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Abstract

There is a recent growing interest in image analysis
of multiple views of o scene, often involving aspects of
reconstruction, mosaicing and new view generation.

As the availability of multiple camera systems aug-
ments, we suggest that such tasks could be carried out
where the image source i3 a set of unsynchronized and
uncalibrated comeras moving erbitrarily in a 8D scene.
In order to maoke efficient use of this data, it is neces-
sary to define a measure of inter-sequence prozimity.

In this paper we suggest such ¢ measure, based on
pure 20 analysis, namely the ratios between image-
space distances among a set of feature points. We
show this measure to be sound, and propose a sim-
ple iterative method to robustly estimate the relative
positions of the set of moving cameras, even in the
presence of substantial amount of noise, and without
computing egomaotion.

1 Introduction

As the availability of low-cost video cameras aug-
ments, multi-camera systems find applications in vari-
ous fields, including surveillance, military and surface-
or volume-mapping applications. The huge amount of
images captured by such multi-camera systems usual-
ly contains redundant information, both within each
video sequence, and in-between sequences (as cameras
volumes of view often partially overlap). Conversely,
it is probable that new information can be extract-
ed by integrating images coming from different video
sources. Thus, the need to unite multiple video se-
quences into a more compact representation arises.

Several systems, which are aimed at enhancing or
compressing video sequences coming from a single
camera, have been developed over the years. These al-
gorithms can be roughly categorized into three group-
s. The algorithms in the first group attempt to recon-
struct the 3D structure of the scene from calibrated or
uncalibrated video sequences [16, 17, 9]. Algorithms

in the second group, known as Arbitrary View Gener-
ation algorithms [2, 15], exploit certain invariants in
the peometry of the scene in order to interpolate an
intermediate view of the scene. Finally, mosaicing al-
gorithms (7, 12] combine a set of input images into a
single larger representation.

A common feature of these algorithms is that they
rely on the proximity of frames in the sequence, ie.
the assumption that two successive frames were taken
from relatively close camera positions. Clearly, in or-
der to generalize these single-camera algorithms onto
multiple video sequences, it is necessary to recognize
parts of different sequences, that are “close” enough.
Such parts can then be handled by the algorithms, as
if they were taken by the same camera, with respec-
t to the probability that they contain redundant or
complementary information.

In this paper we address the problem of recogniz-
ing parts of sequences that cover overlapping view vol-
umes and were taken from proximal camera locations,
in the case of multiple uncalibrated cameras moving in
a stationary 3D world. We propose a distance measure
based on 2D geometry of feature points, as well as a ro-
bust algorithm to evaluate this measure, denoted Ra-
dial Distance Hashing. In this respect, it is important
to note that we do not assume a given cross-sequence
feature point correspondence. Rather, using robust s-
tatistics methods, Radial Distance Hashing is used to
obtain this correspondence. The proposed technique
functions as a pre-processing stage for the algorithms
described above,

The paper is organized as follows: in Section 2, we
discuss various sequence proximity factors and show
why camera-space proximity is a good choice for defin-
ing the distance between sequences. Section 3 intro-
duces Radial Distance Hashing. In Section 4, the ap-
plication of Radial Distance Hashing to camera prox-
imity estimation and eross-sequence correspondence is
described. We then construct an algorithm that com-
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putes the distance between two uncalibrated image
sequences. Finally, in Section 5, we present experi-
mental results obtained by applying the proposed al-
gorithm on synthetic and real-world image sequences.

2 Sequence Proximity Factors

Consider a stationary 3D world in which N cameras
are independently moving. The internal and external
parameters of the cameras are unknown, nor is the rel-
ative position of the cameras. A likely scenario of this
sort would be a set of MRPVs surveying a common
area of interest, or a set of autonomous robots.

Let us now look at two of those WV cameras, C and
', from which two video sequences, S and 5’ were
acquired.

Given 5 and 5’', our goal is to define a proximi-
ty factor that will indicate how “close” those two se-
quences are at different points in time. Specifically,
we attempt to identify those images in 5, 5’ that are
at maximum proximity. We now describe three dif-
ferent approaches to define the distance between the
sequences: Image-Space, Scene-Space and Camera-
Space. We argue that the latter is the most adequate
for multi-view algorithms.

Image-Space. The most straightforward ap-
proach to define the distance between two images is by
directly comparing properties of their image features,
such as their grayscale histograms, apparent textures,
edge maps, ete.

