Simple Constant-Time Consensus Protocols
in Realistic Failure Models

BENNY CHOR
Technion, Haifa, Israel
MICHAEL MERRITT

Massachuseits Institute of Technology, Cambridge, Massachusetts and AT&T Bell Laboratories,
Murray Hill, New Jersey

AND
DAVID B. SHMOYS

Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract. Using simple protocols, it is shown how to achieve consensus in constant expected time,
within a variety of fail-stop and omission failure models. Significantly, the strongest models considered
are completely asynchronous. All of the results are based on distributively flipping a coin, which is
usable by a significant majority of the processors. Finally, a nearly matching lower bound is also given
for randomized protocols for consensus.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Network]: Network Protocols;
C.2.4 [Computer-Communication Network]: Distributed Systems; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems

General Terms: Algorithms, Performance, Reliability, Theory

Additional Key Words and Phrases: Agreement problem, consensus problem, cryptography, fault
tolerance

1. Introduction

Randomization has proven to be an extremely useful tool in the design of pro-
tocols for distributed agreement. In this paper we present new randomized proto-
cols for the consensus problem in synchronous and asynchronous fail-stop and

Much of B. Chor’s research was done while at MIT, supported in part by an IBM graduate fellowship.
Much of M. Merritt’s research was done at MIT, supported in part by the Office of Naval Research
under NO00O14-85-K-0168, by OAR under DAAG 29-84-K-0058, by the National Science Foundation
(NSF) under DCR 83-02391, and by DARPA under N0014-83-K-0125. The research of D. B. Shmoys
was supported in part by the NSF under DCR 83-02385 and by the Air Force under AFOSR 86-0078.

Authors’ present addresses: B. Chor, Technion, Haifa, Israel; M. Merritt, AT&T Bell Laboratories,
Murray Hill, NJ 07974; D. B. Shmoys, Room 2-376, Department of Mathematics, Massachusetts
Institute of Technology, Cambridge, MA 02139.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

© 1989 ACM 0004-5411/89/0700-0591 $01.50

Journal of the Association for Computing Machinery, Vol. 36, No. 3, July 1989, pp. 591-614.

592 CHOR ET AL.

failure-by-omission models. These protocols all terminate within constant expected
time, and unlike previous fast protocols, are very simple and need not rely on any
preprocessing. In fact, we believe that these protocols will be the method of choice
in practical implementations. The major novelty of our algorithms is the notion of
a weak form of a global coin, and a method for generating it.

We define the consensus problem as follows: processor i has a private binary
value v;; at the termination of the protocol all processors have agreed on a com-
mon value v; if all v; were equal initially, the final value agreed upon is this
common value. '

We shall initially consider the following synchronous model. We are given a
system of n processors that can communicate through a completely connected
network. The processors act synchronously, where at each time step each processor
can broadcast a message, receive all incoming messages, and perform some private
computation (possibly involving coin tossing). In the absence of failure, any
message sent at time / will be received at time i + 1. As a result, we view the
computation as occurring in rounds, each consisting of transmission, reception,
and private computation phases.

The situation for deterministic algorithms for consensus is well understood. A
result of Dolev and Strong implies that in a synchronous fail-stop model, at least
t + 1 rounds are needed, in the worst case, to achieve consensus; they also provided
an algorithm that achieves this bound and transmits only a polynomial number of
messages [10]. In an asynchronous model, Fischer et al. showed that no protocol
exists for consensus in the fail-stop model that tolerates even a single fault [14].

Fortunately, randomization can overcome this inherent intractability. Ben-Or
describes a protocol for asynchronous consensus that tolerates up to #/2 faults in
the fail-stop model, and terminates with probability 1 [4]. Results of a similar
nature were given by Bracha and Toueg [6]. However, the expected number of
rounds needed to reach agreement as measured locally by every processor is
exponential in the asynchronous case (and can be shown to be O(f/vn) in the
synchronous one). Rabin introduced the important notion of a global coin flip
[22], which is a coin flip whose outcome is visible to all processors. He describes a
different protocol that employs such a coin, so that each processor can use the
outcome of a common coin. The expected number of rounds to reach agreement
is O(T(n)), where T(n) is the time required to flip the coin in a network of
n processors. In order to implement his global coin, Rabin required some predealt
information to be distributed by a trusted third party. Bracha, using a beautiful
“boot-strapping” construction, showed that Rabin’s result could be improved so
that agreement is reached in O(7{(log n)) expected number of rounds (that is, the
time to flip many independent coins in subnetworks whose size is logarithmic in
n, in the size of the original network) [5]. It has been shown how to use cryptographic
techniques to implement such a coin-toss in 7(n) = O(n) rounds, so that overall,
Bracha’s procedure can be run in O(log 1) expected time as shown in [3] and by
(A. C. Yao, private communication). However, this scheme requires an assignment
of processors to committees for which no explicit construction is known. In
contrast, our protocol is completely constructive. Feldman and Micali {12] have
also eliminated the nonconstructive part of Bracha’s probabilistic assignment, by
having the processors generate the assignment themselves. However, in the process,
Feldman and Micali introduced a preprocessing phase that requires O(f) rounds.
Their protocol is superior to deterministic protocols in an amortized sense, since
additional agreements require only O(1) time. The best-known bound for a
Byzantine fault model without predealt information or preprocessing is O(log n).

Simple Constant-Time Consensus Protocols in Realistic Failure Models 593

- aly thir e e Armatond e oo Anrotamt Axvaann

Sllle our CUBO l I 11Ul UllllbblUll lauu.a fun lll LUllDla ll CAPCLLCU LllllC, CUIT lCllL
results leave a log n separation between the Byzantine and omission fault models.'

