
SOLVABILITY IN ASYNCHRONOUS ENVIRONMENTS II:
FINITE INTERACTIVE TASKS∗

BENNY CHOR† AND LEE-BATH NELSON‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 351–377

Abstract. Identifying what problems can be solved in a given distributed system is a central
question in distributed computing. In this series of works, we study this question in the context
of asynchronous fault tolerant systems that can execute consensus. These systems can be those
executing deterministic protocols with access to a consensus routine or those running randomized
error-free protocols. A previous work handled the class of distributed decision tasks. In these tasks,
each processor receives one local input and has to respond with one local output.

In an interactive distributed task each of n processors receives a sequence of local inputs and
has to respond on line with an output for every new input (before getting its next input). Different
processors can be at different stages concurrently, so that additional inputs are received by fast
processors while slow processors are still working on early inputs. An interactive task is called finite
if the number of local inputs (and outputs) is finite. Interactive tasks can neither be described as a
single huge decision task nor be decomposed into distinct, independent decision tasks.

The main result of this work is an exact characterization of the finite interactive tasks which can
be solved by t-resilient protocols in either of the above two models. The major tool we use in the
characterization is a directed acyclic graph that is associated with an interactive task. Properties of
this graph are used to determine the resiliency of the task and to devise a “generic” resilient algorithm
which solves such tasks. This generic algorithm can be viewed as a repeated, deterministic reduction
to a consensus subroutine. This implies that any finite interactive task is solvable by randomized
error-free protocols iff it is solvable by deterministic protocols with access to consensus.

Key words. solvability, asynchronous distributed systems, fault tolerance, randomized algo-
rithms, consensus, interactive tasks, decision tasks, adversary scheduler

AMS subject classifications. 68Q22, 90D06, 90D43

PII. S0097539795294979

1. Introduction.

1.1. Background. A central question in distributed computing is identifying
what problems can be solved by a given distributed system. In typical systems,
each one of n processors starts with some local input and communicates with other
processors in order to produce globally meaningful outputs. If the system is perfect,
in the sense that all processors are reliable and communication is error-free and is
instantaneously relayed, then every well-defined task can be solved (assuming, as
usual, that the processors are not computationally limited). However, perfect systems
are either rare or nonexistent. Communication links tend to introduce errors and
delays. Processors may become slow, stop operating, or even exhibit malevolent
behavior.

One of the more popular models of distributed computing is the asynchronous
crash failure model. Here, processors may crash without supplying any warning be-

∗Received by the editors November 20, 1995; accepted for publication (in revised form) June
26, 1998; published electronically October 5, 1999. This research was supported by US–Israel BSF
grant 88-00282. A preliminary version of this paper [14] appeared in Proceedings of the 10th ACM
Symposium on Principles of Distributed Computing, 1991, pp. 37–49.

http://www.siam.org/journals/sicomp/29-2/29497.html
†Institute of Fundamental Sciences, Private Bag 11-222, Massey University, Palmerston North,

New Zealand (B.Chor@massey.ac.nz).
‡Graduate School of Business, Stanford University, Palo Alto, CA 94305 (leen@

leland.stanford.edu). The work of this author was done while at the Department of Computer
Science, Technion, Haifa, Israel.

351

352 BENNY CHOR AND LEE-BATH NELSON

forehand. Asynchrony implies that there is no way to distinguish a failed processor
from a very slow one. An alternative way to describe this is that there is an adver-
sary scheduler that decides which processor moves when. Thus the scheduler controls
the pace and failure of processors. A task is called t-resilient if it is solvable by a
protocol, withstanding up to t processor crash failures. In addition to the important
fault-tolerance aspect, crash resilient protocols have other merits: the more resilient
the protocol, the less faster processors are delayed by waiting for slower ones. In par-
ticular, in a system with n processors, n − 1 resilient protocols are wait-free—every
processor can run at its maximum speed [19, 17].

A key result in this area was given by Fischer, Lynch, and Paterson [16], who have
shown that the consensus problem is not even 1-resilient in the message passing model
with respect to deterministic protocols. This result has been extended to the shared
memory model [15, 21, 11]. (The conference version of the last reference proves this
explicitly for a system of two processors.) This impossibility has motivated the study
of randomized consensus protocols. A host of consensus protocols for various types of
adversaries has been found for both the message passing model (e.g., [7, 24, 12, 6])
and the shared memory model (e.g., [11, 2, 1, 9, 3]). In particular, consensus has
efficient wait-free (i.e., n − 1 resilient) solutions in the shared memory model and⌊
n−1

2

⌋
-resilient solutions in the message-passing model, even in the presence of a

“strong adversary” [2, 6].
Consensus is an important problem, and in a certain sense it is a complete task,

as follows from our results. Still, in order to understand the power and limitations of
error-free randomization with respect to arbitrary distributed tasks, consensus alone
does not suffice. To clarify this point, it is helpful to compare consensus with the parity
task. In this latter task, each processor is required to output the XOR (parity) of all
n inputs. Error-free randomization is powerful enough to overcome the coordination
problems which prevent a deterministic solution to consensus, but it is of no help
when facing problems of missing information. In the parity task, any irrevocable
output by one processor (before knowing the inputs of all other n − 1 processors)
may later turn out to be inconsistent with additional inputs. Our work suggests
a formal framework to capture these notions of missing and consistent/inconsistent
inputs. Another aspect of fault tolerant models that is exemplified in this paper is
that it is important for the adversary to have adequate powers. In particular, the
adversary needs to be able to “resurrect” a processor, thereby turning a processor
that previously may have appeared faulty into a merely slow one. Also, the adversary
must be able to fail a processor that was previously active.

We study asynchronous fault tolerant systems that execute protocols of either of
the following two types:

• deterministic protocols with access to consensus,
• randomized error-free protocols.

While we present most of our results in terms of randomized error-free protocols, the
proof implies that in fact any finite interactive task is t-resilient in one model iff it
is t-resilient in the other. In terms of what can and cannot be solved, it suffices to
restrict the use of randomization to consensus. Thus if a consensus mechanism is built
in, no randomization at all is needed. (Of course, randomization might still be used
to speed up computations.)

This paper is the second in a series of three papers which study solvability by ran-
domized error-free protocols, operating in asynchronous crash failure environments.
The first paper in this series [13] deals with distributed decision tasks. The character-

SOLVABILITY OF FINITE INTERACTIVE TASKS 353

ization there (as well as in the present work) is of combinatorial nature. Despite the
added power of randomization, the characterizations and their proofs are fairly simple
and yield effective procedures for testing solvability. This stands in sharp contrast to
the recent works on deterministic solvability [8, 18, 27], which develop a methodol-
ogy for characterizing decision tasks that are t-resilient with respect to deterministic
protocols (without built-in consensus). These works are fairly complicated, use topo-
logical tools, and do not seem to yield effective characterization procedures. To the
best of our knowledge, solvability of interactive tasks has not been addressed in the
deterministic model.

A different line of research in deterministic solvability has dealt with initial faults.
In the initial faults model, each processor either is initially crashed or remains active
forever. Taubenfeld, Katz, and Moran [28] and Taubenfeld and Moran [29] have
characterized t-resilience of distributed decision tasks with respect to deterministic
protocols in the initial fault model. Interestingly, the characterization is the same
as t-resilience with respect to randomized error-free protocols in the regular crash
failure model [13]. This raises the question whether the two models have the same
capabilities when richer classes of tasks are considered. In this work, we demonstrate
a negative answer to this question. We describe a two-stage task that is solvable in
the initial fault model but not in the regular crash failure model. The initial fault
model enables the election of a “leader” who collects inputs and assigns outputs in
a centralized fashion (and is not allowed to fail while doing this). While for the one
round, decision tasks, randomization can be used to yield the effect of a leader, this
is no longer the case when two-stage interactive tasks are involved. Intuitively, the
models are different because in the initial faults model the adversary’s powers are
seriously limited.

1.2. Finite interactive tasks—motivation. Finite interactive tasks are an
extension of distributed decision tasks [22, 13] (where each processor gets a single
input and produces a single output). The number of rounds, namely the number of
inputs received by each processor, is specified as part of the task. While one round
corresponds to decision tasks, even tasks with two rounds constitute a nontrivial
generalization. What distinguishes interactive tasks is the on-line character of the
interaction. Each new local input is given only after the corresponding processor has
irrevocably produced its previous output. Fast processors can work on late inputs
while slower ones are still working on earlier inputs. For example, P1 can work on its
third input, P2 on its fifth input, and P3 on its first input concurrently. This implies
that interactive tasks can neither be described as a single huge decision task nor be
decomposed into distinct, independent decision tasks. Sequential systems as defined
by Herlihy [17] and by Plotkin [23], such as stacks and queues, can also be formulated
as interactive distributed tasks. (Finite interactive tasks will model such systems that
are restricted to a bounded number of accesses per processor.)

We give several examples that should help clarify the expressive power of finite
interactive tasks. Consider a multiround task where in each round the processors have
to select a unique leader among all candidates. We indicate a processor’s candidacy, in
a given round, by inputting 1, while 0 indicates that the processor is not a candidate.
The selected processor outputs 1 in the appropriate round, while all others output 0.
(If there are no candidates in a given round, then nobody is selected.) So far, this
leader selection problem can be viewed and solved as a collection of independent
decision tasks. However, it may be useful to prevent a fast processor from taking
permanent control of the system. Thus we add the requirement that no processor

354 BENNY CHOR AND LEE-BATH NELSON

is selected twice. This gives rise to different finite interactive tasks, characterized
by the total number of “selection campaigns” (or, equivalently, rounds). In the kth
task in this list each processor has k inputs and k outputs. In this revised task, a
processor that was selected in some round will output 0 in all subsequent rounds,
even if there are no other candidates. It is not hard to see (and follows easily from
our characterization) that the k round task is (n − 1)-resilient for any k ≥ 1. (The
task is well defined for any k, although after everyone is selected, it becomes quite
boring.)

The second example is a variant of the first. Here, in every round every processor
receives as input a “priority,” which is a positive integer in case the processor is a can-
didate and 0 if it is not. A leader can be selected if there are at least ` other processors
with smaller priorities, among all processors that were not chosen already. (If nobody
is interested, then every relevant processor gets a 0 and all inputs are among the least
` priorities, and in this case everyone outputs a 0 to indicate nonleadership.) As be-
fore, the unique selection is indicated by a 1 in the appropriate output. The selection
process is repeated k times. How resilient is this task? For k = 1, a prospective leader
must see at least ` other inputs before “fighting” for candidacy. This argument can be
formalized to see that for k = 1, the task is (n− `− 1)-resilient. Now consider k = 2.
At the second round, the prospective candidate must still wait for ` other processors,
but now these could come from a pool of only n − 1 processors. This argument can
be formalized to see that the task now is (n− `− 2)-resilient. For general k and `, it
can be shown that this finite interactive task is (n− `−k)-resilient. This example can
be extended further to describe cases where the selection of the ith round leader may
depend on inputs from the (i + 1)st round (e.g., if future inputs of previous leaders
can act as tie breakers for the choice of the current leader), and so on.

