
Spectral Sound Gap Filling

Abstract

We present a new method for automatically filling in gaps
of textural sounds. Our approach is to transform the sig-
nal to the time-frequency space, fill in the gap, and apply
the inverse transform to reconstruct the result. The com-
plex spectrogram of the signal is partitioned into separate
overlapping frequency bands. Each band is fragmented by
segmentation of the time-frequency space and a partition
of the spectrogram in time, and filled in with complex frag-
ments by example. We demonstrate our method by filling in
gaps of various types of textural sounds.

1. Introduction

Automatically filling in gaps of sound and synthesizing
textural sounds with similar characteristics to a given input
are important in many applications. Since accurate recon-
struction of the gap is impossible, the goal of our algorithm
is to fill in the signal to produce a perceptually coherent
output. In this work we apply techniques used in texture
and image synthesis for context-based sound synthesis. We
adopt direct image space methods for synthesizing a time
varying audio signal by using the complex spectrogram.

The complex spectrogram is an invertible two-
dimensional time-frequency representation resulting from
the short-time Fourier transform. In each time-frequency
coordinate we consider both magnitude and phase, as well
as their gradients in time and frequency. Most of the
work done in auditory signal processing and scene analysis
is based on time-frequency representations that use spec-
tral properties of the signal within time windows. Ad-
ditional motivation for representing sound in the time-
frequency space is that the ear transforms time oscillations
into frequency-dependent nerve firings, and that roughly
speaking, sound is perceived in the frequency domain.
More perceptually motivated, two-dimensional representa-
tions that are based on the short-time Fourier transform,
such as the mel-frequency cepstral coefficients, are also
suitable for our purposes.

Given an input sound signal with a gap as shown on the
top left of Figure 1, the result of our gap filling algorithm
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Figure 1. Spectral gap filling of Jazz segment.

is shown on the lower left, and the corresponding spec-
trogram magnitudes are shown on the right column. The
accompanying audio files are available for download from
www.geocities.com/supplemental04audio/icpr.

1.1. Related work

The short-time Fourier transform is a well-established
tool used in sound analysis and synthesis [1, 14]. It allows
the reconstruction of a signal from its modified short-time
Fourier transform [6, 11]. Recently, various algorithms for
texture and image synthesis were proposed and applied to
the task of filling in missing regions in images. In this work
we aim at using similar approaches by transforming the real
1D time signal into a complex 2D time-frequency space.
This is performed by matching similar spectral sound frag-
ments and segmentation of the time-frequency space. Ull-
man et al.[16] emphasize the importance of intermediate-
level fragments for the tasks of visual classification and
segmentation. Kwatra et al.[13] perform image and video
texture synthesis by finding the min-cut of a graph using



a cost function defined on edges between adjacent pixels.
Bertalmio et al.[2] combine image inpainting with texture
synthesis by decomposing an image into the sum of two
components. Inpainting is applied to the component rep-
resenting the underlying image structure, whereas texture
synthesis is separately applied to the component represent-
ing image detail, and the two components are then added
back together. Fragment-based image completion [7] it-
eratively approximates the unknown regions and searches
for adaptive image fragments under combinations of spatial
transformations. Completion is performed from coarse to
fine scales, proceeding from regions of high to low confi-
dence. Criminisi et al.[5] fill in an order that gives priority
to high gradients. This is achieved in the former by multi-
plying the traversal map by an adaptive neighborhood size
map. Jia and Tang [12] first perform complete segmentation
of the input and then continue the segmentation boundaries
of the missing regions by tensor voting.

2. Time-frequency representation

In this work we use the short-time Fourier transform de-
spite its inherent limitations, namely; a uniform partition
of the time frequency plane, with single time resolution
for different frequencies (an alternative is a multi-resolution
wavelet representation). The advantages of this representa-
tion for synthesis are its simplicity - directly synthesizing
the complex spectrogram using recent image space tech-
niques, and working with an invertible time-frequency rep-
resentation that is robust to large modifications [14]. Given
a sampled sound signalf(t), letSf (x, y) denote its discrete
short-time Fourier transform, using a Hamming window
with an overlap of14 window size. The notation(x, y) repre-
sents (time,frequency) emphasizing the image nature of the
complex spectrogram. LetM(Sf (x, y)) denote the spec-
trogram magnitude, and letΦ(Sf (x, y)) denote the phase.
To reconstruct the signal from its complex spectrogram, the
inverse short-time Fourier transform is applied to each col-
umn, and the overlap-addition method [14, 6] is used to re-
cover the signal. This allows reconstructing spectrograms
that have undergone large modifications.