Throughout this paper, # will be used to denote the number of processors, and ¢
will denote an upper bound on the number of failures tolerated. We present
protocols for achieving consensus in completely connected networks despite omis-
sion faults of various types. The protocols can tolerate up to a constant fraction of
the processors failing: that is, for each protocol and fault type there is a constant
B<3, independent of the value of n, such that the protocol can tolerate as many
asi = /Jl'l UmlSSlOﬂ ldullb Ul LHC glVCIl lpr

The algorithms that we present are based on producing a coin flip that is
essentially global. (A global coin flip has a random outcome that is viewed
identically by every processor.) We relax the condition that each processor’s view

of the coin must always be identical, and in fact, the coin may even be somewhat
hiaced)

AGOTAL .

Definition. A coin is called weakly global if there exists an absolute constant
¢ >0, such that for all v € {0, 1}, the probability that at least min{ln/2]1 + 1+ 1, n}

S0i gt vl 4l RO PIOUALILY 14

. processors all see outcome v is at least c.

The intuition behind this definition is that if Ln/2] 4+ ¢ + 1 processors see the
same outcome, then a majority of the processors (Ln/2] + 1) will use this value in
the consensus protocol, and reach consensus in a few more rounds. The essence of
our weakly global coin procedure is to randomly select a temporary leader, and
then to use the leader’s local coin flip for the given round. After showing how such
a coin can be produced in a variety of omission fault models, we then indicate how
to use it to achieve consensus.

The design strategy of our protocols reflects a heuristic rule prevalent in distrib-
uted protocol design: It should be possible for simpler algorithms to defeat weaker
adversaries. In the search for provably good algorithms that are also useful in
practice, this rule suggests that some complex protocols have simple counterparts
in more realistic fault models. In the case studied here, the algorithm against the
adaptive adversary is transparent in comparison to the protocol for the Byzantine
case that results from the combined work in [3] and [5].

Finally, we show that these results are nearly tight, by showing that for any

protocol for the synchronous fail-stop model, if ¢ processor faults are tolerated,
then the nrnhahlhf\/ that all correct processors have decided after k rounds (l(< t\

[801wl § G0 4L LLUQVLLILY iar all COLIT0LY PIULCSOLIS LAy LU0 Qs A IVUWEES

isat most 1 — 3. (t/(2 nk))*. (The same result was obtained independently by Karlm
and Yao [17].) By comparison, the probability achieved by our protocol is
I — (¢ + t/(Zen))*’* where the constant ¢ = (2e — 1)/(2é).

XS]
3

Correctness proofs for fault-tolerant algorithms have a game-theoretic character.
They argue that the algorithms behave appropriately, even when the faults are
being caused by an intelligent adversary. The capabilities attributed to this adversary
have a profound effect on the design of algorithms meant to defeat it Indeed there

cacee in which alaarithm ig nnnnkln of defeatinog auffie v nowerfyl
are €asés in wniCn no aigorinm 1S ¢apaoviC OI acifaiing ouluuluuu_y POWCITUL

adversaries [14, 20].

' Since the preliminary version of this work was published [8], there have been significant advances in
protocols for Byzantine agreement. Building on our notton of random elections, Dwork et al. [11] give
an O(log log n) expected-time Byzantine agreement protocol tolerating ¢ < n/4 failures, and Feldman

amd MAianl: T19] immmenuva thioc 0 nn e poamotnmt aveantad timan et annle talacntien # o 22 /) Cailiseng

anda mMicai p14) improve ulis 1o give Constani CXpiCica uimic proioCois toicrating { < 7/ 2 181ures.

594 ‘ CHOR ET AL.

In Byzantine fault models, the adversary can control the behavior of some
processors, causing them to send arbitrary messages whenever it likes. Such an
adversary is extremely powerful, and defeating it seems to require complex and
expensive algorithms. If one is modeling physical failures (as opposed to intentional
attacks), such an adversary may be unrealistically powerful.

Consider the following example. On October 27, 1980, the ARPANET suffered
a catastrophic failure as the result of hardware failures in two processors. Two
spurious messages were generated that brought down the whole network for a
period of several hours. Clearly, the network protocols were not capable of surviving
even a small number of Byzantine faults. Instead of changing the protocols,
hardware error-detection was added in the next generation processors, reducing the
likelihood of repetition of this Byzantine failure to an extremely small probability
[23]. Rather than implementing protocols to defeat a Byzantine adversary, the
network designers effectively chose to weaken the adversary.

The new ARPANET implementation might be best described by an omission
fault model, in which processors never send spurious messages, but some messages
may fail to arrive at their destination. The adversary is thus limited to specifying
which messages will be delivered to their destination, and which will not. The
failure models we consider here are variants of failure by omission.

For'deterministic protocols, an adversary, causing failures to produce the worst
possible performance, can determine the outcome of a strategy in advance. With
randomization, this is no longer possible, so that it may be advantageous for the
adversary to decide its strategy adaptively, as random bits are generated and used.
Therefore, in modeling the power of the adversary, it is crucial to specify the extent
to which the adversary is adaptive, and the information it has available to determine
its strategy. We consider three limitations on the adaptiveness of the adversary.
Each of these is concerned solely with the communication system that connects
the processors, and thus assumes that the processors are themselves nonfauity.
However, as we elaborate below, the situation in which processors are allowed to
fail in a “fail-stop” manner is a special case of one of our models.

Static Faults. Throughout the life of the system, messages sent by at most ¢
processors fail to reach their destination on time (within the round they are sent).
Most previous work on omission fault models has focused on this type of fault. In
the traditional fail-stop model, processors fail by halting prematurely, but the
communication network always delivers all messages that have been sent. Within
this model, our definition of the consensus problem is flawed, since we require that
all processors agree on a value, and it is hopeless to require a faulty processor to
do anything. If we relax this requirement to a// nonfaulty processors, it is not hard
to see that static communication faults include the case of fail-stop processor faults,

Dynamic-Broadcast. During each round, messages sent by at most / processors
fail to reach their destination (but this may happen to a different set of ¢ processors
each round). A processor that sends a message that does not reach its destination
is said to be erratic. These models are more general than static fault models. They
are similar to models studied in [21].

