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Abstract

We consider the problem of finding the maximum likelihood rooted tree
under a molecular clock (MLMC), with three species and 2-state charac-
ters under a symmetric model of substitution. For identically distributed
rates per site this is probably the simplest phylogenetic estimation prob-
lem, and it is readily solved numerically. Analytic solutions, on the other
hand, were obtained only recently (Yang, 2000).

In this work we provide analytic solutions for any distribution of rates
across sites, provided the moment generating function of the distribution
is strictly increasing over the negative real numbers. This class of distri-
butions includes, among others, identical rates across sites, as well as the
Gamma, the uniform, and the inverse Gaussian distributions. Therefore,
our work generalizes Yang’s solution. In addition, our derivation of the
analytic solution is substantially simpler. We use the Hadamard conju-
gation (Hendy and Penny, 1993) to prove a general statement about the
edge lengths of any neighboring pair of leaves in any phylogenetic tree (on
three or more taxa). We then employ this relation, in conjunction with
the convexity of an entropy–like function, to derive the analytic solution.
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1 Introduction

Maximum likelihood (Felsenstein, 1981) is increasingly used as an optimality
criterion for selecting evolutionary trees, but finding the global optimum is
difficult computationally, even on a single tree. Because no general analyti-
cal solution is available, it is necessary to use numeric techniques, such as hill
climbing or expectation maximization (EM), in order to find optimal values.
Two recent developments are relevant when considering analytical solutions for
simple substitution models with a small number of taxa. Yang (2000) has re-
ported an analytical solution for three taxa with two state characters under a
molecular clock. Thus in this special case the tree and the edge lengths that
yield maximum likelihood values can now be expressed analytically, allowing the
most likely tree to be positively identified. Yang calls this case the “simplest
phylogeny estimation problem”.

A second development is in Chor et. al. (2000), who used the Hadamard
conjugation for unrooted trees on four taxa, again with two state characters.
As part of that study analytic solutions were found for some families of ob-
served data. It was reported that multiple optima on a single tree occured more
frequently with maximum likelihood than has been expected. In one case, the
best tree had a local (non global) optimum that was less likely than the opti-
mum value on a different, inferior tree. In such a case, a hill climbing heuristic
could misidentify the “optimal” tree. Such examples reinforce the desirability
of analytical solutions that guarantee to find the global optima for any tree.

Even though three taxon, two state characters models under a molecular
clock is the “simplest phylogeny estimation problem”, it is still potentially an
important case to solve analytically. It can allow a “rooted triplet” method for
inferring larger rooted trees by building them up from the triplets. This would
be analogous to the use of unrooted quartets for building up unrooted trees.
Trees from quartettree methods are already used extensively in various studies
(Bandelt and Dress 1986, Strimmer and von Haeseler 1996, Wilson 1998, Ben-
Dor et. al. 1998, Erdos et. al. 1999). The fact that general analytical solutions
are not yet available for unrooted quartets only emphasizes the importance of
analytical solutions to the rooted triplets case.

Let MLMC tree denote a maximum likelihood rooted tree under a molecular
clock. In this work we provide analytic solutions for three taxon MLMC trees
under any distribution of variable rates across sites provided the moment gen-
erating function of the distribution is strictly increasing over the negative real
numbers. This class of distributions includes, as a special case, identical rates
across sites. It also includes the Gamma, the uniform, and the inverse Gaussian
distributions. Therefore, our work generalizes Yang’s solution of identical rates
across sites. In addition, our derivation of the analytic solution is substantially
simpler. We employ the Hadamard conjugation (Hendy and Penny 1993, Hendy,
Penny, and Steel 1994) and convexity of an entropy–like function.

The remainder of this paper is organized as follows: In subsection 2 we
explain the Hadamard conjugation and its relation to maximum likelihood. In
Section 3 we state and prove our main technical theorem. Section 4 applies the
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theorem to solve MLMC analytically on three species trees. Finally, Section 5
presents some implications of this work and directions for further research.

