From Non-Adaptive to Adaptive Pseudorandom Functions *

Itay Berman Iftach Haitner ${ }^{\dagger}$

December 2, 2012

Abstract

Unlike the standard notion of pseudorandom functions (PRF), a non-adaptive PRF is only required to be indistinguishable from a random function in the eyes of a non-adaptive distinguisher (i.e., one that prepares its oracle calls in advance). A recent line of research has studied the possibility of a direct construction of adaptive PRFs from non-adaptive ones, where direct means that the constructed adaptive PRF uses only few (ideally, constant number of) calls to the underlying non-adaptive PRF. Unfortunately, this study has only yielded negative results, showing that "natural" such constructions are unlikely to exist (e.g., Myers [EUROCRYPT '04], Pietrzak [CRYPTO '05, EUROCRYPT '06]).

We give an affirmative answer to the above question, presenting a direct construction of adaptive PRFs from non-adaptive ones. The suggested construction is extremely simple, a composition of the non-adaptive PRF with an appropriate pairwise independent hash function.

1 Introduction

A pseudorandom function family (PRF), introduced by Goldreich, Goldwasser, and Micali [13], cannot be distinguished from a family of truly random functions by an efficient distinguisher who is given an oracle access to a random member of the family. PRFs have an extremely important role in cryptography, allowing parties, which share a common secret key, to send secure messages, identify themselves and to authenticate messages [12, 15]. In addition, they have many other applications, essentially in any setting that requires random function provided as black-box [2, 5, $8,9,16,20]$. Different PRF constructions are known in the literature, whose security is based on different hardness assumption. Constructions relevant to this work are those based on the existence of pseudorandom generators [13] (and thus on the existence of one-way functions [14]), and on, the so called, synthesizers [19].

In this work we study the question of constructing (adaptive) PRFs from non-adaptive PRFs. The latter primitive is a (weaker) variant of the standard PRF we mentioned above, whose security is only guaranteed to hold against non-adaptive distinguishers (i.e., ones that "write" all their queries before the first oracle call). Since a non-adaptive PRF can be easily cast as a pseudorandom generator or as a synthesizer, $[13,19]$ tell us how to construct (adaptive) PRF from a non-adaptive one. In both of these constructions, however, the resulting (adaptive) PRF makes $\Theta(n)$ calls to the underlying non-adaptive PRF (where n being the input length of the functions). ${ }^{1}$

[^0]A recent line of work has tried to figure out whether more efficient reductions from adaptive to non-adaptive PRF's are likely to exist. In a sequence of works [18, 21, 22, 7], it was shown that several "natural" approaches (e.g., composition or XORing members of the non-adaptive family with itself) are unlikely to work. See more in Section 1.3.

1.1 Our Result

We show that a simple composition of a non-adaptive PRF with an appropriate pairwise independent hash function, yields an adaptive PRF. To state our result more formally, we use the following definitions: a function family \mathcal{F} is $T=T(n)$-adaptive PRF, if no distinguisher of running time at most T, can tell a random member of \mathcal{F} from a random function with advantage larger than $1 / T$. The family \mathcal{F} is T-non-adaptive PRF, if the above is only guarantee to hold against non-adaptive distinguishers. Given two function families \mathcal{F}_{1} and \mathcal{F}_{2}, we let $\mathcal{F}_{1} \circ \mathcal{F}_{2}$ [resp., $\mathcal{F}_{1} \oplus \mathcal{F}_{2}$] be the function family whose members are all pairs $(f, g) \in \mathcal{F}_{1} \times \mathcal{F}_{2}$, and the action $(f, g)(x)$ is defined as $f(g(x))$ [resp., $f(x) \oplus g(x)]$. We prove the following statements (see Section 3 for the formal statements).

Theorem 1.1 (Informal). Let \mathcal{F} be a $(p(n) \cdot T(n))$-non-adaptive PRF, where $p \in$ poly is function of the evaluating time of \mathcal{F}, and let \mathcal{H} be an efficient pairwise-independent function family mapping strings of length n to $[T(n)]_{\{0,1\}^{n}}$, where $[T]_{\{0,1\}^{n}}$ is the first T elements (in lexicographic order) of $\{0,1\}^{n}$. Then $\mathcal{F} \circ \mathcal{H}$ is a $(\sqrt[3]{T(n)} / 2)$-adaptive PRF.

For instance, assuming that \mathcal{F} is a $\left(p(n) \cdot 2^{c n}\right)$-non-adaptive PRF and that \mathcal{H} maps strings of length n to $\left[2^{c n}\right]_{\{0,1\}^{n}}$, Theorem 1.1 yields that $\mathcal{F} \circ \mathcal{H}$ is a $\left(2^{\frac{c n}{3}-1}\right)$-adaptive PRF.

Theorem 1.1 is only useful, however, for polynomial-time computable T's (in this case, the family \mathcal{H} assumed by the theorem exists, see Section 2.2.2). Unfortunately, in the important case where \mathcal{F} is only assumed to be polynomially secure non-adaptive PRF, no useful polynomial-time computable T is guaranteed to exists. ${ }^{2}$

We suggest two different solutions for handling polynomially secure PRFs. In Appendix A we observe (following Bellare [1]) that a polynomially secure non-adaptive PRF is a T-non-adaptive PRF for some $T \in n^{\omega(1)}$. Since this T can be assumed without loss of generality to be a power of two, Theorem 1.1 yields a non-uniform (uses $\omega(1)$-bit advice) polynomially secure adaptive PRF, that makes a single call to the underlying non-adaptive PRF. Our second solution is to use the following "combiner", to construct a (uniform) adaptively secure PRF, which makes $\omega(1)$ parallel calls to the underlying non-adaptive PRF.

Corollary 1.2 (Informal). Let \mathcal{F} be a polynomially secure non-adaptive PRF, let $\mathcal{H}=\left\{\mathcal{H}_{n}\right\}_{n \in \mathbb{N}}$ be an efficient pairwise-independent length-preserving function family and let $k(n) \in \omega(1)$ be polynomial-time computable function.

For $n \in \mathbb{N}$ and $i \in[n]$, let $\widehat{\mathcal{H}}_{n}^{i}$ be the function family $\widehat{\mathcal{H}}_{n}^{i}=\{\widehat{h}: h \in \mathcal{H}\}$, where $\widehat{h}(x)=0^{n-i} \| h(x)_{1, \ldots, i}$ ($\|$ ' stands for string concatenation). Then the ensemble $\left\{\bigoplus_{i \in[k(n)]}\left(\mathcal{F}_{n} \circ \widehat{\mathcal{H}}_{n}^{\lfloor i \cdot \log n\rfloor}\right)\right\}_{n \in \mathbb{N}}$ is a polynomially secure adaptive PRF.