Dynamic-Reception. Each processor receives all but at most 1 messages sent to
it during every round (so that, if all processors are supposed to broadcast every
round, each processor receives at least » — f messages). However, any two processors
may fail to hear from a different set of ¢ others. These models are more general
than dynamic-broadcast models, and are similar to the models we use for the
asynchronous case.

Simple Constant-Time Consensus Protocols in Realistic Failure Models 595

We present algorithms for dynamic-broadcast and dynamic-reception models.
Because these models are more general than the fail-stop or static models, our
algorithms will work in these cases as well.

In addition to the limitations on the adaptiveness of the adversary mentioned
above, we consider two different limitations on the knowledge available to the
adversary in determining its strategy.

Message-Oblivious. The adversary’s choice of failure, that is, which messages
will not be delivered, is independent of the contents of the messages. However, this
choice can depend, for example, on the pattern of communication or on the length
of messages. Before giving a more precise definition, we first introduce a formal
description of a synchronous execution of a protocol in this model.

At round k + 1 of a protocol, the prior k rounds of execution can be described
in the following way. Consider a layered, directed graph consisting of k& + 1 vertices
for each processor p, (p, i), i =1, ..., k + 1, where there is an edge from (p, i) to
(g, i + 1) whenever p sends a message to ¢ at round /. A subgraph of this graph
represents the messages actually delivered. These graphs will be known as the
transmission and reception graphs, and together will be referred to as the com-
munication pattern. To complete the description of the prior execution, we add
labels to the edges of the distribution graph, where the labels correspond to the
contents of the messages. We define the ith layer of these graphs to be the subgraphs
induced on the vertices with second coordinate i and i + 1.

Each processor p’s view of the communication pattern consists of the subgraphs
of nodes labeled by p, together with the labeled out-edges of those nodes in the
transmission graph (the messages p sent), and the in-edges in the reception graph
(the messages p received). A protocol for p determines a distribution of a new local
state, out-edges and labels for node (p, k£ + 1), as a function of p’s local state and
p’s view of the first k layers of the communication pattern, together with p’s input
value. An adversary determines a distribution of in-edges for the k + st layer of
the reception graph as a function of the n processor protocols and input values, the
first k layers of the communication pattern, and the & + 1st layer of the transmission
graph. An adversary is message-oblivious if for any given input vector to the
processors, any communication pattern up to round k, and any kth layer of the
transmission graph, the probability distribution of the kth layer of the reception
graph is independent of the labels of the communication pattern through the first
k layers (inclusive).

In [6], a weaker probabilistic adversary was considered, called a fair scheduler.
At round i/, a fair scheduler delivers to processor p a random subset with n — ¢
messages out of all messages sent to processor p at this round. Furthermore, the
sets of messages sent to different processors are mutually independent. Bracha and
Toueg have demonstrated a constant expected run-time with constant fraction of
failures for executions under fair schedulers.”

21t is worthwhile to clarify the relation between our message-oblivious adversaries and Bracha and
Toueg fair schedulers. It is clear that every fair scheduler is also message oblivious: The identity of
messages it delivers to processor p at round / certainly does not depend on the content of the messages,
as it is chosen at random. However, the class of message-oblivious schedulers strictly contains the class
of fair schedulers. As an example, consider a scheduler that delivers, at every round, the messages of
processors 1, 2, ..., n— t to processors 1, 2, ..., n/2, and the messages of processors t + 1,1+ 2, ...,
n to processors n/2 + 1, n/2 + 2, ..., n. Such scheduler is certainly message oblivious, but not fair. It
is not hard to see that when applying this scheduler to the (deterministic) algorithm of [6], the system
stabilizes at a nonterminating state if the initial configuration is that processors 1, 2, . . ., #/2 have input
0 and processors n/2 + 1,n/2 + 2, ..., n have input 1 (whereas our algorithm will términate in constant
expected time). Whether message-oblivious adversaries or fair schedulers are better models of real-life
systems is outside the scope of this paper.

596 CHOR ET AL.

The second model places fewer restrictions on the adversary’s knowledge of
communication in the network.

Message-Dependent. The adversary is limited to polynomiai resources (time
and space), but its choice of failures may depend on the contents of the messages.

Note that our definitions assume that the adversary has full knowledge of the
hardware and software running at each processor and of the communication over
the network (subject to the limitations above), but does not know the local state of

+la mdiviA A + fvwhich
the individual processors during execution {which may depend on the outcome of

local coin tosses not observed by the adversary). For example, it will be important
that decryption keys are stored in local memory and are part of the local state. We
assume that the initial values can be seen by the adversary. For each combination
of adaptiveness and knowledge constraints, we present an algorithm to achieve
consensus in constant expected time.

3. The Message-Oblivious Case

In this section we show how to toss a weakly global coin in message-oblivious

meodels. For the dynamic-broadcast failure model, the coin will have the property
that for each outcome (heads or fmk\ there is some constant nrnhﬂhlhtv of

wiar 207 Calil OULOIN0 UECAUS UL t&1i5), A0 15 SURAC USRI VDALY

that outcome being received by every processor. For the dynamlc -reception
failure model, there is some constant probability that for each outcome, at least
Ln/21 + t + 1 processors will receive that outcome, provided ¢ is bounded away
from n/4. :

The algorithm is perhaps the most natural one. A leader randomly volunteers,
and this leader tosses a coin. More precisely, consider the following algorithm:
the procedure LEADER produces a local biased bit where the probability of a 1

L B s L W g T 1 ~ - 7=y
U1 volunteer’) is equai to x/n, the procedure RANDOM BIT produces a local

unbiased bit.