2 Hadamard Conjugation and ML

The Hadamard conjugation (Hendy and Penny 1993, Hendy, Penny, and Steel
1994) is an invertible transformation linking the probabilities of site substitu-
tions on edges of an evolutionary tree T with edge set E(T ) to the probabilities
of obtaining each possible combination of characters. It is applicable to a num-
ber of simple models of site substitution: Neyman 2 state model (Neyman 1971),
Jukes–Cantor model (Jukes and Cantor 1969), and Kimura 2ST and 3ST mod-
els (Kimura 1983). For these models, the transformation yields a powerful tool
which greatly simplifies and unifies the analysis of phylogenetic data. In this
section we explain the Hadamard conjugate and its relationships to ML.

We now introduce a notation that we will use for labeling the edges of un-
rooted binary trees. (For simplicity we use four taxa, but the definitions extend
to any n.) Suppose the four species, 1, 2, 3 and 4, are represented by the leaves
of the tree T ′. A split of the species is any partition of {1, 2, 3, 4} into two dis-
joint subsets. We will identify each split by the subset which does not contain 4
(in general n), so that for example the split {{1, 2}, {3, 4}} is identified by the
subset {1, 2}. Each edge e of T induces a split of the taxa, namely the two sets
of leaves on the two components of T resulting from the deletion of e. Hence
the central edge of the tree T ′ = (12)(34) in the brackets notation induces the
split identified by the subset {1, 2}. For brevity we will label this edge by e12

as a shorthand for e{1,2}. Thus E(T ′) = {e1, e2, e12, e3, e123} (see Figure 1).
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Figure 1: The tree T ′ = (12)(34) and its edges

We use a similar indexing scheme for splits at a site in the sequences: For
a subset α ⊆ {1, ..., n − 1}, we say that a given site i is an α-split pattern if α
is the set of sequences whose character state at position i differs from the i-th
position in the n-th sequence. Given a tree T with n leaves and edge lengths
q = [qe]e∈E(T ) (0 ≤ qe < ∞) (where qe is the expected number of substitutions
per site, across the edge e), the expected probability (averaged over all sites) of
generating an α-split pattern (α ⊆ {1, . . . , n−1}) is well defined (this probability
may vary across sites, depending on the distribution of rates). Denote this

3



expected probability by sα = Pr(α-split|T,q). We define the expected sequence
spectrum s = [sα]α⊆{1,...,n−1}. Having this spectrum at hand greatly facilitates
the calculation and analysis of the likelihood, since the likelihood of observing
a sequence with splits described by the vector ŝ given the sequence spectrum s
equals

L(̂s|s) =
∏

α⊆{1,...,n−1}

Pr(α-split | s)ŝα =
∏

ŝα>0

sŝα
α .

Definition 1: A Hadamard matrix of order ` is an ` × ` matrix A with ±1
entries such that AtA = `I`.

We will use a special family of Hadamard matrices, called Sylvester matrices in
MacWilliams and Sloan (1977, p. 45), defined inductively for n ≥ 0 by H0 = [1]

and Hn+1 =
[

Hn Hn

Hn −Hn

]
. For example,

H1 =
[

1 1
1 −1

]
and H2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

It is convenient to index the rows and columns of Hn by lexicographically
ordered subsets of {1, . . . , n}. Denote by hα,γ the (α, γ) entry of Hn, then
hα,γ = (−1)|α∩γ|. This implies that Hn is symmetric, namely Ht

n = Hn, and
thus by the definition of Hadamard matrices H−1

n = 1
2n Hn.

The length of an edge qe, e ∈ E(T ) in the tree T was defined as the expected
number of substitutions (changes) per site along that edge. The edge length
spectrum of a tree T be with n leaves is the 2n−1 dimensional vector q =
[qα]α⊆{1,...,n−1}, defined for any subset α ⊆ {1, . . . , n− 1} by

qα =


qe if e ∈ E(T ) induces the split α ,
−

∑
e∈E(T ) qe if α = ∅ ,

0 otherwise.

The Hadamard conjugation specifies a relation between the expected sequence
spectrum s and the edge lengths spectrum q of the tree.

Proposition 1 (Hendy and Penny 1993) Let T be a phylogenetic tree on n
leaves with finite edge lengths (0 ≤ qe < ∞ for all e ∈ E(T )). Assume that sites
mutate according to a symmetric substitution model, with equal rates across
sites. Let s be the expected sequence spectrum. Then for H = Hn−1 we have:

s = s(q) = H−1 exp(Hq) ,

where the exponentiation function exp is applied element wise to the vector ρ =
Hq. That is, for α ⊆ {1, . . . , n− 1}, sα = 2−(n−1)

∑
γ hα,γ (exp (

∑
δ hγδqδ)).

