
1529

Mol. Biol. Evol. 17(10):1529–1541. 2000
q 2000 by the Society for Molecular Biology and Evolution. ISSN: 0737-4038

Multiple Maxima of Likelihood in Phylogenetic Trees:
An Analytic Approach
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Maximum likelihood (ML) is a widely used criterion for selecting optimal evolutionary trees. However, the nature
of the likelihood surface for trees is still not sufficiently understood, especially with regard to the frequency of
multiple optima. Here, we initiate an analytic study for identifying sequences that generate multiple optima. We
concentrate on the problem of optimizing edge weights for a given tree or trees (as opposed to searching through
the space of all trees). We report a new approach to computing ML directly, which we have used to find large
families of sequences that have multiple optima, including sequences with a continuum of optimal points. Such
data sets are best supported by different (two or more) phylogenies that vary significantly in their timings of
evolutionary events. Some standard biological processes can lead to data with multiple optima, and consequently
the field needs further investigation. Our results imply that hill-climbing techniques as currently implemented in
various software packages cannot guarantee that one will find the global ML point, even if it is unique.

Introduction

Molecular data, and even complete genomes, are be-
ing sequenced at an increasing pace. This newly accu-
mulated information should make it possible to resolve
long-standing questions in evolution, such as reconstruc-
tion of the phylogenetic tree of placental mammals and
estimation of the times of species divergence (Waddell,
Okada, and Hasegawa 1999). The analysis of this data
flood requires sophisticated mathematical tools and algo-
rithmic techniques. The selection criteria of maximum
likelihood (ML) is one of the most widely used and ac-
cepted in phylogeny. In general, the likelihood surface may
be complex (Edwards 1972). We use analytic methods to
investigate the likelihood surface for phylogenetic trees,
and we demonstrate that it is indeed complicated. Even
‘‘biologically reasonable’’ sequence data can lead to a con-
tinuum of points, all attaining the same ML value.

ML on molecular sequence data uses a model of evo-
lution, which is typically a family of trees with n taxa at
their leaves, and a substitution model. The parameters of
the substitution model describe probabilities of changes in
character states (e.g., point mutations in DNA nucleotides).
Given a set of n observed sequences, the goal is to find
the best explanation for the data within the model space.
In our context, this usually means a weighted tree (where
the weights are parameters of the substitution model for
each edge) which maximizes the likelihood (the condition-
al probability under the model of generating the observed
sequences). There are two optimization problems related
to ML in phylogenetics. The first is to optimize the branch
(edge) lengths for a given tree or trees. The second is to
find the ML tree by searching in the tree space. This paper
deals with the first problem.
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Previous Work

The current application of ML for reconstructing evo-
lution is that of Felsenstein (1981) and has gained wide
acceptance (Barry and Hartigan 1987; Goldman 1990; Sai-
tou 1990; Swofford et al. 1996). The method is compu-
tationally intensive, but for tractable cases it is the method
of choice. Algorithmically, the likelihood is maximized
separately for each tree in the family (pruning is sometimes
possible). The weighted tree (or trees) with maximum val-
ue(s) is then reported. There is no known analytical solu-
tion or direct algorithm that optimizes the edge parameters
for a given tree (except for the simplest case of n 5 3 taxa
under a molecular clock, which was solved very recently
by Yang [2000]). Existing algorithms (Felsenstein 1995;
Swofford 1998) use an iterative hill-climbing approach.
For hill climbing to be guaranteed to find the maximum,
there must be a single local and global maximum in the
parameter space. Fukami and Tateno (1989), and subse-
quently Tillier (1994), have argued that for each tree, the
ML point is indeed unique. However, Steel (1994) showed
that their proof was erroneous and constructed a surpris-
ingly simple counterexample (using sequences with just
two sites and four taxa {1,2,3,4}).

Steel’s (1994) work clearly demonstrates that caution
should be exercised when ML solutions are sought. How-
ever, the two ML points of his counterexample require a
substitution probability of p 5 1/2 on two edges, so they
represent points on the boundary of saturation for the un-
derlying evolutionary model. Furthermore, these two ML
points are on the tree T 5 (12)(34), which does not max-
imize the likelihood function across all trees. (The tree T
5 (13)(24) has a unique ML point that attains higher like-
lihood than each of the two ML points on T 5 (12)(34).)
Steel recommended a numerical examination of more bi-
ologically reasonable data sets.

In their recent simulation study, Rogers and Swofford
(1999) asked the question ‘‘Is it generally true that the trees
of highest maximum likelihood for a given data set have
only a single optimum?’’ They simulated data according
to a variety of models. For each set of simulated data, they
applied the numerical ML hill-climbing package of
PAUP* (Swofford 1998) from 100 random starting points
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FIG. 1.—The tree T9 5 (12)(34) and its edges.

and recorded the number of distinct ML points reached.
Although they did locate a small proportion of ‘‘true’’
(generating) trees that had more than one local maximum,
in each case one of the ML points was the unique global
optimum. They concluded that ‘‘the true tree rarely had
multiple likelihood maxima.’’ Indeed, given the continuity
of the likelihood function and the results of Goldman
(1993), Yang (1994), and Rogers (1997) that the ML point
is unique if the data fit a tree T exactly, it is probable that
when the data are ‘‘close’’ to the exact fit on T, the ML
point on T should be unique and global (see the Proofs
section for further discussion on this point).

Our Work

In this paper, we seek to investigate this problem
from a different perspective, to analytically study the
likelihood surface for sequence data that is not neces-
sarily ‘‘close’’ to a tree. Can we find data sets for which
there are two (or many) global ML points? This will
help us to gain a better understanding of the shape of
the likelihood surface. The hope is that this approach
would ultimately help in identifying cases in which there
is a unique global and local ML point (so the traditional
hill-climbing methods are adequate), as well as in iden-
tifying cases in which there is more than a single local
maximum, such that alternative methods and models
may be needed.

We take a first step in this direction by proving that
multiple ML points do occur over a large range of se-
quence data. We employ Hadamard conjugation (Hendy
and Penny 1993; Hendy, Penny, and Steel 1994), con-
strained optimization, and numerical methods in con-
junction with symbolic mathematical software tools. We
show that even for the simplest model of evolution (a
symmetric Poisson model with 2-character states), with
just four taxa, the best tree can have more than a single
global ML point. For some special subfamilies, there are
even continuous ML curves. Furthermore, these curves
can intersect the parameter space in separate, discon-
nected components (so it is not possible to go continu-
ously between some pairs of points along the ML
curve).

The remainder of this paper is organized as fol-
lows: The Background and Definitions section contains
background, definitions, and notations. In the Results
and Discussion section, we describe our main results,
illustrate them graphically, and discuss them. Proofs and
relevant mathematical background are given in the
Methods section. In the Hadamard Conjugate and the
Likelihood Function section, we explain the Hadamard
conjugate and derive a number of important lemma’s
that set up the framework for our analytic results. These
results are rigorously proved in the Proofs section. Fi-
nally, the Conclusions section presents several implica-
tions of this work and points out some directions for
further research.

Background and Definitions

In this section, we briefly describe the ML selection
criteria as usually implemented in phylogenetic analysis.

