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We construct prior-free auctions with constant-factor approximation guarantees with ordered bidders, in

both unlimited and limited supply settings. We compare the expected revenue of our auctions on a bid
vector to the monotone price benchmark, the maximum revenue that can be obtained from a bid vector

using supply-respecting prices that are nonincreasing in the bidder ordering and bounded above by the
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1. INTRODUCTION

The goal in prior-free auction design is to design auctions that have robust, input-by-
input performance guarantees. Traditionally, auctions are evaluated using average-case or
Bayesian analysis, and expected auction performance is optimized with respect to a prior
distribution over inputs (i.e., bid vectors). The Bayesian versions of the problems we con-
sider are completely solved [Myerson 1981]. Worst-case guarantees are desirable when, for
example, good prior information is expensive or impossible to acquire, and when a single
auction is to be re-used several times, in settings with different or not-yet-known input
distributions.

Prior-free auctions were first studied in [Goldberg et al. 2006; Goldberg et al. 1999]. They
focused on symmetric settings, where goods and bidders are identical, and sought auctions
with expected revenue close to the fixed-price benchmark F (2), defined as the maximum
revenue that can be obtained from a given bid vector by offering every bidder a common
posted price (i.e., take-it-or-leave-it offer) that is at most the second-highest bid. [Goldberg
et al. 2006] showed that no auction has expected revenue more than a ≈ .42 fraction of F (2)

for every bid vector, and constructed auctions with expected revenue at least a constant
fraction of this benchmark on every input. See [Hartline and Karlin 2007] for a survey of
further work in this vein.

[Hartline and Roughgarden 2008] proposed a framework for defining meaningful per-
formance benchmarks much more generally — when bidders or feasibility constraints are
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asymmetric, and for objective functions other than revenue. The first step of this frame-
work is a “Bayesian thought experiment” — if bidders’ valuations were drawn from a prior
distribution in some class, what would the optimal auction be? The second step is to char-
acterize the collection C of all optimal auctions that can arise, ranging over all permissible
prior distributions. Finally, given a bid vector b, the performance benchmark is defined as
the maximum objective function value obtained by an auction in C on the input b. This
framework regenerates the F (2) benchmark (modulo the technically necessary upper bound
on prices) and has been used for several other objective functions and asymmetric envi-
ronments [Devanur and Hartline 2009; Hartline and Roughgarden 2008; 2009; Hartline and
Yan 2011; Leonardi and Roughgarden 2012]. Every benchmark generated by this framework
is automatically well motivated in the following sense: if the performance of an auction is
within a constant factor of such a benchmark for every input, then in particular it is simul-
taneously near-optimal in every Bayesian environment with valuations drawn from one of
the permissible prior distributions.1

[Leonardi and Roughgarden 2012] studied the design and analysis of prior-free digital
goods (i.e., unlimited supply) auctions with asymmetric bidders. They pointed out that the
framework in [Hartline and Roughgarden 2008] can be applied successfully to non-identical
bidders only if sufficient qualitative information about bidder asymmetry is publicly known.
They proposed a model of ordered bidders. Earlier bidders are in some sense expected to
have higher valuations. This information could be derived from, for example, zip codes,
eBay bidding histories, credit history, previous transactions with the seller, and so on.
[Leonardi and Roughgarden 2012] defined the monotone price benchmarkM(2)(b) for every
bid vector b as the maximum revenue obtainable via a monotone price vector — meaning
prices are nonincreasing in the bidder ordering — in which every price is at most the
second-highest bid.2 The value of this benchmark is always at least that of the fixed-price
benchmark F (2), and can be a factor of Θ(logn) larger, where n is the number of bidders.
Essentially by construction, a digital goods auction that always has revenue at least a
constant fraction of M(2) is simultaneously near-optimal in every Bayesian environment
with ordered distributions (where monopoly prices are nonincreasing in the bidder ordering),
or when the valuation distribution of each bidder stochastically dominates that of the next
one in the ordering (see [Leonardi and Roughgarden 2012] for details). Examples include
uniform distributions with intervals [0, hi] and nonincreasing hi’s; exponential distributions
with nondecreasing rates; Gaussian distributions with nonincreasing means; and so on. The
main result in [Leonardi and Roughgarden 2012] is a prior-free digital goods auction with
ordered bidders with expected revenue Ω(M(2)(b)/ log∗ n) for every input b, where n is the
number of bidders and log∗ n denotes the number of times that the log2 operator can be
applied to n before the result drops below a fixed constant.3