Code for processor P:

. function COIN TOSS;:

. I, «— LEADER
¢, « RANDOM BRIT

¢, «<— RANDOM
. broadcast (c,, /,)
. receive all (¢, /) messages
if all messages received with / = 1 have the same ¢
then COIN TOSS, < c of these messages
else COIN TOSS, « local coin toss

PN ULB W~

THEOREM 1. The function COIN TOSS, produces a weakly global coin in the
dynamic-broadcast message-oblivious fault model, where the constant probability
Sor either common outcome is at least (1 — B)/2e, provided t < Bn (where 8 is any
constant less than 1).

ProoF. In a single execution of COIN TOSS,, the probability that exactly one
processor volunteers is

n—1
(n) . 1/. _1\ (oo
\1/ n/ o e
In the analysis, we restrict attention to executions of the procedure when this
event happens. How can the adversary thwart a good coin toss? Only by preventing

the leader’s message from getting to all other processors. However, he must select
the set of at most ¢ erratic processors with no information about the random bits,

Simple Constant-Time Consensus Protocols in Realistic Failure Models 597

so that if the leader is not among those picked by the adversary, its messages will
reach all processors. Except for the contents of the messages, all processors actions
are identical. Hence, all the messages of the leader reach their destination with
probability at least (n — £)/n = 1 — 8. The second coin toss of the leader was made
independently of the above conditions, and the probability of each outcome is the
same. Putting the pieces together, we get the claimed bounds. [

Remark. While it suffices to require 8 < | in order to achieve a weakly global
coin, we actually will require 8 < 3. This requirement is needed in the consensus
protocol (see Section 6).

The protocol can also be viewed in the following way. The tossing of the 1/n
biased coin is an approach to obtair a distribution where the maximum of » trials
is likely to be unique. In this context, the leader is the processor who tossed the
unique maximum. All processors receive the other processors’ values, determine
the maximum and hence the leader, and choose the unbiased bit of this processor.
By choosing other distributions, it is easy to see that the probability of a unique
leader can be pushed arbitrarily close to 1. In implementing the protocol, this
means that it is possible to trade off additional bits transmitted in order to reduce
the expected number of rounds to reach consensus. For example, if the leader
identification consists of 3 log n unbiased bits instead of a single bit /, there is a
very high probability, = 1 — 1/2n, that the maximum of # bit-sequences will be
unique.

‘THEOREM 2. The function COIN TOSS, produces a weakly global coin in the
dynamic-reception message-oblivious fault model, when t < n(1/4 — €) for some
constant €« > 0. If t = n(1/4 — ¢€), the probability for either common outcome is at
least af2e, where o = 8¢/(de + 5).

PrROOF. Once again, we focus on the case that exactly one processor volunteers,
which happens with probability at least 1/e. Recall that in the dynamic-reception
fault model, every processor receives at least # — ¢ different messages each round,
but different processors may receive messages from different sets of senders. Recall
also, that the conditions for a weakly global coin only require that at least Ln/2] +
! + 1 processors agree on the outcome of the coin. This happens if-the leader
succeeds in reaching this many processors. Accordingly, call processors whose
messages are received by Ln/2] + ¢ + | processors persuasive. Since the failures are
chosen independently of the identity of the leader, it is sufficient to show that the
fraction, «, of the processors that are persuasive during each round is at least a
constant independent of 7.

We next bound « using a simple combinatorial argument. Since everyone receives
at least n — ¢ messages, the number of messages received is at least n(n — t). Assume
exactly an processors are persuasive—then the number of messages received is at
most an® + (n — an)(ln/21 + 1). This number is achieved if each persuasive
processor has » of its messages received, and the rest lack only one message received
to be persuasive themselves. From n(n — 1) < an®* + (n — an)(Ln/2] + 1), we derive
(Tn/21 = 20)/(Tn/21 —) < a. If t = n(3 — €), a is at least 8¢/(de + 5).

Thus there is at least probability 1/e that there is a single leader, for each value
(heads or tails), there is probability 5 that the leader’s other coin has that value,
and there is at least « probability that the leader is persuasive. By the message-
oblivious assumption, all these events are independent so that overall the proba-
bility of each outcome is at least o/2e. []

598 CHOR ET AL.

By modifying the protocol, it is possible to significantly strengthen the number
of faults tolerated in the dynamic-reception fault model. Before giving this new
protocol, we first describe a basic building block that will be useful in several
constructions.

3.1 SIMULATING DYNAMIC-BROADCASTS WITHIN A DYNAMIC-RECEPTION MODEL.
We shall show that three rounds of broadcasting within the synchronous dynamic-
reception model can simulate one round of a synchronous dynamic-broadcast
while maintaining the property of message-obliviousness. The simulation consists
of one round in which each processor broadcasts the original desired message for
dynamic-broadcast. (To simplify the discussion, we assume every processor has
such a message to send.) In the following two rounds, every processor sends his
message plus his view of every other processor’s message.

We begin by showing that after executing this protocol, there is a set of at least
n — t processors whose message has been relayed to all n processors, assuming that
t < n/2. This is done by a simple counting argument. Consider the second round
of the simulation. We show now that there must be at least one processor p whose
second round messages reach ¢ + 1 processors. If all processors reach no more than
{, then M, the total number of messages successfully transmitted in the second
round, is at most M < nt. But each processor receives at least # — ¢, so that
n(n — t) = M. Thus we get n(n — t) < nt, contradicting the assumption that ¢ < n/2.
Every processor receives at least # — ¢ messages in each round, so that processor p
must have attempted to relay at least this many messages to each processor in
round two. Since there are ¢ + 1 processors that have been relayed these messages
at the end of round two (from p), every processor will be relayed these messages
from one of the ¢ + 1 processors by the end of round three. This proves that this
three round dynamic-reception simulation gives us the structure of one round
of dynamic-broadcast. It is not hard to see that one fewer round of echoing is not
sufficient to guarantee the structure of a dynamic-broadcast round.