The goal of ML is to find the weighted evolutionary tree
(or trees) which is most likely to have produced the
observed sequence data. To make this notion meaning-
ful, we must have an underlying substitution model for
the process of point mutation. Then, we seek the tree(s)
T, together with the edge probabilities pe (or weights)
which maximize L, the likelihood of the data. The ML
criterion is usually applied to 4-state (DNA and RNA
nucleotide) or 20-state (protein amino acid) sequences.
However, much understanding can be gained by apply-
ing the criteria to the simpler case of just 2-state char-
acters, x and y.

NOTATION 1. We denote by n the number of spe-
cies (or taxa), and by c the length of the observed se-
quences. We use boldface to denote vectors (e.g., P, q,
s, 0). The edge set of a tree T is denoted by E(T). Sum-
mations over subsets, like Sd, are over all subsets d of
{1, . . . , n 2 1}, except in cases that explicitly indicate
a different range.

Our analysis uses the symmetric Poisson model,
where for each edge e of a tree T, we have a corre-
sponding probability pe (#1/2) that the character states
at the two incident vertices of e differ, and this proba-
bility is independent of the state at the initial vertex (the
Neyman (1971) two-state model). In this symmetric
case, it is readily seen that pe is independent of the po-
sition of the root, so in our analysis we will regard the
trees T as unrooted.

We now introduce a notation that we will use for
labeling the edges of unrooted binary trees. This nota-
tion greatly simplifies the use of the Hadamard conju-
gate (see Hadamard Conjugate and the Likelihood
Function), which is a central tool in our analysis. (For
simplicity, we use four taxa, but the definitions extend
to any n.) Suppose the four species, 1,2,3, and 4, are
represented by the leaves of the tree T9. A split of the
species is any partition of {1,2,3,4} into two disjoint
subsets. We will identify each split by the subset which
does not contain 4 (in general, n), so that, for example,
the split {{1,2}, {3,4}} is identified by the subset {1,2}.
Each edge e of T induces a split of the taxa, namely,
the two sets of leaves on the two components of T re-
sulting from the deletion of e. Hence, the central edge
of the tree T9 5 (12)(34) in the brackets notation induces
the split identified by the subset {1,2}. For brevity, we
will label this edge e12, as shorthand for e{1,2}. Thus,
E(T9) 5 {e1, e2, e12, e3, e123} (see fig. 1).

For a tree T, let be the edge proba-p 5 [p ]e e∈E(T)

bilities. Let c 5 [c(1), c(2), c(3), . . . , c(c)] ∈ {x, y}n

3 c be the observed sequences of length c over n taxa.
The likelihood of observing c, given the tree T and the
edge probabilities p, L(c z T, p) has the form
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c

L(c z T, p) 5 m(p , c , a ), (1)P O P e i i
n22i51 a∈{x,y} e∈E(T)

where a ranges over all combinations of assigning char-
acters states (x or y) to the n 2 2 internal nodes of T.
This notion of ML is termed the maximum average av-
erage likelihood in Steel and Penny (2000). Each m( pe,
ci, ai) is either pe or (1 2 pe), depending on whether in
the ith site of c and a the two endpoints of e are as-
signed different character states (m( pe, ci, ai) 5 pe) or
the same character states (m( pe, ci, ai) 5 1 2 pe). See
Felsenstein (1981), Steel (1994), and Tuffley and Steel
(1997) for details.

The ML solution(s) for a specific tree T is the point
(or points) in the edge space p 5 [pe]e∈E(T) (where 0 #
pe # 1/2) that maximizes the expression L(c z T,p). The
global ML solution(s) is the pair (or pairs) (T,p) maxi-
mizing the likelihood over all trees T of n leaves and
all edge probabilities p.

It is not hard to see that interchanging any two
columns of c does not change the likelihood in equation
(1). It is thus convenient to ‘‘summarize’’ the observed
data c by its observed sequence spectrum, ŝ. This spec-
trum simply counts how many sites share any specific
pattern. Under a fully symmetric model, the probability
of a pattern is equal to that of its complement (where
all x and y are interchanged). We make the same con-
ventions about indexing the patterns obtained in the se-
quences as we did for labeling the edges of a tree T. For
example, consider the case n 5 4 with species labeled
1, 2, 3, and 4. We identify a site pattern by the subset
of species {1, 2, 3} whose character at that site is dif-
ferent from that of species 4. In general, for every a #
{1, . . . , n 2 1}, an a-split pattern is a pattern where
all taxa in the subset a have one character (x or y), and
the taxa in the complement subset have the second char-
acter (there are two such patterns). The value ŝa equals
the number of times that a-split patterns appear in the
data. If n 5 4, then there are 23 5 8 possible patterns,
indexed by the subsets of {1, 2, 3}, and ŝ 5 [ŝ0, ŝ1, ŝ2,
ŝ12, ŝ3, ŝ13, ŝ23, ŝ123] (e.g., ŝ0 counts the constant patterns

   x y

   x y
, ,   

x y   
x y   

while

   x y

   y x
, ,   

x y   
y x   

are counted by ŝ13).
Given a tree T with n leaves and edge probabilities

p 5 [ pe]e∈E(T) (0 # pe # 1/2), the probability of gen-
erating an a-split pattern (a # {1, . . . , n 2 1}) is well

defined (and equal for all sites). Denote this probability
by ŝa 5 Pg(a 2 split z T,p). Using the same indexing
scheme as above, we define the expected sequence spec-
trum s 5 [sa]a#{1, . . . ,n 2 1}. Having this spectrum at hand
greatly facilitates the calculation and analysis of the like-
lihood, since the likelihood of observing ŝ given s is

ŝ sa ˆaL(ŝ z s) 5 Pr(a-split z s) 5 (2)P P s .a
a#{1,...,n21} s .0ˆa

DEFINITION 1. Let T be a tree with n leaves. The edge
length spectrum q 5 [qa]a#{1, . . . ,n 2 1} of T is the fol-
lowing 2n 2 1 dimensional vector:

 1
2 ln(1 2 2p )e2

if e ∈ E(T) induces the split a,
 1q 5a ln(1 2 2p )O e2e∈E(T)

if a 5 ø,
0 otherwise.

In the two-state model, pe is the probability of having
an odd (1, 3, 5, . . . ) number of substitutions per site
across the edge e. If the underlying substitution model
is a symmetric Poisson process, then qe has a natural
meaning as the expected number of substitutions per site
across e equals qe 5 21/2 ln(1 2 2pe). Measuring the
edges by qe, we get an additive measure on the tree
(since expected values are additive). When drawing
weighted trees, we usually refer to qe as the length of
the edge e. Elsewhere, we refer to qe as the weight of
the edge e. If for some e∈E(T), pe 5 0.5, then qe is ill
defined (1`). This motivates us to restrict ourselves to
the realistic cases where pe , 0.5 (so qe is finite) for all
edges e of T.

Results and Discussion

Here, we describe several families of sequence data
for which the best ML tree has multiple ML solutions.
For simplicity, all our examples have just four taxa, and
most of them have rather short sequences. However, the
same phenomena are easily generalized to larger num-
bers of taxa and to longer sequences.

