integer pair (n, s), let $C_{n,s}$ be the set of all *n*-input, *s*-size circuits. Fix $B_{n,s} \in C_{n,s}$ with $v(B_{n,s}, n) \geq v(\mathsf{C}, n)$ for all $\mathsf{C} \in C_{n,s}$ (note that $\mathsf{B}_{n,s}$ is well defined since $C_{n,s}$ is finite). For $i \in \mathbb{N}$, let $\mathcal{B}^i = \{\mathsf{B}_{n,n^i}\}_{n\in\mathbb{N}}$ and let $\mathcal{I}(n) = \{0\} \cup \{i \in$ $[n]: \forall k \geq n: v(\mathsf{B}_{k,k^i}, k) < 1/k^i\}$. Namely, for every $i \in \mathcal{I}(n)$ and $k \geq n$, the "success" of any circuit family of size k^i is bounded by $1/k^i$. Let $t(n) = \max \mathcal{I}(n)$ and let $T(n) = n^{t(n)}$. Claim A.5 states that t is a non-decreasing unbounded integer function. Hence, to complete the proof, it is left to show that there exists $n' \in \mathbb{N}$ such that $v(\mathsf{A}, n) \leq 1/T(n)$ for every *n*-input T(n)-size circuit A and $n \geq n'$.

Indeed, let $n' \in \mathbb{N}$ be such that $t(n') \geq 1$ (such n' is guaranteed to exists by Claim A.5), let $n \geq n'$ and let A be an *n*-input T(n)-size circuit. The definition of t yields that $v(\mathsf{B}_{n,n^{t(n)}},n) < 1/n^{t(n)} = 1/T(n)$. Since, by definition, $v(\mathsf{A},n) \leq v(\mathsf{B}_{n,n^{t(n)}},n)$, it follows that $v(\mathsf{A},n) \leq 1/T(n)$.

Claim A.5. The function t(n) is a non-decreasing unbounded integer function.

Proof. To see that t(n) is non-decreasing, observe (intuitively) that once a circuit is taken into consideration in $\mathcal{I}(n')$, for some $n' \in \mathbb{N}$, it will be taken into consideration in $\mathcal{I}(n)$, for any $n \geq n'$. Formally, for some $n', i \in \mathbb{N}$ assume that t(n') = i, and let $n \geq n'$. We show that $i \in \mathcal{I}(n)$, and thus $t(n) \geq i$. From the definition of t, for every $k \geq n'$ it holds that $v(\mathsf{B}_{k,k^i},k) \leq 1/k^i$. However, since $n \geq n'$, for every $k \geq n$ it also holds that $v(\mathsf{B}_{k,k^i},k) \leq 1/k^i$. Hence $i \in \mathcal{I}(n)$.

To see that t(n) is unbounded, we fix $i \in \mathbb{N}$ and show that $\exists n \in \mathbb{N} : t(n) \geq i$. Consider the circuit family \mathcal{B}^i and let $n_{\mathcal{B}^i}$ be the first integer such that $v(\mathsf{B}_{n,n^i},n) \leq 1/n^i$ for every $n \geq n_{\mathcal{B}^i}$ (note that such $n_{\mathcal{B}^i}$ exists by the property of v). Therefore $t(n_{\mathcal{B}^i}) \geq i$.