[^1]
1.2 Proof Idea

To prove Theorem 1.1 we first show that $\mathcal{F} \circ \mathcal{H}$ is indistinguishable from $\Pi \circ \mathcal{H}$, where Π being the set of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{\ell(n)}$ (letting $\ell(n)$ be \mathcal{F} 's output length), and then conclude the proof by showing that $\Pi \circ \mathcal{H}$ is indistinguishable from Π.
$\mathcal{F} \circ \mathcal{H}$ is indistinguishable from $\Pi \circ \mathcal{H}$. Let D be (a possibly adaptive) algorithm of running time $T(n)$, which distinguishes $\mathcal{F} \circ \mathcal{H}$ from $\Pi \circ \mathcal{H}$ with advantage $\varepsilon(n)$. We use D to build a non-adaptive distinguisher $\widehat{\mathrm{D}}$ of running time $p(n) \cdot T(n)$, which distinguishes \mathcal{F} from Π with advantage $\varepsilon(n)$. Given an oracle access to a function ϕ, the distinguisher $\widehat{\mathrm{D}}^{\phi}\left(1^{n}\right)$ first queries ϕ on all the elements of $[T(n)]_{\{0,1\}^{n}}$. Next it chooses at uniform $h \in \mathcal{H}$, and uses the stored answers to its queries, to emulate $\mathrm{D}^{\phi \circ h}\left(1^{n}\right)$.
Since $\widehat{\mathrm{D}}$ runs in time $p(n) \cdot T(n)$, for some large enough $p \in$ poly, makes non-adaptive queries, and distinguishes \mathcal{F} from Π with advantage $\varepsilon(n)$, the assumed security of \mathcal{F} yields that $\varepsilon(n)<\frac{1}{p(n) \cdot T(n)}$.
$\Pi \circ \mathcal{H}$ is indistinguishable from Π. We prove that $\Pi \circ \mathcal{H}$ is statistically indistinguishable from Π. Namely, even an unbounded distinguisher (that makes bounded number of calls) cannot distinguish between the families. The idea of the proof is fairly simple. Let \mathbf{D} be an s-query algorithm trying to distinguish between $\Pi \circ \mathcal{H}$ and Π. We first note that the distinguishing advantage of D is bounded by its probability of finding a collision in a random $\phi \in \Pi \circ \mathcal{H}$ (in case no collision occurs, ϕ 's output is uniform). We next argue that in order to find a collision in ϕ, the distinguisher D gains nothing from being adaptive. Indeed, assuming that D found no collision until the i 'th call, then it has only learned that h does not collide on these first i queries. Therefore, a random (or even a constant) query as the ($i+1$) call, has the same chance to yield a collision, as any other query has. Hence, we assume without loss of generality that D is non-adaptive, and use the pairwise independence of \mathcal{H} to conclude that D's probability in finding a collision, and thus its distinguishing advantage, is bounded by $s(n)^{2} / T(n)$.

Combining the above two observations, we conclude that an adaptive distinguisher whose running time is bounded by $\frac{1}{2} \sqrt[3]{T(n)}$, cannot distinguish $\mathcal{F} \circ \mathcal{H}$ from Π (i.e., from a random function) with an advantage better than $\frac{T(n) \frac{2}{3} / 4}{T(n)}+\frac{1}{p(n) T(n)} \leq 2 / \sqrt[3]{T(n)}$. Namely, $\mathcal{F} \circ \mathcal{H}$ is a $(\sqrt[3]{T(n)} / 2)$-adaptive PRF.

1.3 Related Work

Maurer and Pietrzak [17] were the first to consider the question of building adaptive PRFs from non-adaptive ones. They showed that in the information theoretic model, a self composition of a non-adaptive PRF does yield an adaptive PRF. ${ }^{3}$

In contrast, the situation in the computational model (which we consider here) seems very different: Myers [18] proved that it is impossible to reprove the result of [17] via fully-black-box reductions. Pietrzak [21] showed that under the Decisional Diffie-Hellman (DDH) assumption,

[^2]composition does not imply adaptive security. Where in [22] he showed that the existence of nonadaptive PRFs whose composition is not adaptively secure, yields that key-agreement protocol exists. Finally, Cho et al. [7] generalized [22] by proving that composition of two non-adaptive PRFs is not adaptively secure, iff (uniform transcript) key agreement protocol exists. We mention that $[18,21,7]$, and in a sense also [17], hold also with respect to XORing of the non-adaptive families.

In a very recent subsequent work, Berman et al. [4] used more sophisticated hashing technique to improve the result presented here. Specifically, [4] use the so called Cuckoo hashing to give an optimal version of Theorem 1.1 - the resulting PRF is an $\mathrm{O}(\mathrm{T}(\mathrm{n})$)-adaptive PRF.

2 Preliminaries

2.1 Notations

All logarithms considered here are in base two. We let ' $\|$ ' denote string concatenation. We use calligraphic letters to denote sets, uppercase for random variables, and lowercase for values. For an integer t, we let $[t]=\{1, \ldots, t\}$, and for a set $\mathcal{S} \subseteq\{0,1\}^{*}$ with $|\mathcal{S}| \geq t$, we let $[t]_{\mathcal{S}}$ be the first t elements (in increasing lexicographic order) of \mathcal{S}. We let poly denote the set all polynomials, and let PPT denote the set of probabilistic algorithms (i.e., Turing machines) that run in strictly polynomial time. A function $\mu: \mathbb{N} \rightarrow[0,1]$ is negligible, denoted $\mu(n)=\operatorname{neg}(n)$, if $\mu(n)<1 / p(n)$ for every $p \in$ poly and large enough n.

Given a random variable X, we write $X(x)$ to denote $\operatorname{Pr}[X=x]$, and write $x \leftarrow X$ to indicate that x is selected according to X. Similarly, given a finite set \mathcal{S}, we let $s \leftarrow \mathcal{S}$ denote that s is selected according to the uniform distribution on \mathcal{S}. The statistical distance of two distributions P and Q over a finite set \mathcal{U}, denoted as $\operatorname{SD}(P, Q)$, is defined as $\max _{\mathcal{S} \subseteq \mathcal{U}}|P(\mathcal{S})-Q(\mathcal{S})|=$ $\frac{1}{2} \sum_{u \in \mathcal{U}}|P(u)-Q(u)|$.

2.2 Ensemble of Function Families

Let $\mathcal{F}=\left\{\mathcal{F}_{n}: \mathcal{D}_{n} \mapsto \mathcal{R}_{n}\right\}_{n \in \mathbb{N}}$ stands for an ensemble of function families, where each $f \in \mathcal{F}_{n}$ has domain \mathcal{D}_{n} and its range contained in \mathcal{R}_{n}. Such ensemble is length preserving, if $\mathcal{D}_{n}=\mathcal{R}_{n}=\{0,1\}^{n}$ for every n.

