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Abstract

Texiure consists of local variance of grey level or
cdge indensily values. We have recenitly presenied a
Generalized Symmetry operator, that captures local
spatial relations of image patierns. We show that ae-
tirely differences in the confinuous intensily map pro-
duced by the local generalized symmelry operalor can
be efficiently used lo detecl lexiure boundaries. [sing
dlmost all available quantilative resulls of human per-
formance in artificial texture discrimination, we show
that our algorithm favorably compares with other com-
petational approaches (correlation coefficient = 0.9 be-
fween our model’s performance and available human
performance). Stressing the necessily of benchmarks
for Computer Vision algorithms, we conslruci an ez-
haustive sel of textures that could be used as exper-
imental stimuli for both humans and machines, and
demonsirale the performance of the algorithm on some
of these artificial textures as well as on natural im-
ages.

e

1 Introduction

Humans are able to discriminate between surfaces
sharing the same average color and brightness but dif-
fer in small scale luminance variations generally called
texture. This ability is vital to segmentation since nat-
ural ohjects are often heterogeneous and their bound-
ary cannot always be found by standard edge detec-
tors. The classical work of Julesz claimed that texture
discrimination could be explained in terms of global
second order statistic differences between points in
the image [8]. Later work attributed the discrimina-
tion to first-order differences in features such as orien-
tation, size and brightness of local texture elements.
9,11, 2, 3]. The Texton theory [9] specifies these ele-
ments as Textons, that are elongated blobs with spe-
tific color, orientation and size, line ends (terminators)
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and line crossings. All these theories were based on a
qualitative distinction between effortless preattentive
texture discrimination and the more time consuming
attentive discrimination.

Recent psychophysical experiments questioned the
preattentive-attentive dichotomy. They found graded
diseriminability in textures composed from randomly
rotated patterns (similar to Figure 2) [7]. Similar re-
sults were obtained in detection tasks [12]. They pro-
vide us with a database of discriminability measures
for a set of artificial pattern pairs. These observa-
tions raise the need for a computational model that
discriminates between textures in a continuous man-
ner and can be quantitatively compared with human
performance.

We have recently presented a generalized symmetry
measure and demonstrated its application to detection
of interest points in natural images [15], and for face
recognition [5] and normalization [16] tasks. The basis
of our operator is the guantification of local spatial
relations between image edges. This is carried out
by assigning activity values to image points. Since
texture is characterized by local spatial relations of
image edges, we suggest a computational model that
takes as an input the intensity gradient at each image
point, and generates activity maps of the generalized
symmetry in different scales. Areas of different texture
are thus characterized by different activity on one or
more of these maps.

Some recent computational models [6, 14] are also
quantitative and continuous, and are compared to psy-
chophysical data. They are based on linear filters fol-
lowed by a non-linear stage and produce activity maps
where the texture boundary becomes activity gradi-
ent. Comparing our model to these models, we find
that our model yields a better fit to available quanti-
tative psychophysical data.

Many computational models for texture diserimi-
nation use ad-hoc artificial examples that show the
superiority of cerlain models to other models. We



suggest a method for constructing an exhaustive set
of artificial patterns that can be used as a data base
for texture analysis, and demonstrate the performance
of our model on some new artificial textures derived
from this data base, as well as on natural images.

2 Generalized Symmetry

The generalized symmetry operator is described in
[15] and in a slightly different formulation in [16]. We
briefly sketch the version used in the current work. Let
pi be any point in the input image (k= 1,..., K). De-
note vp = (r, 0 ) the edge at pp such that r; is the
edge magnitude and 0 € [0, 7] is the edge orienta-
tion. For each two points p; and p;, we denote by ay;
the counterclockwise angle between the line passing
through these points and the horizon. We define the
set T (p, ¥), a distance weight function D, (i, j), and a
phase weight function P(i, j) as

: : 0; + 0;
rew) = {Gi| 252 =p, 2%y}
Dq(i,5) = Golllpi — pill)
P(i,j) = Ggp(ti —aij —w/2)G,, (0 — oij — w/2)

where G (t) = Jz=— exp —3; is the Gaussian. The
phase tuning g is fixed. ¢ of [J, corresponds to a
locality channel.
The symmetry measure S, (p, ¥) at point p in di-
rection v is defined as
Se(p¥)= D Doli,i)P(i, )riry
(id)ED(p.¥)

Let 4 be such that S,;(p,v) is maximal and I, =
[y — 7/4,7 + =/4) an interval around y. The Radial
Symmelry is defined as

RS,0)= [ (S, 0)d% [ (4S9
el vl

These definitions quantify the symmetry at each
point p, by summing the support of each two edge
points p;, p; such that p = L*;”-t. When the edges are
of the same orientation there is no support for sym-
metry. The strongest support is when the two edge
orientations are both orthogonal to the virtual line
connecting the points. The phase function is mono-
tonic between these two extreme cases. In addition,
the operator is local due to the locality weighting func-
tion where o determines the locality channel.