1.1. Our Results

We give the first digital goods auction that is O(1)-competitive with the monotone price
benchmark M(2). Our auction is simple and natural. It follows the standard approach of
randomly partitioning the bidders into two groups, using one group of bidders to set prices
for the other. We restrict prices to be (essentially) all powers of 2, but otherwise our prices
are simply the optimal monotone ones for the first bidder group. Finally, to handle inputs

1This weaker goal of good prior-independent auctions can also be studied in its own right [Devanur et al.
2011; Dhangwatnotai et al. 2010; Roughgarden et al. 2012]. See [Azar et al. 2013; Chen and Micali 2011;
Lopomo et al. 2009] for other interpolations between average-case and worst-case analysis of auctions.
2This benchmark was also considered earlier, with a different motivation and application, by [Aggarwal and
Hartline 2006].
3 [Aggarwal and Hartline 2006] previously obtained an incomparable guarantee of Ω(M(2)(b)) −
O(h log log log h), where h is the ratio between the maximum and minimum bids.
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where the monotone price benchmark derives most of its revenue from a small number of
bidders, with constant probability we invoke an auction that is O(1)-competitive with the
fixed-price benchmark F (2).

We extend our results to multi-unit auctions, where the number of items k can be less
than the number of bidders. We consider the analog M(2,k) of the monotone price bench-
mark, which maximizes only over (monotone) price vectors that sell at most k units. We
prove that every auction that is O(1)-competitive with the benchmarkM(2,k) implies simul-
taneously near-optimal for a range of Bayesian multi-unit environments — roughly, those in
which the (ironed) virtual valuation functions of the bidders form a pointwise total order-
ing. We also give a general reduction, showing how to build a limited-supply auction that
is O(1)-competitive w.r.t.M(2,k) from an unlimited-supply auction that is O(1)-competitive
w.r.t. M(2).

2. PRELIMINARIES

In a multi-unit auction, there is one seller, n bidders, and k identical items. Each bidder
wants only one good, and has a private — i.e., unknown to the seller — valuation vi. We call
the special case where k = n unlimited supply or digital goods. We study direct-revelation
auctions, in which the bidders report bids b to the seller, and the seller then decides who
wins a good and at what price.4 For a fixed (randomized) auction, we use Xi(b) and Pi(b)
to denote the winning probability and expected payment of bidder i when the bid profile
is b. As in previous works on prior-free auction design, we consider only auctions that are
individually rational — meaning Pi(b) ≤ vi · Xi(b) for every i and b — and truthful,
meaning that for each bidder i and fixed bids b−i by the other bidders, bidder i maximizes
its quasi-linear utility vi ·Xi(bi,b−i)−Pi(bi,b−i) by setting bi = vi. Since we consider only
truthful auctions, from now on we use bids b and valuations v interchangeably.

Truthful and individually rational digital goods auctions have a nice canonical form:
for every bidder i there is a (possibly randomized) function ti(v−i) that, given the valua-
tions v−i of the other bidders, gives bidder i a “take-it-or-leave-it offer” at the price ti(v−i).
This means that bidder i is given a good if and only if vi ≥ ti(v−i), in which case it is charged
the price ti(v−i). It is clear that every choice (t1, . . . , tn) of such functions defines a truthful,
individually rational digital goods auction; conversely, every such auction is equivalent to
a choice of (t1, . . . , tn) [Goldberg et al. 2006]. A special case of such an auction is a price
vector p, in which each ti is the constant function ti(v−i) = pi. When the supply is limited
(i.e., there are k < n copies of the good), truthful auctions induce functions (t1, . . . , tn) with
the property that, on every input, at most k bidders win.

The revenue of an auction on the valuation profile v is the sum of the payments collected
from the winners. Let v(2) denote the second-highest valuation of a profile v. The fixed-price
benchmark F (2) is defined, for each valuation profile v, as the maximum revenue that can
be obtained from a constant price vector whose price is at most v(2):

F (2)(v) = max
p≤v(2)

 ∑
i : vi≥p

p

 .

Now suppose there is a known ordering on the bidders, say 1, 2, . . . , n. The monotone-price
benchmark M(2) is defined analogously to F (2), except that non-constant monotone price
vectors are also permitted:

4For the questions we ask, the “Revelation Principle” (see, e.g., Nisan [Nisan 2007]) ensures that there is
no loss of generality by considering only direct-revelation auctions.
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M(2)(v) = max
v(2)≥p1≥p2≥···≥pn

 ∑
i : vi≥pi

pi

 . (1)

Clearly, M(2)(v) ≥ F (2)(v) for every input v.
The monotonicity and upper-bound constraints are enforced only in the computation

of the benchmark M(2). Auctions, while obviously not privy to the private valuations, can
employ whatever prices they see fit. This is natural for prior-free auctions and also necessary
for non-trivial results [Goldberg and Hartline 2003].