This transformation is called the Hadamard conjugation.
For the case of unequal rates across sites, the following generalization applies:
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Proposition 2 (Waddell, Penny, and Moore 1997) Let T be a phylogenetic
tree on n leaves with finite edge lengths (0 ≤ qe < ∞ for all e ∈ E(T )). Assume
that sites mutate according to a symmetric substitution model, with unequal rates
across sites, so that M : R → R be the moment generating function of the rate
distribution. Let s be the expected sequence spectrum. Then for H = Hn−1,

s = s(q) = H−1(M(Hq)) ,

where the function M is applied element wise to the vector ρ = Hq.

This transformation is called the Hadamard conjugation of M . Specific examples
of the moment generating function include

• For equal rates across sites, M(ρ) = eρ.

• For the uniform distribution in the interval [1− b, 1 + b] with parameter b
(1 ≥ b > 0), M(ρ) = 1

2bρ

(
e(1+b)ρ − e(1−b)ρ

)
.

• For the Γ distribution with parameter k (k > 0), M(ρ) = (1− ρ/k)−k.

• For the inverse Gaussian distribution with parameter d (d > 0), M(ρ) =
ed(1−

√
1−2ρ/d).

Notice that for k → ∞, the Γ distribution converges to the equal rates distri-
bution.

3 Technical Results

Under a molecular clock, a model tree on n ≥ 2 taxa has at least two sister
taxa i and j whose pendant edges qi and qj are of equal length (qi = qj).
Our first result states that if qi = qj , then the corresponding split probabilities
are equal (si = sj). Knowing that a pair of these variables attains the same
value simplifies the analysis of the maximum likelihood tree in general, and
in particular makes it possible for the case of n = 3 taxa. Furthermore, if
qi > qj and the moment generating function M is strictly increasing in the
range (−∞, 0], then the corresponding split probabilities satisfy si > sj .

3.1 Main Technical Theorem

Theorem 1 Let i and j be sister taxa in a phylogenetic tree T on n leaves, with
edge weights q. Let s be the expected sequence spectrum, let H = Hn−1, and let
M be a real valued function such that

s = H−1M(Hq),

then:
qi = qj =⇒ si = sj ;
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and if the function M is strictly monotonic ascending in the range (−∞, 0] then:

qi > qj =⇒ si > sj .

Proof: Let X = {1, 2, . . . , n} be the taxa set with reference element n,
and let X ′ = X − {n}. Without loss of generality i, j 6= n. For α ⊆ X ′, let
α′ = α∆{i, j} (where α∆β = (α ∪ β)− (α ∩ β) is the symmetric difference of α
and β). The mapping α → α′ is a bijection between

Xi = {α ⊆ X ′|i 6∈ α, j ∈ α}

and
Xj = {α ⊆ X ′|i ∈ α, j 6∈ α}.

Note that the two sets Xi and Xj are disjoint. Writing hα,i for hα,{i} we have

α ∈ Xi =⇒ hα,i = 1, hα,j = −1, hα′,i = −1, hα′,j = 1.

On the other hand, if α 6∈ Xi ∪Xj then hα,i = hα,j . Hence

si − sj = 2−(n−1)
∑

α⊆X′(hα,i − hα,j)M(ρα)

= 2−(n−1)
(∑

α∈Xi
(hα,i − hα,j)M(ρα) +

∑
α∈Xj

(hα,i − hα,j)M(ρα)
)

= 2−(n−1)
(∑

α∈Xi
(hα,i − hα,j)M(ρα) +

∑
α∈Xi

(hα′,i − hα′,j)M(ρα′)
)

= 2−(n−1)
(∑

α∈Xi
2M(ρα)−

∑
α∈Xi

2M(ρα′)
)

= 2−(n−2)
∑

α∈Xi
(M(ρα)−M(ρα′)) .

By the definition of the Hadamard conjugate,

ρα =
∑

β⊆X′

hα,βqβ , so ρα − ρα′ =
∑

β⊆X′

(hα,β − hα′,β)qβ .