We now show that message-obliviousness is preserved by this simulation. First
notice that the pattern of sending and receiving messages in the simulation itself
does not depend on message contents. From the definition of a message-oblivious
adversary, the ith layer of the reception graph is independent of the labeling of the
transmission graph given the pattern of communication up to this point. The
analogous statement holds for the i + Ist layer, given the ith layer and the previous
pattern of communication. From the definition of conditional probability, we get
that the probability of any communication for both the ith and 7 + Ist layers is
independent of the previous labelings of the pattern of communication. In our
protocol, this implies that the set of at least » — ¢ processors that reach at least ¢ +
1 processors two rounds later, is independent of the contents of the messages sent.
Once this set reaches ¢ + 1 processors, the adversary cannot stop the set of messages
from reaching all # processors in the next round. Since the set is independent of
the contents of the messages sent, the pattern of the successful transmissions in the
simulated dynamic broadcast is independent of the contents of the messages. Thus
we have shown that message-obliviousness is preserved.

The above two-round echoing scheme is a general tool. Applying it for the case
of producing a weakly global coin, we get the following modified procedure.

Code for processor P with two-round echoing:
1. function COIN TOSS,:

2. I, — LEADER
3. ¢, — RANDOM BIT

Simple Constant-Time Consensus Protocols in Realistic Failure Models 599

. broadcast {(c,, /,,)
. receive all (¢, /) messages
. broadcast (c,, /,) and all (¢;, /) pairs received

receive all compound (¢, /), . . ., (c,, [,) messages

. broadcast (c,, /,) and all (¢;, /;) pairs received

. receive all compound (¢, 1)), ..., (¢c., [,) messages
10. if all messages received with / = 1 have the same ¢
11. then COIN TOSS, « c of these messages

12. else COIN TOSS; « local coin toss

\DOO:\)C\UI.E;

Although the echoing in this protocol requires a factor of » more bits to be
transmitted, it can tolerate up to ¢t = [n/21— 1 failures and the fraction of processors
whose messages reach everyone is at least (n — £)/n.

Summarizing the above discussion, we have obtained the following result:

THEOREM 3. The function COIN TOSS, produces a weakly global coin in the
dynamic-reception message-oblivious fault model, when t < n/2. The probability
for either common outcome is at least (1 — (t/n))/2e.

It is critical to the correctness of this protocol that the adversary’s choice of
messages delivered each round be independent of the contents of the messages. A
stronger adaptive adversary might simply check each message as it is sent; if the
processor is a potential leader (its message is (b, 1)), then the adversary blocks the
message. This stronger adversary can also be defeated, as long as the contents of

the messages are unintelligible to him. In this case, any attempt at blocking the

leader’s message is still an essentially random act, because the adversary cannot
understand the messages. This suggests that encryption could be a useful tool in
designing a protocol that can defeat a more powerful adversary.

4. The Message-Dependent Case

In this section we show how cryptographic techniques can be used to toss a weakly
global coin in the presence of an adaptive adversary using a message-dependent
strategy. We prove that if the adversary can block the weakly global coin, then it
can break the cryptosystem. Therefore, if we assume that the cryptosystem is
secure, and that the adversary is limited to polynomial computing resources, then
it cannot prevent consensus within constant expected time.

Let E be a probabilistic encryption scheme that hides one bit [15]. We briefly
describe the properties that E should possess for our purposes. Given a natural
number A, the security parameter, £ maps the bit 1 at random into a string o in a
set O C {0, 1}” and maps the bit 0 at random into a string zinaset Z C {0, 1}".

GlVCll a ldllUUlll blllllg i C U U Z, WO addulllc l.lldl no pUlyllUllllal'LllllC alsulllhlll
(that is, polynomiai in /) can distinguish the case r € O from r € Z, with success
probability greater than (1/2) + (1/x#¢) for any constant ¢ > 0. On the other hand,
there is a polynomial-time algorithm that, given additional secret information,
distinguishes between the two cases with probability 1. The scheme E can be based
on any trapdoor function [23]. In particular, the familiar RSA cryptosystem can
be used, with 0 encrypted by E(x), where x is chosen at random among all numbers
in Z, with least significant bit 0, and 1 encrypted by E(x), where x is chosen at

nda mha 7 rith lanct ifie
randaom among all numbers in Ly Wiin 18ast SIglllll\/allL bit 1 [1] lFur this UA(«IILI}J!U,

we assume that RSA is hard to invert.) It is important to reiterate that the main
theorem of this section is based on the following hypothesis:

(*) The encryption function E cannot be inverted in random polynomial time
without the secret trapdoor information.

600 CHOR ET AL.

We first make the assumption that all processors use the same public key E
whose decryption key they all hold (but to which the adversary has no access). At
the end of this section we indicate how this assumptlon can be removed, at some
expense in the number of faults tolerated.

The only modification to the algorithm of the previous section is to replace the
hrnad(‘actmo of (f /\ (hne 4 of the COIN TOSS, f'lm(‘hnn\ by the broadcasting of

vvvvvvvvvvvv 5 Vi

(E(c), E()). The modlﬁed code is now:

Code for processor P:

1. function COIN TOSS::

2. I, «- LEADER

3. ¢, < RANDOM BIT

4. broadcast (E(c,), E(l,))

5. receive and decrypt all (¢, /) messages

6. if all messages received with / = 1 have the same ¢
7 then COIN TOSS; « ¢ of these messages

8. else COIN TOSS; « local coin toss

We now prove that the new protocol is as hard to break as the cryptosystem it
uses.