Finally, when we say that an auction is α-competitive with or has approximation factor α
for a benchmark, we mean that the auction’s expected revenue is at least a 1/α fraction of
the benchmark for every input v.

3. THE AUCTION FOR UNLIMITED SUPPLY OF ITEMS

Input: A valuation profile v for a totally ordered set N = {1, 2, . . . , n} of bidders.

1. With probability 1/2, run a digital goods auction on v that is O(1)-competitive
against F (2). With the remaining probability, run the following steps.

2. Choose a subset A ⊆ N uniformly at random, and partition N into the two
sets A and B = N \A. Let vA denote the valuation profile v in which we set
the values not in A to 0. To be precise, we have vA

j = vj for all j ∈ A,
and vA

j = 0 for all j ∈ B. Define vB in a similar way. Note that all three
sequences v, vA, and vB have the same length.

3. Using dynamic programming, compute an optimal monotone M(2) price
vector p for A with prices restricted to be discrete values in {2t : t ∈ Z}.
Here, the symbol Z denotes the set of all integers.

4. Sell items to bidders in B only, applying prices p to vB .

Fig. 1. The auction Optimal Price Scaling (OPS).

Let RevA(p) denote the revenue extracted by the price vector p from the bidders in A.

Similarly, define the notation RevB(p). Let Rev(p) = RevA(p) + RevB(p). Note that:

RevA(p) =
∑

j∈A:vj≥pj

pj , and RevB(p) =
∑

j∈B:vj≥pj

pj .

We bound the expected revenue of our auction (see Figure 1) by considering two cases.

Case 1. The ratio F (2)/M(2) is at least some constant. Note that with probability 1/2, we
execute an auction which is O(1)-competitive against F (2). Hence, in this case, our revenue
is clearly within a constant factor of M(2).

Case 2. The ratio F (2)/M(2) is very small. If this is the case, then we prove that the

expected value of RevB(p) is within a constant factor of M(2). Note that with probability

1/2, we run the general scheme whose revenue is given by RevB(p). Hence, the auction’s
revenue remain O(1)-competitive against M(2).
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We introduce the following notations and terminologies.

Definition 3.1. For any integer l ≥ 0, the l-th price level is the price q in {2t : t ∈ Z}
which lies in the range: M(2)/2l+1 < q ≤M(2)/2l.

Since the prices in the set {2t : t ∈ Z} are powers of 2, the l-th price level is unique.
Throughout the paper, we reserve the symbol p(l) for the l-th price level.

Definition 3.2. Fix any two bidders i < j, and any integer l ≥ 0. If both the bidders’
valuations are at least p(l), then we say that (i, j, l) is a level-l-triple.

The concept of a triple is linked with the ordering of the bidders. Thus, a bidder k ∈ N
belongs to a triple (i, j, l) iff i ≤ k ≤ j. The bidder is winning iff vk ≥ p(l).

Definition 3.3. The set of winning bidders in a triple (i, j, l) is defined as:

Wijl = {k ∈ N : i ≤ k ≤ j and vk ≥ p(l)}.

A triple is balanced iff its winning bidders are evenly partitioned among A and B.

Definition 3.4. A triple (i, j, l) is balanced iff we have

1

3
× |Wijl| ≤ |A ∩Wijl|, |B ∩Wijl| ≤

2

3
× |Wijl|.

A triple is large if it contains sufficiently many winning bidders.

Definition 3.5. A level-l-triple (i, j, l) is large iff we have |Wijl| ≥ 288l.

In Section 3.1, we show that certain important events occur with constant probability.
In Section 3.2, we show that conditioned on these important events, our auction generates
good revenue.

3.1. Important Events

We define the event E1 where Rev(p) ≥ M(2)/6. Next, we define the event E2(l) where
every large level-l-triple is balanced. Further, we define the event E2 as follows.

E2 =
⋂
l≥24

E2(l) (2)

We show that the events E1 and E2 occur simultaneously with constant probability.

Lemma 3.1. We have: Pr [E1] ≥ 1/16.

Proof. Let OptA denote the maximum revenue of any monotone M(2) price vector
from the bidders in A. Leonardi et al. proved that OptA ≥M(2)/3 with probability at least
1/16 (see Lemma 3.2 in [Leonardi and Roughgarden 2012]). Since p is the optimal monotone

M(2) price vector for A with prices restricted to powers of 2, we get RevA(p) ≥ OptA/2.

Now, the lemma follows from the observation that Rev(p) ≥ RevA(p).

Claim 3.1. For every integer l ≥ 0, the number of level-l-triples is at most 22l+2.