Now for β = ∅ we have hα,β = hα′,β = 1 so the contribution of β = ∅ to ρα−ρα′

is zero. Likewise, for any split β ⊆ X ′ (β 6= ∅), which does not correspond to an
edge e ∈ E(T ), qβ = 0. So the only contributions to ρα − ρα′ may come from
splits β corresponding to edges in T . Now since i and j are sister taxa in T ,
every edge e ∈ E(T ) that is not pendant upon i or j does not separate i from
j. Thus the split β corresponding to such edge e satisfies β /∈ Xi ∪Xj , and the
parities of |α ∩ β| and |α′ ∩ β| are the same, so

hα,β = (−1)|α∩β| = (−1)|α
′∩β| = hα′,β .

Thus the only contributions to ρα− ρα′ comes from the two edges that connect
the pair of neighboring leaves i and j to their parent. That is,

ρα − ρα′ = (hα,i − hα′,i)qi + (hα,j − hα′,j)qj ,

and for α ∈ Xi we get ρα − ρα′ = 2(qi − qj).
Thus if qi = qj then for every α ∈ Xi we have ρα = ρα′ , so M(ρα) = M(ρα′)

and si − sj = 2−(n−2)
∑

α∈Xi
(M(ρα)−M(ρα′)) = 0 , hence si = sj .
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If qi > qj then for every α ∈ Xi we have ρα > ρα′ . Now q∅ = −
∑

e∈E(T ) qe,
and for every e ∈ E(T ), qe ≥ 0. Since ρα =

∑
β⊆X′ hα,βqβ and hα,∅ = 1

we conclude that ρα ≤ 0 for all α ⊆ X ′. Therefore, if M is strictly mono-
tone ascending in (−∞, 0] then M(ρα) > M(ρα′),∀α ∈ Xi. Since si − sj =
2−(n−2)

∑
α∈Xi

(M(ρα)−M(ρα′)) , we have si > sj . �

We remark that the moment generating functions M in the four examples of Sec-
tion 2 (equal rates across sites, uniform distribution with parameter b, 0 < b ≤ 1,
Gamma distribution with parameter k, 0 < k, and inverse Gaussian distribution
with parameter d, 0 < d) are strictly increasing in the range ρ ∈ (−∞, 0]. We
reiterate that the statement in Theorem 1 holds for trees in general, not just on
3 leaves.

4 Three Taxa MLMC Trees

We first note that for three taxa, the problem of finding analytically the ML
trees without the constraint of a molecular clock is trivial. This is a special
case of unconstrained likelihood for the multinomial distribution. On the other
hand, adding a molecular clock makes the problem interesting even for n = 3
taxa, which is the case we treat in this section.

For n = 3, let s0 be the probability of observing the constant site pattern
(xxx or yyy). Let s1 be the probability of observing the site pattern which splits
1 from 2 and 3 (xyy or yxx). Similarly, let s2 be the probability of observing
the site pattern which splits 2 from 1 and 3 (yxy or xyx), and let s3 be the
probability of observing the site pattern which splits 3 from 1 and 2 (xxy or
yyx).

Consider unrooted trees on the taxa set X = {1, 2, 3} that have two edges
of the same length. Let T1 denote the family of such trees with edges 2 and 3 of
the same length (q2 = q3), T2 denote the family of such trees with edges 1 and 3
of the same length (q1 = q3), and T3 denote the family of such trees with edges
2 and 1 of the same length (q2 = q1). Finally, let T0 denotes the family of trees
with q1 = q2 = q3. We first see how to determine the ML tree for each family.
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Figure 2: Three trees in the families T1, T2, T3, respectively

Given an observed sequence of m sites, let m0 be the number of sites where
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all three nucleotides are equal, and let mi (i = 1, 2, 3) be the number of sites
where the character in sequence i differs from the state of the other sequences.
Then m = m0 + m1 + m2 + m3, and fi = mi/m is the frequency of sites with
the corresponding character state pattern.

Theorem 2 Let (m0,m1,m2,m3) be the observed data. The ML tree in each
family is obtained at the following point:

• For the family T0, the likelihood is maximized at T0 with s0 = f0, s1 =
s2 = s3 = (1− f0)/3.

• For the family T1, the likelihood is maximized at T1 with s0 = f0, s1 =
f1, s2 = s3 = (f2 + f3)/2.