The main advantage of these methods is that they
are easy to compute and do not require any knowledge
of the actual scene structure. However, Image-Space
methods are very sensitive to camera parameters, oc-
clusion and a changing amount of mutual overlap in
view fields, and are therefore not suitable for the case
of arbitrarily moving cameras.

Scene-Space. The second approach lies at the
opposite end of the complexity scale. Scene-Space
methods attempt to recomstruct, up to a scale fac-
tor, the complete three-dimensional representation of
the scene from each image sequence. Assuming that
the image sequences have been captured in the same
scene, the constructed 3D models can be aligned. The
proximity between images iz then defined as the de-
gree of congruence between the view volumes. As the

reconstruction process ultimately results in retrieval

~ of external camera parameters, the proximity between
. given images can be retrieved.

Obviously, a 3D reconstructed model is inherently
the most complete way of scene-representation. Yet,
3D reconstruction methods are computationally ex-
pensive and extremely liable to errors. These problem-
s call for an approach capable of determining camera

Figure 1: The set of image space distances between a
pivot point and the remaining points.

position without complete scene reconstruction.

Camera-Space. This approach consists of defin-
ing the proximity measure between images as the prox-
imity between camera locations from which those im-
ages were taken. This approach is more apt for multi-
view algorithms, as camera proximity directly affects
the amount of visible parallax between the two im-
ages. Mosaicing, for example, requires little or no
parallax; reconstruction and new view generation al-
gorithms call for a controlled amount of parallax.

A naive solution for estimating camera-space prox-
imity consists of calculating the egomotion [1, 5] of
each camera, aligning the retrieved egomotion tracks
into one coordinate system and measuring the distance
between those camera tracks. However, egomotion es-
timation from uncalibrated sequences is very sensitive
to noise, and exhibits accumulative errors over long
image sequences. Therefore, this solution is not suit-
able for long uncalibrated sequences.

In the following sections, we develop an alternative
method, based on 2D geometric relationships between
feature points, that does not require absolute egomo-
tion retrieval. Rather, only the relative location of
cameras is estimated.

3 Radial Distance Hashing

In this section we define "Radial Distance Hash-
ing”, a transformation from 2D locations of tracked
feature points to a vector space. This transformation
lies at the base of our approach. Suppose a set of fea-
ture points has been tracked throughout a given image
sequence and n points, py, pa, . . . , Py have been detect-
ed in frame f. The number of points may vary from
frame to frame, as points enter and leave the view field
or are occluded by other objects in the scene.

We assume that the selection of feature points has
been done by the same feature extractor across all
image sequences, such that at least some of the points



are consistently chosen across sequences. As the image
formation model, we use perspective projection on the
plane. The image plane is parallel to the XY plane and
the viewing direction is along the positive Z-axis.

Let us denote by d{ ; the Euclidean (L,) image-
space distance between a pair of interest points,
pi = (z,w:) and p; = (z,y;) in frame f:

- J{z.' -z P+ (yi — E-'j]g (1)

We now select one of the interest points, py, (a pivot
point), and represent the distance between this point
and the remaining (n—1) points in frame f asa (n—1)
dimensional vector (Figure 2),

qu’ﬂgﬂ" : Jd";,.i"""d{m}

(for all j 95 p)

Let us denote D the *Radial Distance Hash” (RDH)
of frame f with respect to pivot p,. Using this nota-
tion, each image can be represented as a single point in
E"~1, for any given pivot. This measure somewhat re-
sembles the well known Cross-Ratio invariant [11], yet
it is to be noted, that, as opposed to the Cross-Ratio
of a set of feature points, the Radial Distance Hash is
not invariant to translation under perspective projec-
tion. In fact, this variance is its most useful property
for the set of algorithms in discussion, enabling it to
be used for distinguishing between different views of
the same scene.

3.1 Comparing RDH vectors

Suppose two sequences, S and S’ have been cap-
tured by two different cameras, and let D =
(d1,da,...,dn_1) and DI = (d},d},...,d!,_;) be the
RDH vectors of frame f € S and f' € 5' with respect
to a correlated pivot point p,. The case in which the
number of extracted points in the two images, n, is
not identical is dealt with later. Note, that in order
to compare two RDH vectors obtained from distinct
image sequences, it is required that the vector coordi-
nates are ordered. In other words, if d; represents the
image space distance in image f between two scene
points FP; and Pj, then dj represents the distance in
image f' between the same two scene points. Fully
satisfying this ordering constraint, which in practice
requires full eross-sequence correspondence between
feature points, is practically impossible. In the next
section, we show how a subset of corresponding points
can be retrieved from a noisy first estimate.