THEOREM 4. Under the assumption (=), if all processors hold the same encryption
and decryption key, then for polynomially many repeated calls of the function COIN
TOSS5, each call produces a weakly global coin in the message-dependent fault
models. This procedure is correct, provided t < 8n, where 8 is any constant less
than 1 for the static and dynamic-broadcast case, and t < n/2 for the dynamic-
reception case. The probabilities of each outcome are as in Theorems 1, 2, and 3,
respectively.

PrOOF. We first prove the result for the static and dynamic-broadcast model.
We again restrict attention to the event that exactly one processor volunteers, and
that its random bit is 1. (The case of 0 is handled identically.) This event occurs
with probability at least 1/2e. Suppose the adversary can block some of the messages
of the leader with probability = t/n + ¢ (where ¢ > 0 is a constant). We show that
in fact the adversary has the power to distinguish between the encryption of
(RANDOM BIT, 0) and the encryption of (1, 1). (An adversary can distinguish
between these two events if there exists a constant ¢ > O such that the difference
between the probability that the adversary outputs a “1” on the encryption of
(RANDOM BIT, 0) differs by at least ¢ from the probability that he outputs “1”
on input the encryption of (1, 1).) Using a theorem of Goldwasser and Micali [15],
this leads to a polynomial-time algorithm for the adversary to invert E.

The proof consists of two parts. The first part is to show that polynomially many
previous executions of the COIN TOSS; give the adversary no information that it
cannot get by itself. In other words, the polynomial-bounded adversary can simulate
polynomially many executions of this protocol by itself, without having any secret
information, with exactly the same probability distribution as occurred in the “real”
executions. This claim follows from the fact that all the processors are doing in
every round of the protocol is to pick 2#n bits according to a known (easily
computable) probability distribution, encrypt these bits under the public-key E,
and then use the encrypted values in the underlying agreement algorithm (which
is known to the adversary). To simulate one round of this protocol, the adversary
simply picks 2 bits according to the probability distribution, encrypts them under
E, and with these inputs, simulates the rounds of message exchange as it would in
an actual execution. (A repetition of the argument would work for any polynomial

Simple Constant-Time Consensus Protocols in Realistic Failure Models 601

number of rounds k.) Whenever the protocol calls for a processor to make an
action based on the decrypted messages, the adversary consults the original bits
(which 1t generated earlier) and uses them.

Now suppose the ach‘:i‘S&i"y’ can cause any event to occur with respect to the
message distribution in the k + 1st execution of the protocol, based on the first
k executions. (Since the adversary is restricted to polynomial time, it suffices to
consider k, which 1s polynomial in # and the security parameter A.) In that case,
the adversary could also simulate exactly the same distribution of messages in the
first k rounds by himself, without invoking the actual processors, and then cause
that event to occur right at the first execution of the COIN TOSS; protocol. (For
a stronger definition of protocols that release no extra knowledge, and detailed
discussion, see [16].)

In the second part of the proof we show by a simulation that subroutine COIN
TOSS; produces a weakly global coin. As before, we condition on the event that
there is a unique leader. (Recall that this happens with probability at least 1/e.)
Suppose the adversary can make the leader erratic with probability = /n + ¢. We
partition the event, “a unique leader exists” into the two disjoint events, 4 =
“a unique leader exists and his coin toss is 1” and B = “a unique leader exists and
his coin toss is 0”. To make the leader erratic with probability > t/n + ¢ the
auvei‘SE‘ti"y' must succeed in ulai\ii‘ig the leader erratic with pi‘Ouauuuy = l/ n+ ein
at least one of the events 4 or B. In the remainder of the proof, we condition on
the event A4 (the proof for event B is identical).

To succeed in blocking the leader’s message in 4 means that the adversary
implements a blocking algorithm %% that, given as inputs # encrypted pairs

(E(c)), EQL)), ..., (E(c.), E(0)),
(where n — 1 of the /;s are 0, and their corresponding ¢;s are random bits, exactly

ha ~ ~neencmaem Aimg -~ rhaazzdo wa [y y Aot

Oonc ll, iS l auu LllC ¢ bUllepUllUllls w I.lllb l lb 1), Uulpulb n — L paub, Llldl COontain
the (E(1), E(1)) with probability no greater than (n — #)/n — e. (The messages that
£ outputs correspond to the processors that are not erratic, while the blocked
ones are those originating in processors that are made erratic.)

We build a distinguisher for the encryption function E. The distinguisher is a
polynomial-time algorithm that “behaves” differently when given as input the pair
(E(1), E(1)) versus the pair (F(RANDOM BIT), E(0)) (RANDOM BIT € {0, 1} is
chosen umformly at random). To this end, we first create » — 1 pairs of probabilistic

(E(RANDOM BIT)), E(0)), ..., (E(RANDOM BIT,-,), E(0)),

(where RANDOM BIT; € {0, 1} is randomly chosen).

Given a pair (E(x), E(y)), the n — 1 pairs are joined to it and we feed the » pairs
to #.% (in a random order). If x = 1, y = 1, then this is a random instance of the
event “exactly one leader volunteered and its random bit is 1”. Therefore, according
to the assumption, 4. will output the original pair (E(x), E(y)) with probability
nn oraatar than (0 — A/ — . If an the athar hand v = RANDOM RIT — n

no greater than (n — ¢)/n — <. If, on the other hand, x = RANDOM BIT, y
then the inputs to #.% are n pairs whose elements are probabilistic encryptions of
identical sources. Hence the outputs are just a random subset of
n — t out of these n encryptions, and so the original pair (E(x), E(p)) is output
with probability at least (n — ¢)/n.