• For the family T2, the likelihood is maximized at T2 with s0 = f0, s2 =
f2, s1 = s3 = (f1 + f3)/2.

• For the family T3, the likelihood is maximized at T3 with s0 = f0, s3 =
f3, s1 = s2 = (f1 + f2)/2.

Proof: The log likelihood function equals

l(m0,m1,m2,m3|s) =
3∑

i=0

mi log si,

and for the normalized function ` = l/m we have

`(m0,m1,m2,m3|s) =
3∑

i=0

fi log si .

Consider, without loss of generality, the case of the T1 family. We are interested
in maximizing ` under the constraint q2 − q3 = 0. Since 2 and 3 are a pair of
sister taxa in the family of trees T1, by Theorem 1 the equality q2 = q3 implies
s2 = s3. Substituting s0 = (1 − s1 − 2s2), a maximum point of the likelihood
must satisfy

∂`

∂si
= 0 (i = 0, 1) ,

implying
f1

s1
=

f0

s0
,

f2 + f3

2s2
=

f0

s0
.

Denote d = f0/s0, then we have f2 + f3 = 2ds2. Adding the right hand sides
and left hand sides of this equality to these of f1 = ds1 and f0 = ds0, we get

f0 + f1 + f2 + f3 = d(s0 + s1 + 2s2) .
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Since both f0 + f1 + f2 + f3 = 1 and s0 + s1 + 2s2 = 1, we get d = 1. So the
ML point for the family T1 is attained at the tree T1 with parameters

s0 = f0, s1 = f1, s2 = s3 = (f2 + f3)/2 .

We denote by T2, T3, T0 the three corresponding trees that maximize the func-
tion ` for the families T2, T3, T0. The weights of these three trees can be obtained
in a similar fashion to T1. �

Theorem 3 Assume m3 ≤ m2 ≤ m1. Then the MLMC tree equals T1.

Proof: By Theorem 2, the maximum likelihood tree under the condition
that two edges have the same length is one of the trees T1, T2, or T3. Let

G(p) = f0 log f0 + p log p + (1− f0 − p) log
(1− f0 − p)

2
.

Substituting the values s0, s1, s2, s3 for each tree in the expression

`(m0,m1,m2,m3|s) =
3∑

i=0

fi log si ,

and somewhat abusing the notation, we get the following values for the function
` on the three trees

`(T1) = G(f1) ,

`(T2) = G(f2) ,

`(T3) = G(f3) .

The function G(p) behaves similarly to minus the binary entropy function (Gal-
lager, 1968)

−H(p) = p log p + (1− p) log(1− p) .

The range where G(p) is defined is 0 ≤ p ≤ 1 − f0. In this interval, G(p) (like
−H(p)) is negative and ∪-convex. So G has a single minimum at the point p0

where its derivative is zero, dG(p)/dp = 0. Solving for p we get p0 = (1− f0)/3.
Now f3 ≤ f2 ≤ f1 and G(p) is ∪-convex. Therefore, out of the three values

G(f1), G(f2), G(f3), the maximum is attained at either G(f3) or at G(f1), but
not at G(f2) (unless f2 = f1 or f2 = f3).

Since f3 + f2 + f1 = 1− f0 and f3 ≤ f2 ≤ f1, we have f3 ≤ (1− f0)/3 ≤ f1,
namely the two “candidates” for ML points are on different sides of the minimum
point. The point f3 is strictly to the left and the point f1 is strictly to the right
(except the case where f3 = f1 and the two points coincide). If G(f1) ≥ G(f3),
then the tree T1 is the obvious candidate for MLMC tree. Indeed, T1 satisfies
s3 = s2 < s1, so by Theorem 1, q3 = q2 < q1. Thus, a root can be placed on
the edge e1 so that the molecular clock assumption is satisfied.
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As a specific example, consider the case where f0 = 0.7. The function
G(p) for this case is depicted in the next figure. For f1 = 0.21, f2 = 0.05 and
f3 = 0.04, we have G(f1) = −.8565 > G(f3) = −.9088

–0.9

–0.85

–0.8

–0.75

–0.7

–0.65

0 0.05 0.1 0.15 0.2 0.25 0.3
p

The function G(p) for f0 = 0.7 (0 ≤ p ≤ 0.3).