Proof. Consider a bidder k whose valuation vk is at least p(l). Since p(l) >M(2)/2l+1,

we infer that vk >M(2)/2l+1. Thus, there are at most 2l+1 such bidders. Since a level-l-
triple (i, j, l) is uniquely determined by two bidders i < j having valuations at least p(l), we

infer that there can be at most (2l+1)2 = 22l+2 level-l-triples.

We use the following version of the Chernoff bound.
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Theorem 3.2. Let T1, . . . , Tm be i.i.d random variables such that Ti ∈ {0, 1} for all
i ∈ {1, . . . ,m}. Define their sum as T =

∑m
i=1 Ti, and let µ = E[T ]. For all 0 < δ < 1:

Pr[(1− δ)µ ≤ T ≤ (1 + δ)µ] ≥ 1− 2× exp

(
−µδ

2

4

)
.

Claim 3.2. For all l ≥ 24, we have: Pr[E2(l)] ≥ 1− 1/2l.

Proof. Fix any large level-l-triple (i, j, l). By definition, the number of winning bidders
in (i, j, l) is at least 288l. Since each of these bidders is included in the set A independently
and uniformly at random, Theorem 3.2 implies that the triple (i, j, l) is not balanced with
probability at most 2/e4l. By Claim 3.1, there are at most 22l+2 level-l-triples. Applying
union bound, the probability that some level-l-triple is not balanced is at most 22l+2 ×
2/e4l ≤ 1/2l, for l ≥ 24.

Lemma 3.3. We have: Pr[E2] ≥ 31/32.

Proof. Applying union-bound, we infer that

1− Pr[E2] ≤
∑
l≥24

(1− Pr[E2(l)]) ≤
∑
l≥24

1

2l
≤ 1

32
.

Theorem 3.4. We have: Pr[E1 ∩ E2] ≥ 1/32.

Proof. Follows from applying union bound on Lemma 3.1 and Lemma 3.3.

3.2. Main Analysis

Let Il(p) denote the interval of bidders whose prices lie at the l-th level, under the price
vector p. To be more specific, we define Il(p) = {j ∈ N : pj = p(l)}. Since the price vector
p is monotone, the bidders in the set Il(p) are contiguous to one another.

Let Wl(p) denote the set of winning bidders in Il(p). To be more precise, we have Wl(p) =
{j ∈ Il(p) : vj ≥ p(l)}. Let Revl(p) denote the contribution towards Rev(p) by the interval
Il(p). Note that Revl(p) = |Wl(p)| × p(l), and Rev(p) =

∑
l≥0 Revl(p).

Definition 3.6. A interval Il(p) is good if |Wl(p)| ≥ 288l, and bad otherwise.

We show that the bad intervals Il(p), with l ≥ 24, contribute relatively little revenue.

Claim 3.3. We have: ∑
l≥24 : Il(p) is bad

Revl(p) ≤
1

18
×M(2).

Proof. Fix any bad interval Il(p). Since |Wl(p)| < 288l and p(l) ≤M(2)/2l, we have:

Revl(p) = |Wl(p)| × p(l) <
288l

2l
×M(2).

Summing over all bad intervals Il(p) with l ≥ 24, we get:∑
l≥24 : Il(p) is bad

Revl(p) ≤
∑
l≥24

288l

2l
×M(2) ≤ 1

18
×M(2).

Now, we are ready to prove the revenue guarantee.
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Theorem 3.5. The expected revenue of the auction in Figure 1 is within a constant
factor of the benchmark M(2).

Proof. We shall consider two mutually exclusive and exhaustive cases.

Case 1. 432×F (2) ≥M(2).

With probability 1/2, we execute an auction that is O(1)-competitive against the benchmark
F (2). Hence, the expected revenue of our auction is at least F (2)/O(1), which in turn, is at
least M(2)/O(1).

Case 2. 432×F (2) <M(2).

Here, we claim that the first few intervals contribute little revenue.

23∑
l=0

Revl(p) ≤M(2)/18 (3)

For the sake of contradiction, suppose that the above equation is not true. Then there is
some interval Il∗(p) with l∗ ∈ [0, 23] such that:

Revl∗(p) = |Wl∗(p)| × p(l∗) >M(2)/(18× 24).

Consider the price vector p′ which offers the item at price p(l∗) to every bidder, so that we

have p′j = p(l∗) for all j ∈ N . Next, recall that p is a monotoneM(2) price vector, and note
that the set Wl∗(p) is non-empty. Thus, there should be at least two bidders in A whose
valuations are at least p(l∗). We infer that p′ is a uniform F (2) price vector, and:

F (2) ≥ Rev(p′) ≥ Revl∗(p) ≥M(2)/(18× 24).

This contradicts our assumption that 432×F (2) <M(2). Hence, equation (3) must hold.