As a final example, we now describe a different task, which can be viewed as a
resource allocation problem. There are m resources (m < n), denoted by 1 through m.
At each of k rounds, any number of no more than m of the n processors can announce
their interest in getting one of the resources (it does not matter which specific resource)
by receiving an input of 1 (otherwise the processor gets 0). If the processor is allocated
resource number j, then its output for that round is j. If no resource is allocated,
the processor’s output is 0. Once a resource is allocated, the processor can retain
it by continuing to get input 1. To release a resource, the processor must get input
0. The task specifies that no resource is allocated at the same round to more than
one processor. In addition, all requests should be granted. This task is related to
a continued renaming problem [5]. For k = 1, it is not hard to see that the task
is (n− 1)-resilient (notice the difference from the deterministic case where the name
range has to be larger than m). But this is no longer the case if k > 1. Consider a
fast processor who was not interested in a resource at round 1 but became interested
in one at round 2. This processor cannot simply grab a resource, despite the fact
that it is guaranteed that such resource will eventually be freed for round 2: up to
m tardy processors can wake up and ask for resources at the first round, and only
one of them may release its resource in the second round. Our fast processor must
wait until at least m− 1 of the first round users announce their input, and only then
can the processor grab a resource. This will be either one of the resources released
by one of the m− 1 processors or the remaining resource, in case all these processors
retained their resource. This implies that if m resources were claimed at round 1, the
processor may have to wait for the second round inputs of m−1 of them before giving
an output in the second round. This argument leads to realizing that for k ≥ 2, this

SOLVABILITY OF FINITE INTERACTIVE TASKS 355

resource allocation problem is 1-resilient but not 2-resilient.
The examples we give demonstrate the versatility of the finite interactive task for-

mulation. We conclude that this is a rich class of tasks which constitutes a meaningful
extension to the class of distributed decision tasks.

1.3. Highlights of the characterization. Denote by ISMt (resp., IMPt) the
class of finite distributed interactive tasks that are solvable in the asynchronous shared
memory (resp., message passing) model by a terminating t-resilient randomized pro-
tocol, which never errs and works in the presence of a strong adversary scheduler
[2, 6]. (A protocol is terminating if each processor stops participating and halts after
producing its last output.) Our main results are necessary and sufficient combina-
torial conditions which determine membership in ISMt (for 0 ≤ t < n) and IMPt
(for 0 ≤ t ≤ ⌊

n−1
2

⌋
). A similar characterization, for nonterminating protocols, is

also given. These results subsume the previous results of [13], which characterized
resiliency of distributed decision tasks. We remark that the proof methods in the
present work are substantially more involved than those in [13], due to the more
general nature of interactive tasks.

We show that what determines resiliency in the randomized error-free model is
the amount of information available (at every possible step) to the active processors
and whether this information suffices to make moves that are compatible with every
potential future development. In order to capture these properties, we associate every
finite interactive task T with a directed acyclic graph (DAG), whose nodes represent
states of the distributed system. It turns out that the DAG is a convenient tool with
which to express the properties we need. In this subsection we outline how the DAG
is defined and used for the characterization (while omitting some of the noncrucial
details).

The nodes in the DAG contain partial vectors of (multi) input and (multi) output
values that are globally known in the system. (For a concrete example, see section 4.)
The nodes are first examined according to their “legality” and “consistency.” Legality
depends only on the indices in the partial vectors (these are the “S vectors” of section
3) and not on the values themselves. It means that no processor has produced an
output in a given round before producing all the outputs of earlier rounds and getting
all the inputs of earlier and the current rounds. Consistency is related to the task
T and does depend on the values in the partial vector (these are the “Q vectors”
of section 3). It means that for every possible completion of input values there is a
corresponding completion of output values, such that the complete multi-input multi-
output vector belongs to the task T .

We put a directed edge from node v1 to node v2 in the graph if v2 extends the
values in v1 and contains exactly one additional input value. (It may contain one
additional output, several additional outputs, or none.) We partition the nodes in the
DAG into equivalence classes. Two nodes are called equivalent if they have the same
sets of indices of revealed inputs (output indices do not matter here). This definition
is useful in situations when there are directed edges from v to both u1 and u2 and the
latter two nodes are nonequivalent. This implies that u1 and u2 extend v in different
input indices, implying that two different processors have read an additional input in
the corresponding moves.

We further refine each equivalence class and say that two equivalent nodes are
input equal if the values of their revealed inputs are the same (output indices and
values may still differ). With these definitions, we can describe the notion of a t-
founded node (relative to the task T). This notion is central to our characterization.

356 BENNY CHOR AND LEE-BATH NELSON

Essentially, we think of a t-founded node as a “good” node from which there exists
a strategy to advance while facing up to t crashes without getting stuck or making
errors (relative to the task T).

The definition of t-founded is recursive, and we will now briefly describe its main
points while omitting some special cases that correspond to the “boundaries” (where
at least n− t processors have already terminated). A node v in the DAG is t-founded
if it is either a complete multi-input multioutput vector that belongs to the task T
or a nonboundary partial vector which satisfies the following condition: there are
at least t + 1 nonequivalent nodes in the DAG, u1, . . . , ut, ut+1, such that there is a
directed edge from v to each uj , and all uj ’s are t-founded. In addition, for every u
with a directed edge from v to u there exists an input equal node u′ that also has
a directed edge from v to it, and u′ is t-founded. (The definition of t-founded for
boundary nodes is slightly modified, especially in the requirement for the number of
nonequivalent sons.)

Having t+ 1 nonequivalent sons of v essentially implies that even if an adversary
scheduler crashes t processors, the remaining ones can still make progress. The second
condition (regarding input equal sons) guarantees that the system can advance along
a path of consistent nodes (with respect to the task T) no matter which processor is
active next. The main theorem states that a finite interactive task T has a t-resilient
protocol iff the root of the DAG (the partial vector with no inputs and no outputs)
is t-founded.1

We show that the condition is necessary by the following argument. Suppose T is
a task where the root of the DAG is not t-founded and A is an algorithm for the task
that is claimed to withstand t crashes. We demonstrate a strategy for an adversary
scheduler that enables it to force the system to advance (with positive probability)
along a path of nodes that are not t-founded. We show that such a path leads to an
inconsistent node. This means that the adversary can force the algorithm A to err
(with nonzero probability). Notice that in order to be able to force the processors
down this path, the adversary needs to be able to fail a previously active processor
as well as cause the processors to think that a slow processor may be faulty.

To show that the condition is sufficient, we design a generic protocol which guar-
antees that all processors take a coordinated walk along a path of t-founded nodes in
the DAG. When all processors terminate, this path must lead to a complete vector
that is in T . Such coordination is achieved by applying a consensus subroutine to
every step in the walk.

We use randomized consensus algorithms as given by [2, 1, 3, 9, 26] for the shared
memory model and by [6] for the message passing model. It is interesting to observe
that randomization is needed only for consensus and gives no extra power beyond
that. This follows from our generic algorithm, which can be viewed as a repeated
deterministic reduction of an arbitrary interactive task to consensus (which itself re-
quires randomized solutions). Therefore, our characterizations also can be applied to
deterministic systems that have a built-in consensus mechanism, and in this case no
randomization at all will be needed (see section 7 for additional discussion).

1.4. Organization. The remainder of this paper is organized as follows. Section
2 describes the computation models. In section 3 we formally define interactive tasks
and related notions used in this paper. In section 4 we describe the DAG associated

1As stated, the theorem holds for the shared memory model. A slight variation, which corre-
sponds mainly to the final stages of an execution, makes it applicable to the message passing model
(the variation is termed t-valid).

SOLVABILITY OF FINITE INTERACTIVE TASKS 357

with an interactive task. This graph plays a central role in section 5, where the
characterization theorem for the shared memory model is stated and proven. Section
6 contains the characterization for the message passing model. Finally, in section 7 we
present some concluding remarks, including the equivalence of error-free randomized
model and the deterministic model with access to consensus.

2. The models. In this section we define the models of asynchronous compu-
tation which we use in the sequel, as well as the class of appropriate schedulers (or
adversaries) that control our systems.

An asynchronous concurrent system is a collection of n processors. Each proces-
sor, P , is a (not necessarily finite) state automaton with an internal input register
inP and an internal output register outP . The set of all states of the processor P
is denoted by SP . The input register contains a value v taken from a set IN , while
the output register has initially the value ⊥. The value in the output register can be
changed to any value in the set OUT (⊥ /∈ OUT). For every input value that the
processor gets, it must change the value of the output register (possibly to the same
value as before) exactly once before receiving the next input or terminating (after the
last input).

The two models we consider differ in the way that processors communicate among
themselves. In the shared memory model, processors communicate via shared registers.
Every shared register r is associated with a set of processors Rr, | Rr |> 0, that can
read from the register and a set of processors Wr, | Wr |> 0, that can write into the
register. These registers are atomic with respect to the read and write operations.
(Although our protocols use only the simpler, multireader single-writer registers, the
necessity of our conditions holds in the more general setting, presented here.)

In the second model, the message passing model, there is a communication link
between every two processors. Processors may send and receive messages via these
links. The links are atomic with respect to the send-message and receive-message
operations, but there is no guarantee on the order in which the messages are received
once they are sent.

Processors execute their programs by taking steps. An atomic step consists of
one of the following:

1. An internal operation, possibly involving coin tosses.
2. Getting information from other processors (reading from a shared register in

the shared memory model, or receiving a message from a link in the message
passing model).

3. Giving information to other processors (writing into a shared register in the
shared-memory model, or sending via a link in the message passing model).

4. Getting a new local input.
5. Giving a new local output.

Formally, every processor P takes steps according to its transition function, TP . In
case the step taken was a read (or receive), the new state of P depends not only on its
old state but also on the value read (received) by this action. The transition function
TP could be either deterministic or nondeterministic. In the latter case, the actual
step taken is decided via coin tosses (in a nondeterministic step the only difference
between the old and new states is the coin toss, and no communication occurs in such
a step). Given an asynchronous system as specified above, a protocol is a collection
of n transition functions T1, . . . , Tn, one per processor.