We certainly could have a case where G(f3) > G(f1). For example, if f0 = 0.7 is
the same then the function G(p) is the same, and for f1 = 0.15, f2 = 0.14, f3 =
0.01 we get G(f3) = −.8557 > G(f1) = −.9227. However, in this case the
tree T3 has s3 < s1 = s2, implying (by Theorem 1) q3 < q1 = q2. Therefore
there is no way to place a root on an edge of T3 so as to satisfy a molecular
clock. In fact, any tree with edge lengths q3 < q1 = q2 does not satisfy a
molecular clock. So the remaining possibilities could be either the tree T0 (where
s1 = s2 = s3 = (1 − f0)/3) or the tree T1. As T0 attains the minimum over
the function G, the tree T1 will always give the greater likelihood (except in the
redundant case f1 = f3, where all these trees collapse to T0). This completes
the proof of Theorem 3. �

The case m2 < m3 < m1 and its other permutations can clearly be handled
similarly.

5 Discussion and Open Problems

In the case where G(f3) > G(f1), T1 is still the MLMC tree. However, if the
difference between the two values is significant, it may give a strong support for
rejecting a molecular clock assumption for the given data m0,m1,m2,m3. This
would be the case, for example, when 0 ≈ m3 � m1 ≈ m2.

Two natural directions for extending this work are to consider four state
characters, and to extend the number of taxa to n = 4, either with or without
the molecular clock assumption.
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The question of constructing rooted trees from rooted triplets is an inter-
esting algorithmic problem, analogous to that of constructing unrooted trees
from unrooted quartets. The biological relevance of triplet based reconstruction
methods is also of interest.

Acknowledgements: Thanks to Sagi Snir for helpful comments on earlier
versions of this manuscript.

References

Bandelt, H.-J., and A. Dress, 1986. Reconstructing the shape of a tree from
observed dissimilarity data. Advances in Applied Mathematics, 7:309–343.
Ben-Dor, A., B. Chor, D. Graur, R. Ophir, and D. Pelleg, 1998. Constructing
phylogenies from quartets: Elucidation of eutherian superordinal relationships.
Jour. of Comput. Biology, 5(3):377–390.
Chor, B., M. D. Hendy, B. R. Holland , and D. Penny, 2000. Multiple Maxima
of Likelihood in Phylogenetic Trees: An Analytic Approach. Mol. Biol. Evol.,
Vol. 17, No.10, September 2000, pp. 1529–1541.
Erdos, P., M. Steel, L. Szekely, and T. Warnow, 1999. A few logs suffice to
build (almost) all trees (i). Random Structures and Algorithms, 14:153–184.
Felsenstein, J., 1981. Evolutionary trees from DNA sequences: A maximum
likelihood approach. J. Mol. Evol., 17:368–376.
Gallager, R.G. Information Theory and Reliable Communication, Wiley, New
York (1968).
Hendy, M. D., and D. Penny, 1993. Spectral analysis of phylogenetic data. J.
Classif., 10:5–24.
Hendy, M. D., D. Penny, and M.A. Steel, 1994. Discrete fourier analysis for
evolutionary trees. Proc. Natl. Acad. Sci. USA., 91:3339–3343.
Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge
University Press, Cambridge.
MacWilliams, F., and N. Sloan, 1977. The Theory of Error-Correcting Codes.
North-Holland, Elsevier Science Publishers.
Neyman, J., 1971. Molecular studies of evolution: A source of novel statistical
problems. In S. Gupta and Y. Jackel, editors, Statistical Decision Theory and
Related Topics, pages 1–27. Academic Press, New York.
Strimmer, K., and A. von Haeseler, 1996. Quartet puzzling: A quartet maximum-
likelihood method for reconstructing tree topologies. Molecular Biology and
Evolution, 13(7):964–969.
Waddell, P., D. Penny, and T. Moore, 1997. Hadamard conjugations and
Modeling Sequence Evolution with Unequal Rates across Sites. Molecular Phy-
logenetics and Evolution, 8(1):33–50.

11



Wilson, S.J., 1998. Measuring inconsistency in phylogenetic trees. Journal of
Theoretical Biology, 190:15–36.
Yang, Z., 2000. Complexity of the simplest phylogenetic estimation problem.
Proc. R. Soc. Lond. B, 267:109–119.

12