Definition 2.1 (efficient function family ensembles). A function family ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ is efficient, if the following hold:

Samplable. \mathcal{F} is samplable in polynomial-time: there exists a PPT that given 1^{n}, outputs (the description of) a uniform element in \mathcal{F}_{n}.

Efficient. There exists a polynomial-time algorithm that given $x \in\{0,1\}^{n}$ and (a description of) $f \in \mathcal{F}_{n}$, outputs $f(x)$.

2.2.1 Operating on Function Families

Definition 2.2 (composition of function families). Let $\mathcal{F}^{1}=\left\{\mathcal{F}_{n}^{1}: \mathcal{D}_{n}^{1} \mapsto \mathcal{R}_{n}^{1}\right\}_{n \in \mathbb{N}}$ and $\mathcal{F}^{2}=$ $\left\{\mathcal{F}_{n}^{2}: \mathcal{D}_{n}^{2} \mapsto \mathcal{R}_{n}^{2}\right\}_{n \in \mathbb{N}}$ be two ensembles of function families with $\mathcal{R}_{n}^{1} \subseteq \mathcal{D}_{n}^{2}$ for every n. We define the composition of \mathcal{F}^{1} with \mathcal{F}^{2} as $\mathcal{F}^{2} \circ \mathcal{F}^{1}=\left\{\mathcal{F}_{n}^{2} \circ \mathcal{F}_{n}^{1}: \mathcal{D}_{n}^{1} \mapsto \mathcal{R}_{n}^{2}\right\}_{n \in \mathbb{N}}$, where $\mathcal{F}_{n}^{2} \circ \mathcal{F}_{n}^{1}=\left\{\left(f_{2}, f_{1}\right) \in\right.$ $\left.\mathcal{F}_{n}^{2} \times \mathcal{F}_{n}^{1}\right\}$, and $\left(f_{2}, f_{1}\right)(x):=f_{2}\left(f_{1}(x)\right)$.

Definition 2.3 (XOR of function families). Let $\mathcal{F}^{1}=\left\{\mathcal{F}_{n}^{1}: \mathcal{D}_{n}^{1} \mapsto \mathcal{R}_{n}^{1}\right\}_{n \in \mathbb{N}}$ and $\mathcal{F}^{2}=\left\{\mathcal{F}_{n}^{2}: \mathcal{D}_{n}^{2} \mapsto\right.$ $\left.\mathcal{R}_{n}^{2}\right\}_{n \in \mathbb{N}}$ be two ensembles of function families with $\mathcal{R}_{n}^{1}, \mathcal{R}_{n}^{2} \subseteq\{0,1\}^{\ell(n)}$ for every n. We define the XOR of \mathcal{F}^{1} with \mathcal{F}^{2} as $\mathcal{F}^{2} \oplus \mathcal{F}^{1}=\left\{\mathcal{F}_{n}^{2} \bigoplus \mathcal{F}_{n}^{1}: \mathcal{D}_{n}^{1} \cap \mathcal{D}_{n}^{2} \mapsto\{0,1\}^{\ell(n)}\right\}_{n \in \mathbb{N}}$, where $\mathcal{F}_{n}^{2} \bigoplus \mathcal{F}_{n}^{1}=$ $\left\{\left(f_{2}, f_{1}\right) \in \mathcal{F}_{n}^{2} \times \mathcal{F}_{n}^{1}\right\}$, and $\left(f_{2}, f_{1}\right)(x):=f_{2}(x) \oplus f_{1}(x)$.

2.2.2 Pairwise Independent Hashing

Definition 2.4 (pairwise independent families). A function family $\mathcal{H}=\{h: \mathcal{D} \mapsto \mathcal{R}\}$ is pairwise independent (with respect to \mathcal{D} and \mathcal{R}), if

$$
\operatorname{Pr}_{h \leftarrow \mathcal{H}}\left[h\left(x_{1}\right)=y_{1} \wedge h\left(x_{2}\right)=y_{2}\right]=\frac{1}{|\mathcal{R}|^{2}},
$$

for every distinct $x_{1}, x_{2} \in \mathcal{D}$ and every $y_{1}, y_{2} \in \mathcal{R}$.
For every $\ell \in$ poly, the existence of efficient pairwise-independent family ensembles mapping strings of length n to strings of length $\ell(n)$ is well known ([6]). In this paper we use efficient pairwiseindependent function family ensembles mapping strings of length n to the set $[T(n)]_{\{0,1\}^{n}}$, where $T(n) \leq 2^{n}$ and is without loss of generality a power of two. ${ }^{4}$ Let \mathcal{H} be an efficient length-preserving, pairwise-independent function family ensemble and assume that $t(n):=\log T(n)$ is polynomial-time computable. Then the function family $\widehat{\mathcal{H}}=\left\{\widehat{\mathcal{H}_{n}}=\left\{h^{\prime}: h \in \mathcal{H}_{n}, h^{\prime}(x)=0^{n-t(n)} \| h(x)_{1, \ldots, t(n)}\right\}\right\}$, is an efficient pairwise-independent function family ensemble, mapping strings of length n to the set $[T(n)]_{\{0,1\}^{n}}$.

2.2.3 Pseudorandom Functions

Definition 2.5 (pseudorandom functions). An efficient function family ensemble $\mathcal{F}=$ $\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{\ell(n)}\right\}_{n \in \mathbb{N}}$ is a $(T(n), \varepsilon(n))$-adaptive PRF, if for every oracle-aided algorithm (distinguisher) D of running time $T(n)$ and large enough n, it holds that

$$
\left|\operatorname{Pr}_{f \leftarrow \mathcal{F}_{n}}\left[\mathrm{D}^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{n}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right| \leq \varepsilon(n),
$$

where Π_{n} is the set of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{\ell(n)}$. If we limit D above to be non-adaptive (i.e., it has to write all his oracle calls before making the first call), then \mathcal{F} is called $(T(n), \varepsilon(n))$ -non-adaptive PRF.

The ensemble \mathcal{F} is a t-adaptive PRF, if it is a $(t, 1 / t)$-adaptive PRF according to the above definition. It is polynomially secure adaptive PRF (for short, adaptive PRF), if it is a p-adaptive PRF for every $p \in$ poly. Finally, it is super-polynomial secure adaptive PRF, if it T-adaptive PRF for some $T(n) \in n^{\omega(1)}$. The same conventions are also used for non-adaptive PRFs.

Clearly, a super-polynomial secure PRF is also polynomially secure. In Appendix A we prove that the converse is also true: a polynomially secure PRF is also super-polynomial secure PRF.

[^3]
3 Our Construction

In this section we present the main contribution of this paper - a direct construction of an adaptive pseudorandom function family from a non-adaptive one.