Isotropic symmetry at point p is defined as the sum
of all symmetry values at p. The Radial Symmetry

Figure 1: Application of the model to natural texture,
From top to bottom left to right: Edge map, Com-
puted symmetry maps, Blur of the symmeiry map,
Low frequency edges of the symmetry map superim-
posed on the original image

RSs(p) is identical to the isotropic symmetry when
there is only one prominent symmetry direction at p,
which is the common case. However, closed figures,
especially a circle, induce symmetry at various orien-
tations at their center point and give rise to higher
radial symmetry values.

3 Texture Discrimination

We discriminate textures by using symmetry maps:
Following edge detection, the radial symmetry is com-
puted in a number of maps, each corresponding to a
different locality parameter o. Texture boundaries are
located at high gradient locations in one of these maps
and computed by a low frequency edge detector.

Figure 1 demonstrates natural texture discrimina-
tion. Consider the demonstration in the left column.
The texture is composed of two cloth sheets coded in
a 270 x 270 pixels image. The horizontal boundary
between the two clothes is clearly visible, but the dis-
crimination is not trivial, since there is no difference
in average intensity or in busyness (absolute value of
the Laplacian of Gaussian). The first edge detection
stage,(top left), is implemented with a set of 8 even
oriented Gabor filters (7 x T pixels in size, w = 0.6 ,
¢ = 3) followed by rectification (threshold at 0) yield-
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Figure 2: Artificial texture discrimination by the
model. Top raw - the textures, middle - local sym-
metry maps, hottom - computed boundaries.

ing 8 filtered images. At each point, the filter with the
strongest response is selected as the edge magnitude
and its orientation as the edge orientation. This stage
is followed by a non-maxima suppression process for
edge thinning. We have used this simple method be-
cause it is a coarse approximation to oriented simple
cells. Other methods were tested with equal success.
The responses of the radial symmetry (top right) were
obtained using o = 1. The difference in the symmetry
response is clearly seen. Finally, the texture boundary
becomes explicit by the gradient of symmetry (marked
on the original image). Other similar natural textures
were discriminated by the model with equal success.
The discrimination of artificial textures widely
studied in psychophysical experiments is described in

L the following section.

4 Psychophysical Correlates

Almost all psychophysical studies of texture dis-
trimination use artificial textures of various types

" and test their discriminability. The most popular

paradigm uses split fields of randomly rotated micro
patterns. Figure 2 demonsirates the model’s oper-
ation on such artificial textures. The top and mid-
dle rows demonstrate textures composed from X-L
and L-T patterns. These textures are widely stud-
ied [10, 7, 12, 6, 14, 4] based on the fact that the X-L
texture is easily discriminated while the L-T requires
more time and attention. This was measured (among
other pattern pairs) by Gurnsey and Browse [7] and in
equivalent detection tasks by Krose [12]. The current
explanations include the Texton theory [9] that at-
tributes the X-I. discrimination to a crossing texton,
the size-tuning principle [4] that attributes discrimi-
nation to different in size, and models that define fil-
ter mechanisms producing the desired results [6, 14].
Our model gives an intuitive explanation to these ex-
amples. The symmetry response for the X pattern
has four components, the T has two and the L one,
where all symmetries are identical when applied lo-
cally. If discriminability is attributed to difference in
total symmetry, then X-L should discriminate much
easier than the L-T. We applied our model to these
textures using the same edge detection stages as used
for the natural textures with local symmetry compu-
tation (¢ = 2). The computed symmetry maps are
displayed in Figure 2 middle raw while the explicit
boundary in the bottom raw. The boundary of the
X-L texture is clearly visible (bottom left) while the
boundary of the L-T texture is not clear although some
fragments of it can be noticed. We applied this proce-
dure successfully to other artificial textures including
patterns that are not made of small liine segments (e.g.
circle).

It is important to note that the discrimination of
these artificial textures is a simple task and can be
done in many different ways. The key point 1s not
to discriminate these textures, but to match human
performance in texture discrimination.

In order to compare our model to human perfor-
mance, we define a discriminability measure befween
micro-pattern pairs. The symmetry measure for a
micro-pattern m, which is a small binary image, is
the sum of the radial symmetry of all its points:

S.(m) =3 RS,(p)

rEm
The discriminability measure between two micro-

patterns ml and m2 in a channel determined by o
is defined as

D,{ml, m2) = log(5,(ml)) — log(5;(m2))
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Figure 4: Randomly generated 3 line pattern textures.
Left - similar second oreder statistics, relatively strong
discriminability predicted. Right - weak discriminabil-
ity predicted

The (total) discriminability is

D{ml,m2) = m;ui{Dg[ml, m2))

which is the maximal response over all channels. This
is a natural extension to models of brightness percep-
tion (e.g [13]), since the luminance and the symmetry
edges might be computed the same way. We applied
this computation to the patterns studied by Gurnsey
& Browse [7] using 30 x 30 pixels patterns, 2 chan-
nels with o3 = 7 and 40 pixels and ¢g = 0.125. Re-
sults appear in Figure 3. The black bars represent hu-
man discrimination power, where higher value stands
for easier discrimination. The grey bars represent the
model’s discriminability values after linear regression.
The computed correlation is p = 0.92. We applied the
same procedure to data from Krose [12] and received
correlation of p = 0.86 and p = 0.98 for his two exper-
iments. These values are better than those reported
previously [6, 12].