Main Results

THEOREM 1. The following three observed se-
quence spectra yield a continuum of ML points on the
tree (12)(34):

ŝ 5 [7, 0, 0, 1, 0, 1, 1, 0],(A)

ŝ 5 [14, 0, 0, 3, 0, 2, 1, 0],(B)

ŝ 5 [10, 2, 2, 4, 0, 1, 1, 0].(C)

All three of these data sets have closed-form ML solu-
tions. Furthermore, the ML points for data set (B) con-
sist of two disconnected regions of edge weights on the
tree (12)(34).
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Table 1
Three Data Sets (A, B, and C) that Yield a Continuum of Maximum-Likelihood Trees

ŝ 5 [7, 0, 0, 1, 0, 1, 1, 0]
Observed Data (A)

ŝ 5 [14, 0, 0, 3, 0, 2, 1, 0]
Observed Data (B)

ŝ 5 [10, 2, 2, 4, 0, 1, 1, 0]
Observed Data (C)

1. . . . . . . . .
2 . . . . . . . . .
3 . . . . . . . . .
4 . . . . . . . . .

xxxxyyy y x y
xxxxyyy y y x
xxxxyyy x x x
xxxxyyy x y y

xxxxxxxyyyyyyy xxy xy y
xxxxxxxyyyyyyy xxy yx x
xxxxxxxyyyyyyy yyx xy x
xxxxxxxyyyyyyy yyx yx y

xxxxxyyyyy xy yx xxyy x y
xxxxxyyyyy yx xy xxyy y x
xxxxxyyyyy yx yx yyxx x x
xxxxxyyyyy yx yx yyxx y y

FIG. 3.—Three maximum-likelihood weighted trees for data set
(A).

FIG. 2.—The order 4 splits space. There are 2421 2 1 5 7 ways
to partition {1,2,3} nontrivially. Each partition corresponds either to a
single edge in the structure or to 4 parallel edges.

Table 1 illustrates the sequence data for these three
data sets.

The proof of Theorem 1 is given in the proofs sec-
tion. The essence of the proof is to represent the set of
ML points in terms of the first-order partial derivatives
of the log likelihood function. This gives rise to systems
of polynomial equations (one per data set), which we
then solve. Because these systems are fairly complex
(nine polynomial equations of degree 4 in nine vari-
ables), we used the symbolic manipulation package MA-
PLE to obtain closed-form solutions. Finally, to verify
that the solutions were indeed maximum points of the
likelihood function, we checked that the second-order
partial derivatives (the eigenvalues of the Hessian) were
all nonpositive.

We now describe the ML solutions in detail, start-
ing with data set (A). The symmetries in this data set
imply that the multiple ML points occur not only on the
tree (12)(34), but on each of the two other trees, (13)(24)
and (14)(23), as well. The three trees (12)(34), (13)(24),
and (14)(23) will exhibit the same ML values and nature
of solutions. (Of course, the symmetries by themselves
do not imply multiple ML points for each tree). For the
tree (12)(34), the ML points form two families of so-
lutions, which we denoted by solI and solII. Each family
can be described as a one-dimensional line segment (pa-
rametrized by z, 2 3 # z # 3), a ‘‘ridge’’ in the eight-
dimensional parameter space described below:

1
sol 5 [28, 4, 4, 4, 4 1 z, 1, 1, 4 2 z] andI 50

1
sol 5 [28, 4 1 z, 4 2 z, 4, 4, 1, 1, 4]. (3)II 50

These two ridges intersect at a single point (z 5 0 in
both curves).

Figure 3 illustrates the three weighted trees corre-
sponding to z 5 1 and to z 5 0 on the curves solI and
solII of equation (3). (For z 5 0, the two curves yield
exactly the same tree.) These three optimal trees repre-
sent rather different evolutionary histories. Figure 4

gives a graphical depiction of the two families of
weighted trees, solI and solII, that maximize the likeli-
hood for the observed sequence spectrum ŝ5 [7, 0, 0,
1, 0, 1, 1, 0] as a function of the parameter z on the tree
(12)(34). The family of trees on the left corresponds to
solI, while the right side corresponds to solII. For solI,
the lengths q1 and q2 both equal 1/4 ln (5/3) ø 0.127
(the same lengths, regardless of z). The length q12 equals
1/2 ln 15 2 1/4 ln [(12 1 z)(12 2 z)]. It varies only
slightly, with minimum value 0.111 at z 5 0 and max-
imum value 0.127 for z 5 63. The length q3 equals 1/
4 ln[5(12 1 z)/3(12 2 z)], varying from 0 for z 5 23
to 0.255 for z 5 3. The lengths of the paths q3 1 q123
equal the constant 1/2 ln(5/3) ø 0.255. For z , 23, the
length q3 would be negative, while for z . 3, the length
q123 would be negative. The curve solII exhibits a similar
behavior, where the roles of q1, q2 and q3, q123 are in-
terchanged, respectively.

The dependency of the edge lengths as a function
of z forced us to use a non-conventional way of drawing
these families of trees, in an attempt to produce a figure
in which the lengths were approximately to scale. In
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FIG. 4.—The two regions of maximum likelihood for data set (A).
In solI, the sum q3 1 q123 of the edge lengths to taxon 3 (q3) and to
taxon 4 (q123) is a constant. As the length q3 decreases, the length q123

increases, and vice versa. For solII, we have a similar behavior with
respect to the edge lengths q1 and q2. See the text for more information.

FIG. 5.—Two maximum-likelihood weighted trees for data set (B).

particular, the edge length q12 changes only slightly,
while q3 and q123 vary substantially (keeping their sum
invariant), so we put leaves 3 and 4 on the ends of a
semicircular arc. The edge q12 starts as a fixed line seg-
ment along the horizontal axis. It then makes a turn,
continuing along a second line segment toward the arc.
The angle between these two segments varies continu-
ously with z. for z 5 23, the variable part points exactly
at one end of the arc, making the length q3 equal 0. For
z 5 3, the variable part points exactly at the other end
of the are, making the length q123 equal 0. The ‘‘axis
point’’ where q12 makes a turn is slightly to the left of
the semicircle’s center. This way, the length q12 increases
slightly as z goes from 0 to 63. The trees for z 5 22.2,
0, 1.4 appear explicitly in the figure for both families. (The
scale in Fig. 4 is slightly different than that in Fig. 3.)

Example (B) is not symmetric, and the ML tree is
(12)(34). The ML set is the intersection of the curve

1
sol 5 476, 51 2 z, 51 1 z, 102,B [800

11 11
51 1 2 , 12, 6, 51 1 1 (4)1 2 1 2]z z

with the two regions 233 # z # 217 and 17 # z #
33. Therefore, the ML points of data set (B) form two
disconnected components.

Figure 5 illustrates the two weighted trees corre-
sponding to z 5 225 and to z 5 25 on the curve solB of
equation (4). Again, these two optimal trees represent dif-
ferent evolutionary histories. Figure 6 gives a graphical
depiction of the whole family of weighted trees solB that

maximize the likelihood for the observed sequence spec-
trum ŝ 5 [14, 0, 0, 3, 0, 2, 1, 0] as a function of the
parameter z. The family of trees on the left corresponds to
values of z in the interval [233, 217], while the right side
corresponds to values of z in the interval [17, 33]. For
each such z, the corresponding tree is obtained from figure
4 by drawing a line from the point corresponding to z on
the 1 2 2 path, through the midpoint, to the 3 - 4 path.
The trees for zzz 5 17, 25, 33 appear explicitly in the figure.
The length q1 5 1/4 ln[10(187 1 z)/(7(187 2 z))]. The
length q3 equals 1/4 ln[10(z 1 3)/(u(z 2 3))]. The lengths
of the two paths q1 1 q2 and q3 1 q123 equal the same
constant 1/2 ln(10/7). The edge length q12 equals 1/4
ln[(280z)2/(1872 2 z2) (z2 2 32). The two separate regions
of ML trees are clearly demonstrated in figure 4. All
lengths are to scale (slightly different than in figure 5). For
zzz outside the interval [17, 33] one of the four lengths q1,
q2, q3, and q123 is negative.

