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Abstract 
MIDI music genre classification methods are largely 
based on generic text classification techniques. We 
attempt to leverage music domain knowledge in order to 
improve classification results. 

We combine techniques of selection and extraction of 
musically invariant features with classification using 
compression distance similarity metric, which is an 
approximation of the theoretical, yet computationally 
intractable, Kolmogorov complexity.  

We introduce several methods for extracting features 
which are invariant under certain transformations 
commonly found in music. These methods, combined 
with data compression, generate a lossy compressed 
representation which attempts to preserve feature 
invariance. We analyze the performance of each method, 
thus gaining insight into the features that are significant to 
the human perception of music. 
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1. Introduction 
We seek to extract features which are the basic musical 

building blocks, and widely reoccur within a musical 
piece or genre, often undergoing certain transformations. 
Composers, psychologists and researchers place great 
importance on such features. Lehrdal and Schenker [7, 
13] have identified significant repetition as essential to 
the interpretation of music. We aim to process our corpus 
in such a way as to preserve features invariance under 
such transformations. 

For classification we use compression distance [4] to 
measure similarity between the musical pieces. In 
addition to this method’s power, compression effectively 
captures repeating patterns. 

2. Related work 
Common classification methods include Baysean 
classifiers, Decisions Trees, Neural Networks and Hidden 
Markov Chains [8]. These have primarily been used in 

text classification. 
Works pertaining specifically to music mostly deal 

with audio signals [14]. MIDI classification works 
include statistical methods, neural networks techniques 
[5], pitch class methods [2], multi-resolution views [6], 
self organizing networks [1], clustering according to 
compression distance [4] as well as other approaches. 

3. Method 
We represent music as a time function expressing n-
dimensional pitch and duration vectors (chords): 
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3.1 The transformations 

We define the transformations commonly used in music: 

3.1.1 Transposition transformation 

Transposition occurs frequently in music and involves a 
theme or segment being played at a constant pitch offset: 
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We would like extracted pitch features to be invariant to 
this transformation, as two musical pieces or segments 
can be considered equivalent when played at a different 
pitch. 

 
Figure 1: Folk song transposition sample 

3.1.2 Augmentation/diminution transformation 

A musical theme or segment is often played or repeated at 
a different speed, or tempo: 
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Two such segments which differ only in tempo or by a 
fixed note length ratio are considered an augmentation or 
diminution and can be considered equivalent. 

 
Figure 2: Folk song diminution sample 
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3.1.3 Sequential modulation transformation 

Sequential modulation, or “inexact” modulation, does not 
preserve exact pitch distances, typically introducing no 
more than a small error (1/2 tone): 
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Figure 3: Sequential modulation sample (excerpt from 

Brahms Symphony No. IV) 

3.1.4 Crab transformation (“crab form”): 

Crab form inverts the pitch for a melodic segment: 

],[,],[)(]0,[)( battfCtg T
∈Ι−Ι⋅−=

rrrr
        (5) 

 
Figure 4: Crab sample (excerpts from Bach Prelude #1) 

3.2 The method, step-by-step 

3.2.1 Step 1 

First, we take the quantized melody contour, ignoring 
MIDI note-off and other events and accepting only note-
on events, thus disposing of performance-sensitive data. 

To ensure invariance to transformations 3.1.1 and 
3.1.2, we take the derivatives of the pitch and duration 
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 (we look at the pitch and time differences and 

dispose of the absolute pitch and time). Note duration 
change is more effectively treated by calculating the time 
ratios, so we derive the logarithm of the duration. 

For inexact sequentials described in 3.1.3 an optional 
preprocessing step truncates the exact pitch intervals and 
denotes only pitch direction (up or down) and whether it 
is a step (1/2 or 1 tone) or a jump (1.5 tones or higher). 

Crab form described in 3.1.4 can be treated by 
preserving only the change of the pitch direction instead 
of the absolute pitch direction (the second derivative). 

For the purpose of comparison with earlier works, we 
also experiment with extracting the pitch normalized to its 
difference from the musical piece’s average pitch. 

Finally, we observe that musical pieces may include 
patterns repeating at different hierarchies. For example, a 
musically significant repetition may occur at f(kt) a<t<b. 
To uncover such underlying musical structure, multi-
resolution methods are applied. In our case, we applied a 
simple low-pass filter. 