5 Discussion

We have treated texture discrimination as a con-
tinuous phenomena and developed a model based on
generalized symmetry which shows good correlation
with psychophysical data.

The symmetry operator is local, as expressed in its
distance weight function. Therefore, one may sus-
pect that locality per se is sufficient, since discrimi-
nation may be merely based on evaluating the size of
the micro-patterns and comparing it for both textures
[4]. Bergen & Adelson [4] demonstrated this prin-
ciple using the rectified Laplacian of Gaussian. We
have tested a variant of the symmetry model, which
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stress this locality idea, by neglecting the phase com-
ponent. This decreases the correlation to the psy-
chophysical data to 0.73 instead of 0.92 that the full
model achieves. This degradation is mainly due to
micro-patterns with identical second order statistics
like pair 3.1 in Figure 3.

Next we consider the biological plausibility of our
model. Since it involves a non-recurrent parallel com-
putation, it can clearly be realized in cortical circuits.
A cortical implementation may involve local, intra
columnar connections, as well as interactions between
hyper-columns that can integrate the symmetry over
small segments of the image. This may correspond to
the evidence on cortical cells in V1 whose response is
modulated by stimulus beyond the classical receptive
fields [1]. A different approach involves a specific cor-
tical mechanism that can detect co-circularity of edges
based on local support ([18]). Using the same mecha-
nism that detects co-circularity with different synaptic
weights will detect local symmetry.

The asymmetry of figure-ground in texture discrim-
ination is found in [7] and in similar detection tasks
in [19] and is also addressed in [17]. For example, it
is easier to detect a square of L patterns embedded
in surrounding X patterns than vise versa. In testing
our model, we have used the reported average discrim-
inability as done by others [14, 6]. Assuming that pat-
terns with lower symmetry value are more easily de-
tected (e.g Ls among Xs), our model can account for
about 70% of the cases in the psychophysical database.
It is possible that a somewhat different formulation of
the generalized symmetry might account for all cases
and is left for further study.

Next we would like to point out that the set of pai-
terns used in texture psychophysics is highly skewed.
Most of it was constructed in order to demonstrate a
specific principle or theory. Therefore, it is possible
that these patterns, that are traditionally used as test
data, are not sufficient for the purpose of assessing
new algorithms and theories. We have therefore con-
structed a data base of 10% micre-patterns by gener-
ating patterns composed of three line segments whose
position is selected at random (see Figure 4). This
might be the first step towards constructing a large
data base of artificial textures that could be used for
evaluating computational models for texture discrim-
ination.

We hypothesized that patterns that differ in their
generalized symmetry will be easily discriminated by
humans and vice versa, and used textures from this
data base in order to wverify it. In order to ex-
clude other factors, like differences in the second order
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Figure 3: Model results Vs. human performance measured in psychophysical experiments. Human performance

is due to Gurnsey and Browse

statistics, patterns with similar second order statis-
tics were selected by an exhaustive search from this
database of 10* randomly generated patterns. This
was done by an explicit computation and comparison
of the dot distance distribution (neglecting the orien-
tation since the patterns are randomly rotated). Fig-
ure 4 demonstrates two of these textures tested by the
model. The left image consists of textures predicted
to be almost indiscriminable (having almost identi-
cal symmetry measure in all locality channels). The
right image consist of textures with similar second or-
der statistics predicted to have some discriminability.
Many other such examples were constructed and were
verified qualitatively. Most predictions were found
correct with few exceptions that may require more
channels and further study. We suggest that a system-
atic and quantitative analysis of randomly generated
patterns is indeed necessary for further evaluation of
models and algorithms for texture discrimination.

While offering a better fit for psychophysical data
than other computational models, our model should
be viewed as part of a larger process. The generalized
symmetry model may be a part of an hierarchical tex-
ture processing system in which the lowest level might
compute simple Texton differences (orientation, size,
color, brightness ete.) in low resolution; the next level
quantifies local spatial relations based on local gener-
alized symmetry; and the highest level may perform
grouping processes as suggested by Beck [3]. In order
to study and develop these ideas, a large scale stim-
uli database, constructed along the lines presented in
this work, should be used for exhaustive analysis of
new psychophysical, as well as computational, texture
discrimination models.
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