Example (C) is not symmetric either and the ML
tree is (12)(34). Here, the ML points lie on the simpler,
one-component curve

1
sol 5 [90, 27, 27, 36, z, 3, 3, 14 2 z], (5)C 200

where the parameter z varies in the range 4 # z # 10.
Because of the complexity of the systems of poly-

nomial equations, we needed MAPLE (or a similar sym-
bolic manipulation system) for solving them. However,
it is much simpler to verify that the different solutions
produced by MAPLE indeed satisfy the different con-
ditions by employing simpler software like EXCEL and
substituting our curves into the appropriate equations,
using the different identities that we state and prove in
the Methods section. (In general, it is easier to verify a
proof than to come up with one.) The only point which
may shed some doubt on the proof is the possibility that
MAPLE may have missed some additional solutions.
Even if this is the case, the curves we found still rep-
resent local maximum points. Furthermore, we used hill
climbing from many different random starting points
and always converged to points on the specified curves.
This implies that even if additional local maxima do
exist, their zones of attraction are extremely small.

Additional data sets

The three specific examples (A), (B), and (C) in
Theorem 1 are not the only data sets with a continuum
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FIG. 6.—The two regions of maximum likelihood for data set (B).

Table 2
Families of Data with Eight Site Patterns that Yield Multiple Maximum-Likelihood (ML)
Trees

Observed Spectrum ŝ Nature of ML Set

[1,000, 9, 200, 100, 9, 100, 100, 200]. . . . . . . . . . . .
[1,000, 90, 90, 300, 90, 200, 100, 90]. . . . . . . . . . . .
[1,000, 90, 90, 340, 90, 339, 30, 100]. . . . . . . . . . . .

Two isolated points
Two isolated points
One isolated point and a separate local maximum point

of ML solutions. These three examples are just repre-
sentatives of larger families, having ML solutions of a
similar nature. It is possible to obtain closed-form ex-
pressions for the general classes in Theorem 1, but these
expressions are cumbersome. These general expressions
are quite hopeless when it comes to the eigenvalues of
the Hessian whose analysis is required in the proof.
Therefore, we chose to analyze in detail just three spe-
cific examples that represent the general cases well.

To demonstrate the wide occurrence of data sets
with continuum ML points, we further studied the fol-
lowing 74 cases. In all of them, closed-form solutions
are obtainable, and each of these data sets gives rise to
a continuum of ML solutions:

1. ŝ 5 [6 1 i, 0, 0, 1, 0, 1, 1, 0] (1 # i # 20) — all
20 of these data sets have ML solutions with prop-
erties similar to those of (A).

2. ŝ 5 [14 1 8i 1 4j 1 k, 0, 0, 3 1 2i 1 j, 0, 2 1 i,
1, 0] (0 # i, j, k # 2) — all 27 of these data sets
have ML solutions with properties similar to those
of (B).

3. ŝ 5 [10 1 3i 1 2j 1 k, 2 1 i, 2 1 i, 4 1 i 1 j, 0,
1, 1, 0] (0 # i, j # 2, 1 # k # 3) — all 27 of these
data sets have ML solutions with properties similar
to those of (C).

All of the singleton entries (ŝ1, ŝ2, ŝ3, ŝ123) in the
observed sequence spectra for data sets (A) and (B) of
Theorem 1 are 0. This means that changes in the cor-
responding entries of the expected sequence spectra (ŝ1,
ŝ2, ŝ3, ŝ123) do not affect the likelihood (of course, the
resulting s must still fit a tree). In data set (C) the sin-
gleton entries ŝ3 and ŝ123 are both zero, so changes in ŝ3
and ŝ123 do not affect the likelihood. Initially, such ex-
amples were chosen because having some zero entries
in ŝ makes it easier to find the analytic solution. We
now show examples with multiple ML points in which
all eight entries are nonzero.

THEOREM 2. There are instances in which all eight
entries in the observed sequence spectrum ŝ 5 [ŝ0, ŝ1,
ŝ2, ŝ12, ŝ3, ŝ13, ŝ23, ŝ123) are nonzero, yet the likelihood
function has multiple maxima (two ML points).

PROOF. The basic idea is to start from data sets
like the one in example (B) with two separate regions
of ML trees, and then make small changes to the sin-
gleton entries so that they are all positive. Since the
likelihood function is ‘‘well behaved,’’ continuity ar-
guments guarantee that for small enough perturbation,
the two ML regions will remain separate. A small per-
turbation may turn a continuous ML curve into a single
ML point, but these points will still remain separated,
so we should get at least two separate maxima points.

We verified this intuition by using numerical meth-
ods. For example, the observed sequence spectrum

ŝ 5 [1400, 1, 1, 300, 1, 200, 100, 1]

is a small perturbation of

ŝ 5 [1400, 0, 0, 300, 0, 200, 100, 0].

The latter is nothing but data set (B) (with ŝ 5 [14,
0, 0, 3, 0, 2, 1, 0]) in disguise, as multiplying all entries
of an observed sequence spectrum by a constant (100
in this case) does not change the likelihood surface. Us-
ing numerical hill climbing with many random starting
points, we verified that ŝ 5 [1400, 1, 1, 300, 1, 200,
100, 1] does indeed give rise to two separate ML points
on the tree (12)(34). (The likelihood on the other two
trees attains smaller maximal values.) Within the mem-
ory and time resources of our machine we could not
find these two ML solutions analytically.

Table 2 demonstrates three more examples of the
same nature. We remark that for all these examples, the
likelihood is maximized on the tree (12)(34) (and, in some
of these, on one or both of the other two trees as well).

In particular, the last example has a unique point a,
which is a global maximum on (12)(34), and a unique
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point b, which is a local maximum on (12)(34). It also has
a unique point c, which is a global maximum on (13)(24),
and a unique point d, which is a local maximum on
(13)(24). The value of the likelihood function L at point c
is larger than its value at point b, so we have L(a) . L(c)
. L(b) . L(d). ▫

Finally, we note that our results for n 5 4 taxa could
be generalized to yield trees on n taxa (leaves) with 2n/4

ML regions. One way to achieve this is to grow a complete
binary tree. At each level, we join two identical subtrees
while making the coefficient of that split in ŝ large enough
so that the two subtrees behave ‘‘sufficiently independent-
ly.’’ At the bottom level (trees on four leaves), we plant
any instance of our multiple ML trees. Tuffley and Steel
(1997) used a different technique to generalize Steel’s
(1994) multiple ML example from 4 to n species (with
exponentially many ML points).

Methods

In this section, we give a complete proof of Theorem
1. Readers who are not interested in these mathematical
details may skip directly to the Conclusions section, which
contains conclusions and open problems. The Hadamard
conjugate plays a crucial role in several key points of the
proof. In the next section, we explain this transformation
in detail and derive a number of new identities for the
partial derivatives of the log likelihood function. These
identities are later used in the Proofs section.

