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In sensory physiology, various System Identification methods are implemented to formalize
stimulus-response relationships. We applied the Volterra approach for characterizing input—
output relationships of cells in the medial geniculate body (MGB) of an awake squirrel monkey.
Intraspecific communication calls comprised the inputs and the corresponding cellular evoked
responses—the outputs. A set ol vocalization was used to calculate the kernels of the transformation,
and these kernelssubserved to predict the responses of the cell toa different set of vocalizations. It was
found that it is possible to predict the response (PSTH) of MGB cells to natural vocalizations, based
on envelopes of the spectral components of the vocalization. Some of the responses could be
predicted by assuming a linear transformation function, whereas other responses could be predicted
by non-linear {second order) kernels. These iwo modes of transformation, which are also reflected by
adistinct spatial distribution of the linear vis-d-vis non-linear responding cells, apparently represent a
new revelation of parallel processing of auditory information.

1. Introduction. Characterization and full description of stimulus-response
relations in the central nervous system is a major goal in experimental
neurobiology. However, due to the complexity and apparent nonlinearity of
these relationships, it is practically impossible, in many cases, to achieve this
goal by simply employing visual inspection, or even fundamental semi-
guantitative techniques, as is often done. We confronted this problem while
attempting to obtain some insight into the role of the medial geniculate body
(MGB) of an awake squirrel monkey, in the processing of auditory signals.
Typical of the higher levels of the auditory pathway, many of the MGB cells
reveal highly complex response patterns to various auditory stimuli, and
particularly to intraspecific communication sounds which are spectrally and
temporally very complex (Symmes et al., 1980; Allon et al., 1981; Allon and
Yeshurun, 1985). Failing, in most cases, to relate response properties to stimuli
characteristics by employing conventional methods, we tried System Identifi-
cation methods, which we applied to a sample of 41 cells. The approach which
we adopted and modified was the Volterra approach (Hung and Stark, 1977;
Marmarelis and Marmarelis, 1978; Yeshurun et al., 1985).

The functional identification of a system is carried out by obtaining the
transfer function which relates the output of a system to its input. If that
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function can be defined, then the operation of the system is also defined and
predictable. This approach is usually applied when the internal structure of the
system is not known and is considered as a “block box™ (Allon et al., 1981). The
inputs are applied to the auditory system, and the output is recorded from
single cells in the MGB. Thus, the system identified by us is actually a subset of
the auditory pathway. It consists of a network with boundaries ranging from
the peripheral aspect of this pathway on the one extreme, to a single MGB cell
on the other extreme. Many aspects of the inner structure of the system are not
well known, despite the fact that ample information is available, regarding its
cytoarchitecture and the connectivity pattern of the MGB with the other
components of the auditory system.

In the following, we decribe the system's input and output, the formal model,
and the results obtained by applying it to responses of MGB cells.

2. The Formal Model. Most identification methods which are applied to
neurobiological systems use white Gaussian noise as the stimulus (Hung and
Stark, 1977; Eggermont et al., 1983), thus using the Wiener—Volterra approach
(Wiener, 1958). White noise, though undoubtedly superior to other stimuli
from a theoretical point of view (Wiener, 1958), might not necessarily be the
optimal stimulus from a biological point of view. Indeed, several physiological
studies demonstrated that complex sounds, and especially calls which possess a
biological communicative value, are more effective, compared with conven-
tional auditory stimuli, including white noise, in eliciting responses at the
upper levels of the auditory system (Capranica, 1972; Newman and Wollberg,
1973; Suga, 1978; Ploog, 1981). The inputs which we employed, therefore, were
tape-recorded, intraspecific communication calls (Winter et al., 1966) pre-
sented to the monkey during the physiological experiments, in a normal and a
reversed version (reversed vocalizations have the same spectral components as
normal vocalizations, but are not assumed to carry “semantic” information).
The frequency range where most of the vocalizations’ energy is concentrated is
between 0.5 and 20 kHz, and the techniques of recording and playback of the
vocalizations are described elsewhere (Yeshurun et al., 1985). The auditory
input can generally be represented in terms of acoustic energy function P(t).
However, if a reasonable time resolution is required, then a digitized
vocalization would consists of some ten thousands of values. Instead, the input
is represented by its spectral components, each component having its temporal
energy distribution. Throughout the identification procedure these calls were
represented by the digitally filtered spectral components, as 1/3 octave
resolution. The use of speciral components of the calls rather than the calls
themselves, rests also on the assumption that the operation of the auditory
nerve can be roughly approximated by a bank of overlapping filters (Evans,
1977). Part of the system’s activity, in our model, can therefore be considered
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explicit rather than implicit, thus reducing the complexity of the identified
system. By “removing” the first phase of the processing from the black box, the
identified system is receiving a multi channel input, namely, is a multi-input
system.