Theorem 3.1 (restatement of Theorem 1.1). Let T be a polynomial-time computable integer function, let $\mathcal{H}=\left\{\mathcal{H}_{n}:\{0,1\}^{n} \mapsto[T(n)]_{\{0,1\}^{n}}\right\}$ be an efficient pairwise independent function family ensemble, and let $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{\ell(n)}\right\}$ be a $(p(n) \cdot T(n), \varepsilon(n))$-non-adaptive PRF, where $p \in$ poly is determined by the computation time of T, \mathcal{F} and \mathcal{H}. Then $\mathcal{F} \circ \mathcal{H}$ is a $\left(s(n), \varepsilon(n)+\frac{s(n)^{2}}{T(n)}\right)$-adaptive PRF for every $s(n)<T(n)$.

Theorem 3.1 yields the following simpler statement.
Corollary 3.2. Let T, p and \mathcal{H} be as in Theorem 3.1. Assuming \mathcal{F} is a $(p(n) T(n))$-non-adaptive PRF, then $\mathcal{F} \circ \mathcal{H}$ is a $(\sqrt[3]{T(n)} / 2)$-adaptive PRF.

Proof. Applying Theorem 3.1 with respect to $s(n)=\sqrt[3]{T(n)} / 2$ and $\varepsilon(n)=\frac{1}{p(n) T(n)}$, yields that $\mathcal{F} \circ \mathcal{H}$ is a $\left(s(n), \frac{1}{p(n) T(n)}+\frac{s(n)^{2}}{T(n)}\right)$-adaptive PRF. Since $\frac{1}{p(n) T(n)}<\frac{1}{2 s(n)}$ and $\frac{s(n)^{2}}{T(n)} \leq \frac{1}{2 s(n)}$, it follows that $\mathcal{F} \circ \mathcal{H}$ is a $(s, 1 / s)$-adaptive PRF.

To prove Theorem 3.1, we use the (non efficient) function family ensemble $\Pi \circ \mathcal{H}$, where $\Pi=\Pi_{\ell}$ (i.e., the ensemble of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{\ell}$), and $\ell=\ell(n)$ is the output length of \mathcal{F}. We first show that $\mathcal{F} \circ \mathcal{H}$ is computationally indistinguishable from $\Pi \circ \mathcal{H}$, and complete the proof showing that $\Pi \circ \mathcal{H}$ is statistically indistinguishable from Π.

$3.1 \mathcal{F} \circ \mathcal{H}$ is Computationally Indistinguishable From $\Pi \circ \mathcal{H}$

Lemma 3.3. Let T, \mathcal{F} and \mathcal{H} be as in Theorem 3.1. Then for every oracle-aided distinguisher D of running time T, there exists a non-adaptive oracle-aided distinguisher $\widehat{\mathrm{D}}$ of running time $p(n) \cdot T(n)$, for some $p \in$ poly (determined by the computation time of T, \mathcal{F} and \mathcal{H}), with
$\left|\operatorname{Pr}_{g \leftarrow \mathcal{F}_{n}}\left[\widehat{\mathrm{D}}^{g}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{g \leftarrow \Pi_{n}}\left[\widehat{\mathrm{D}}^{g}\left(1^{n}\right)=1\right]\right|=\left|\operatorname{Pr}_{g \leftarrow \mathcal{F}_{n} \circ \mathcal{H}_{n}}\left[\mathrm{D}^{g}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{g \leftarrow \Pi_{n} \circ \mathcal{H}_{n}}\left[\mathrm{D}^{g}\left(1^{n}\right)=1\right]\right|$ for every $n \in \mathbb{N}$, where Π_{n} is the set of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{\ell(n)}$.

In particular, the pseudorandomness of \mathcal{F} yields that $\mathcal{F} \circ \mathcal{H}$ is computationally indistinguishable from the ensemble $\left\{\Pi_{n} \circ \mathcal{H}_{n}\right\}_{n \in \mathbb{N}}$ by an adaptive distinguisher of running time T.

Proof. The distinguisher $\widehat{\mathrm{D}}$ is defined as follows:
Algorithm 3.4 (\widehat{D}).
Input: 1^{n}.
Oracle: a function ϕ over $\{0,1\}^{n}$.

1. Compute $\phi(x)$ for every $x \in[T(n)]_{\{0,1\}^{n}}$.
2. Set $g=\phi \circ h$, where h is uniformly chosen in \mathcal{H}_{n}.
3. Emulate $\mathrm{D}^{g}\left(1^{n}\right)$: answer a query x to ϕ made by D with $g(x)$, using the information obtained in Step 1.

Note that $\widehat{\mathrm{D}}$ makes $T(n)$ non-adaptive queries to ϕ, and it can be implemented to run in time $p(n) T(n)$, for large enough $p \in$ poly. We conclude the proof by observing that in case ϕ is uniformly drawn from \mathcal{F}_{n}, the emulation of D done in $\widehat{\mathrm{D}}^{\phi}$ is identical to a random execution of D^{g} with $g \leftarrow \mathcal{F}_{n} \circ \mathcal{H}_{n}$. Similarly, in case ϕ is uniformly drawn from Π_{n}, the emulation is identical to a random execution of D^{π} with $\pi \leftarrow \Pi_{n} \circ \mathcal{H}_{n}$.

$3.2 \Pi \circ \mathcal{H}$ is Statistically Indistinguishable From Π

The following lemma is commonly used for proving the security of hash based MACs (cf., [11, Proposition 6.3.6]), yet for completeness we give it a full proof below.

Lemma 3.5. Let n, T be integers with $T \leq 2^{n}$, and let \mathcal{H} be a pairwise-independent function family mapping string of length n to $[T]_{\{0,1\}^{n}}$. Let D be an (unbounded) s-query oracle-aided algorithm (i.e., making at most s queries), then

$$
\left|\operatorname{Pr}_{g \leftarrow \Pi \circ \mathcal{H}}\left[\mathrm{D}^{g}=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi}\left[\mathrm{D}^{\pi}=1\right]\right| \leq s^{2} / T
$$

where Π is the set of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{\ell}$ (for some $\ell \in \mathbb{N}$).
Proof. We assume for simplicity that D is deterministic (the reduction to the randomized case is standard) and makes exactly s valid (i.e., inside $\{0,1\}^{n}$) distinct queries, and let $\Omega=\left(\{0,1\}^{\ell}\right)^{s}$. Consider the following random process:

Algorithm 3.6.