The net effect of the whole procedure is that if x = 1, y = 1 then (E(x), E(y)) is
output with probability < (n — t)/n — ¢, while if x = RANDOM BIT, y = 0, then
(E(x), E(y)) is output with probability = (n — f)/n. Thus a distinguisher for E is

602 CHOR ET AL.

constructed using the adversary’s #.%. Invoking [15], we see that this distinguisher
can be used to invert E in polynomial time, contradicting assumption ().

For the dynamic-reception model, we can once again consider a variant of the
protocol that echoes the encrypted ¢; and /; values for two additional rounds. This
ensures that some set of # — ¢ messages reaches all » processors (provided ¢ < 1/2).
As in the message-oblivious case, we must once again argue that the leader’s
message is delivered with probability at least (n — 1)/n. To do this, we need only
make a small modification of the proof for the dynamic-broadcast case. We can
view the composite three rounds of transmission and echoing as one black box, in
which the adversary picks the identity of # — ¢ messages that will be delivered to
all n processors. (Note that one can determine from the ensemble of messages
received in the third round that » — ¢ messages are delivered to all # processors.)
As in the previous proof, conditioning on the value of the leader’s bit and the
existence of a unique leader, the indistinguishability properties of the probabilistic
encryption imply that no probabilistic polynomial-time adversary can do any better
than blocking at random. [

Theorem 4 is based on the assumption that the processors have already agreed
on a common public key E. This represents an additional assumption about the
initial state of the system. At the cost of a more complex protocol, this assumption
can be avoided.

4.1 WEAKLY GLOBAL CoINS WITHOUT COMMON PUBLIC KEYS. As we remarked
earlier, the problem of key distribution can be solved by having each processor p
broadcast its own (individually generated) public key E,. This is necessary so that
other processors can send encrypted messages to p. Provided ¢ < n/2, the algorithms
below will flip a weakly global coin.

In the dynamic-broadcast model, processors spend an extra initial round broad-
casting their public keys. This is done with every coin-toss execution. This guar-
antees that there are n — ¢ processors whose public keys are known to everyone.
During the first round of the coin-toss broadcast, each processor encrypts messages
with the public key of the recipient, or sends nothing if the recipient’s public key
is not known. In a second round of broadcast, all first-round messages are broadcast
in the clear (unencrypted). The code follows.

Code for processor P:

. function COIN TOSS.:

. generate and broadcast encryption key E,

. receive all £, messages

. 1,« LEADER

. ¢, — RANDOM BIT

. for each E, received in step 3 send (E,(c,), E(L.)
. receive and decrypt all (c, /) messages

. broadcast all (c, /) messages received in step 7

. receive all (¢, /) messages

10. if all messages received with / = 1 have the same ¢
11. then COIN TOSS, « ¢ of these messages

12. else COIN TOSS, < local coin toss

OO0~ B —

As before, consider the case that there is a unique leader chosen during the first
round of the coin toss. Since the first-round messages are encrypted, an argument
exactly analogous to that for Theorem 4 establishes that the leader’s messages will
be received in step 7 by at least n — ¢ recipients with probability at least 3. Since
n — 1 >, one of these recipients will forward the leader’s messages to everyone

Simple Constant-Time Consensus Protocols in Realistic Failure Models 603

UNTNT

during the final ciear round, steps 8 and 9. Thus, COIN TOSS, produces a weakly
global coin in the dynamic-broadcast model for ¢ < n/2.

In the dynamic-reception case, processors run the dynamic-broadcast algorithm
under the simulation from Section 3.1, running three rounds of broadcasting and
forwarding to implement one round of the dynamic-broadcast algorithm. (This
appucb 1o steps 2- 3, 6—7, and 8-9 in the code. } One additional \,uange miust be
made to the dynamic-broadcast algorithm—the simulation assumes that the same
message 1S broadcast each round. Thus, the vector of encrypted values must be

broadcast in step 6;
6. broadcast ((E(c,), E\(L,))), ..., (E.(c,), E.(L))),

where (E;(c,), E:{(l,)) = “?” if E; not received.

By invoking the same counting argument as before, there must be at least n — ¢
processors whose encryption keys are transmitted to everyone, and these n — ¢
processors will all in turn receive the encrypted messages of at least » — ¢ processors.
Again, an argument analogous to the proof of Theorem 4 shows that when there
is a single leader, there is a constant probability that it will be one of the latter
n — t processors. Since n — ¢ > t, the leader’s message will then be successfully

Frsmxrnwdad 4 A1l thhn cnvnnAacomo 3 Armoritime Alanie seaccaa CITA ANt e
urwaiucau tU dall lllC PIroOLCHULD 111 t e CIldUILLLE LiCdal lUullUD 1 O SUminarize

THEOREM 5. Under the assumption(), buz without assuming common, predis-
tributed e cuu_yyuuu and dcuyyuun KEYS, yuz_yuunuuu_y maiy IC[JCuLCd calls Ggj f the

Sunction COIN TOSS, each produce a weakly global coin in the message-dependent
dynamic-broadcast and dynamic-reception fault models, provided that t < n/2.

5. The Asynchronous Case

In this section we abandon the assumption that processors run in synchronous
rounds. Processors may run arbitrarily fast or slow, and messages may arrive out
of order, or take arbitrarily long to arrive, even in the absence of failures. We make
the following assumption about the nature of failures in the asynchronous model.

Asynchronous Failures. Except for a set of at most ¢ sending processors, all
messages sent by every processor are eventually delivered.

The definition implies that if m messages are sent by distinct processors to the
same processor p, then p eventually receives at least m — ¢t of those messages.