A configuration C of the system, in the shared memory (message passing) model,
consists of the state of each processor together with the contents of the shared registers

358 BENNY CHOR AND LEE-BATH NELSON

(communication links). In an initial configuration, every processor is in an initial
state, and all shared registers and output registers contain the default value ⊥ (all
the links are empty). The set of all configurations will be denoted by C. A step takes
one configuration to another by activating a single processor P . A run of length `
is a sequence of ` steps. Each run has an associated schedule which is a sequence
of ` processors, numbered according to the order of processors that take steps in
that run. We denote schedules, finite or infinite, by a list of processor numbers, e.g.,
(2, 3, 3, 2, 1). We say that processor P is activated k times in a run if P appears
k times in the run’s schedule. The history H of a run is the sequence obtained by
interleaving the sequence of configurations with the steps in the run, starting with the
initial configuration. For a finite run, we refer to the last configuration in its history
as the current configuration.

A scheduler S is a mapping from H into the set of n processors. Given the
configuration of the system, the scheduler picks the next processor that is to take
a step. The scheduler could be either a deterministic mapping or a randomized
one. The scheduler can be viewed as an adversary which tries to prevent the system
from reaching its goal. Under this definition, the adversary is very strong: it has
complete knowledge of the state of every processor and of the contents of the shared
registers (communication links) during the entire history. In case the processors are
randomized, the scheduler could also base its choices on the outcome of past coin
flips as well as the current coin flip (if the next step is randomized). We do not
allow it, though, to be able to predict future randomized moves of the processors.
This is a necessary requirement if randomization is to be helpful at all, and it is used
in all algorithms where randomization is employed, e.g., [25, 20, 7]. In addition, the
scheduler picks the inputs to be given to the processors (from the possible legal inputs).

Finally, we note that both models are asynchronous, meaning that there is no
global clock in the system and each processor runs at its own pace. In the message
passing model this also means that messages can be delivered with arbitrary delays
(and possibly out of order).

In each one of these models there are two submodels according to the nature of
the processors. All the processors can be of one of two types:

1. Terminating processors that terminate and halt once their final output has
been given.

2. Nonterminating processors that continue to operate even after giving their
final output. These processors may help and coordinate among the slower
processors that have not yet finished their task.

The second type of processor yields a more robust system, which could solve any task
solvable by processors of the first type.

In this work we study the resiliency of tasks in these two models.2 There is a
resiliency parameter, t, that denotes the extent of resiliency required. The t-resiliency
requirement imposes restrictions both on the scheduler and on the protocol. In every
infinite schedule under the scheduler, S, at least n − t processors will be activated
infinitely many times. We will call such a scheduler a t-bounded scheduler. Intuitively,
this means that the scheduler may fail-stop at most t processors.

A round of a t-bounded schedule is a minimal schedule of the processors (starting
from any configuration) in which at least n− t processors are scheduled at least once.

2Most of our results are developed for terminating processors. Once these results are obtained,
the case of nonterminating processors is easy to handle. The results for the nonterminating model
are stated in section 7.

SOLVABILITY OF FINITE INTERACTIVE TASKS 359

Each processor which is scheduled in the round is said to be active in it. Notice
that after n − t processors have terminated, a schedule in which all the terminated
processors are scheduled (and thus no move will be made) is also a round.

Definition 1. We say that an algorithm, A, is a t-resilient algorithm for a task,
T , if the following conditions hold:

• Safety. For every legal input for T , for any t-bounded scheduler, S, and for
any execution of A, if all n processors terminate (or in the nonterminating
models, if all n processors have given their last output), then the resulting
output is correct with respect to the input for T (see Definition 2).

• Liveness. There is a constant, M , such that for every processor the expected
number of rounds in which it is active, before producing its final output, is
bounded by M . For terminating processors this requirement implies that after
n−t processors have terminated, the expected number of steps taken by each of
the remaining t processors in order to terminate is bounded by M (no matter
how the steps of this individual processor are interleaved with steps of other
processors).

It should be noticed that we require that protocols never err. Although there
could be a positive probability for very long nonterminating runs, this probability
should be very small (converging to 0 with the length of the run).

3. Basic definitions. In this section we define finite interactive tasks and what
it means for such a task to be t-resilient. We introduce the notation of partial vectors
and use this notation to express states of systems that implement interactive tasks
and transitions between such states.

Distributed interactive tasks are a generalization of distributed decision tasks. A
decision task is a collection of input-output pairs (each pair is an n-vector). Analo-
gously, we define an interactivek task as a collection of k pairs. Each element of every
pair is an n-vector. The first element represents an input vector and the second an
output vector. The following formulation turns out to be convenient for our purposes.

Definition 2. An interactivek task (or k-stage distributed interactive task), T ,
is a collection of 2k-tuples of the form 〈I1, . . . , Ik, O1, . . . , Ok〉. Each Ij and Oj is an
n-component vector over an arbitrary alphabet, corresponding to the n inputs and n
outputs of the jth stage, respectively. The legal inputs for T (denoted IN(T)) are all
the k-tuples of n-component vectors 〈I1, . . . , Ik〉 such that there exists 〈O1, . . . , Ok〉
for which 〈I1, . . . , Ik, O1, . . . , Ok〉 ∈ T .

When an execution of an interactivek task starts, a processor Pi gets the input
for the first stage. After it submits the output for this stage (which is irrevocable)
it receives the input for the second stage, and so on. In general, each processor,
Pj , gets its input for stage i + 1 only after submitting its output for stage i, for all
1 ≤ i ≤ k − 1. Different processors may be in different stages simultaneously. At a
certain point during an execution, it is possible that there will already be, for example,
seven outputs for the first stage, five for the second, two for the third, and none for
the fourth.

We will represent the states in an instance of an algorithm using partial vectors
which contain input and output values. If we take a vector ~V of length n over a
certain alpha-beth, Σ, and a set of indices, J , where J ⊆ {1, . . . , n}, then the partial

vector ~VJ is defined as follows:
• If i ∈ J , then VJ(i) = V (i), the ith coordinate of ~V .
• Otherwise VJ(i) = ⊥, where ⊥ is an agreed sign for “don’t know yet.”

This means that we know only the values of ~V at the indices indicated by J . Typically,

360 BENNY CHOR AND LEE-BATH NELSON

~VJ is compatible with more than one vector ~V , namely, there may be a ~V ′ such that
~V ′ 6= ~V but still ~V ′J = ~VJ . For example, the partial vector ~Vφ is compatible with every
vector of the same length.

One property of a 2k-tuple, representing the state of an interactivek task, corre-
sponds to the temporal order in which input and output indices are revealed. This
property is formalized in the next definition, which uses the notion of corresponding
partial input and output. We say that a partial input and output
Q = 〈I1

A1
, . . . , IkAk , O1

B1
, . . . , OkBk〉 corresponds to the 2k-tuple S =

〈A1 , . . . , Ak , B1 , . . . , Bk〉 if the revealed indices in Q match the index-sets
in S.

Definition 3. Let S = 〈A1, . . . , Ak, B1, . . . , Bk〉 be a 2k-tuple of index-sets. S
will be called a legal 2k-tuple if the following conditions are satisfied:

• For all i, 1 ≤ i ≤ k, it holds that Bi ⊆ Ai and Ai, Bi ⊆ {1, ..., n}.
• For all i, 1 ≤ i ≤ k − 1, it holds that Ai+1 ⊆ Bi.

Let Q be a partial input and output vector, corresponding to S. We say that Q is a
legal partial input–output vector if S is a legal 2k-tuple.

The requirements ensure that S represents a possible state of revealed inputs and
outputs in an instance of an algorithm for an interactivek task. By demanding that
Bi ⊆ Ai we guarantee that no processor will produce its ith output before receiving
its ith input. By demanding that Ai+1 ⊆ Bi we guarantee that no processor will get
its (i+ 1)st input before producing its ith output. However, the legality requirement
does not suffice. We also want to guarantee that the “input output contents” matches
a state that can fit the requirements of the task itself. This property is stated in the
next definition.

Definition 4. Let Q = 〈I1
A1

, . . . , IkAk , O
1
B1

, . . . , OkBk〉 be a legal 2k-tuple of

partial vectors. Q will be called T-consistent if for every extension I1 to Ik, of I1
A1

to

IkAk such that 〈I1, . . . , Ik〉 ∈ IN(T), there exist extensions O1 to Ok, of O1
B1

to OkBk
such that 〈I1 , . . . , Ik , O1 , . . . , Ok〉 ∈ T .

We will say that output oij is a consistent output for the 2k-tuple 〈I1
A1

, . . . , IkAk ,

O1
B1

, . . . , OkBk〉 if the 2k-tuple 〈I1
A1

, . . . , IkAk , O
1
B′1

, . . . , OkB′
k
〉, is T -consistent,

B′k = Bk for every k 6= i, B′i = Bi ∪ {j}, and the jth coordinate of OB′
i

equals oij.
An inconsistent 2k-tuple corresponds to a state where the scheduler, by giving

legal inputs, can force the algorithm to err. Thus, intuitively, consistency is a property
that the processors wish to maintain.

Let us now formalize the notion of a “one-step” advancement from a legal 2k-
tuple of partial input-output vectors to another legal one. Intuitively, a one-step
advancement corresponds to one additional input read by one processor and possibly
a resulting extension of one or more outputs. If the new input is from the ith stage
(i ≥ 2), then, by our convention, the reading processor has already given its (i− 1)st
output. There is an exception to this intuition, which occurs toward the end of a run,
when only t or fewer processors still have unrevealed inputs. In this case, a single
additional output is also considered an advancement, as the remaining t or fewer
processors might be faulty and thus we cannot insist on input extensions here. We
first formally define these early and late parts in a run.

Definition 5. The earlier parts of a run of an algorithm, where the set of
processors that have already read their last input, Ak, satisfies |Ak| < n− t, are called
the main phase. The final parts of a run of an algorithm, where |Ak| ≥ n − t, are
called the concluding phase.

The definition of a one-step advancement is as follows.

SOLVABILITY OF FINITE INTERACTIVE TASKS 361

Definition 6. Let

S = 〈A1, . . . , Ak, B1, . . . , Bk〉, S′ = 〈A′1, . . . , A′k, B′1, . . . , B′k〉
be two legal 2k-tuples and let

Q = 〈I1
A1

, . . . , IkAk , O
1
B1

, . . . , OkBk〉,

Q′ = 〈I1
A′1

, . . . , IkA′
k
, O1

B′1
, . . . , OkB′

k
〉

be partial inputs and outputs corresponding to S and S′, respectively. The pair [S′, Q′]
will be called a t-subsequent of the pair [S,Q] if the following three conditions hold:

• For all i, 1 ≤ i ≤ k it holds that Bi ⊆ B′i.
• Exactly one of the following is true:

1. There is exactly one i (1 ≤ i ≤ k) and one j (j ∈ {1, . . . , n}) such
that j 6∈ Ai, j ∈ Bi−1, A′i = Ai ∪ {j}, and for all m 6= i it holds that
A′m = Am.