Hadamard Conjugate and the Likelihood Function

The Hadamard conjugation (Hendy and Penny 1993;
Hendy, Penny, and Steel 1994) is an invertible transfor-
mation linking the probabilities of site substitutions on
edges of an evolutionary tree T to the probabilities of ob-
taining each possible combination of characters. It is ap-
plicable to a number of simple models of site substitution:
The Neyman (1971) 2-state model, the Jukes-Cantor mod-
el (Jukes and Cantor 1969), and the Kimura (1983) 2ST
and 3ST models. For these models, the transformation
yields a powerful tool which greatly simplifies and unifies
the analysis of phylogenetic data. In this section, we ex-
plain the Hadamard transform and prove a number of tech-
nical lemmas expressing the partial derivatives of the like-
lihood function. These expressions are crucial in our ap-
proach to identify and analyze the points at which the
likelihood function is maximized.

DEFINITION 2. A Hadamard matrix of order l is an
l 3 l matrix A with 61 entries such that AtA 5 lIl.

We will use a special family of Hadamard matrices,
called Sylvester matrices in MacWilliams and Sloane
(1977, p. 45), defined inductively for n $ 0

H Hn n
H 5 [1] and H 5 .0 n11 [ ]H 2Hn n

It is convenient to index the rows and columns of Hn by
lexicographically ordered subsets of {1, . . . , n}. Denote
by hag the (a, g) entry of Hn, then hag 5 (21)zaùgz. This
implies that Hn is symmetric, namely , and thustH 5 Hn n

by the definition of Hadamard matrices .21 2H 5 2 Hn n

PROPOSITION 1 (Hendy and Penny 1993). If p ,
1/2 then s 5 s(q) 5H21 exp (Hq), where H 5 Hn21,
namely, for a # {1, . . . , n 2 1}, sa 5 22(n21) Sg hag

(exp (Sd hgdqg). Furthermore, the transformation is re-
versible, so if Hs . 0, then q 5 q(s) 5 H21 ln (Hs).

We call this transformation the Hadamard conjugate.
For n taxa, the time complexity of computing it is O (n2n),
and the space complexity is O (2n) (using the FFT-like fast
Hadamard multiplication; Hendy and Penny 1993; Hendy,
Penny, and Steel 1994). This ‘‘low exponential’’ complex-
ity makes it applicable in cases with n of up to 30 taxa
(usually this is not the bottleneck in phylogenetic analysis
of moderate-sized trees for this model).

Spectral analysis makes it possible to compactly
express the partial derivatives of the likelihood function.
This, in turn, helps in identifying points at which the
likelihood is maximized. We now present a number of
new results along these lines. These results are of a tech-
nical nature, but they are important for the later deri-
vations, as well as in additional contexts. Let a·b denote
the symmetric difference of the two subsets a and b (a,
b # {1, . . . , n 2 1}).

The following lemma specifies the rate of change in
any component sa (the expected sequence spectrum) with
respect to the rate of change in any component qb (the
expected number of substitutions along an edge in the un-
derlying phylogenetic network). It proves that this partial
derivative is simply the difference sa·b 2 sa. Being able to
express the partial derivative directly is a major advantage.
Notice that a may equal b in this lemma.

LEMMA 1. Let q be an edge length spectrum, and
let s be the corresponding expected sequence spectrum
s 5 s(q) 5 H21 exp (Hq). Then, the partial derivative
of sa, the a component of s with respect to qb, the b
component of q (a, b # {1, . . . , n 2 1}, b ± ø) equals

]sa 5 s 2 s .a·b a]qb

PROOF.
By Proposition 1,

2(n21)s 5 2 h exp h q ,O Oa ag gd d1 1 22
g d

so we have

]s ]a 2(n21)5 2 h exp h qO Oag gd d1 1 22]q ]qg db b

]
2(n21)5 2 h exp h q h qO O Oag gd d gd d1 1 2 2]qg d db

2(n21)5 2 h exp h q (h 2 h ) (*)O Oag gd d gb gø1 1 2 2
g d

2(n21)5 2 (h 2 h ) exp h q (**)O O(a·b)g ag gd d1 1 22
g d

5 s 2 s (**)a·b a

(the relation qø 5 2Sd±ø qd is used in (*), while (**)
use the identity haghgb 5 h(a·b)g). □
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The next two lemmas describe the rate of change
of the log likelihood function with respect to changes in
the edge parameter qb (Lemma 2) or the expected se-
quence parameter sb (Lemma 3). These two lemmas are
heavily used later to analyze the ML points. The proof
of Lemma 2 makes repeated use of Lemma 1. Recall
that a·b denotes the symmetric difference of the two
subsets a and b.

LEMMA 2. The partial derivative of the log likeli-
hood function ln L(ŝ z s) with respect to the edge param-
eter qb can be expressed in terms of the observed and
expected sequence parameters as follows for splits b
that correspond to an edge of T,

] ln(L) sa·b5 ŝ 2 1 . (6)O a1 2]q sab a

The second-order partial derivatives for splits b1, b2
that correspond to an edge of T are

2 s s s] (ln(L)) a·b ·b a·b a·b1 2 1 25 ŝ 2 (7)O a 21 2]q ]q s sab b a a1 2

PROOF. By equation (2), ln L(ŝ z s) 5 Sŝa.0 ŝa

ln(sa), so

] ln(L) ] ln s ŝ ]sa a a5 ŝ 5O Oa]q ]q s ]qa ab b a b

sa·b5 ŝ 2 1 . (by Lemma 1)O a1 2sa a

Taking a second derivative and applying Lemma 1
again, we get

2 s s s] (ln(L)) a·b ·b a·b a·b1 2 1 25 ŝ 2 . MO a 21 2]q ]q s sab b a a1 2

Using the relation sø 5 1 2 Sa±ø sa and formulation
(2) of the likelihood function, we get:

LEMMA 3. The partial derivatives of ln(L) with re-
spect to sb (for any nonempty subset b of {1, . . . , n 2
1}) equal

] ln(L) ŝ ŝb ø5 2 , (8)
]s s sb b ø

and the second-order partial derivatives are

22 2ŝ /s if b ± b] ln(L) ø ø 1 2
5 (9)5 2 2]s ]s 2(ŝ /s 1 ŝ /s ) if b 5 b 5 b.b b ø ø b b 1 21 2

PROOF. The proof is a standard application of the
multinomial distribution. We omit the details.

Before searching for data sets with multiple ML
points, it is necessary to make some definitions. The
following definition of ‘‘conservative data’’ aims at ex-
cluding data sets that are pathological, are biologically
unrealistic, and could lead to negative edge weights on
the tree.

DEFINITION 3. Let c 5 [c(1), c(2), c(3), . . . , c(c)]
∈ {x, y}n3c be the observed sequences of length c over
n taxa, and let ŝ be the observed sequence spectrum. We
say that ŝ is conservative if Hŝ . 0.

For the observed sequence spectrum in Steel’s
(1994) paper, ŝ 5 [0, 0, 0, 0, 0, 2, 0, 0], we have Hŝ 5
[2, 22, 2, 22, 22, 2, 22, 2], so ŝ is not conservative.
If the number of constant sites, ŝø, is greater than the
sum of all other sites, namely, ŝø . Sa±ø ŝa, then ŝ is
conservative. However, this sufficient condition is not
necessary. Data sets (A), with ŝ 5 [7, 0, 0, 1, 0, 1, 1,
0], and (B), with ŝ 5 [14, 0, 0, 3, 0, 2, 1, 0], satisfy the
condition. Data set (C), with ŝ 5 [10, 2, 2, 4, 0, 1, 1,
0], does not satisfy this condition, as ŝø 5 Sa±ø ŝa. How-
ever, Hŝ 5 [20, 6, 6, 8, 16, 6, 6, 12], so this observed
sequence spectrum is indeed conservative too.