The outputs of the system were the responses of single MGB cells evoked by
the calls and by their corresponding reversed wversions, represented by
smoothed Peri-Stimulus Time Histograms (PSTHs). The PSTH is obtained by
presenting the vocalizations for 15 consecutive times (Yeshurun et al., 1985),
using bin duration of 3 ms.

We identify, thus, a multi-input and single output system (Marmarelis and
Maka, 1974), which is schematically illustrated in Fig. 1. The model can be
mathetically described as follows.
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Figure 1. A scheme of the system. The original auditory input [cxtrmnc lcﬂ] is
decomposed into its spectral components (left). Each component is represented by
its amplitude envelope. This is a rough approximation of the spectral decomposi-
tion that is carried out in the first stage of the auditory system, such that the
identified system is assumed to receive many band limited channels. This comprises
the multi-input aspect of the system. In this analysis we used 1/3 octave resolution,
resulting in 18 inputs. For the illustration, only 6 inputs, obtained by 1 octave
resolution, are depicted. The centre requency of the spectral components are
denoted to their left. The inputs enters the system (denoted by a black box), which
transforms them to the output. The output (right) consists of the recorded responses
to 15 consecutive identical stimuli, represented by a dot raster display (bottom),
transformed into a regular PSTH (3 ms bin duration, middle panel) and a smoothed
PSTH (by a moving average of 3 ms width, top panel).

The system we analyse is a multi-input and single output one. The inputs are
the temporal energy distributions of m spectral components, denoted by x, (t)
to x,,(t), and the output is the smoothed PSTH denoted by ¥(t). In this study
m=18, determined by assuming 1/3 octave resolution over the effective range
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(0 to 20 kHz) of the vocalizations. Assuming the validity of the Volterra
representation for this system, its functional aspect can be described as:
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M denotes the length of the system (10 ms in this study). An approximation
up to the second order of the Volterra representation is:
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Here H, (1) is the linear kernel associated with the input x (¢), and H, (t,, 1,) is
the quadratic kernel associated with inputs x,(z) and x,(t).
In order to compute the kernels, each one is regarded as a series in:

{Qit)=e7"Li; ()20},

where L(t) are the Laguerre polynomials. In that case each kernel is
approximated by a finite number of terms in its expansion:

E Kk k
H, (1;, 1,)= ? ; ‘IﬁQt(fI}Qj(TI , HJ(t)= E a; Q7).

Each vocalization—response pair can be described, after discretization, by a set
of equations, and several such pairs comprises an overdetermined set of
equations in the vector of o; and «;; (Watanabe et al., 1975). The solution of this
set leads to the calculation of the system’s transfer functions, which consists in
our model of the first and second order kernels.
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Obviously, it cannot be theoretically proved that the system is exhaustively
described by a second order model. The only way such an approximation can
be justified should bear on the ability of the model to predict cells’ responses.

Since the kernels describe completely the transformation of the input
functions into the output functions, the process of identification is basically
completed by their evaluation. An immediate outcome of this procedure is the
ability to simulate the operation of the system. Namely, having computed the
kernels, one should be able to predict the responses of an MGB cell to any given
auditory stimulus. Moreover, on the basis of the calculated kernels, and by
analysing the predicted responses, one would expect to obtain some ideas
regarding the modus operandi of the system. Indeed, several of these
expectations were achieved (Yeshurun et al., 1985, 1987). In the following we
describe results and conclusions concerning linear and non-linear (quadratic)
processes in the MGB.

3. Prediction of Responses by Linear and Quadratic Kernels. The Volterra
representation of a system is formally valid if some conditions (e.g. causality
and Frechet continuity) are fulfilled (Hung and Stark, 1977). In general, it is
almost impossible to formally prove that a biological system does not violate
any of these conditions. However, a model can be considered useful if it predicts
responses of the system. This is the approach taken in this study: the kernels are
computed for each cell by a set of input-output pairs, and then are used to
predict the response of this cell to a different set of inputs. This is one of the
basic results of this study: it is possible to predict responses of single cells in the
higher parts of the auditory system (the MGB) to natural vocalization, based
on its reponses to other vocalizations.

It can generally be stated that a neural network is, by and large, a non-linear
systemn since some of its basic features are non-linear. However, linearity can
still be detected in a limited subset of the response space, if and when it
represents either an actual linear process of a local linear behaviour of a non-
linear system. The auditory system reveals highly non-linear features, of which
the various forms of two tone combinations are only one illustration
(Goldstein, 1967; Pfeifer and Kim, 1973). Discriminating linear from non-
linear systems is interesting and important from both the experimental and the
theoretical points of view: the study of linear systems is much more developed
and quantitatively formalized; and this distinction is highly related to the
processing principles of the system under consideration. Such a distinction can
be obtained by applying Volterra models to the system: the identification
procedure can be carried out for several variants of the mathematical model,
with every variant being characterized as linear (first order kernels only) or
non-linear (higher order kernels in general, and quadratic kernels in this
study). The quality of the predicted responses, as defined by the MSE distance
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between the actual response and the predicted one, can be utilized for
evaluating the validitiy of the representation.