2. The system is in the concluding phase (|Ak| ≥ n− t) and there is exactly
one i (1 ≤ i ≤ k) and one j (j ∈ {1, . . . , n}) such that j 6∈ Bi, B′i =
Bi ∪ {j}, for all m 6= i it holds that B′m = Bm, and for all 1 ≤ ` ≤ k it
holds that A` = A′`. This corresponds to a single new output, given by
Pj in the ith stage.

• Q′ is an extension of Q and there exists < I1 , . . . , Ik >∈ IN(T) such that
< I1, . . . , Ik > is an extension of < I1

A′1
, . . . , IkA′

k
>.

When [S′, Q′] is a t-subsequent of [S,Q] and j is the unique index extending Ai (in
case 1) or Bi (in case 2), we say that Pj is the processor associated with the t-
advancement.

The number of possible failures, t, is a parameter in the definition. An additional
input is considered an advancement in both the main and the concluding phases, while
an additional output (on its own) is considered an advancement only in the concluding
phase. Notice that this definition can be used independently of consistency.

In [17], Herlihy studied concurrent implementations of sequential data objects.
Finite versions of such objects may be represented as interactivek tasks. This can be
done by taking the set of all possible sequences of correct operations on the object.
For example, consider a concurrent implementation of a stack. The processors in this
implementation are servers that receive in their input one of two possible requests:

• push(value): push the parameter value onto the top of the stack and return
(output) `, where ` is the level of the stack in which the value was put (1
when the stack contains one element, 2 when the stack contains two elements,
etc.). In our example the stack level is required as output mainly for didactic
reasons.
• pop: pop the top of the stack and return (output) its value (“empty” if the

stack is empty).
Obviously the outcome of a request given to a processor may depend on previous
requests to some of the other processors. We will use the example of a three-processor
stack as implemented by an interactive2 task (two requests per processor) to illustrate
the definitions. The resiliency parameter will be t = 2. Assume that in the first stage
P1 will be requested to push 5, P2 will be requested to pop, and P3 will be requested
to push 7. These will be the inputs (but the processors do not know them initially).
From the initial configuration, where no inputs and no outputs are known, we can

362 BENNY CHOR AND LEE-BATH NELSON

advance in one step to a state where one input is known (e.g., P1 has “push 5” as
input) or to a state where one input and one output are known (for instance, P1

with the input “push 5” and with output “1,” or P2 with input “pop” and output
“empty”).

4. The corresponding DAG. In this section we define the DAG associated
with an interactivek task. A run of an algorithm can be viewed as a sequence of
2k-tuples of indices with their corresponding 2k-tuples of partial inputs and outputs.
We associate this sequence with a path in a DAG. There is a directed edge from v to
u if u is a possible state representing a one-step advancement from v (namely, u is a
t-subsequent of v). More formally, we have the following definition.

Definition 7. Let T be an interactivek task. The DAG associated with T , which
we denote by D(T), has the set of nodes

V = {[S,Q]|S = 〈A1 , . . . , Ak , B1 , . . . , Bk〉, Q = 〈I1
A1
, . . . , IkAk , O

1
B1
, . . . , OkBk〉,

S is a legal 2k-tuple, Q corresponds to S, and there exists 〈I1, . . . , Ik〉 ∈ IN(T)
such that 〈I1, . . . , Ik〉 is an extension of 〈I1

A1
, . . . , IkAk〉}. The set of directed edges,

E, is the set of all (v1, v2) where v1 = [S1, Q1] and v2 = [S2, Q2], such that v2 is a
t-subsequent of v1 and v2 is T -consistent.

The root of the DAG is the node [〈φ, . . . , φ, φ, . . . , φ〉, 〈I1
φ, . . . , I

k
φ ,

O1
φ, . . . , O

k
φ〉]. The leaves (nodes from which there are no outgoing edges) are ei-

ther nodes containing a complete 2k-tuple of indices (A1 = · · · = Ak = B1 = · · ·Bk =
{1, . . . , n}) with the corresponding full inputs and outputs, or nodes whose 2k-tuple of
indices is incomplete but do not have T -consistent sons. In general, we think of a node
in the DAG as representing a possible state of the published input and agreed-upon
output values at some point during a possible execution. An edge represents a tran-
sition according to the t-subsequency relation. Notice that one can “label” an edge
from u to v according to the processor Pj which is associated with the t-advancement.

In our example of the stack, there will be an edge from the node representing
the initial state, [〈φ , φ , φ , φ〉, 〈I1

φ , I2
φ , O1

φ , O2
φ〉], to the node representing

the state where P1 has seen the input “push 5,” which is the node [〈{1} , φ, φ, φ〉,
〈{“push(5)”,⊥,⊥} , I2

φ, O
1
φ, O

2
φ〉]. There will also be an edge from the initial node to

the node representing the state where P2 has seen “pop” and returned “empty.” This
node is [〈{2} , φ, {2} , φ〉, 〈{⊥, “pop”,⊥} , I2

φ, {⊥, “empty”,⊥} , O2
φ〉].

The DAG represents all the possible advancements for all possible inputs. It
is useful to group the vertices into equivalence classes according to the amount of
information in them, disregarding the actual input and output values. This leads to
the definition of t-equivalent nodes in the DAG.

Definition 8. Let

v = [〈A1 , . . . , Ak , B1 , . . . , Bk〉, 〈I1
A1

, . . . , IkAk , O
1
B1

, . . . , OkBk〉]

and

v′ = [〈A′1 , . . . , A′k , B′1 , . . . , B′k〉, 〈I1
A′1

, . . . , IkA′
k
, O1

B′1
, . . . , OkB′

k
〉]

be two nodes in the DAG corresponding to an interactivek task, T . These two nodes
will be called t-equivalent if the following two conditions are satisfied:

• For all i, 1 ≤ i ≤ k, it holds that Ai = A′i.
• If |Ak| ≥ n− t, then for all i, 1 ≤ i ≤ k, it holds that Bi = B′i.

SOLVABILITY OF FINITE INTERACTIVE TASKS 363

In the equivalence relation we are concerned only with the indices of the revealed
inputs/outputs, while the values in these indices do not matter. From the definition
it follows that two nodes are non-t-equivalent in one of two cases: either they do not
have the same indices of input revealed or they are both in the concluding phase,
and their revealed output indices are different (for some i it holds that Bi 6= B′i). As
with the definition of t-subsequents, we take the outputs into consideration only in
the concluding phase.

In our example, when examining whether the task is 2-resilient (t = 2), the nodes

v1 = [〈{1, 2, 3} , φ, {1, 2, 3} , φ〉,
〈{“push(17)”, “push(27)”, “push(37)”}, I2

φ, {1, 3, 2} , O2
φ〉]

and

v2 = [〈{1, 2, 3} , φ, {1, 3} , φ〉,
〈{“push(57)”, “push(67)”, “push(87)”}, I2

φ, {2,⊥, 1} , O2
φ〉]

are 2-equivalent (both nodes have A1 = {1, 2, 3} , A2 = φ). While the nodes

u1 = [〈{1, 2} , {2} , {1, 2} , φ〉,
〈{“push(17)”, “push(27)”,⊥} , {⊥, “pop”,⊥} , {2, 1,⊥} , O2

φ〉]

and

u2 = [〈{1, 2} , {2} , {1, 2} , {2}〉,
〈{“push(17)”, “push(27)”,⊥} , {⊥, “pop”,⊥} , {1, 2,⊥} , {⊥, 27,⊥}〉]

are non-2-equivalent. (These nodes have |A2| = 1 = 3 − 2, but their B2 sets are not
the same.)

Notice that two nodes (collections of partial vectors) with the same input indices
are revealed, but different values revealed in these indices are equivalent. The reason
they are defined as equivalent is that in a specific run we are interested only in the
input for this run, which cannot be compatible with both. We refine the t-equivalence
relation, thereby partitioning the equivalence classes into subclasses, such that all the
nodes in the same subclass will have the same input values (not just indices). The
nodes in this subclass will be called input-equal. Input-equal nodes may differ both in
their output indices and in their output values (provided they remain t-equivalent).

Definition 9. Let

v = [〈A1, . . . , Ak, B1, . . . , Bk〉, 〈I1
A1
, . . . , IkAk , O

1
B1
, . . . , OkBk〉]

and

v′ = [〈A′1 , . . . , A′k , B′1 , . . . , B′k〉, 〈I1
A′1

, . . . , IkA′
k
, O1

B′1
, . . . , OkB′

k
〉]

be two nodes of the DAG corresponding to an interactivek task, T . Let t be a resiliency
parameter. The nodes v and v′ will be called input-equal if the following conditions
hold:

• v and v′ are t-equivalent.
• For all i, 1 ≤ i ≤ k, it holds that IiAi = IiA′

i
(which implies Ai = A′i as well).

364 BENNY CHOR AND LEE-BATH NELSON

In the example of the stack, assume that the inputs in the first stage are “push
21” for P1, “push 22” for P2, and “push 23” for P3. Now suppose that the input in
the second stage for all three processors is “pop.” In this situation, the nodes

v1 =[〈{1, 2, 3} , {1, 2, 3} , {1, 2, 3} , {2}〉, 〈{“push(21)”, “push(22)”, “push(23)”} ,
{“pop”, “pop” , “pop”} , {2, 1, 3} , {⊥, 23,⊥}〉]

and

v2 =[〉 {1, 2, 3} , {1, 2, 3} , {1, 2, 3} , {2}〉, 〈{“push(21)”,“push(22)”,

“push(23)”}, {“pop”, “pop” , “pop”} , {3, 2, 1} , {⊥, 21,⊥}〉]
(which correspond to two different schedulings of the same input values) are input-
equal.

5. Characterization for the shared memory model. In this section we state
and prove the characterization theorem for t-resilient interactivek tasks in the shared
memory model. The following claim will be useful in the proof of the main theorem
for this model.

Definition 10. We say that an algorithm A is an immediate-input algorithm if
the first step of every processor after writing an output in its private output register
(as long as this is not the last (kth) output) is reading the next input from its private
input register.

Claim 1. If a distributed interactivek task, T , is solvable by a t-resilient al-
gorithm, A, in the shared memory model, then T is also solvable by a t-resilient
immediate-input algorithm, A′.