3.2.2 Step 2 

The compression distance is a metric [4] which does not 
rely only on a small set of features, but rather attempts to 
calculate an ideal information distance. According to this 

principle, two objects are considered close if each can be 
well compressed using the information provided by the 
other object: 
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Where K represents Kolmogorov complexity. 
 

Compression may be viewed as modeling the more 
ideal Kolmogorov complexity1. The caveat to the 
Kolmogorov distance approach is that it is not 
computable. For this reason we can only attempt to 
approximate it by a standard compression algorithm such 
as Lempel Ziv [15]. We remove from the compression 
short patterns that are likely to reoccur and skew the 
results, typically sequences shorter than 4 or 5 symbols. 

3.2.3 Step 3  

We perform classification using the k-NN algorithm, 
which takes into account k musical pieces to determine 
which category is closest. We typically take k=3. 

4. Experiments 
The test collection was comprised of 50 musical pieces in 
MIDI format, from 3 main categories: classical music, 
pop music and traditional Japanese music. The first two 
genres are further divided by composer: Mozart, Brahms, 
Vivaldi and the Beatles, Abba and Britney Spears 
respectively. We perform the following experiments 
using Leave-one-out cross validation: (1) We take the 
pitch/time derivative; (2) We take the pitch/time 
derivative and truncate exact intervals; (3) The pitch/time 
derivative after a low-pass filter; (4) The pitch/time 
second derivative; and (5) The average pitch method. 

Some confusion matrices for the above experiments 
are shown below. For each category, scores indicate the 
number of matches out of the total elements in classes. 

   
Figure 5: Sample confusion matrices from experiments 

                                                           
1 Kolmogorov complexity K(x) is defined as the length of the 

shortest compressed binary version from which x can be fully 
reproduced 



Overall, in selecting invariant features we see a 
tradeoff between the quality of an exact composer match 
and the quality of a more general genre match. The 
degree of “lossiness” influences classification accuracy 
for different corpora. For example, Vivaldi is recognized 
almost perfectly by all methods as it is very structured, 
however Brahms is not classified correctly by method (1) 
but is recognized by (2). On closer inspection, these 
pieces include many sequential modulations (inexact 
repetitions), that are largely missed by methods which 
rely on exact intervals. On the other hand, method (2) 
failed in other genres, as it is more error prone.  

Table 1: Results summary 

 1 2 3 4 5 
Composer match 51% 51% 58% 42% 27% 
Match or 2nd label 73% 57% 62% 62% 45% 
Genre match 80% 75% 72% 85% 58% 

5. Comparison with other methods 
Below is a performance summary of different methods. 
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M Chai & Vercoe 2001 HMM 3 491 63% 

M Ponce de Leon 2002 SOM 2 N/A 77% 
M Shan & Kuo 2003 Associative 

classification 
2 70-

100 
84% 

M McKay 2004 NN 3 255 84% 
M Cilibrasi 2004 Compression 3 36 80% 
M Lin 2004 Repetitions 7 500 49% 
M Pollastri 2001 HMM 5 100 49% 
A Li & Tzanetakis 2003 LDA 10 1000 71% 
A Tzanetakis & 

Essl 
2001 Gaussian 6 300 62% 

A Burred 2003 GMM 13 850 60% 

Figure 6: Comparison with other methods 

6. Conclusion and future work 
Even with simple compression such as LZW good 

results were obtained, possibly rivaling those achieved by 
humans [11]. Since LZW essentially eliminates 
continuous repetitions, we can conclude that repetition in 
music occurs more often than the human ear might 
recognize and is instrumental for its classification. This is 
consistent with music theory notion of an underlying 
repetitive structure. 

Our invariant features approach produces better 
classification results than most existing methods, such as 
the pitch-averaging method. The performance of the 
different methods highlights what features are applicable 
to various corpora. Still, for best results some manual 
fine-tuning is required, as one method may be more 
fitting a specific corpus than another. 

Future work may include experiments with additional 
compression algorithms, possibly capable of handling the 
multi-resolution nature of music, such as DCT. 
Additionally, additional clustering techniques should be 
explored. 
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