Representative illustrations of the predictions we made according to this
procedure are depicted in Fig. 2. (A quantitative evaluation of the predictions
can be found in Yeshurun et al. (1985, 1987).) It can be seen that some of the
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Figure 2. Predictions of responses of 6 cells (af1-3, b/1-3) to various vocalizations.
Each display consists of (bottom to top): Envelope of vocalization, raster display of
responses to 15 consecutive representations of the eell, smoothed PSTH of the
actual response (A), prediction to this response made by the linear model (L),
prediction made by the non-linear model (N). Bin duration for the PSTH is 3 ms
with moving average of 3 ms. Time scale: L5 5.

Motice that in the left column (a), the linear predictions are better than the non-
linear ones. In the right column (b}, non-linear predictions are clearly superior to

the linear predictions.
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predictions approximate resonably well the actual responses when linearity is
assumed (e.g. Fig. 2(a)). In other cases, the predictions made by guadratic
model are clearly superior (e.g. Fig. 2(b)). In general, the non-linear model
performed better than the linear one in the predictions of phasic responses,
whereas the linear model was sufficient for more tonic responses (Figs 2(b-2)
and 2(a—3), respectively).

This distinction between the linear and quadratic responses was based on a
comparison between the quality of the predictions obtained by the two models.
Such a distinction can be achieved by applying only the second order model,
and comparing the relative contributions of the linear component and the non-
linear (quadratic) component to the total response (Fig. 3). The ratio between
the weights of the linear (Y;) and the non-linear (¥,) contributions in each
prediction may subserve, in this case, as a measure of “linearity” of the
prediction. Using this criterion, any cell in our sample could be ultimately
characterized by the average “linearity” of all its predicted responses.

By correlating between the “linearity™ of the various cells and their spatial
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Figure 3. Linear and non-linear (quadrtic) components of a predicted response,
made by the second order model. Bottom to top: Envelope of the vocalization
(input); raster display of responses to 15 consccutive representations of the cell
(actual response). (A) Smoothed PSTH of the response. (M) Prediction of the
response. (M1) Line drawing of N. (N2) Contribution of the second order kernels to
MN1. (N3) Contribution of the linear kernels to N1. Notice that the response is an

“onset response”, which is highly non-linear by definition, yet it is predicted by the
model.
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Figure 4. Spatial location of recording sites. A computer reconstruction of the
MGB: a 3-D perspective view and some selected coronal sections of it. Subdivisions
of the MGB denoted on the tope section. Orientation axes: A—anterior, L—lateral,
V—ventral. Location of recorded cells designated by circles superimposed on the
sections. “Linearity” of cells marked by the darkness of the circles. For convenience,
linearity of cells is categorized as high (dark), medium (shaded) and non-linear
(emply circles). Notice that cells in bMGB and on the borders of cMGB and bMGB
arc more “linear”.

localization, we found a clear trend for a linkage between these two variables
(significance level of the one way analysis of variance between “linearity” and
spatial location is 0.09). Namely, the probability of disclosing linear responses
vs non-linear responses was higher at the medial aspect of the nucleus
compared with the rest of it. More specifically, using conventional nomencla-
ture and parcellation of the MGB [namely aMGB, bMGB, cMGB (Jordan,
1973)], our findings suggest that cells located at the bMGB and at the border
zone between the bMGB and the cMGB (comparable to the pars lateralis of the
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vMGB) are more “linear” in terms of their responses to intraspecific
communication sounds, compared with the rest of the nucleus (Fig. 4).

Structural and physiological distinctions between the mMGB and the
vMGB have alread been demonstrated in the past (Allon er al., 1981; Jordan,
1973; Aitkin, 1973). Our results, albeit from a completely new point of view, are
clearly supported by these findings. Very intriguing in this regard is the fact that
the bMGB is a polysensory neuronal substrate, whereas the other subdivisions
belong to the main auditory pathway.

Summarizing our findings, we suggest the existence of at least two modes of
processing along the auditory pathway (probably induced by the connectivity
along the network), that operate concurrently. These processes can be
approximated by a linear model and by a non-linear one. This functional
distinction, which is manifested also in the spatial organization of the MGB, is
in accordance with various physiological and anatomical features which have
been demonstrated in the past.

The functional significance of multiple processing of an auditory signal in the
MGRB is still not clear. However, as in other auditory structures (Evans, 1974;
Suga, 1982; Fitzpatrick and Imig, 1982), we assume that it is related to the
parallel processing of different tokens and information embedded within a
complex communicative sound. Processing of a single input along parallel
channels or subsystems is very probable, and the mode of processing is not
necessarily uniform in all the channels. It might be associated with various
degrees of complexity of which linear and non-linear transformations are only
one of its manifestations. In this regard, our findings represent a new revelation
of this general concept.
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