Proof. We show how to construct such an immediate-input algorithm, A′, on the
basis of the given algorithm, A. The algorithm A′ will have all the shared registers
of A plus an array of k Boolean multireader single-writer registers per processor (one
bit for every input in T). The bits in all n arrays are initialized to “false.” The state
of a processor will consist of a pair (sA, sadd), where sA is a state of the processor
in A and sadd reflects the additional parts, performed by A′. The algorithm A′ will
simulate algorithm A (changing sA according to algorithm A) except at the following
points:

• After a processor, P , writes the `th output (` < k), P ’s next step is to read
the next, (`+ 1)st, input. However, P will leave the indicator corresponding
to the (`+ 1)st input with the value “false,” meaning that it did not want to
read its input yet (in A). This will change only sadd, not sA.

• When P is supposed to read its input (according to algorithm A) it will,
instead, change the indicator corresponding to this input to “true.” It will
also change sA according to algorithm A (and the value of this input).

It is not hard to verify that if A is t-resilient, then so is A′.
We now define the notion of a t-founded node relative to a task T . Intuitively,

a t-founded node is a “good” node from which a t-resilient algorithm can progress
to correct outputs, regardless of the scheduling and of future revealed inputs. The
definition of t-foundedness will be recursive.

Definition 11. Let

v = [〈A1 , . . . , Ak , B1 , . . . , Bk〉, 〈I1
A1

, . . . , IkAk , O
1
B1

, . . . , OkBk〉]
be a node in the DAG. The node v will be called t-founded relative to the interactivek
task T if

SOLVABILITY OF FINITE INTERACTIVE TASKS 365

• the node v is a “completed leaf” v = [〈{1, . . . , n}1 , . . . , {1, . . . , n}2k〉,
〈I1, . . . , Ik, O1, . . . , Ok〉] and 〈I1, . . . , Ik, O1, . . . , Ok〉 ∈ T ,

or
• the node
v = [〈A1 , . . . , Ak , B1 , . . . , Bk〉, 〈I1

A1
, . . . , IkAk , O

1
B1

, . . . , OkBk〉] is
not a completed leaf (namely Bk 6= {1, . . . , n}), and the following conditions
hold:

1. The node v has at least α non-t-equivalent sons, where α = min (t +
1 , n− |Bk|).

2. For every possible t-subsequent, u, of v (u is not necessarily T -consistent),
there exists an input-equal node u′ that is a t-founded son of v.

As we mentioned earlier, t-equivalent nodes have the same input indices revealed.
Therefore, if two nodes are t-equivalent sons of some node, then the same processor
made the t-advancement to both sons. Since the scheduler may fail up to t processors,
t-resiliency necessitates, in the main phase, at least t+ 1 processors that can advance
from any given situation. However, during the concluding phase there may be fewer
than t active processors. (These are the processors that have not yet submitted their
final output.) The number of processors able to make a t-advancement surely cannot
exceed the number of active processors. This argument motivates the definition of
α. If we require that there be at least α processors that are able to advance (i.e., at
least α non-t-equivalent sons), some processor will always be able to advance from
this state, no matter what the scheduling sequence is.

In addition, we need to have a legal consistent step available no matter what the
input values are. This is embodied in the requirement for a t-founded input-equal son
for every possible t-subsequent. Notice that the specific input values in a run cannot
be chosen by the processors, while the output values are chosen by the processors. We
remark that by the definition of t-foundedness, every path in the DAG which starts
at the root, ends at some leaf, and proceeds only through t-founded nodes must end
in a leaf belonging to T .

We are now in position to state and prove the characterization theorem for the
shared memory model.

Theorem 1. In the terminating shared memory model, for 0 ≤ t ≤ n − 1, an
interactivek task T is t-resilient iff the root of its DAG is t-founded relative to T .

Proof. First we prove the ⇒ direction: if the root of the DAG, R0 = [〈φ, . . . , φ,
φ, . . . , φ〉, 〈I1

φ, . . . , I
k
φ , O

1
φ, . . . , O

k
φ〉] is non-t-founded relative to T , then T is not

t-resilient. A high-level description of the proof is as follows: Assume that the root
of the DAG is non-t-founded and yet there exists a t-resilient algorithm for the task
T . We will show how the scheduler can force the system to make transitions along
a sequence, s, of non-t-founded nodes in the DAG. Each node in s reflects the input
values that were read and the output values that were produced by the processors.
In every transition, at least one new input is read or one new output is produced.
Since the number of inputs and outputs is finite, 2nk, the number of such transitions
will also be finite. This process will terminate either at a leaf of the DAG that is
non-t-founded or in a state that is not represented by a node in the DAG. In the
latter case, the inputs and outputs represent an inconsistent state. In either case, the
scheduler has forced the algorithm to err.

A processor that had either terminated or read an input for which it has not yet
given an output will be called a nonreading processor. Let v be a node in the sequence
s. The scheduler’s strategy will preserve two invariants regarding v:

366 BENNY CHOR AND LEE-BATH NELSON

1. The node v is non-t-founded, and every node in the DAG, u, that is input-
equal to v is either inconsistent or is both consistent and non-t-founded.
Notice that this invariant holds at the root, as we assume that the root
is non-t-founded and there are no other nodes that are input-equal to the
root.

2. The node, v, belongs to one of the following two categories:
(a) The state represented by v is in the main phase and the number of non-

reading processors in this state is smaller than n − t. (Notice that this
invariant holds at the root, as there are no nonreading processors at the
root.)

(b) The state represented by v is in the concluding phase and at least n− t
processors have terminated (given their final output).

The scheduler will allow the system to advance by making a t-advancement while
keeping these invariants. We will denote them as advancements from node R` to
node R`+1 (` = 0 at the root). In such an advancement there are two possibilities.

1. In the main phase, a t-advancement corresponds to an additional input and
possibly several additional outputs.

2. In the concluding phase an advancement can be either an additional single
input (only) or a single additional output.

We now present the detailed proof. Suppose, by way of contradiction, that T is
t-resilient, namely, there exists a t-resilient algorithm, A, which implements T . By
Claim 1 we can assume that this algorithm is an immediate-input algorithm. The
root of the DAG corresponding to T , R0, is non-t-founded. By Definition 11 there
are two possible reasons for a node R` to be non-t-founded:

(A) R` has less than α non-t-equivalent sons.
(B) R` has a t-subsequent, R′`+1, such that for every R`+1 which is input-equal

to R′`+1 and is a son of R` in the DAG, R`+1 is non-t-founded.
We describe an adversary scheduler which, as long as the system is at a node

that is non-t-founded due to possibility (B), will force the algorithm to advance by
choosing one of the non-t-founded input-equal sons. Notice that when the system
moves from R` to R`+1, the first invariant is maintained. (R`+1 is non-t-founded and
all of it’s input-equals are either inconsistent (not a node in the DAG) or consistent
(in the DAG) but non-t-founded.)

Let Pi be the processor associated with the t-advancement from R` to R′`+1 (Def-
inition 6). If the system is in the main phase, this advancement corresponds to Pi
reading an input. If the system is in the concluding phase, this advancement corre-
sponds to either Pi reading an input or Pi writing an output (case 2 of Definition 6).

In case Pi’s step is reading an input, in the concluding phase, the adversary
scheduler will activate Pi once and Pi will read this input, since A is an immediate-
input algorithm. The resulting configuration will be R`+1. In case Pi’s step is reading
an input in the main phase, the scheduler activates Pi (which reads its input) as
above, but then the scheduler may perform additional activations according to the
following cases.

If n−t or more inputs of the final stage are known, then the scheduler will activate
the n− t processors that have read their final input (say, in round-robin order) until
all of them give an output and terminate. By Definition 1, within a finite expected
number of steps all n−t processors will give outputs and terminate. The configuration
reached after all n − t processors have given their final output is R`+1. Notice that
this case preserves invariant 2(b), as we reach the concluding phase not only with

SOLVABILITY OF FINITE INTERACTIVE TASKS 367

n− t inputs of the final stage but also with n− t outputs and terminated processors.
If, however, there are fewer than n − t inputs of the final stage, then we know

that the system remains in the main phase. In this case, let Sp denote the set of
nonreading processors (after the read step of Pi). Notice that by invariant 2(a) it
holds that |Sp| ≤ n− t because before Pi read its input, there were fewer than n− t
nonreading processors. The scheduler will do one of the following:

1. If |Sp| < n − t, then the resulting configuration is R`+1 (no additional acti-
vations). In this case, the second invariant holds (R`+1 is in the main phase
and |Sp| < n− t).

2. If |Sp| = n − t, then the scheduler will activate the processors in Sp (say, in
round-robin order) until exactly one of them gives an output. By Definition
1, such an output will be given within a finite expected number of steps. The
resulting configuration will be R`+1. This configuration adheres to the second
invariant as now there are only n− t− 1 nonreading processors.

When examining R`+1 we see there are now two possibilities. The first is that the
outputs given were inconsistent, in which case the algorithm has erred. The second
possibility is that R`+1 is consistent. The configurations R`+1 and R′`+1 are input
equal. R`+1 is a son of R` in the DAG. Since we assumed R` is non-t-founded due to
(B), this implies that R`+1 is non-t-founded.

The other t-advancement possible is that Pi’s step in advancing from R` to R′`+1

is writing an output. In this case the system must be in the concluding phase, and
due to the second invariant we know that n − t processors have already terminated.
By Definition 1, since A is assumed to be a t-resilient algorithm, Pi will write an
output, with probability 1, after being scheduled a finite number of times. Thus,
the scheduler will activate Pi until it writes an output. In this case, the resulting
configuration is the desired R`+1. Again, if R`+1 is inconsistent the algorithm has
erred and otherwise, R`+1 is non-t-founded (since all the t-advancements made by
Pi in this case are input equal and thus non-t-founded). As the system was in the
concluding phase and the second invariant was true before the advancement, it will
also hold after the advancement.

Hence, in all cases, within a finite expected number of steps the scheduler can
force the system to reach R`+1 without failing any processor. The system is now at
a non-t-founded node, R`+1. The argument used for R` applies to R`+1 as well, and
can therefore be repeated.

Since the depth of the DAG is finite, after a finite number of such t-advancements
we will reach a node Rf that is non-t-founded due either to possibility (A) or to the
fact that it is a complete leaf which is not in T (〈I1, . . . , Ik, O1, . . . , Ok〉 66∈ T).

In the main phase, a node v cannot be non-t-founded due to possibility (A): from
the second invariant, less than n − t processors are nonreading. Therefore, at least
t+ 1 processors can read an additional input and thus v must have at least α non-t-
equivalent sons. (Remember that α ≤ t+1 and that due to Definition 4 an additional
input preserves consistency.)