DEFINITION 4. Let ŝ be the observed spectrum of
c ∈ {x, y}n. If ŝ is conservative, then its conjugate spec-
trum is the vector q̂ 5 H21 ln(H(1/c ŝ)).

If ŝ perfectly matches the expected sequence spec-
trum ŝ (namely, ŝ 5 cs), then the conjugate spectrum q̂
equals the edge length spectrum q, but in reality, ŝ is a
finite sample of cs, and a perfect match is not expected.
This implies that usually most of the entries of the con-
jugate spectrum q̂ are nonzero, and frequently some are
negative. Even if q̂ does not represent a tree, it is still
a useful representation which may be applied in search-
ing for a plausible tree that has generated the data (see
the closest-tree algorithm of Hendy [1991]). This mo-
tivates us to define the splits space, which is the collec-
tion of all possible edge length spectra q.

DEFINITION 5. The (order n) splits space is the sub-
set of the 2n21-dimensional real vector space containing
all vectors whose components sum to 0

n212q ∈ R z q 5 [q ] , q 5 0 .Oa a#{1,...,n21} a5 6
a

Figure 2 illustrates the order n splits space for n 5 4.
An a-split corresponds to the collection of parallel edges
that separate the subset of nodes a # {1, . . . , n 2 1}
from its complement {1, . . . , n}\a. (These parallel edg-
es are all of the same length qa.) We note that for n $
4, the set of tree spectra q(T) over all weighted trees T
with n leaves is a proper subset of the positive quadrant
(set of vectors q with nonnegative entries) of the order
n splits space.

Proofs

Before the proof of Theorem 1, we quote two
known results regarding ML over the splits space. These
results state that in the splits space, there is always a
unique ML point. Furthermore, if the observed data ex-
actly fit a weighted tree, then this weighted tree is the
unique optimum.

PROPOSITION 2 (Goldman 1993; Yang 1994). If ŝ
is conservative, then the (unconstrained) likelihood
function L(s z ŝ) has a unique maximum over the splits
space at the point s 5 1/cŝ.

The next proposition is by Rogers (1997), where it
is stated and proved for the general model of reversible
substitutions. In this model, the probabilities of observ-
ing a change after t units of time from character state i
to character state j and from j to i are the same. We
present an alternative, simpler proof. However, our proof
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is valid only for the substitution models for which the
Hadamard transform is applicable. This class of models
is narrower than the class of general reversible models.

PROPOSITION 3. Suppose the observed spectrum q̂
fits exactly the expected edge spectrum q 5 q(T) for a
weighted tree T with nonsaturated edge weights 0 # P
, 1/2. Then, T is the (unique), ML tree, with each edge
ea of T having weight qa.

PROOF. By Proposition 1, the expected sequence
spectrum q satisfies the equality q(T) 5 q 5 H21ln(Hs).
By definition, the conjugate spectrum q̂ is the vector q̂
5 H21ln(H(1/c ŝ)). Since q 5 q̂ by assumption, we have
H21ln(Hs) 5 H21ln(H(1/cŝ)). Multiplying on the left by
H, we get ln(Hs) 5 ln(H(1/cŝ)). Exponentiating each
entry, we have Hs 5 H(1/cŝ). Since H is an invertible
matrix, this last equality implies s 5 1/c ŝ.

Now suppose, by way of contradiction, that q9 5
q9(T9) for another weighted tree T9 (q9 ± q), and s9 5
H21exp(Hq9). Since the transformation is one-to-one, s
± s9. By Proposition 2, L(s9 z ŝ) , L(s z ŝ), namely, the
likelihood of the data for T9 is smaller than the likeli-
hood for T. Therefore T is the ML tree, and every other
weighted tree T9 attains a smaller likelihood.

We remark that essentially the same proof applies
to 4-state nucleotides under those substitution models
where the Hadamard transform is applicable. A com-
prehensive work discussing more general Markov mod-
els on evolutionary trees can be found in Chang (1996).
Chang proves that under fairly mild conditions, the ML
method is consistent for reconstructing the underlying
evolutionary tree.

Since the likelihood function is continuous, conti-
nuity arguments imply that for edge spectra that are
‘‘close’’ to one that fits a tree exactly, we would expect
a ‘‘nearby’’ weighted tree to be the single ML point. We
make it clear that this argument, as well as the rest of
our paper, does not deal with the effect of model com-
plexity on the existence of multiple optima. We assume
an underlying model, like the Neyman (1971) 2-state
model. Within that model, we distinguish between data
that are very ‘‘treelike’’ and data that are not ‘‘treelike.’’

Another observation is that for n 5 3 there is a
single (unweighted) tree, and in this case the tree spectra
and the nonnegative quadrant of the splits space coin-
cide. This means that if we seek data sets giving rise to
multiple ML points, then n must be at least 4. Combin-
ing both observations, we look for data sets on n 5 4
taxa that do not fit a tree closely. By following this
intuition, we arrived at data sets (A), (B), and (C) of
Theorem 1. We now proceed to the proof of that theo-
rem. In particular, we show that these three data sets
give rise to a continuum of ML points.

PROOF OF THEOREM 1. Out data sets (A), (B), and
(C) have observed sequence spectra of the form ŝ 5 [ŝø,
ŝ1, ŝ2, ŝ12, 0, ŝ13, ŝ23, 0]. By equation (2), such observed
sequence spectra give rise to the following expression
for the log likelihood function:

ln(L) 5 ŝ lns 1 ŝ lns 1 ŝ lns 1 ŝ lnsø ø 1 1 2 2 12 12

1 ŝ lns 1 ŝ lns . (10)13 13 23 23

(For data sets (A) and (B), the two terms ŝ1lnŝ1 1 ŝ2lnŝ2

vanish, since the corresponding coefficients ŝ1 and ŝ2 are
0.)

Our goal is to maximize ln(L) over the 8-dimen-
sional space s 5 [sø, s1, s2, s12, s3, s13, s23, s123], bound
to the constraint that s represents a point in the proba-
bility space of a tree T (i.e., the corresponding edge
spectrum q 5 H21ln(Hs) represents T). The constraints
on s are the eight inequalities 0 # sa # 1 and the equal-
ity sø 5 1 2 Sa±ø sa. Furthermore, s represents a point
on the probability set of a tree if

1. qa $ 0 for all a ∈ E(T ).
2. qa 5 0 for all a E(T ) < {ø}.

Thus, for the tree T 5 (12)(34), q13 5 q23 5 0; for
T 5 (13)(24), q12 5 q23 5 0; and for T 5 (14)(23), q12
5 q13 5 0.