1. Emulate D, while answering the i^{\prime} th query q_{i} with a uniformly chosen $a_{i} \in\{0,1\}^{\ell}$.

Set $\bar{q}=\left(q_{1}, \ldots, q_{s}\right)$ and $\bar{a}=\left(a_{1}, \ldots, a_{s}\right)$.
2. Choose $h \leftarrow \mathcal{H}$.
3. Emulate D again, while answering the i 'th query q_{i}^{\prime} with $a_{i}^{\prime}=a_{i}$ (the same a_{i} from Step 1), if $h\left(q_{i}^{\prime}\right) \notin\left\{h\left(q_{j}^{\prime}\right)\right\}_{j \in[i-1]}$, and with $a_{i}^{\prime}=a_{j}$, if $h\left(q_{i}^{\prime}\right)=h\left(q_{j}^{\prime}\right)$ for some $j \in[i-1]$.
Set $\overline{q^{\prime}}=\left(q_{1}^{\prime}, \ldots, q_{s}^{\prime}\right)$ and $\overline{a^{\prime}}=\left(a_{1}^{\prime}, \ldots, a_{s}^{\prime}\right)$.

Let $\bar{A}, \bar{Q}, \overline{A^{\prime}}, \overline{Q^{\prime}}$ and H be the (jointly distributed) random variables induced by the values of $\bar{q}, \bar{a}, \overline{q^{\prime}}, \overline{a^{\prime}}$ and h respectively, in a random execution of the above process. It is not hard to verify that \bar{A} is distributed the same as the oracle answers in a random execution of D^{π} with $\pi \leftarrow \Pi$, and that $\overline{A^{\prime}}$ is distributed the same as the oracle answers in a random execution of D^{g} with $g \leftarrow \Pi \circ \mathcal{H}$. Hence, for proving Lemma 3.5, it suffices to bound the statistical distance between \bar{A} and $\overline{A^{\prime}}$.

Let Coll be the event that $H\left(\bar{Q}_{i}\right)=H\left(\bar{Q}_{j}\right)$ for some $i \neq j \in[s]$. Since the queries and answers in both emulations of Algorithm 3.6 are the same until a collision with respect to H occurs, it follows that

$$
\begin{equation*}
\operatorname{Pr}\left[\bar{A} \neq \overline{A^{\prime}}\right] \leq \operatorname{Pr}[\text { Coll }] \tag{1}
\end{equation*}
$$

On the other hand, since H is chosen after \bar{Q} is set, the pairwise independent of \mathcal{H} yields that

$$
\begin{equation*}
\operatorname{Pr}[\mathrm{Coll}] \leq s^{2} / T, \tag{2}
\end{equation*}
$$

and therefore $\operatorname{Pr}\left[\bar{A} \neq \overline{A^{\prime}}\right] \leq s^{2} / T$. It follows that $\operatorname{Pr}[\bar{A} \in C] \leq \operatorname{Pr}\left[\overline{A^{\prime}} \in C\right]+s^{2} / T$ for every $C \subseteq \Omega$, yielding that $\operatorname{SD}\left(\bar{A}, \overline{A^{\prime}}\right) \leq s^{2} / T$.

3.3 Putting It Together

We are now finally ready to prove Theorem 3.1.
Proof of Theorem 3.1. Let D be an oracle-aided algorithm of running time s with $s(n)<T(n)$. Lemma 3.3 yields that $\left|\operatorname{Pr}_{g \leftarrow \mathcal{F}_{n} \circ \mathcal{H}_{n}}\left[\mathrm{D}^{g}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{g \leftarrow \Pi_{n} \circ \mathcal{H}_{n}}\left[\mathrm{D}^{g}\left(1^{n}\right)=1\right]\right| \leq \varepsilon(n)$ for large enough n, where Lemma 3.5 yields that $\left|\operatorname{Pr}_{g \leftarrow \Pi_{n} \circ \mathcal{H}_{n}}\left[\mathrm{D}^{g}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{n}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right| \leq$ $s(n)^{2} / T(n)$ for every $n \in \mathbb{N}$. Hence, the triangle inequality yields that $\left|\operatorname{Pr}_{g \leftarrow \mathcal{F}_{n} \circ \mathcal{H}_{n}}\left[\mathrm{D}^{g}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{n}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right| \leq \varepsilon(n)+s(n)^{2} / T(n)$ for large enough n, as requested.

3.4 Handling Polynomial Security

Corollary 3.2 is only useful when the security of the underlying non-adaptive PRF (i.e., T) is efficiently computable (or when considering non-uniform PRF constructions, see Section 1.1). In this section we show how to handle the important case of polynomially secure non-adaptive PRF. We use the following "combiner".

Definition 3.7. Let \mathcal{H} be a function family into $\{0,1\}^{n}$. For $i \in[n]$, let $\widehat{\mathcal{H}}^{i}$ be the function family $\widehat{\mathcal{H}}^{i}=\{\widehat{h}: h \in \mathcal{H}\}$, where $\widehat{h}(x)=0^{n-i} \| h(x)_{1, \ldots, i,}$.

Corollary 3.8. Let \mathcal{F} be a $T(n)$-non-adaptive PRF, let $p \in$ poly be as in the statement of Corollary 3.2, let \mathcal{H} be an efficient length-preserving pairwise-independent function family ensemble, and let $\mathcal{I}(n) \subseteq[n]$ be polynomial-time computable (in n) index set. Define the function family ensemble $G=\left\{G_{n}\right\}_{n \in \mathbb{N}}$, where $G_{n}=\bigoplus_{i \in \mathcal{I}(n)}\left(\mathcal{F}_{n} \circ \widehat{\mathcal{H}}_{n}{ }^{i}\right)$.

There exists $q \in$ poly such that G is a $\left(\sqrt[3]{2^{t(n)}} /(2 q(n))\right)$-adaptive PRF, for every polynomialtime computable integer function t, with $t(n) \in \mathcal{I}(n)$ and $2^{t(n)} \leq T(n) / p(n)$.

Before proving the corollary, let us first use it for constructing adaptive PRF from non-adaptive polynomially secure one.

Corollary 3.9 (restatement of Corollary 1.2). Let \mathcal{F} be a polynomially secure non-adaptive PRF, let \mathcal{H} be an efficient pairwise-independent length-preserving function family ensemble and let $k(n) \in \omega(1)$ be polynomial-time computable function. Then $G:=\left\{\bigoplus_{i \in[k(n)]}\left(\mathcal{F}_{n} \circ \widehat{\mathcal{H}}_{n}{ }^{\lfloor i \cdot \log n\rfloor}\right)\right\}_{n \in \mathbb{N}}$ is polynomially secure adaptive PRF.

Proof. Let $\mathcal{I}(n):=\{\lfloor\log n\rfloor,\lfloor 2 \cdot \log n\rfloor \ldots,\lfloor k(n) \cdot \log n\rfloor\}$. Applying Corollary 3.8 with respect to $\mathcal{F}, \mathcal{H}, \mathcal{I}$ and $t(n)=\lfloor c \cdot \log n\rfloor$, where $c \in \mathbb{N}$, and assuming that q of Corollary 3.8 is n^{k}, for some $k \in \mathbb{N}$, yields that G is a $O\left(n^{c / 3-k}\right)$-adaptive PRF. It follows that G is p-adaptive PRF for every $p \in$ poly. Namely, G is polynomially secure adaptive PRF.