3. Sound gap filling

Our approach is to map the signal to the time-frequency
space by the short-time Fourier transform, fill in the gap,
and apply the inverse mapping to reconstruct the result, as
illustrated by:

f(t) 7→ Sf (x, y) −→
gap filling

Sf ′(x, y) 7→ f ′(t) (1)

The complex spectrogram of the signal is separated into
overlapping frequency bands and partitioned in time. Each

frequency band is filled in by matching fragments and the
synthesized result is reconstructed. Gap filling proceeds by
matching complex time-frequency fragments to the over-
lapping regions of existing data from the input and synthe-
sized signal. The criteria for matching fragments is based
on magnitude and phase and is performed separately in each
frequency band while maintaining coherence between over-
lapping bands. The complex time-frequency plane is filled
in by fragments with adaptive extent in time and frequency.
In addition, each fragment forms irregular boundaries in the
time-frequency plane within causal neighborhoods, which
are determined by local segmentation based on magnitude
and phase, and their gradients in both time and frequency.
Once the complex time-frequency plane is covered, we
apply the inverse transform, and use the overlap-addition
method to further blend together the fragments into a coher-
ent output sound stream. Following is a detailed description
of each part of our algorithm.

3.1. Frequency partition and synthesis order

The complex spectrogram of the signalSf is partitioned
into separate overlapping frequency bandsFk = Sf (:, bk).
Low frequencies of most natural stimuli usually contain
more energy than high frequencies and therefore are less
affected by noise. Therefore, gap filling of the complex
spectrogram proceeds from low to high frequency bands.
Perceptual time-frequency representations use a logarithmic
frequency scale. Therefore, in our linear frequency scale,
the frequency extents are spaced exponentially by multi-
plying each one from low to high frequencies, such that
|bk| = 2|bk−1|. Figure 2 shows the spectrogram magnitudes
M(Sf ) in consecutive steps of the algorithm for the signal
shown in Figure 1. Within each frequency bandFk we con-
sider fragmentsTk = Sf (a, bk) that overlap the known re-
gions, and fill in each frequency band from the known to
unknown regions of the spectrogram.

3.2. Time partition and spectral search

The spectrogram is partitioned in timeP (Sf ) by sum-
ming the time gradient magnitudes over all frequencies∑

y |
∂M(Sf (x,y))

∂x | for each timex. At each step of filling in
a frequency bandFk, a target fragmentTk is defined with
a causal region of overlapO(Tk) with the input and pre-
viously synthesized regions. To maintain a coherent sound
stream, the time extentsa = [a1, a2] of each fragment are
determined by the nearest times in the partition of all pre-
viously (lower) synthesized frequencies with the greatest
response inside the gap. Motivated by our auditory work-
ing memory, the maximum overlap in time is 250ms. We
search the known complex spectrogram for source matches
O(T ′

k) within the same frequency band, across all time in-



Figure 2. Spectrogram magnitudes in consecutive gap filling steps.

tervals outside the gap. This is a linear one-dimensional
search in time which is very efficient. A fundamental task
in sound analysis is the comparison of pairs of local spec-
tral representations, and several spectral distance and distor-
tion measures were proposed and analyzed [10]. The ampli-
tude of natural sound signals can rapidly change over sev-
eral orders of magnitude. Therefore, the similarity of two
spectral regions is based on the RMSlogarithmic spectral
distortion [10] used in many speech recognition systems.
We have also experimented with the the distortion measure
1
2 −

1
2

O(T )·O(T ′)
‖O(T )‖‖O(T ′)‖ ∈ [0, 1] used in indexing [9, 3]. The

features are the magnitude and phase(M,Φ), separately
normalized taking a weighted average. We find the best
overlap matchO(T ′

k), which in turn defines the best frag-
ment matchT ′

k. The time extentsa′ of T ′
k are similarly

updated according to the partitionP (Sf ). The spacing be-
tween time extentsa of Tk inside the gap are set to match
corresponding time extentsa′ of T ′

k outside the gap, such
that |a| = |a′|, which gives priority to filling the gap with
structured sound fragments partitioned in time.