If Rf is a completed leaf not in T , then the algorithm has erred, contradicting the
assumption that algorithm A implements T without erring. Otherwise, Rf is non-t-
founded due to possibility (A). This means that Rf has less than α non-t-equivalent
sons. As α ≤ t + 1, we know that at most t processors can be associated with a
(consistent) t-advancement from Rf (Definitions 11 and 7). Denote the set of these
processors by Cf .

For every output that is consistent for Rf (Definition 4) there exists a consistent

368 BENNY CHOR AND LEE-BATH NELSON

son of Rf which includes this output. Therefore, in the concluding phase when it
holds that n − t processors have already terminated (due to the second invariant),
the fact that there are fewer than α processors able to make a t-advancement implies
that the number of these processors is smaller than the number of active processors
(α = min (t + 1 , n − |Bk|), Definition 11). It follows that there exists at least one
additional active processor (not in Cf) which cannot give a consistent output. Our
adversary scheduler will activate all the processors not in Cf . Since the algorithm is
t-resilient, one of the remaining (activated) processors must give an output within a
finite expected number of steps. However, this processor’s output is not consistent
(the processor is not in Cf). This means that with this output, the system is at an
inconsistent state and therefore (by Definition 4) there is an input that the scheduler
can give the system for which it will err.

We have shown that the scheduler can force the system to advance along a se-
quence of non-t-founded nodes, and hence we have arrived at a contradiction in every
possible case. This proves the ⇒ direction of the theorem.

Now we will prove the⇐ direction; namely, if the root of the DAG corresponding
to T is t-founded, then T is a t-resilient task. This is proven by presenting a generic
t-resilient algorithm which implements T . In this algorithm, every processor will
publish (in a shared register that the rest of the processors can read) its input as
soon as it reads it and will also publish the output that it has chosen just before
writing it in the output register. The frame of this algorithm will be a walk along a
path in the DAG starting at its root, proceeding according to the inputs revealed and
the produced outputs, and ending at a legal leaf that represents a full 2k-tuple in T .
This walk is executed commonly by all processors, and the way to achieve this is by
applying consensus to every move.

There is a certain difference between the use of the DAG in this direction and its
use in the previous direction. While in the first direction the current node represented
the system’s current state, in this direction the node represents a state the system
“aspires” to. If a certain node, v, was agreed upon, it means that v represents input
values that were published. However, not all the output values in v have necessarily
been decided upon (and published) because they could belong to dormant processors.
Such outputs will be decided upon and published by the respective processors when
they are activated.

The algorithm we present uses as a subroutine an extended consensus proto-
col. This protocol allows consensus among processors when some of the participating
processors do not offer a value but rather adopt one of the values offered by other
processors. Processors that do not suggest values for the extended consensus protocol
are called passive processors while processors that do offer a value for the extended
consensus protocol are called agile processors. Given an n− 1 resilient consensus pro-
tocol, and allowing β passive processors, we can build a n− 1− β-resilient extended
consensus protocol as follows:

• An agile processor will publish its offered value in a shared register and then
proceed to execute the wait-free consensus protocol.
• A passive processor will wait until some agile processor suggests a value, adopt

that value as its own, and then join the execution of the wait-free consensus
protocol.

The algorithm will be carried out in “virtual rounds.” In round r+1 each processor
starts with node vr, the t-founded node (in the DAG) that was agreed upon in round
r (via consensus). Each processor then proceeds to pick, according to the DAG, a

SOLVABILITY OF FINITE INTERACTIVE TASKS 369

son of vr representing a 2k-tuple, Si+1. This node, ur, is a t-subsequent of vr, is
t-founded, and includes the processor’s new input, if such an input is available (i.e.,
Pi has not yet published its jth input even though it has given its (j − 1)st output).
If the system is in the concluding phase and no such node, ur, exists, the processor
P will look for a t-founded son of vr that includes an additional output for P . The
processor proposes the node it has found to the rest of the processors to agree upon.
Then, the processors run consensus to agree on one of the proposed options. Since
the option includes outputs (not necessarily outputs of the originating processor, i.e.,
the one whose option was chosen), each processor now checks the agreed node to see
if it is required to output a value. Each of the relevant processors will output its
required value immediately after receiving the result, vr+1, of the (r+ 1)st consensus.
The processor then proceeds to the next virtual round. Formally the algorithm for
processor Pi is as follows:

INIT:
vr ← root(DAG). /* vr is the current node in virtual round number r */
a← 1 /* a holds Pi’s current stage */
r ← 1 /* round counter */
ini ← input

VIRTUAL ROUNDS:
do while a ≤ k

denote vr’s components by < I1
A1

, . . . , IkAk , O
1
B1

, . . . , OkBk >= vr
if there exists ur =< I1

A′1
, . . . , IkA′

k
, O1

B′1
, . . . , OkB′

k
> s.t.

ur is a son of vr and ur is t-founded
and

(either
IaA′a = IaAa ∪ {ini} /* main or concluding phase - ini is Pi’s input */

and A′j = Aj j 6= a
and Bj ⊆ B′j ∀j

or
B′a = Ba ∪ {i} /* concluding phase - only another output */
and B′j = Bj j 6= a
and A′j = Aj ∀j

)
then vr+1 ← extended-consensus(ur, r)
else vr+1 ← extended-consensus(passive, r)

if i ∈ B′a /* an additional output of Pi was decided upon */
then

output(Oa{i}) /* output the corresponding value */

if a = k
then terminate

a← a+ 1
ini ← input

r ← r + 1
end /* of while */

The different consensus rounds are separate and use separate sets of registers.
We will use a multivalue consensus protocol with the addition of “passive inputs”

370 BENNY CHOR AND LEE-BATH NELSON

(belonging to passive processors). The requirement from the protocol is that its
output will be the input of one of the agile processors. Any known wait-free protocol
for consensus (e.g., [1, 2, 9, 26]) can easily be modified to comply with this requirement.
Notice that if up to β processors can be passive in a given round, then the modified
consensus protocol is (n−β− 1)-resilient. In the concluding phase, it is possible that
the processors that have missing inputs are faulty, and so every remaining processor
must be able to advance on its own (without waiting for values offered by other
processors).

Let us now prove that the given algorithm is correct and t-resilient. According
to the remark from the end of section 4, following a t-founded path leads to a leaf
in T . This means (by the definition of a t-founded leaf in Definition 11) that the
outputs given by the system match the inputs it received, according to the task T .
Hence the algorithm always gives correct outputs for any legal input. As every call
to the consensus subroutine takes bounded expected time, and the other operations
are finite, within bounded expected time the algorithm will terminate. Therefore the
algorithm is correct.

To show t-resiliency we will show that the system can always advance (even if t
processors have failed, as long as some processor is active), i.e., there will always be
an agile processor that can find a ur as required. Notice that vr is always t-founded
(the root is t-founded by the assumption, and only t-founded nodes are chosen by
the algorithm during the execution). Also, for a given node, the number of passive
processors is less than n− α as at least α processors can find a ur as required. Now
let us show that there are indeed enough agile processors. We will do this for two
different cases, according to the phase that the system is in:

• In the main phase and in the concluding phase when less than n−t processors
have terminated, α = t+ 1. Therefore, even if t processors have failed, there
exists at least one additional processor that can make a t-advancement from
this t-founded node. This processor will be agile in the consensus round for
vr and thus the extended consensus will be computed (in bounded expected
time) in this round.
• In the concluding phase when n − t processors have already terminated, α

equals the number of not-yet-terminated processors. Therefore, every proces-
sor that has not yet terminated and will be activated can find a ur as required.
Such a processor will be agile in the respective extended consensus round.

Altogether, we have shown that for every node on the path there are enough
processors that can make a t-advancement from it. Thus, the algorithm is t-resilient,
as claimed.

6. Characterization for message passing. In this section we will examine
the resiliency of interactive tasks in the message passing model, where it is possible to
perform t-resilient consensus only for t ≤ ⌊n−1

2

⌋
. In the terminating message passing

model a processor terminates after giving its final output. After n− t processors have
terminated, the remaining t processors could be disconnected from each other by
the scheduler, and thus will have no way of “coordinating” amongst themselves. The
disconnection is possible since all t processors might be faulty and so no processor can
wait for a message from another processor. (Recall that in an asynchronous system
the processors have no way of distinguishing between a slow and a faulty processor.)
Each of the t slow processors will know what the fast n−t processors have decided but
will have no way of knowing what any one of the other slow processors has decided.
In order for a task to be t-resilient, the slow processors must be able to decide on their

SOLVABILITY OF FINITE INTERACTIVE TASKS 371

value in a “consistent” manner, each without knowing the others’ decisions. Notice
that a particularly slow processor may be at the beginning of its work, i.e., it has
not yet read even its first input. Such a processor must be able to function correctly
through all the stages of the task. Following these considerations, we focus on nodes
in the DAG, D(T), that have at least n − t outputs of the final stage revealed. We
call these nodes semiterminal nodes. In these nodes each additional input or output
is considered a t-advancement (by Definition 6). Notice that for semiterminal nodes
we require at least n − t outputs of the final stage, while in the concluding phase we
required only n− t inputs of the final stage.

Definition 12. A tree Ri that is a subgraph of D(T) will be called terminal for
Pi if the following conditions hold:

• The root of Ri, v = [S,Q] where S = 〈A1 , . . . , Ak , B1 , . . . , Bk〉 and
Q = 〈I1

A1
, . . . , IkAk , O

1
B1
, . . . , OkBk〉, is a semiterminal node (|Bk| ≥ n − t)

such that i 6∈ Bk. (Processor Pi has not yet terminated.)
• Let ` denote the last stage for which Pi gave an output. When we look at the

inputs and outputs for processor Pi, the following condition holds: For every
input for the (` + 1)st stage there is an output for the (` + 1)st stage such
that for every input for the (`+ 2)nd stage there is . . . for every input for the
kth stage there is an output for the kth stage such that the t-advancements
corresponding to these inputs and outputs form a path in Ri. In the case that
the (` + 1)st input is already given in v, then the condition starts with the
existence of an output for the (`+ 1)st stage such that for every input for the
(`+ 2)nd stage, etc.

Intuitively, the tree Ri represents a possible strategy for Pi to react to every
possible sequence of inputs presented to it, when the system is at the state represented
by the root, v. The next definition captures the requirement that terminal trees of
different processors should be compatible.