For the rest of the proof, we condition on the event E1 ∩ E2.

First, recall that under the event E1, we have Rev(p) ≥ M(2)/6. Combining this with
Claim 3.3 and equation 3, we see that the latter good intervals give large revenue.∑

l≥24 : Il(p) is good

Revl(p) ≥
(

1

18

)
×M(2) (4)

Fix any good interval Il(p) with l ≥ 24. Let the first (resp. last) bidder in Wl(p) be denoted
by i (resp. j), that is, for all k ∈ Wl(p), we have i ≤ k ≤ j. Since pi = pj = p(l) and
vi, vj ≥ p(l), we infer that (i, j, l) is a level-l-triple. The number of winning bidders in this
triple is |Wl(p)| ≥ 288l. We conclude that the triple (i, j, l) is large. Since we condition on
the event E1 ∩ E2 and l ≥ 24, it follows that the triple (i, j, l) is balanced. The bidders in
Wl(p) are evenly partitioned among the sets A and B, so that we have:

|Wl(p) ∩B| ≥
(

1

3

)
× |Wl(p)|.

Thus, the revenue from the bidders in Il(p) ∩B is at least (1/3)×Revl(p). Summing over
all good intervals Il(p) with l ≥ 24, and applying equation (4), we get:

RevB(p) ≥
∑

l≥24 : Il(p) is good

(
1

3

)
×Revl(p) ≥

(
1

54

)
×M(2) (5)
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To summarize, we recall that with probability 1/2, the expected revenue of our auction

is exactly RevB(p). Under this scenario, the event E1 ∩ E2 occurs with probability at least

1/32 (see Theorem 3.4), and conditioned on this event, we have RevB(p) ≥ M(2)/54 (see
equation 5). Putting all these observations together, we find that the expected revenue of
our auction is at least

1

2
× 1

32
× M

(2)

54
=
M(2)

O(1)
.

4. MULTI-UNIT AUCTIONS

In this section we extend our results to multi-unit auctions with limited supply. To develop
this theory, we extend the monotone price benchmark M(2) to the case of an arbitrary
number k ≥ 2 of units for sale. We call a price vector p feasible for the valuation profile v
and supply limit k if: (i) p1 ≥ p2 ≥ · · · ≥ pn; (ii) all prices are at most the second-highest
valuation of v; and (iii) there are at most k bidders i with vi > pi. We allow our benchmark
to break ties in an optimal way. More precisely, the revenue earned by a feasible price vector
is
∑

i : vi>pi
pi plus, if there are ` items remaining, the sum of the prices offered to up to `

bidders i with vi = pi. We define the k-unit monotone price benchmark M(2,k)(v) as the
maximum revenue obtained by a price vector that is feasible for v and k.

There are two main issues to address. The first issue is to identify a class of priors Fi

such that M(2,k)(v) is a meaningful benchmark for prior-free approximation, i.e., it si-
multaneously approximates all optimal auctions in multi-unit Bayesian settings with priors
drawn from the class. The challenge, relative to the unlimited-supply setting introduced
in [Leonardi and Roughgarden 2012], is that limited-supply Bayesian optimal auctions ex-
hibit more complex behavior than unlimited-supply ones. Section 4.1 shows, essentially, that
the benchmarkM(2,k)(v) is meaningful for any valuation distributions that have pointwise
ordered ironed virtual valuations. The second issue is to design auctions competitive with
the benchmark M(2,k)(v). We accomplish this through a general reduction, showing how
to build a limited-supply auction that is O(1)-competitive w.r.t. M(2,k)(v) from a digital
goods auction that is O(1)-competitive w.r.t. M(2).

4.1. Justifying the k-Unit Monotone Price Benchmark

The goal of this section is to prove that every prior-free auction that is O(1)-competitive
with the benchmarkM(2,k)(v) has expected revenue at least a constant fraction of optimal
in every Bayesian multi-unit environment with valuation distributions lying in a prescribed
class. Making this precise requires some terminology and facts from the theory of Bayesian
optimal auction design, as developed in [Myerson 1981]. See also the exposition in [Hartline
2012].

Consider a bidder with valuation drawn from a prior distribution F with positive and
continuous density f on some interval. The virtual value v at a point v in the support is
defined as

φ(v) = v − 1−F(v)

f(v)
.

For example, if F is the uniform distribution on [0, a], then the corresponding virtual valu-
ation function is φ(v) = 2v − a.