3.3. Spectral boundaries

Incrementally, each matching fragmentT ′
k fills in a por-

tion of the spectral gap. Its spectral boundaries in the time-
frequency space are irregular and based on a local seg-
mentation that determines which disjoint parts to take from
O(Tk) andO(T ′

k). Locally, the boundaries between frag-
ments define a spectral segmentation with the input and pre-
viously synthesized regions. The distortion between spec-
tral features, both magnitude and phase, with priority to
high gradient regions of magnitude and phase in time and
frequency [8], defines the spectral boundaries which are
computed by dynamic programming. The features are mag-
nitude, phase, and their gradients in both time and fre-
quency(M,Φ, ∂M

∂x , ∂M
∂y , ∂Φ

∂x , ∂Φ
∂y ). Magnitude and phase

information are separately divided by their respective nor-
malized gradient magnitudes in time and frequency, and are

approximated by central and forward differences.
Finally, the output is reconstructed from the filled in

complex spectrogram, and the overlap-addition method
blends together the fragment boundaries to form a coherent
outputSf ′(x, y) 7→ f ′(t).

4. Results

We have experimented with our algorithm for gap filling
of various types of textural sounds. Computation time is
O(nlogn) in the number of samplesn, and is between10
and270 seconds for44k and357k samples, on a 1.8Ghz
PC processor running Matlab. We use three separate fre-
quency bandsFk, a Hamming window of length256 sam-
ples, and a gap size ofn8 samples positioned around the
n
3 , n

2 , 2n
3 marks. Our algorithm fills in gaps in both abrupt

and more continuous textural sounds.
Figure 1 shows the result of filling in a gap of a Jazz

segment [15]. Figure 3 demonstrates the result of our gap
filling algorithm for various types of sounds. In each row
the input signal is shown on the leftmost column, its spec-
trogram magnitude in the second column, the magnitude
of the spectrogram filled in by our algorithm in the third
column, and the resulting signal in the rightmost column.
The first five rows demonstrate the results of gap filling
of natural sounds. The top row shows the result of fill-
ing in a gap of a rapidly changing bird song [4], and the
second row the result of filling in a gap of the sound of
an elk. The third to fifth rows show the results of fill-
ing in a gap of a frogs’ vocalization [4] for various po-
sitions of the gap. The sixth and seventh rows show the
results of filling in synthetic sounds of a siren and an en-
gine. Our approach to sound gap filling is example-based
and therefore its performance is dependent on the richness
of the available fragments. In all the examples presented
in this paper, the training set is the known segments of the
input, which is rather limited. For example, the last row
shows the result of gap filling a musical segment with vo-
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Figure 3. Spectral sound gap filling.

cals [15]. Statistics for each sound in Figure 3 appear in Ta-
ble 1 (and the accompanying audio files can be downloaded
from www.geocities.com/supplemental04audio/icpr).

Sound Samples (n)Rate (Hz)Gap (size,pos) Time (sec.)

Jazz segment 110250 22050 n
8
, n

2
57.1

Bird song 356929 22050 n
8
, n

2
270

Elk 109667 11025 n
8
, 2n

3
35.2

Frogs’ vocals 145217 16000 n
8
, (n

3
, n

2
, 2n

3
) 55.5,57.9,56.9

Siren 43951 16000 n
8
, n

2
9.9

Engine 134151 11025 n
8
, n

2
53.7

Music vocals 110250 22050 n
8
, n

2
65.4

Table 1. Statistics and running times for gap
filling of sounds in Figures 1 and 3.

5. Future work

To improve the local segmentation we would like to fuse
information from multiple candidate target fragments by
having each fragment vote on the segmentation. Additional
applications include transferring spectral attributes between
pairs of signals by constrained synthesis, and extensions of
this work to spectral synthesis of image and volumetric data.
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