Let M] = MJ(DJ,D{') denote the Manhattan
(L) distance between two normalized Radial Distance
Hash vectors D and DJ', thus

(2
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where || D/ || is the L, norm of vector D,
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L1 was chosen as the distance measure, since it min-
imizes the effects of outliers, especially when working
with normalized vectors. As shown below, normal-
ization is required in order to preserve invariance to
camera scaling. Thus, if all cameras are known to have
a common and fixed focal length, this normalization
is not obligatory.

3.2 Owvercoming Point Occlusion

As a result of camera motion in a 3D scene, it is
very likely that tracked points will temporarily disap-
pear, group, enter or leave the view field. Further-
more, noisy input to the feature extractor may result
in inaccurate tracking of the points and "feature fick-
er”, as some points might momentarily be missed by
the feature extractor. Although some of those track-
ing problems can be solved at feature extractor level
by heuristic search algorithms [6] or by using the s
moothness property [8] to interpolate estimated tracks
in case the expected direction and maximal velocity of
tracked points is known [13, 14], some unhandled fea-
ture noise usually endures.

In order to handle the common situation in which
not all feature points are visible in the two frares to
be compared, f and f', we project the two RDH vec-
tors, D and D onto their lowest common subspace. In
practice, this means that only the distances between
corresponding feature points seen in both frames are
used when computing MJ(D,D'). An algorithm for
achieving the required cross-sequence feature point
correspondence is described in the next section.

In Section 5, we present results obtained on a sim-
ulated scene in which a high level of occlusion was
artificially induced.

4 Proximity Estimation by RDH

We now show how RDH can be used to estimate
camera-space proximity and simultaneously determine
cross-sequence feature point correspondence. This is
accomplished in the following iterative fashion: First
a crude initial guess for cross-sequence correspondence
is established. Then, RDH vectors are computed with
respect to every feature point, serving as a set of es-
timated measures for camera-space proximity. Devia-
tions from the mean measure are used to discard badly




(b)

Figure 2: (a) Given the image-space distance between
By and Py, and the focal length f, camera location is
restricted to the surface of revolution of the dashed
circle over the z-axis, as seen in (b).

correlated feature points, thus improving the proxim-

ity estimation, and simultaneously refining the set of

corresponding feature points.

41 Estimating camera space proximity

First, let us see why Mg is a good estimate for

the camera-space distance between f and f'. The ful-
. 1 analytical proof is shown in [10] and is only briefly
- outlined below. The proof consists of three parts: In-
. variance to camera rotation and scaling, uniqueness
and smoothness [3].
~ Invariance. Since the RDH vector represents a set
. of distances between image-space points, it is trivial
that it is invariant to z-axis rotation, and that nor-
" malizing this vector yields scale invariance. Due to
the foreshortening effect, RDH is not invariant to x-
- and y-axis rotation, assuming perspective projection.
. However, this change in RDH vector value induced
. by camera rotation is extremely low compared to the
- change caused by camera translation. Indeed, exper-
| imental results have shown that in natural scenes, x-
- and y-axis camera rotations have no noticeable effect
. on the estimated distance between cameras.
Uniquness., The mapping from camera-location
‘to RDH vector values is shown to be unique. Hence,
images taken from different camera locations will nec-
ily yield different vectors in ™', This claim is
ased on the fact that for a given pair of scene points,
each measured distance between the corresponding
points as projected on the image plane, restricts the
world-coordinates of the camera location to a single
surface. This surface can be described as the surface of
revolution of a circle around the line connecting those
two scene points. In a coordinate system built such
that the two scene points in discussion lie at Fy(0,0,0)

e

and P;(0,0,1), the center of the circle is shown to be
at (3, 4;), where f is the focal length of the camera
and d is the measured Euclidean distance between the
two points in image space (Figure 2). We show that
four noncoplanar tracked points restrict the location
of the camera to a single point.

Smoothness. Finally, it is easy to see that a s-
mooth change in camera location will yield smooth
change in the image-space distances between feature
points, and therefore smooth change in Dj{ .