For clarity, we first discuss the case of regular distributions, meaning distributions with
nondecreasing virtual valuation functions. In this case, the Bayesian optimal auction awards
items to the (at most k) bidders with the highest positive virtual valuations. The payment of
a winning bidder is the minimum bid at which it would continue to win (keeping others’ bids
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the same). That is, if the (k+1)th highest virtual valuation is z, then every winning bidder i
pays φ−1i (max{0, z}). For these prices to be related to the monotone price benchmark, we

need to impose conditions on the φ−1i (z)’s. This contrasts with unlimited-supply settings,

where restricting the φ−1i (0)’s — that is, the monopoly reserve prices — to be nonincreasing
in i is enough to justify the monotone-price benchmark [Leonardi and Roughgarden 2012].
Since the (k+1)th highest virtual valuation could be anything, the natural extension of the
condition in [Leonardi and Roughgarden 2012] is to restrict φ−1i (z) to be nonincreasing in i
for every non-negative number z.

Accommodating irregular distributions, for which the optimal Bayesian auction is more
complicated, presents additional complications. Each virtual valuation function φi is re-
placed by the “nearest nondecreasing approximation”, called the ironed virtual valuation
function φ̄i. The optimal auction awards the items to the (at most k) bidders with the high-
est positive ironed virtual valuations. Since ironed virtual valuation functions typically have
non-trivial constant regions, ties can occur, and we assume that ties are broken randomly.
That is, if there are k items, a group S of bidders with identical ironed virtual values z > 0,
` < k bidders with ironed virtual value greater than z, and `+ |S| > k, then k − ` winners
from S are chosen uniformly at random.

We call valuation distributions F1, . . . ,Fn pointwise ordered if φ̄−1i (z) is nonincreasing in i
for every non-negative z.5 The motivating parametric examples discussed earlier — uniform
distributions with intervals [0, hi] and nonincreasing hi’s, exponential distributions with
nondecreasing rates, and Gaussian distributions with nonincreasing means — are pointwise
ordered in this sense.

We also require a second condition, which we inherit from the standard i.i.d. unlimited-
supply setting. The issue is that, with arbitrary irregular distributions, no prior-free auction
can be simultaneously near-optimal in all Bayesian environments, even with i.i.d. bidders
and unlimited supply.6 Various mild conditions are sufficient to rule out this problem;
see [Hartline and Roughgarden 2008] for a discussion. Here, for simplicity, we restrict atten-
tion to well-behaved Bayesian multi-unit environments, meaning that the Bayesian optimal
auction derives at most a constant fraction (90%, say) of its revenue from outcomes in which
some winner is charged a price higher than the second-highest valuation. (Such a winner
is necessarily the bidder with the highest valuation.) Standard distributions always yield
well-behaved environments. Even pathological distributions produce well-behaved environ-
ments provided the market is sufficiently large (e.g., there are enough bidders drawn i.i.d.
from each of the distributions).

Our main result in this section is that approximating the k-unit monotone price bench-
mark guarantees simultaneous approximation of the optimal auction in all well-behaved
Bayesian multi-unit environments with pointwise ordered distributions.

Theorem 4.1. If the expected revenue of the multi-unit auction A is at least a con-
stant fraction of M(2,k)(v) on every input, then, in every well-behaved multi-unit Bayesian
environment with pointwise ordered distributions, the expected revenue of A is at least a
constant fraction of that of the optimal auction for the environment.

Proof. Fix an auction that is β-competitive with M(2,k)(v) on every input. Fix a
well-behaved Bayesian multi-unit environment with pointwise ordered valuation distribu-

5Since φ̄i is continuous and nondecreasing, φ̄−1
i (z) is an interval. If the inverse image has multiple points, we

define φ̄−1
i (z) by the infimum. If the inverse image is empty, we define φ̄−1

i (z) as the left or right endpoint
of the distribution’s support, as appropriate.
6Informally, consider valuation distributions that take on only two values, one very large (say M) and the
other 0. Suppose the probability of having a very large valuation is very small (say 1/n2). If the distribution is
known, the optimal auction uses a reserve price of M for each bidder. Elementary arguments, as in [Hartline
and Roughgarden 2008], show that no single auction is near-optimal for all values of M .
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tions F1, . . . ,Fn. Let A∗ be the optimal auction for this environment. We claim that, for
every input v in which the revenue collected by A∗ from the bidder with the highest valu-
ation is at most the second-highest valuation, the benchmark M(2,k)(v) is at least half the
expected revenue of A∗ on v. This implies that the expected revenue of A is at least 1/2β
times that of A∗ on this input. Since the environment is well behaved, the theorem follows.