In order to solve the constrained optimization prob-
lem for the tree, we first express the two constraints q13
5 0 and q23 5 0 in terms of the eight components of s,
using the relation s 5 s(q) 5 H21exp(Hq). (This is the
first place at which the Hadamard conjugate plays a cru-
cial role in the proof.) As the expressions of q13 and q23
involve logarithms and are somewhat cumbersome, we
apply further simplifications to these two equations,
leading to

1 2 2s 2 2s 2 2s 2 2s1 2 3 123

2 (21 1 2s 1 2s 1 2s 1 2s )1 2 13 23

3 (21 1 2s 1 2s 1 2s 1 2s ) 5 0 and3 13 23 123

(21 1 2s 1 2s 1 2s 1 2s )1 12 13 123

3 (21 1 2s 1 2s 1 2s 1 2s )2 12 3 13

2 (21 1 2s 1 2s 1 2s 1 2s )2 12 23 123

3 (21 1 2s 1 2s 1 2s 1 2s ) 5 0.1 12 3 23

We denote these last two equations by f 5 0 and g 5
0. (Constraints of a similar nature were derived by Cav-
ender and Felsenstein [1987].) Using the fact that the
sum of the eight components in s is 1, we eliminate the
variable sø.

We now use Lagrange multipliers to find the turn-
ing points of ln L, bound by the two constraints f 5 0
and g 5 0. (After the solution is found, we must check
that the turning points satisfy 0 # pe , ½ (or, equiva-
lently 0 # qe , `) for each edge e ∈ E(T ).) For each
of the seven nonempty subsets a # {1, 2, 3}, we have
the equation

] ln(L) ] f ]g
5 m 1 l .

]s ]s ]sa a a

Together with the two constraints, we get a system of
nine equations in nine variables—the seven sa variables
and the two Lagrange multipliers m and l. This system
of degree 4 polynomial equations is too involved to
solve manually, so we applied the Maple V mathemat-
ical package. The nature’s of the solutions differ ac-
cording to the equality/inequality relations among the
values ŝ12, ŝ13, ŝ23, ŝ1, ŝ2. (Alternatively, we could use a
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system of equations stemming from the partial deriva-
tives with respect to qb [eq. (6)]. Despite its more ele-
gant appearance, the resulting system has proved less
tractable than the one we use.)

The symmetries in example A imply that the three
trees (12)(34), (13)(24), and (14)(23) will exhibit the
same ML values and nature of solutions. (Of course, the
symmetries by themselves do not imply ML points for
each tree.) For the tree (12)(34), the turning points form
two families of solutions, denoted by solI and solII. Each
family can be described as a one-dimensional line seg-
ment (parameterized by z, 24 # z # 4), a ‘‘ridge’’ in
the eight-dimensional parameter space described in
equation. (3). These two ridges intersect at a single point
(z5 0 in both curves). Combining the constraints that
all the edges in the tree have nonnegative weights (q1,
q2, q12, q3, q123$ 0), each ridge is further restricted to
the subinterval 23 # z # 3.

It remains to verify that solI and solII are indeed
maxima of L. For this proof, it is more convenient to
switch back to the ‘‘q-representation’’ (partial deriva-
tives with respect to the qb variables). We compute the
5-by-5 Hessian of the log likelihood ln L with respect
to q1, q2, q12, q3, q123:

2 2 2 2 2] ln(L) ] ln(L) ] ln(L) ] ln(L) ] ln(L) 
2]q ]q ]q ]q ]q ]q ]q ]q ]q1 1 2 1 12 1 3 1 123

2 2 2 2 2] ln(L) ] ln(L) ] ln(L) ] ln(L) ] ln(L)
2]q ]q ]q ]q ]q ]q ]q ]q ]q2 1 2 2 12 2 3 2 123 2 2 2 2 2] ln(L) ] ln(L) ] ln(L) ] ln(L) ] ln(L)

. 2]q ]q ]q ]q ]q ]q ]q ]q ]q12 1 12 2 12 12 3 12 123

2 2 2 2 2] ln(L) ] ln(L) ] ln(L) ] ln(L) ] ln(L)
2]q ]q ]q ]q ]q ]q ]q ]q ]q3 1 3 2 3 12 3 3 123

2 2 2 2 2] ln(L) ] ln(L) ] ln(L) ] ln(L) ] ln(L) 
2]q ]q ]q ]q ]q ]q ]q ]q ]q 123 1 123 2 123 12 123 3 123

We express the second-order partial derivatives in terms
of the sa values using equation (7) and then substitute
the values of solI curve (eq. (3)). (This is the second
place at which the Hadamard conjugate plays a crucial
role in the proof). A turning point is a (local) maximum
if no eigenvalue of the Hessian is positive and at least
one eigenvalue is negative. (The Hessian is a real sym-
metric matrix, so all at its eigenvalues are real). In our
case, the characteristic polynomial has five real roots
(the five eigenvalues). With MAPLE’s help, we found
that the characteristic polynomial over the ridge solI (a
polynomial of degree five in the formal variable t) is

2char (t) 5 t(t 1 45)(t 1 4z )A

2 2 23 (7t 1 621t 1 12,960 1 tz 1 45z )/7.

It has three linear factors, giving rise to the nonpositive
roots t 5 0, t 5 245 and t 5 24z2 (One of the eigen-
values equals 0, since there is one direction on this ridge
where the value of L is unchanged. When z 5 0, the
two ridges intersect and there are two directions where

L is unchanged). Factoring out these three linear terms,
we are left with the degree 2 polynomial (7t2 1 621t 1
12,920 1 tz2 1 45z2)/7. Clearly, the value of this last
polynomial is strictly positive for any nonnegative value
of t. Therefore, its two roots must be negative. As an
additional verification step, we also applied an iterative
hill-climbing algorithm with many starting points to the
function in L. As expected, the only maxima points de-
tected were along the two ridges solI and solII.

Example B is not symmetric, and the most parsi-
monious tree for these data is (12)(34), inducing a total
of nine changes. This indicates (but, of course, does not
prove) that (12)(34) may also be the most likely tree.
Indeed, the two other trees, (13)(24) and (14)(23), attain
lower likelihood values, so we describe the turning
points of the likelihood function on the tree (12)(34).
Employing Lagrange multipliers, we found three fami-
lies of solutions. Two are single points, and one is a
curve (eq. (4)). One of the two single points is outside
the parameter space, and the second one is a saddle
point. The curve (eq. (4)) intersects the parameter space
in two separate, disconnected regions (251 # z # 211
and 11 # z # 51). Combining the constraints of non-
negative edge weights, we are further restricted to the
two regions 233 # z # 217 and 17 # z # 33. Thus,
the points of the curve solB that satisfy 17 # zzz # 33
(see fig. 4) are the only candidates for maximizing the
likelihood. To verify this we employ the Hessian tech-
nique again. In this case, the characteristic polynomial
charB(t) of the Hessian is

1
t(7,840 1 51t)

44,570,736
3 4 2 6 2 23 (873,936t z 1 73,440t z 1 23,113,110,240t z

2 41 221,886,720t z 1 5,051,514,699,891t
6 21 14,997,912tz 1 4,720,157,862,552tz

8 4 61 51z t 1 8,427,598,122tz 1 548,455,040z
8 21 7,840z 1 172,610,318,643,840z

4 41 776,546,573,473,440 2 24,674,126,400z )/z .

The polynomial charB(t) has two linear factors, giving
rise to two nonpositive roots t 5 0 and t 5 27,840/51.
Factoring these out, eliminating the z4 and the constant
multiplier, and rearranging, we are left with a degree
polynomial g(t), whose coefficients are polynomials in z:

4 3 6 4g(t) 5 873,936z t 1 (73,440z 1 221,886,720z
2 21 23,113,110,240z )t

8 6 41 (51z 1 14,997,912z 1 8,427,598,122z
21 4,720,157,862,552z

1 5,051,514,699,891)t
8 61 7,840z 1 548,455,040z

4 22 24,674,126,400z 1 172,610,318,643,840z

1 776,546,573,473,440.