Definition 13. Let v be a semiterminal node and let {i1, . . . , ij} = {1, . . . , n}\Bk
(i.e., the set of processors that have not yet terminated in v). Let Ri1 , . . . , Rij be
j terminal trees for processors Pi1 , . . . , Pij , respectively. These trees are called T-
compatible if the following conditions hold:

• Ri1 , . . . , Rij have the same semiterminal root v:
v = [〈A1 , . . . , Ak , B1 , . . . , Bk〉, 〈I1

A1
, . . . , IkAk , O

1
B1

, . . . , OkBk〉].
• For every 〈I1, . . . , Ik〉 ∈ IN(T) which is an extension of 〈I1

A1
, . . . , IkAk〉, the

outputs produced along the set of paths (one path per tree) that correspond
to this input give a full output vector 〈O1, . . . , Ok〉 such that 〈I1, . . . , Ik,
O1, . . . , Ok〉 ∈ T and 〈O1, . . . , Ok〉 is an extension of 〈O1

B1
, . . . , OkBk〉.

We use these definitions to describe our “building block,” t-validity. It will play
the role that t-foundedness played in the shared memory model (section 5).

Definition 14. Let

v = [〈A1 , . . . , Ak , B1 , . . . , Bk〉, 〈I1
A1

, . . . , IkAk , O
1
B1

, . . . , OkBk〉]

be a node in the DAG D(T), and let α = min (t + 1 , n − |Bk|). We say that v is
t-valid relative to the task T when

• The node v is a leaf (v = [〈{1, . . . , n}1 , . . . , {1, . . . , n}2k〉, 〈I1, . . . , Ik,
O1, . . . , Ok〉]), and 〈I1, . . . , Ik, O1, . . . , Ok〉 ∈ T ;

or
• The node v is an internal node (not a leaf) and the following conditions hold:

1. v has at least α non-t-equivalent sons.

372 BENNY CHOR AND LEE-BATH NELSON

2. For every t-subsequent, u, of v there exists an input-equal node u′ that
is a t-valid son of v.

3. If v is semiterminal, then for every i 66∈ Bk there exists a terminal tree,
Ri, for Pi, such that the trees {Ri}i66∈Bk are T -compatible. We will call
one of these sets, say, the first in canonical order that complies with the
above condition, the chosen set for v, denoted by ch(v).

The characterization theorem is formulated in the same way as Theorem 1, but
the different definitions of t-foundedness versus t-validity make the difference between
the shared memory and the message passing models. The additional requirement (3)
explains why certain tasks, solvable in the shared memory model, cannot be solved
in the message passing model.

Theorem 2. Consider the terminating message passing model, and let t satisfy
t ≤ ⌊n−1

2

⌋
. An interactivek task, T , is t-resilient iff the root of its corresponding DAG

is t-valid relative to T .
Proof. The proof follows the proof of Theorem 1 closely. The differences between

these proofs are due to the nature of the communication model. For the ⇒ direction,
we use an algorithm which, starting at a t-valid node, proceeds along a path of t-valid
nodes until a semiterminal node is reached. The algorithm uses an extended consensus
subroutine (see proof of Theorem 1) which guarantees that all the processors agree on
the same nodes along the path. In the message passing model, the resiliency of the
extended consensus protocol is min(bn−1

2 c, n− 1− β), where β is an upper bound on
the number of passive processors (processors that take part in the consensus protocol
but do not suggest a value). In our algorithm, no processor terminates before a semi-
terminal node is reached. That is, no processor writes its final (kth) output before a
node which includes the final outputs of at least n−t processors has been agreed upon.
This precaution guarantees that at least n − t processors remain active throughout
the main phase of the algorithm. This number is large enough to enable each round of
the extended consensus algorithm to terminate, as there is at least one agile processor
in each round, and at least bn+1

2 c processors take part in the sequence of consensus
executions until a semiterminal node is reached and agreed upon.

We associate with every t-valid semiterminal node, v, its chosen set, ch(v) (the
existence of this set follows from Definition 14). Once the system reaches and agrees
upon such a semiterminal node, all processors Pi with i ∈ Bk can produce their final
output and terminate. Each remaining processor can now produce a local output as
a response to every new local input it receives by proceeding along the corresponding
path in its tree. This requires no communication and coordination with the remaining
processors. The compatibility of the terminal trees guarantees that this process leads
to a leaf satisfying the input-output relations of the task T . In order to simplify the
algorithm, we will use a pruned DAG, denoted by D′(T). This DAG will be the same
as D(T) for all nodes that are not semiterminal. For semiterminal nodes, D′(T) will
include only their chosen set. That is, for semiterminal node v, D′(T) will include
only ch(v) (and not other alternative advancements from v). The algorithm will run
on D′(T) rather than D(T).

Formally, the algorithm for Pi is as follows.

INIT:
vr ← root(D′(T)). /* vr is the current node in virtual round number r */
a← 1 /* a holds Pi’s current stage */
r ← 1 /* round counter */
ini ← input

SOLVABILITY OF FINITE INTERACTIVE TASKS 373

VIRTUAL ROUNDS:
do while a ≤ k

denote vr’s components by < I1
A1

, . . . , IkAk , O
1
B1

, . . . , OkBk >= vr
if there exists ur =< I1

A′1
, . . . , IkA′

k
, O1

B′1
, . . . , OkB′

k
> s.t.

ur is a son of vr and ur is t-valid
and

(either
IaA′a = IaAa ∪ {ini} /* main phase - ini is the new input */

and A′j = Aj for all j, j 6= a
and Bj ⊆ B′j for all j

or
B′a = Ba ∪ {i} /* concluding phase - only another output */
and B′j = Bj for all j, j 6= a
and A′j = Aj for all j

)
then if |Bk| < n− t/* consensus is possible until n− t processors terminate */

then vr+1 ← extended− consensus(ur, r)
else vr+1 ← ur /* no consensus - proceed along terminal tree */

else vr+1 ← extended− consensus(passive, r) /* this case is only possible
in the main phase */

if i ∈ B′a /* an additional output of Pi was decided upon */
then (if a < k

then
output(Oa{i}) /* output the corresponding value */

a← a+ 1
ini ← input

elseif |B′k| ≥ n− t
then

output(Oa{i}) /* output the corresponding value */

terminate
r ← r + 1

end /* of while */

The consensus protocol used by the extended consensus must be
⌊
n−1

2

⌋
-resilient

and terminating. The different consensus rounds are separate and use separate mes-
sage numbers. (Any consensus protocol that complies with these requirements can be
used as a subroutine. Examples of such consensus protocols are [7, 6]). Notice that
passive processors are counted for the number of processors participating in the con-
sensus as they can “help out.” However, at least one agile processor must participate
in the consensus (to suggest the next value). There will always be such a processor for
the same reasons as in the shared memory model (in the main phase at least α = t+1
processors can find the required ur as the current node is always t-valid, and in the
concluding phase there is no need for consensus).

The ⇐ direction is also similar to the shared memory case. As in Claim 1, we
can assume that the algorithms used are immediate input algorithms. (The proof
for the message passing model is identical to that of the shared memory case.) We
present a scheduler that forces the system to always remain in a non-t-valid node. By
Definition 14, the possible cases at node v (which is non-t-valid) are

374 BENNY CHOR AND LEE-BATH NELSON

0. v is a non-t-valid leaf;
1. v has less than α non-t-equivalent sons;
2. v has a t-subsequent, v1, such that for every u′ that is input-equal to v1 and

is a son of v, it holds that u′ is non-t-valid;
3. v is semiterminal and one of the following is true:

(a) There exists i 6∈ Bk for which there is no terminal tree rooted at v.
(b) Every collection of terminal trees {Ri}i6∈Bk rooted at v is not compatible.

As in the shared memory model, let us assume toward a contradiction that there
exists a t-resilient immediate-input algorithm for T . We will start at the root of the
DAG and the processors will follow this algorithm. As long as the node representing
the system’s current state, v, is non-t-valid due to possibility 2, the scheduler forces
the processors to advance to a state represented by u′ that is input-equal to v1. This
will continue until we reach a node vf that is non-t-valid either due to possibility 1 or
possibility 3 or because vf is a non-t-valid leaf. If vf is non-t-valid due to possibility
1 or is a leaf, then for exactly the same reasons as in the proof for the shared memory
model we have shown a contradiction.

It remains to show that the other alternative (non-t-validity due to possibility 3)
also leads to contradiction. The first case is when there exists an i for which there
is no terminal tree. By Definition 12, this means that there exists a strategy for the
scheduler (supplying inputs) such that every strategy for the processor Pi leads to a
partial 2k-tuple which is not a partial vector of any full 2k-tuple in T . This contradicts
the correctness of the algorithm.

The second case is when each selection of terminal trees is not compatible (i.e.,
every set of terminal trees, one for each active processor, is incompatible). In this case
the scheduler activates these active processors and withholds all messages sent between
them. Now each one must act on its own. Let us now show that there is a strategy for
the scheduler which causes the processors to err with positive probability. In order
to do that we will construct one set of terminal trees for all the remaining active
processors, using a “roll-back” technique. The construction starts with the system
at the state in which it arrived at the semiterminal node v. Now for every processor
Pi where i 6∈ Bk, the tree Ti is built recursively, as follows: For every node, u, in
the tree (starting the recursion at v), the scheduler determines the son by presenting
the processor Pi with a legal input at u and the grandson by activating Pi until it
produces an output (which must happen within bounded time, by the requirements
of t-resilient algorithms). The process is repeated in the next recursion level, with
respect to the grandson. To determine the continuation from u with respect to other
inputs, the scheduler “rolls back” the system to the same state it was in u and then
supplies another input. This process is done with respect to every legal input for Pi
at u. The end of the recursion along each path is when Pi supplies its last (kth)
output.

This process builds a set of terminal trees. Every branch along each tree represents
a strategy for the corresponding processor, which is used with positive probability.
Probabilities of different processors are independent, since their random inputs are
independent, and the processors cannot communicate. By our assumption, the termi-
nal trees are incompatible. Therefore, there exist input sequences (one per processor)
such that the output sequences resulting by following the corresponding trees yield a
full input-output 2k-tuple that is not in T . The scheduler will supply these inputs and
then the processors will give incorrect answers (due to the definition of incompatible
terminal trees) with positive probability. This contradicts the assumption that the

SOLVABILITY OF FINITE INTERACTIVE TASKS 375

algorithm implements T with no error. Therefore the condition in the theorem is
necessary.

7. Concluding remarks. Denote by REF the class of randomized error-free
protocols and by DC the class of deterministic protocols with access to consensus.
Since consensus has wait-free REF solution, it follows that any finite interactive task
solvable in the DC model is also solvable in the REF model. The proof of Theorems
1 (for the shared memory model) and 2 (for the message passing model) implies that
any finite interactive task solvable in the REF model is also solvable in the DC model.
Stated formally, we have the following theorem.