To prove the claim, fix an input v, as above. Recall that A∗, as a Bayesian optimal
auction, awards items to the (at most k) bidders with the highest positive ironed virtual
valuations, breaking ties randomly. The tricky case of the proof is when ties occur. Assume
there are k items, a group S of bidders with common ironed virtual value z > 0, and a
group T of ` ∈ (k− |S|, k) bidders with ironed virtual value greater than ` (so |S| > k− `).
We next explicitly compute the payments collected by A∗ on this input, using the standard
payment formula for incentive-compatible mechanisms (see [Myerson 1981] or [Hartline
2012]). Let ai and bi denote the left and right endpoints, respectively, of the interval of
values v that satisfy φ̄i(v) = z. Since the distributions are pointwise ordered, the ai’s and
the bi’s are nonincreasing in i. Let q = (k−`)/|S| denote the winning probability of a bidder
in S. Define q′ = (k − ` + 1)/(|S| + 1) as the hypothetical winning probability of a bidder
in T if it lowered its bid to the value φ̄−1i (z). The expected payment of a bidder i in S is qai
(i.e., ai in the event that it wins). The expected payment of a bidder i in T (who wins with
certainty) is q′ai + (1 − q′)bi. To complete the proof, we argue that M(2,k)(v) is at least
the expected revenue collected by A∗ from the bidders in S, and also at least that from the
bidders in T .

Projecting onto a subset of bidders only decreases the value of the k-unit monotone price
benchmark M(2,k)(v) (see Lemma A.1 for the formal argument). First, project onto the k
bidders of S with the highest ai values. Consider charging each such bidder the price ai.
This is a monotone price vector. By our assumption on the input v, all of these prices are at
most the second-highest valuation in v. By the definitions, vi ≥ ai for every bidder i ∈ S so
every offer will be accepted. The resulting revenue is at least the expected revenue earned
by A∗ on v, and the value of the monotone price benchmark can only be higher. This shows
that M(2,k)(v) is at least the expected revenue collected by A∗ from bidders in S.

Similarly, project onto the (at most k) bidders of T , and consider charging each such
bidder i the price q′ai + (1 − q′)bi. Again, this is a monotone price vector with all prices
bounded above by the second-highest valuation of v, and every offer will be accepted. The
value of the monotone price benchmark can only be larger, soM(2,k)(v) is also at least the
expected revenue collected by A∗ from bidders in T . The proof is complete.

4.2. Reduction from Limited to Unlimited Supply

Having justified the k-unit monotone price benchmark M(2,k)(v), we turn to designing
auctions that approximate it well. We show that competing with this benchmark reduces
to competing with the benchmark M(2) in unlimited-supply settings. The reduction from
limited to unlimited supply for ordered bidders was given in [Aggarwal and Hartline 2006]
for knapsack auction. This reduction is also a generalization of the one of [Goldberg et al.
2006] for identical bidders. The idea is to first identify the k “most valuable” bidders, and
then run an unlimited-supply auction on them. Observe that the most valuable bidders
with an ordering are not necessarily those with the highest valuations. For example, a high-
valuation bidder late in the ordering need not be valuable, because extracting high revenue
from it might necessitate excluding many moderate-valuation bidders earlier in the ordering.
We report the “black-box reduction” of [Aggarwal and Hartline 2006], in Figure 2.

Theorem 4.2. If A is a truthful unlimited-supply auction with ordered bidders that
is β-competitive withM(2), then the Black-Box Reduction (BBR) auction is a truthful
limited-supply auction with ordered bidders that is 2β-competitive with M(2,k)(v).
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Input: A valuation profile v for a totally ordered set N = {1, 2, . . . , n} of bidders and k
identical items. A truthful digital goods (unlimited supply) auction A for ordered bidders.

(1) Let p∗ achieve the optimum monotone price benchmark M(2,k)(v) for v and k. Let
S = {i ∈ N : vi ≥ p∗i } be the set of winners under p∗.

(2) Run the unlimited supply auction A on the bidders S, with the induced bidder ordering.
(3) Charge suitable prices so that truthful reporting is a dominant strategy for every bidder.

Fig. 2. The auction Black-Box Reduction (BBR).

Proof. As pointed out in [Aggarwal and Hartline 2006] the mechanism produces a
feasible outcome since the Black-Box Reduction (BBR) auction has at most k winners.
Also observe that the first step can be implemented efficiently using dynamic programming,
so if A runs in polynomial time, then so does the Black-Box Reduction (BBR) auction.
[Aggarwal and Hartline 2006] also shows that the composition of the two mechanisms yields
a truthful mechanisms. Crucial to this conclusion is that the set S of winners is unchanged
whenever the bid of a winner is increased.