As a consequence of the three mentioned proper-
ties, M,{ monotonically increases with the increase in
distance between cameras, and is very little affected
by 3D camera rotation or scaling. Thus, it is a suit-
able estimate for the camera-space distance between
fand f'.

4.2 Obtaining cross-sequence correspon-
dence

As mentioned in section 3, the ordering constraint
must be satisfied in order to compare two RDH vec-
tors. Clearly, satisfying this constraint throughout
long image sequences is impossible in real-world sce-
narios. In our experiments we have shown, though,
that even from a set of largely uncorrelated feature
points (7T0% outliers), a well correlated subset could
be retrieved using the following algorithm.

To formulate the problem as a classification prob-
lem, let us denote by P = {p1,p2,...,Pa} the set of
presumably corresponding interest points detected in
the two images, and by B and C the classes of badly
and correcily correlated points, respectively. Hence,
our goal is to classify each point p; € P as either a
badly correlated point (p; € B) or as a correctly cor-
related point (p; € C).

The algorithm consists of two stages. In the ini-
tialization stage, a-priori probabilities of match are
computed using a measure of similarity between the
feature points in the two sequences [8]. Each point
p; is assigned a match probability 0 < w; < 1. In
the experiments described in Section 5, we used blob-
s of distinct colors as the points of interest, and the
difference between the average blob color as the sim-
ilarity criterion. The optimal match can be modeled
as a minimal match in a bipartite graph. The second
stage is an iterative stage, which is aimed at improving
this initial correspondence by detecting and discarding
badly correlated points.

Let us look at the simple case where out of the n in-
terest points, only one of the points, p;, is badly corre-
lated. Thus, we have B = {m}; C = {p2,p3,...,Pn}.

Qur algorithm iz based on the following interesting
property: the fact that py is badly correlated will on-



ly affect the Radial Distance Hash with respect to pm
(M), whereas M, MI, ..., M will be only slightly
affected by the erroneous correspondence. To see why
this happens, recall the definition of M7 in Equation 3.
A failure to correlate the pivot point causes a complete
violation of the ordering constraint, thus resulting in
n—1 erroneous distance comparisons, namely the com-
parison of df ; and df ;(i = 2...n). In contrast, in all
other M]{ (p # 1) functions, only one coordinate out of
the n — 1 coordinates of D} will be wrongly matched,
and the overall Manhattan distance will not be affect-
ed much.

We now use the above-mentioned property to classi-
fy the points into the B and C classes. For all p. € C,
the distance function M7 will issue correct and uni-
form camera-space distance estimates, whereas for all
py € B the distance function M will yield incon-
sistent distance estimates. Hence, the correct values,
Mf, will create a cluster of estimates around the ac-
tual distance between the cameras, whereas the wrong
hash values, M, yield randomly scattered estimates.

Since the set of distance estimates M/ has been
calculated in respect to different pivot points, there
is no reason to believe that the actual values of the
estimated distances will be uniform. However, exper-
imental results have shown that the inconsistency of
the distance estimates that were generated from M/ is
negligable in comparison to the inconsistency of badly
correlated points. A method that does not assume u-
niformity of M/ distance estimates is described later
in this section.

The identification of the badly correlated points can
be done using a variant of the Least Median Squares
method, which takes into account the initial corre-
spondence probability w;. This method was chosen
for its robustness, even under a substantial amount
of outliers. The overall estimated distance at frame f,
M{ | is chosen to minimize the median of the weighted
squares of residuals:

M = argminmed(wi(M] — M)?) (5)

Theoretically, the set of badly correlated points
(outliers) can now be identified based on the process-
ing of only one pair of frames, f and f'. However, in
order to further improve the detection robustness, we
inspect the deviation of each feature point from M7
along a set of frames (F = {f1,...,fm}). We then
identify the point pg which is most likely to be er-
roneously corellated, using the sum of squared errors
along the whole set of frames:

(d)

Figure 3: (a-c) Three successive RDH iterations on a
set of 35 feature points, out of which 24 were outliers.
Each line represents the estimated distance obtained
by selecting a different pivot. (d) The overall distance
estimate after each iteration, and true distance be-
tween cameras (dashed line). Points of minimal dis-

tance can easily be identified.
S F _ arfy2
e - gwg M) (6)

To conclude, the iterative stage of the algorithm
consists of locating pg, discarding it (by ignoring this
point from this stage on) and recalculating the RDH
vectors. Note, that after a badly correlated point is
discarded, the accuracy of the remaining hash values
[M;} increases. This process is repeated until the
variance of the hash values, 3" (var(M])) drops
below a given threshold, indicating that most of the
badly correlated points have been detected (Figure 3).