Remark 3.10 (unknown security). Corollary 3.8 is also useful when the security of \mathcal{F} is "not known" in the construction time. Taking $\mathcal{I}(n)=\left\{1,2,4, \ldots, 2^{\lfloor\log n\rfloor}\right\}$ (resulting in $\log n$ calls to \mathcal{F}) and assuming that \mathcal{F} is found to be $T(n)$-non-adaptive PRF for some polynomial-time computable T, the resulting PRF is guaranteed to be $O(\sqrt[6]{T(n)})$-adaptive PRF (neglecting polynomial factors).

Proof of Corollary 3.8. It is easy to see that G is efficient, so it is left to argue for its security. Let t be a polynomial-time computable integer function with $t(n) \in \mathcal{I}(n)$ and $2^{t(n)} \leq T(n) / p(n)$. It follows that $\widehat{\mathcal{H}}^{t}=\left\{\widehat{\mathcal{H}}_{n}^{t(n)}\right\}_{n \in \mathbb{N}}$ is an efficient pairwise-independent function family ensemble, and Corollary 3.2 yields that $\mathcal{F} \circ \widehat{\mathcal{H}}^{t}$ is a $\left(\sqrt[3]{2^{t(n)}} / 2\right)$-adaptive PRF.

Assume towards a contradiction that there exists an oracle-aided distinguisher D that runs in time $T^{\prime}(n)=\sqrt[3]{2^{t(n)}} /(2 q(n))$ and

$$
\begin{equation*}
\left|\operatorname{Pr}_{g \leftarrow G_{n}}\left[\mathrm{D}^{g}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{n}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right|>1 / T^{\prime}(n) \tag{3}
\end{equation*}
$$

for infinitely many n 's. We use the following distinguisher for breaking the pseudorandomness of $\mathcal{F} \circ \widehat{\mathcal{H}}^{t}:$

Algorithm 3.11 (\widehat{D}).

Input: 1^{n}.
Oracle: a function ϕ over $\{0,1\}^{n}$.

1. For every $i \in \mathcal{I}(n) \backslash\{t(n)\}$, choose $g^{i} \leftarrow \mathcal{F}_{n} \circ \widehat{\mathcal{H}}_{n}{ }^{i}$.
2. Set $g:=\phi \oplus \bigoplus_{i \in \mathcal{I}(n) \backslash\{t(n)\}} g^{i}$.
3. Emulate $\mathrm{D}^{g}\left(1^{n}\right)$.

Note that $\widehat{\mathrm{D}}$ can be implemented to run in time $|\mathcal{I}(n)| \cdot r(n) \cdot T^{\prime}(n)$ for some $r \in$ poly, which is smaller than $\sqrt[3]{2^{t(n)}} / 2$ for large enough q. Also note that in case ϕ is uniformly distributed over Π_{n}, then g (selected by $\widehat{\mathrm{D}}^{\phi}\left(1^{n}\right)$) is uniformly distributed in Π_{n}, where in case ϕ is uniformly distributed in $\mathcal{F}_{n} \circ \widehat{\mathcal{H}}_{n}{ }^{t(n)}$, then g is uniformly distributed in G_{n}. It follows that

$$
\begin{equation*}
\left|\operatorname{Pr}_{g \leftarrow\left(\mathcal{F} \circ \widehat{\mathcal{H}}^{t}\right)_{n}}\left[\widehat{\mathrm{D}}^{g}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{n}}\left[\widehat{\mathrm{D}}^{\pi}\left(1^{n}\right)=1\right]\right|=\left|\operatorname{Pr}_{g \leftarrow G_{n}}\left[\mathrm{D}^{g}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{n}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right| \tag{4}
\end{equation*}
$$

for every $n \in \mathbb{N}$. In particular, Equation (3) yields that

$$
\left|\operatorname{Pr}_{g \leftarrow\left(\mathcal{F} \circ \widehat{\mathcal{H}}^{t}\right)_{n}}\left[\widehat{\mathrm{D}}^{g}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{n}}\left[\widehat{\mathrm{D}}^{\pi}\left(1^{n}\right)=1\right]\right|>\frac{2 q(n)}{\sqrt[3]{2^{t(n)}}}>\frac{2}{\sqrt[3]{2^{t(n)}}}
$$

for infinitely many n 's, in contradiction to the pseudorandomness of $\mathcal{F} \circ \widehat{\mathcal{H}}^{t}$ we proved above.

Acknowledgment

We are very grateful to Omer Reingold for very useful discussions, and for challenging the second author with this research question a long while ago.

References

[1] M. Bellare. A note on negligible functions. Journal of Cryptology, pages 271-284, 2002.
[2] M. Bellare and S. Goldwasser. New paradigms for digital signatures and message authentication based on non-interative zero knowledge proofs. In Advances in Cryptology - CRYPTO '89, pages 194-211, 1989.
[3] I. Berman and I. Haitner. From non-adaptive to adaptive pseudorandom functions. In Theory of Cryptography, 9th Theory of Cryptography Conference, TCC 2008, pages 357-368, 2012.
[4] I. Berman, I. Haitner, I. Komargodski, and M. Naor. Hardness preserving reductions via cuckoo hashing.
[5] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of memories. Algorithmica, 12(2/3):225-244, 1994.
[6] L. J. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer and System Sciences, pages 143-154, 1979.
[7] C. Cho, C.-K. Lee, and R. Ostrovsky. Equivalence of uniform key agreement and composition insecurity. In Advances in Cryptology - CRYPTO 2010, pages 447-464, 2010.
[8] B. Chor, A. Fiat, M. Naor, and B. Pinkas. Tracing traitors. IEEE Transactions on Information Theory, 46(3):893-910, 2000.
[9] O. Goldreich. Towards a theory of software protection. In Advances in Cryptology - CRYPTO '86, pages 426-439, 1986.
[10] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.
[11] O. Goldreich. Foundations of Cryptography - VOLUME 2: Basic Applications. Cambridge University Press, 2004.
[12] O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applications of random functions. pages 276-288, 1984.
[13] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the ACM, pages 792-807, 1986.
[14] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM Journal on Computing, pages 1364-1396, 1999.
[15] M. Luby. Pseudorandomness and cryptographic applications. Princeton computer science notes. Princeton University Press, 1996. ISBN 978-0-691-02546-9.
[16] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions. SIAM Journal on Computing.
[17] U. M. Maurer and K. Pietrzak. Composition of random systems: When two weak make one strong. In Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004, pages 410-427, 2004.
[18] S. Myers. Black-box composition does not imply adaptive security. In Advances in Cryptology - EUROCRYPT 2004, pages 189-206, 2004.
[19] M. Naor and O. Reingold. Synthesizers and their application to the parallel construction of psuedo-random functions. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS), pages 170-181, 1995.
[20] R. Ostrovsky. An efficient software protection scheme. In Advances in Cryptology - CRYPTO '89, 1989.
[21] K. Pietrzak. Composition does not imply adaptive security. In Advances in Cryptology CRYPTO 2005, pages 55-65, 2005.
[22] K. Pietrzak. Composition implies adaptive security in minicrypt. In Advances in Cryptology - EUROCRYPT 2006, pages 328-338, 2006.