To complete our proof, we show that for z in our range
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(17 # zzz # 33), the three roots of g(t) are all negative.
It is clear that the coefficients of t3, t2, and t are all
strictly positive. As for the free term, the sum of its three
middle summands is

2 2 2 2z (548,455,040(z ) 2 24,674,126,400z

1 172,610,318,643,840).

The expression in parentheses is quadratic in z2, with
discriminant

224,674,126,400 2 4 3 548,455,040

3 172,610,318,643,840 , 0.

Thus, the quadratic has no real roots and is always pos-
itive, and therefore the free term is positive for any real
z. Therefore, the degree 3 polynomial cannot have any
positive or zero roots. Since it has three real roots, they
must all be negative. Again, as an additional verification
step we applied an iterative hill-climbing algorithm with
many starting points to the function ln L. As expected,
the only maxima points detected were along the two
regions of solB.

Example C is not symmetric either, and the most
parsimonious tree for these data is (12)(34), inducing a
total of 12 changes. Again, the two other trees, (13)(24)
and (14)(23), attain lower likelihood values, so we de-
scribe the turning points of the likelihood function on
the tree (12)(34). Employing Lagrange multipliers, we
found one family of solutions, which is the rather simple
curve in equation (5). This curve intersects the param-
eter space in one connected region, 0 # z # 14. Com-
bining the constraints of nonnegative edge weights, we
are further restricted to the region 4 # z # 10. Thus,
the points of the curve solc that satisfy 4 # z # 10 are
the only candidates for maximization of the likelihood
for data set (C). To verify this, we again employed both
the Hessian technique and numeric hill climbing. The
details are similar to those for data set (B), and we omit
them. □

Conclusions

The goal of this research was to understand more
about the likelihood surface for sequence data, espe-
cially the possible occurrence of multiple optima (local
and global). In order to do this, we developed analytical
techniques, including equations that represent ML points
on trees and the direct computation of the first- and sec-
ond-order derivatives of the likelihood function with re-
spect to parameters of the model. These results are sig-
nificant in their own right and could be developed fur-
ther. We obtained closed-form ML solutions for certain
data sets. At present, our ability to find such solutions
is dependent on the exact platform and the version of
the MAPLE software we are using. Our method is also
very sensitive: small perturbations in the input can move
us from instances that are easily solvable to ones where
the system exhausts its memory and time resources
without finding a solution. However, we believe that for
four species, refining our techniques should make it pos-
sible to find closed-form solutions with general inputs.

Given the importance of quartet-based tree reconstruc-
tion (Bandelt and Dress 1986; Strimmer and von Hae-
seler 1996; Wilson 1998; Ben-Dor et al. 1998; Erdos et
al. 1999), such a result is highly desirable. It may be
possible to extend this to five or six species. However,
even in the two-state model, n species give rise to a
system of 2n 2 2n 1 1 polynomial equations in that
many variables. Such exponential size systems would
not be easily solvable for large values of n.

In all of the examples we found with a continuum
of ML points, the corresponding probability sa is fixed
for every split a with nonzero observed value ŝa . 0,
so the likelihood function L attains a constant value on
these curves. We expect that it is unlikely that there exist
examples with a continuum of ML points where all the
observed values of ŝa are nonzero. It may be argued that
for long enough sequences on four taxa, real data with
any of the eight components of ŝ 5 ø is not very likely.
On the other hand, for larger values of n, most ŝa values
will be 0, because it is not possible in practice to se-
quence genomic data of length exceeding 2n sites, let
alone 4n. Furthermore, for n . 30, the genome is just
not long enough.

ML phylogenetic analysis poses a number of in-
triguing open problems, in both the computational and
the biological contexts. It is still unknown whether the
problem is NP hard for a unary representation of the
input. For example, the observed spectrum ŝ which is
represented in binary as [14, 0, 0, 3, 0, 2, 1, 0] would
be [11111111111111, 0, 0, 111, 0, 11, 1, 0] in unary,
which is a much expanded representation. This unary
representation is the natural one, given aligned DNA or
amino acid sequences as the input. When the input is
represented in binary form, Tuffley and Steel (1997)
have shown NP hardness (via a reduction to maximum
parsimony). Current ML packages use heuristics to
prune the tree space, followed by hill climbing to con-
verge to the optimal edge weights in each tree. Are there
better approaches in cases where multiple ML points are
not a problem? Can we characterize what such data sets
look like? It would be very useful to identify special
cases where ML is easy to compute and to devise effi-
cient algorithms for them.

Our (A) and (B) examples have only four site pat-
terns (nonzero entries in ŝ) to estimate five edge lengths.
Thus, one may argue that these examples are not real-
istic, and it would be misleading to make recommen-
dations about phylogenetic algorithms based on such ex-
ample’s. However, our data set (C) has six site patterns
— one more than the number of parameters to estimate,
so if the criterion for ‘‘interesting data’’ is more site
patterns than edges, data set (C) certainly meets this
criterion. The 27 additional data sets with six site pat-
terns and ML solutions similar to (C), as well as the
four data sets with eight site patterns and two ML
points, also meet this criterion.

From a biological viewpoint, it is essential to know
as much as possible about the properties of the likeli-
hood surface. Knowing that multiple optima can occur
is important for computational strategies to locate the
ML tree. The most obvious strategy is to use multiple
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starting points. Rogers and Swofford (1999) have em-
ployed this approach, although this increases the com-
putational cost (and may still miss ML points with small
areas of attraction or in cases where there are exponen-
tially many local maxima). It is also important now to
describe properties of the surface, including the zones
of attraction that lead to a given optimum (see Charles-
ton 1995).

It has been assumed that with real data, multiple
optima are unlikely. The present results show that this
assumption requires more thorough analysis. Simula-
tions are of limited use in estimating the frequency of
multiple optima that might occur with biological data.
For example, simulations are normally carried out on
data generated on a tree by a simple Markov process,
followed by studying the distribution of ML values (or
other optimality criteria) on trees. Not surprisingly, trees
are a reasonable description of data generated on trees.

There are, however, several reasons why a tree is
an incomplete description of biological data. There may
be genuine historical signals in addition to a tree from:
recombination between different genes of viral strains,
gene conversion between paralogous genes, and lateral
(horizontal) transfer of genes between species (see Page
and Holmes 1998). Even in the absence of these mech-
anisms, there are other processes that will lead to ad-
ditional signals in the data if the mechanism of evolution
is incorrect and/or incomplete. These include nonsta-
tionarity with some sequences changing nucleotide and
amino acid composition, similar selection (adaptation)
on different lineages, sites that are assumed to be vari-
able but are unable to evolve due to functional con-
straints, and changes in the sites that are free to vary
throughout the tree (the covarion model; Lockhart et al.
1999). For all these reasons, it is not possible to gen-
eralize from data simulated under a strict tree model to
biological data, and consequently there is a need for
further analytical investigation, as well as empirical
studies with biological sequence data.

In the present work, we restricted our synthetic data
sets to be conservative (they do not lend to any infinite
distances) so they could be generated by a mixture of
Markov processes. Real biological data do sometimes
fail to be conservative, and this reinforces our conclu-
sion that our present examples are in some sense bio-
logically realistic. Clearly, much more work is required
on the problem of multiple maxima and algorithms that
work well with real data.
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