We finally prove the performance guarantee by arguing the following two statements: (i)
the unlimited supply benchmark M(2) applied to S is at least half of the limited-supply
benchmark M(2,k)(v) applied to the original bidder set; and (ii) the revenue of Black-
Box Reduction (BBR) on the original bidder set is at least that of the unlimited-supply
auction A with the bidders S. The second statement follows immediately from the facts
that the winners of Black-Box Reduction (BBR) are the same as those of A, and that
the winners’ payments are only higher. For statement (i), consider prices p∗ that determine
the benchmark M(2,k)(v). The projection p∗S of this price vector onto the set S of bidders

has revenue exactly M(2,k)(v). If p∗S is feasible, then it certifies that the benchmark M(2)

is at least M(2,k)(v). The only issue is if the second-highest bidder is excluded from S, in
which case p∗S might use a price larger than the second-highest valuation in S (which is

not permitted by the benchmark M(2)). But such a price can only extract revenue from
the bidder with the highest valuation, and every price of p∗ is at most the second-highest
valuation v(2) of the original bidders. Thus, we can restore feasibility to p∗S by lowering

at most one price to the second-highest valuation of S, and we lose revenue at most v(2).
Since M(2,k)(v) ≥ 2v(2) — consider the price vector that offers v(2) to everybody — we
retain at least half the revenue of p∗S . Statement (i) and the theorem follow.

Of course, we can use the Optimal Price Scaling (OPS) auction from Section 3 in
Theorem 4.2 to obtain a truthful limited-supply auction that is O(1)-competitive with the
benchmark M(2,k)(v). Theorem 4.1 implies that the resulting auction also enjoys a strong
simultaneous approximation guarantee in Bayesian environments.

REFERENCES

Aggarwal, G. and Hartline, J. D. 2006. Knapsack auctions. In Proceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). 1083–1092.

Azar, P., Daskalakis, C., Micali, S., and Weinberg, S. M. 2013. Optimal and efficient parametric
auctions. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).

Chen, J. and Micali, S. 2011. Mechanism design with set-theoretic beliefs. In Proceedings of the 52nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS). 87–96.

Devanur, N. and Hartline, J. D. 2009. Limited and online supply and the Bayesian foundations of prior-
free mechanism design. In Proceedings of the 10th ACM Conference on Electronic Commerce (EC).
41–50.

101



Proceedings Article

Devanur, N., Hartline, J. D., Karlin, A. R., and Nguyen, T. 2011. A prior-independent mechanism
for profit maximization in unit-demand combinatorial auctions. In Proceedings of 7th Workshop on
Internet & Network Economics. To appear.

Dhangwatnotai, P., Roughgarden, T., and Yan, Q. 2010. Revenue maximization with a single sample.
In Proceedings of the 11th ACM Conference on Electronic Commerce (EC). 129–138.

Goldberg, A. and Hartline, J. 2003. Envy-free auctions for digital goods. In Proceedings of the 4th ACM
Conference on Electronic Commerce (EC). 29–35.

Goldberg, A. V., Hartline, J. D., Karlin, A., Saks, M., and Wright, A. 2006. Competitive auctions.
Games and Economic Behavior 55, 2, 242–269.

Goldberg, A. V., Hartline, J. D., and Wright, A. 1999. Competitive auctions and digital goods. Tech.
Rep. STAR-TR-99.09.01, STAR Laboratory, InterTrust Tech. Corp., Santa Clara, CA.

Hartline, J. D. 2012. Approximation in economic design. Book in preparation.

Hartline, J. D. and Karlin, A. 2007. Profit maximization in mechanism design. In Algorithmic Game
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A. MISSING PROOFS

Lemma A.1. For every valuation profile v, k ≥ 2, and subset S of the bidders with
induced profile vS, M(2,k)(v) ≥M(2)(k,vS).

Proof. (Sketch.) Fix an input v, with monotone prices p∗ determining M(2,k)(v). By
induction, we only need to show that adding a single new bidder i can only increase the
value of the benchmark. Start by offering i the same price q as its predecessor in the ordering
(or the second-highest valuation, if there is no predecessor). If i rejects (i.e., vi < q), this
extended price vector is feasible and we are done (the optimal feasible price vector is only
better). If i accepts (i.e., vi ≥ q) then the price vector is infeasible (with k+ 1 winners) and
we argue as follows. Go through the bidders after i one by one, increasing the offer price
to q. This preserves monotonicity. If a previously winning bidder ever rejects this higher
offer price, we are done (feasibility is restored and the overall revenue is higher). If not,
there is now a “suffix” of bidders with the common offer price q. (This case only occurs
if i is after all of the winners in p∗.) We now increase their common offer price until it
equals that of the previous bidder, thereby increasing the number of bidders in the suffix.
Eventually a bidder that was winning under p∗ will reject the new offer price (otherwise
it would contradict the optimality of p∗), leaving us with a feasible monotone price vector
with revenue at least that of the original one.
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