A From Polynomial to Super-Polynomial Security

The standard security definition for cryptographic primitives is polynomial security: any PPT trying to break the primitive has only negligible success probability. Bellare [1] showed that for any polynomially secure primitive there exists a single negligible function μ, such that no PPT can break the primitive with probability larger than μ. Here we take his approach a step further, showing that for a polynomially secure primitive there exists a super-polynomial function T, such that no adversary of running time T breaks the primitive with probability larger than $1 / T$.

In the following we identify algorithms with their string description. In particular, when considering algorithm A, we mean the algorithm defined by the string A (according to some canonical representation). We prove the following result.

Theorem A.1. Let $v:\{0,1\}^{*} \times \mathbb{N} \mapsto[0,1]$ be a function with the following properties: 1) $v(\mathrm{~A}, n)=$ $\operatorname{neg}(n)$ for every oracle-aided PPT A; and 2) if the distributions induced by random executions of $\mathrm{A}^{f}(x)$ and $\mathrm{B}^{f}(x)$ are the same for any input $x \in\{0,1\}^{n}$ and function f (each distribution describes the algorithm's output and oracle queries), then $v(\mathrm{~A}, n)=v(\mathrm{~B}, n)$.

Then there exists a non-decreasing integer function $T(n) \in n^{\omega(1)}$ such that following holds: for any algorithm A of running time at most $T(n)$, it holds that $v(\mathrm{~A}, n) \leq 1 / T(n)$ for large enough n.

Remark A. 2 (Applications). Let f be a polynomially secure OWF (i.e., $\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right)\right) \in\right.$ $\left.f^{-1}\left(f\left(U_{n}\right)\right)\right]=\operatorname{neg}(n)$ for any PPT A). Applying Theorem A.1 with $v(\mathrm{~A}, n):=\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right)\right) \in\right.$ $\left.f^{-1}\left(f\left(U_{n}\right)\right)\right]$ (where if A expects to get an oracle, provide him with the constant function $\phi(x)=1$), yields that f is super-polynomial secure OWF (i.e., exists $T(n) \in n^{\omega(1)}$ such that $\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right)\right) \in\right.$ $\left.f^{-1}\left(f\left(U_{n}\right)\right)\right] \leq 1 / T(n)$ for any algorithm of running time T and large enough n).

Similarly, for a polynomially secure PRF $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ (see Definition 2.5), applying Theorem A. 1 with $v(\mathrm{~A}, n):=\left|\operatorname{Pr}_{f \leftarrow \mathcal{F}_{n}}\left[\mathrm{~A}^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{n}}\left[\mathrm{~A}^{\pi}\left(1^{n}\right)=1\right]\right|$, where Π_{n} is the set of all functions with the same domain/range as \mathcal{F}_{n}, yields that \mathcal{F} is super-polynomial secure PRF.

Proof of Theorem A.1. Given a probabilistic algorithm A and an integer i, let A_{i} denote the variant of A that on input of length n, halts after n^{i} steps (hence, A_{i} is a PPT). Let \mathcal{S}_{i} be the first i
strings in $\{0,1\}^{*}$, according to some canonical order, viewed as descriptions of i algorithms. Let $\mathcal{I}(n)=\{1\} \cup\left\{i \in[n]: \forall \mathrm{A} \in \mathcal{S}_{i}, k \geq n: v\left(\mathrm{~A}_{i}, k\right)<1 / k^{i}\right\}$, let $t(n)=\max \mathcal{I}(n)$ and $T(n)=n^{t(n)}$.

Let A be an algorithm of running time $T(n)$, and let i_{A} be the first integer such that $\mathrm{A} \in \mathcal{S}_{i_{\mathrm{A}}}$. It follows from Claim A. 3 that $t(n)>i_{\mathrm{A}}$ for any large enough n. For any such n, the definition of t guarantees that $v\left(\mathrm{~A}_{t(n)}, n\right)<1 / n^{t(n)}=1 / T(n)$. Since A is of running time $T(n)$, the second property of v yields that $v(\mathrm{~A}, n)=v\left(\mathrm{~A}_{t(n)}, n\right)$, and therefore $v(\mathrm{~A}, n)<1 / T(n)$.

Claim A.3. The function $t(n)$ is a non-decreasing unbounded integer function.
Proof. To see that $t(n)$ is non-decreasing, observe (intuitively) that once an algorithm is taken into consideration in $\mathcal{I}\left(n^{\prime}\right)$, for some $n^{\prime} \in \mathbb{N}$, it will be taken into consideration in $\mathcal{I}(n)$, for any $n \geq n^{\prime}$. Formally, for some $n^{\prime}, i \in \mathbb{N}$ assume that $t\left(n^{\prime}\right)=i$, and let $n \geq n^{\prime}$. We show that $t(n) \geq i$. From the definition of t, is holds that for every $\mathrm{A} \in \mathcal{S}_{i}$ and every $k \geq n^{\prime}$ it holds that $v\left(\mathrm{~A}_{i}, k\right) \leq 1 / k^{i}$. However, since $n \geq n^{\prime}$, for every $\mathrm{A} \in \mathcal{S}_{i}$ and every $k \geq n$ it holds that $v\left(\mathrm{~A}_{i}, k\right) \leq 1 / k^{i}$. Hence, $[i] \subseteq \mathcal{I}(n)$, and thus $t(n) \geq i$.

To see that $t(n)$ is unbounded, fix $i \in \mathbb{N}$. For each $\mathrm{A} \in \mathcal{S}_{i}$, let n_{A} be the first integer such that $v\left(\mathrm{~A}_{i}, n\right) \leq 1 / n^{i}$ for every $n \geq n_{\mathrm{A}}$ (note that such n_{A} exists by the first property of v), and let $n_{i}=\max \left\{n_{\mathrm{A}}: \mathrm{A} \in \mathcal{S}_{i}\right\}$. It follows that $v\left(\mathrm{~A}_{i}, n\right) \leq 1 / n^{i}$ for every $n \geq n_{i}$ and $\mathrm{A} \in \mathcal{S}_{i}$, and therefore $t\left(n_{i}\right) \geq i$.