Theorem 3. Consider the following two families of protocols:
• deterministic protocols with access to consensus (DC),
• randomized error-free protocols (REF).

An interactivek task T is t-resilient in the DC family iff it is t-resilient in the REF
family, where the range of t is

• 0 ≤ t ≤ n− 1 in the terminating shared memory model,
• 0 ≤ t ≤ ⌊n−1

2

⌋
in the terminating message passing model.

Results concerning the structure of the “resiliency hierarchy” in both the shared
memory and the message passing models can easily be inferred from our characteri-
zations. They extend similar results for decision tasks, proven by Chor and Moscovici
in [13]. Some of these implications are as follows:

• Shared memory is strictly more powerful than message passing for the same

resiliency (except at the two lowest resiliencies): IMPt
⊂
6= ISMt (1 < t < n),

while IMP0 = ISM0 and IMP1 = ISM1.
• With respect to difference resiliencies, message passing and shared memory,

namely IMPt and ISMt+i, are incompatible for 0 < i < n− t. (The results
in [13] already prove this.)
• In the range of resiliency where network partition is not possible (t ≤ ⌊n−1

2

⌋
),

nonterminating protocols in the shared memory and message passing models
have the same capabilities: namely, nonterminating IMPt = nonterminating
ISMt = ISMt. For t in the range n

2 ≤ t ≤ n − 1, nonterminating ISMt =
ISMt.

7.1. Related work. Bar-Noy and Dolev [6], and consequently Attiya, Bar-Noy
and Dolev [4], have investigated emulation strategies of shared memory in nontermi-
nating message passing systems. One consequence of their work is that ISMn−1 ⊆
nonterminating IMPbn−1

2 c. In fact, their construction yields the stronger result

ISMbn−1
2 c ⊆ nonterminating IMPbn−1

2 c. However, no characterization can be de-

rived from their techniques. Also, it is not clear if their “local” approach can be
extended to yield the equality between these classes (which does follow from our
characterization).

Plotkin [23] and Herlihy [17] have studied the implementation of concurrent ob-
jects in the shared memory model. They have shown that every sequential system
has a concurrent wait-free implementation, given access to a wait-free consensus sub-
routine. We note that our results give a natural way to implement finite versions of
concurrent objects, and so they shed light on the use of randomization for wait-free
concurrent objects. In fact, the concurrent objects in [17] refer to t = n− 1 (wait-free
objects) while interactive tasks can implement a wider range of fault-tolerance.

Taubenfeld, Katz, and Moran [28] and Taubenfeld and Moran [29] have studied a
weaker type of crash failures—initial faults. In the initial faults model, each processor

376 BENNY CHOR AND LEE-BATH NELSON

either is initially crashed or remains active forever. Taubenfeld, Katz, and Moran
found necessary and sufficient conditions for solvability of distributed decision tasks
with respect to deterministic protocols in the initial fault message passing and shared
memory models. Surprisingly, the characterization is the same as the one for general
crash faults using randomized protocols [13]. Indeed, these equalities no longer remain
valid when interactive, rather than decision, tasks are considered. This is due to the
scheduler’s limited powers in the initial faults model. Therefore, it is not surprising
that there are interactive tasks that are t-resilient in the initial fault model but are not
t-resilient for general crash faults. As an example, consider the following interactive2

task: Inputs for both stages are all binary n-vectors. The value in each component
of the first output equals the sum of the first inputs over some subset S of size n− t
(the subset is not predetermined). The value in each component of the second output
equals the sum of the second inputs over the same subset S. It is easily seen that
this task is resilient to t initial faults but is not in ISMt since in ISMt the scheduler
can fail a previously active processor, thus leaving the second input unknown. This
confirms the intuition that initial faults alone are not sufficient to represent a realistic
fault model. (In the other direction, every task in ISMt can be solved in a system
with at most t crashes that can implement a consensus subroutine. Since consensus is
solvable deterministically in the initial faults model, this implies that ISMt is strictly
contained in the class of t initial faults.)

The modular way in which consensus is used implies that our characterization
is also a sufficient condition for t-resilience in deterministic systems augmented with
stronger mechanisms that make consensus possible, for example, the failure detectors
of Chandra and Toueg [10]. However, the question whether our conditions are also
necessary requires a closer look. For example, suppose one has at his possession an
accurate and reliable failure detector. If the detector announces that a processor has
crashed, then we are guaranteed this processor will not become active later. In such
a case we may be able to solve a natural modification of, for example, the parity
task. We assign ⊥ as the input of processors that crashed before supplying an input,
and the ⊥ values do not influence the output. Under such conditions, the parity is
no longer unsolvable in the presence of one failure. This example implies that exact
characterization of resilience in the presence of failure detectors strongly depends on
the specific properties of the detector.

Despite substantial differences, there is a common feature to the initial faults
model and the one with strong failure detectors. In both, the power of the adversary
is severely restricted, further than what is “needed” to enable deterministic consensus.
Any task which satisfies our characterization for t-resilience will also be t-resilient
in these restricted adversary models. But whether the condition is also necessary
crucially depends on the strength (or weakness) of the adversary.

Acknowledgments. Thanks to Hagit Attiya and Oded Goldriech for helpful dis-
cussions and suggestions and for their comments on earlier versions of this manuscript,
to Moshi Molcho for his help and support, and to the anonymous referees for helpful
comments.

REFERENCES

[1] J. Aspnes, Time- and Space-Efficient Randomized Consensus, J. Algorithms, 14 (1993), pp.
414–431.

[2] J. Aspnes and M. Herlihy, Fast randomized consensus using shared memory, J. Algorithms,
11 (1990), pp. 441–461.

SOLVABILITY OF FINITE INTERACTIVE TASKS 377

[3] J. Aspnes and O. Waarts, Randomized Consensus in Expected O(n log2 n) Operations per
Processor, SIAM J. Comp., 25 (1996), pp. 1024–1044.

[4] H. Attiya, A. Bar-Noy, and D. Dolev, Sharing memory robustly in message passing systems,
J. ACM, 42 (1995), pp. 124–142.

[5] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk, Renaming in an asyn-
chronous environment, J. ACM, 37 (1990), pp. 524–548.

[6] A. Bar-Noy and D. Dolev, A partial equivalence between shared-memory and message-
passing in an asynchronous fail-stop distributed environment, Math. Systems Theory, 26
(1993), pp. 21–39.

[7] M. Ben-Or, Another Advantage of Free Choice: Completely Asynchronous Agreement Pro-
tocols, in Proceedings of the 2nd Annual ACM Symposium on Principles of Distributed
Computing, 1983, pp. 27–30.

[8] E. Borowsky and E. Gafni, Generalized FLP Impossibility Result for t-Resilient Asyn-
chronous Computations, in Proceedings of the 25th Symposium on the Theory of Comput-
ing, 1993, pp. 91–100.

[9] G. Bracha and O. Rachman, Randomized Consensus in Expected O(n2 logn) Operations,
TR–671, Technion, Haifa, Israel, 1991.

[10] T. D. Chandra and S. Toueg, Unreliable failure detectors for reliable distributed systems,
J. ACM, 43 (1996), pp. 225–267.

[11] B. Chor, A. Israeli, and M. Li, Wait-Free Consensus Using Asynchronous Hardware, SIAM
J. Comput., 23 (1994), pp. 701–712; conference version in Proceedings of the 6th ACM
Symposium on Principles of Distributed Computing, 1987, pp. 86–97.

[12] B. Chor, M. Merritt, and D. Shmoys, Simple constant time consensus protocols in realistic
failure models, J. ACM, 36 (1989), pp. 591–614.

[13] B. Chor and L. Moscovici, Solvability in Asynchronous Environments, in Proceedings of the
30th Symposium on Foundations of Computer Science, 1989, pp. 422–427.

[14] B. Chor and L. Nelson, Resiliency of Interactive Distributed Tasks, in Proceedings of the
10th ACM Symposium on Principles of Distributed Computing, 1991, pp. 37–49.

[15] D. Dolev, Dwork C., and L. Stockmeyer, On the minimal synchronism needed for dis-
tributed consensus, J. ACM, 34 (1987), pp. 77–97.

[16] M. Fischer, N. Lynch, and M. Paterson, Impossibility of distriburted consensus with one
faulty process, J. ACM, 32 (1985), pp. 374–382.

[17] M. Herlihy, Wait-free synchronization, ACM Trans. Programming Languages Systems, 13
(1991), pp. 124–149.

[18] M. Herlihy and N. Shavit, The Asynchronous Computability Theorem for t-Resilient Tasks,
in Proceedings of the 25th Symposium on the Theory of Computing, 1993, pp. 111–120.

[19] L. Lamport, On interprocess communication, Distrib. Comput., 1 (1986), pp. 77–101.
[20] D. Lehmann and M. Rabin, On the Advantages of Free Choice: A Symmetric and Fully Dis-

tributed Solution to the Dining Philosophers Problem, in Proceedings of the 8th Principles
of Programming Languages, 1981, pp. 133–138.

[21] M. C. Loui and H. H. Abu-Amara, Memory requirements for agreement among unreliable
asynchronous processes, in Advances in Computing Research, JAI press, Greenwich, CT,
1987, pp. 163–183.

[22] S. Moran and Y. Wolfstahl, Extended impossibility results for asynchronous complete net-
works, Inform. Process. Lett., 26 (1987), pp. 145–151.

[23] S. Plotkin, Sticky Bits and the Universality of Consensus, in Proceedings of the 8th ACM
Symposium on Principles of Distributed Computing, 1989, pp. 159–176.

[24] M. Rabin, Randomized Byzantine Generals, in Proceedings of the 24th Symposium on Foun-
dations of Computer Science, 1983, pp. 403-409.

[25] M. Rabin, The choice coordination problem, Acta Inform., 17 (1984), pp. 121–134.
[26] M. Saks, N. Shavit, and H. Woll, Optimal Time Randomized Consensus—Making Resilient

Algorithms Fast in Practice, in Proceedings of the 2nd ACM Symposium on Discrete
Algorithms, 1991, pp. 351–362.

[27] M. Saks and F. Zaharoglou, Wait-Free k-set Agreement is Impossible: The Topology of
Public Knowledge, in Proceedings of 25th Symposium on the Theory of Computing, 1993,
pp. 111–120.

[28] G. Taubenfeld, S. Katz, and S. Moran, Initial failures in distributed computations, Internat.
J. Parallel Programming, 18 (1989), pp. 255–276.

[29] G. Taubenfeld and S. Moran, Possibility and impossibility results in a shared memory en-
vironment, Acta Inform., 33 (1996), pp. 1–20.