An alternative method that allows the comparison
of the estimated distances without assuming that all
MZ values are uniform consists of inspecting the rela-
tive change in the estimated distance along the image
sequence (F = {fi,..., fm}). At any given transition
between frame f; and frame f;4; the distance between
the two cameras either increases, decreases or remains
constant. This change in distance between the cam-
eras will necessarily yield a corresponding change in
M/ distances. Assume, for example, that two cam-
eras are moving towards each other at the time two
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Figure 4: Proximity estimation between two video se-
quences. Bright spots indicate lower M value, ie.
greater proximity.

frames, f; and fi,; are taken. In that case we obtain
ML > M+ for all p. € C. In other words, the sign
of the derivative of M7 over f will be unifom.

We can therefore identify the point pg by inspect-
ing the number of frames in which the sign of the
derivative of M i does not conform with the majority
of derivative signs of all M.

4.3 Distance Search

Once cross-sequence correspondence has been ob-
tained, the estimated distance between the image se-
quences can be computed. As we have shown above,
M? monotonically increases with the increase in cam-
era distance and can therefore be used to obtain the
distance estimate between any pair of frames.

For many applications, the exact distance between
the cameras at each frame is not required. Rather, on-
ly the frames in which the cameras were at maximal
proximity are of interest. Since the distance between
cameras is known to be smooth and continuous, linear
search methods can be used to find those points with-
out having to calculate the distances between any two
frames.

5 Experimental Results

The feasibility of the described algorithm was test-
ed on both simulated and real-world images. The main
advantage of simulated images is that the exact loca-
tion of each “camera” is precisely known along the

65

M Distance

Figure 5: Results of RDH on simulated data in which
50% of the theoretically visible feature points are oc-
cluded at every frame, and 30% of the points are in-
accurately tracked.

sequence. Thus, the results obtained by applying the
algorithm can easily be compared to true camera lo-
cation. Moreover, a controlled amount of noise can be
introduced into the simulated data. Once the feasi-
bility of the algorithm has been proven on simulated
data, it was tested on a pair of uncalibrated real image
SeqUEences.

5.1 Simulations

The two image sequences used in these experiments
were “captured” in a simulated 3D scene in which 35
interest points have been tracked. Each sequence con-
sists of 60 frames. The paths of the two cameras are
independent, and intersect at two points (frame 20
and frame 45). The 3D location, focal length and 3D
rotation of the cameras vary simultaneously along the
sequence. In Figure 5 the robustness of the algorithm
to 50% feature flicker combined with inaccurate fea-
ture tracking can be seen. Figure 3 shows three itera-
tions of the RDH vector calculations with nearly T0%
erroneous initial cross-sequence correspondence.

5.2 “Desktop” Sequence

The two sequences used in this experiment were
acquired using a standard hand-held video camera.
Each sequence consists of 175 color frames, in which
a maximum of 13 interest points were tracked. Inter-
est points were identified as blobs of uniform color.
Figure 4 shows the matrix of estimated distances be-
tween the two sequences. The bright area along the
secondary diagonal suggests that the trajectories of
the cameras were inversely aligned (see top view in
Figure 4). Thus, the first frame of one sequence was
captured from relatively close position to where the
last frame of the other sequence was captured, and
vice versa. Two frames captured from relatively close



positions (frame 77 in sequence A and frame 93 in
sequence B) are shown.

The full video sequences and the estimated distance
can be seen in Movie 1.

6 Conclusions

We have proposed a camera-proximity measure,
which can be viewed as an essential building block in
the rapidly evolving field of multi-camera analysis. A
new frame hashing function, denoted Radial Distance
Hashing has been shown to be a correct and efficiently
computable measure to detect frames that were taken
from proximal positions by two uncalibrated cameras.

A method for simultanecusly estimating camera
proximity and feature point correlation using a statis-
tical comparison of RDH vectors was described. This
method has been shown to be robust to substantial
noise, thus qualifying for the analysis of real-world sit-
uations.

RDH offers a novel view on geometric invariance in
image analysis. It does so by restricting the functional
operation to the cost-effective analysis of 2D relation-
s, yet relating directly to observations regarding the
three-dimensional world.
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