A. 1 Non Uniform Security

Theorem A. 1 and its proof holds only with respect to uniform algorithms (i.e., Turing machines). Here we prove a similar result for the non uniform case (i.e., polynomially bounded circuits). In the following we consider adversaries that are families of circuits, denoted with $\mathcal{A}=\left\{\mathrm{A}_{n}\right\}_{n \in \mathbb{N}}$. A circuit A is s-size circuit if $|\mathrm{A}| \leq s$ and a family $\mathcal{A}=\left\{\mathrm{A}_{n}\right\}_{n \in \mathbb{N}}$ is $T(n)$-size if A_{n} is $T(n)$-size circuit for every $n \in \mathbb{N}$. The family \mathcal{A} is polynomially bounded, if for some $p \in$ poly, \mathcal{A} is $p(n)$-size.

Theorem A.4. Let S be the set of all circuits and let $v: S \times \mathbb{N} \mapsto[0,1]$ be a function with $v\left(\mathrm{~A}_{n}, n\right)=\operatorname{neg}(n)$ for every oracle-aided polynomially bounded circuit family $\mathcal{A}=\left\{\mathrm{A}_{n}\right\}_{n \in \mathbb{N}}$. Then there exists a non-decreasing integer function $T(n) \in n^{\omega(1)}$ and $n^{\prime} \in \mathbb{N}$, such that $v(\mathrm{~A}, n) \leq 1 / T(n)$ for every $T(n)$-size circuit A and $n \geq n^{\prime}$.

Proof. We use the following approach (adopted from [1]): for integer pair (n, s), let $\mathcal{C}_{n, s}$ be the set of all n-input, s-size circuits. Fix $\mathrm{B}_{n, s} \in \mathcal{C}_{n, s}$ with $v\left(\mathrm{~B}_{n, s}, n\right) \geq v(\mathrm{C}, n)$ for all $\mathrm{C} \in \mathcal{C}_{n, s}$ (note that $\mathrm{B}_{n, s}$ is well defined since $\mathcal{C}_{n, s}$ is finite). For $i \in \mathbb{N}$, let $\mathcal{B}^{i}=\left\{\mathrm{B}_{n, n^{i}}\right\}_{n \in \mathbb{N}}$ and let $\mathcal{I}(n)=\{0\} \cup\{i \in$ $\left.[n]: \forall k \geq n: v\left(\mathrm{~B}_{k, k^{i}}, k\right)<1 / k^{i}\right\}$. Namely, for every $i \in \mathcal{I}(n)$ and $k \geq n$, the "success" of any circuit family of size k^{i} is bounded by $1 / k^{i}$. Let $t(n)=\max \mathcal{I}(n)$ and let $T(n)=n^{t(n)}$. Claim A. 5 states that t is a non-decreasing unbounded integer function. Hence, to complete the proof, it is left to show that there exists $n^{\prime} \in \mathbb{N}$ such that $v(\mathrm{~A}, n) \leq 1 / T(n)$ for every n-input $T(n)$-size circuit A and $n \geq n^{\prime}$.

Indeed, let $n^{\prime} \in \mathbb{N}$ be such that $t\left(n^{\prime}\right) \geq 1$ (such n^{\prime} is guaranteed to exists by Claim A.5), let $n \geq n^{\prime}$ and let A be an n-input $T(n)$-size circuit. The definition of t yields that $v\left(\mathrm{~B}_{n, n^{t(n)}}, n\right)<$ $1 / n^{t(n)}=1 / T(n)$. Since, by definition, $v(\mathrm{~A}, n) \leq v\left(\mathrm{~B}_{n, n^{t(n)}}, n\right)$, it follows that $v(\mathrm{~A}, n) \leq 1 / T(n)$.

Claim A.5. The function $t(n)$ is a non-decreasing unbounded integer function.

Proof. To see that $t(n)$ is non-decreasing, observe (intuitively) that once a circuit is taken into consideration in $\mathcal{I}\left(n^{\prime}\right)$, for some $n^{\prime} \in \mathbb{N}$, it will be taken into consideration in $\mathcal{I}(n)$, for any $n \geq n^{\prime}$. Formally, for some $n^{\prime}, i \in \mathbb{N}$ assume that $t\left(n^{\prime}\right)=i$, and let $n \geq n^{\prime}$. We show that $i \in \mathcal{I}(n)$, and thus $t(n) \geq i$. From the definition of t, for every $k \geq n^{\prime}$ it holds that $v\left(\mathrm{~B}_{k, k^{i}}, k\right) \leq 1 / k^{i}$. However, since $n \geq n^{\prime}$, for every $k \geq n$ it also holds that $v\left(\mathrm{~B}_{k, k^{i}}, k\right) \leq 1 / k^{i}$. Hence $i \in \mathcal{I}(n)$.

To see that $t(n)$ is unbounded, we fix $i \in \mathbb{N}$ and show that $\exists n \in \mathbb{N}: t(n) \geq i$. Consider the circuit family \mathcal{B}^{i} and let $n_{\mathcal{B}^{i}}$ be the first integer such that $v\left(\mathrm{~B}_{n, n^{i}}, n\right) \leq 1 / n^{i}$ for every $n \geq n_{\mathcal{B}^{i}}$ (note that such $n_{\mathcal{B}^{i}}$ exists by the property of v). Therefore $t\left(n_{\mathcal{B}^{i}}\right) \geq i$.

[^0]: *A preliminary version appeared in [3].
 ${ }^{\dagger}$ School of Computer Science, Tel Aviv University. E-mail: itayberm@post.tau.ac.il,iftachh@cs.tau.ac.il.
 ${ }^{1}$ We remark that if one is only interested in polynomial security (i.e., no adaptive PPT distinguishes with more than negligible probability), then $w(\log n)$ calls are sufficient (cf., [10, Sec. 3.8.4, Exe. 30]).

[^1]: ${ }^{2}$ Clearly \mathcal{F} is p-non-adaptive PRF for any $p \in$ poly, but applying Theorem 1.1 with $T \in$ poly, does not yield a polynomially secure adaptive PRF.

[^2]: ${ }^{3}$ Specifically, assuming that the non-adaptive PRF is (Q, ε)-non-adaptively secure, no Q-query non-adaptive algorithm distinguishes it from random with advantage larger than ε, then the resulting PRF is $\left(Q, \varepsilon\left(1+\ln \frac{1}{\varepsilon}\right)\right)$-adaptively secure.

[^3]: ${ }^{4}$ For our applications, see Section 3, we can always consider $T^{\prime}(n)=2{ }^{\lfloor\log (T(n))\rfloor}$, which only causes us a factor of two loss in the resulting security.