We consider two failure models for the asynchronous case, the asynchronous
message-oblivious and asynchronous message-dependent models. These both

assume the asynchronous fallure assumption, addmg, respectively, the message-
oblivious and message-dependent limitations from the synchronous case. In these
models, the adversary has full control of the order and timing of arriving messages
and of the rates of internal clocks, and is therefore more powerful than in the
synchronous case. The adversary is limited in only two ways. The constraints of
the failure assumption require it to eventually deliver enough messages, and the
message-oblivious and message-dependent limitations restrict the information it

i Tho cdae

may usc to UﬁlClllllIlC 1ts buatcgy

of dalavad and nindalic
U1 UlidyYCl 4iid uliGlny

messages.

Message-Oblivious. The adversary’s order of events (and, in particular, choice
+ £
[5 1

Refore oiving a m

Before giving a more pre

of an asynchronous executio

=

of a protocol. Our definition is taken from Fischer

=
=
=

604) CHOR ET AL.

et al. [14]. An execution is a sequence of events that can be applied, in that order,
_ starting from the initial configuration of the system. An event (m, p) is the receipt
of a message m that is either the empty message or is from processor p’s message
buffer (that is, a message that was previously sent to p and not received yet). As in
the synchronous case, each processor’s protocols determine, upon the receipt of a
message, a distribution of actions (the new local state and up to » messages sent).
These messages are then placed in the addressees’ message buffers. The adversary
determines, as a function of the protocols, the input vector and the asynchronous
execution, a distribution over the set of possible next events. An adversary is
message-oblivious if for any given set of protocols, (including the input vector to
the processors), and any past execution (specified by events EV,, EV,, ..., EV}),
the probability distribution of the next event, EV.,, is independent of the message
contents of nonempty messages of the first k events.

Message-Dependent. The adversary is limited to polynomial resources (time
and space), but its choice of failures may depend on the contents of the messages.

In general, defining the notion of time for an asynchronous system is not a
simple matter (see [2] and [13]). However, the protocols we are using are of a
restricted type, in which time is naturally defined. These protocols all consist of
alternating broadcast and reception phases. In the broadcast phase, a processor
sends a message to all # processors. In the reception phase, the processor waits to
receive messages from exactly n — ¢ processors. This is followed by a local
computation, the next broadcast phase, and so on. We assume that processors
begin each consensus protocol with the same value in their local round counter. In
our algorithms, processors append the current value of the round counter to each
message. Each processor counts local rounds, consisting of a broadcasting phase
and a reception phase. During the reception phase, the processor waits for exactly
n — t messages with the current round number (some of which may already be
received, and stored locally). For simplicity, we assume that extra messages with a
given round number are discarded. In general, no processor should wait for more
than n — t messages from a given round, since failures may prevent more than this
many messages from ever arriving. The definition of local time guarantees that no
~ processor is more than one round ahead of the majority of other processors (recall
that ¢ < n/2). Of course, the slowest processors could lag far behind.

In spite of the adversary’s increased power in the asynchronous case, a
two-round echoing variant of the synchronous algorithm will still guar-
antee that agreement is reached in constant expected time, provided
1< ((3 = V5)/2)n = 0.38n.

Before we give the proof, let us first remark on the difficulties arising in the
asynchronous vs. the synchronous case. One might be tempted to argue that exactly
the same proofs work, since “once the coin tosses are hidden (by assumption or by
encryption), the adversary cannot know which messages to block and so everything
works just as it did in the synchronous case.” This naive argument is incorrect
because an adversary can, in general, infer information about messages from the
way that processors who receive these messages react to them. If the reaction of
each processor to n — f coin-toss messages is sufficient to infer that a single
processor volunteered, the adversary can successively deliver different subsets of
messages to different processors, implementing a simple elimination procedure to
determine the identity of the leader. The leader’s messages can then be held back
from the remaining processors until they have finished the coin toss, rendering the
leader useless. (Notice that the adversary could not perform such elimination in

Simple Constant-Time Consensus Protocols in Realistic Failure Models 605

the synchronous case, where the response of processors is not observable until after
the end of the round, by which time every processor already received its incoming
messages for the current round.) To exemplify these notions, suppose we deal with
a different protocol, in which a processor that received n — ¢ messages with round
number |, among which a unique message is a leader’s message, sends its next
message to that leader Umy \auu broadcasts to all 7 Processors Umei"Wise) In such
case, the identity of the ith round leader can be inferred from the (unlabeled)
communication pattern alone. Thus a message-oblivious adversary can block the
leader’s messages to all other processors.

It is possible to hide the identity of the leader within the consensus algorithm,
by making the communication pattern independent of the identity of the leader

(as our algonthms do). However, consensus protocols are meant as general -purpose
tools, and it is not possible to anticipate fully the context in which they may be
run. Thus, once any processor leaves the coin-toss or agreement protocol, it may
behave in an arbitrary way, releasing arbitrary information to the adversary (such
as publishing cryptographic keys). These protocols must ensure that information
leaked by the faster processors will not jeopardize correctness by allowing the
adversary undue influence over the slower processors. The asynchronous protocols

halaw 1n1ge the imnacaed rannd ctrmeture and avnlicit cwnr\hrr\nl
OCIOW Use Ine LLTPUDLVU TUUIIU S ULLUIL Al VApPIIvIL Sy vl vl

satisfy these requirements.

Specifically, in the case that there is a single leader, the identity of the leader is
hidden at least until the fastest processor completes the execution of the protocol.
If the leader is persuasive, the coin has the additional property that the majority
value of the coin (i.e., the unique value assumed by Ln/2] + | processors) has been
determined by this point. This is an important property for asynchronous coin
tosses to have, in particular, for our application

Because of the round structure we 1mpose, the leader’s mess Sages arc oniy effective
if they are among the first n — t messages for that round to arrive at Ln/2J + ¢+ 1
other processors. For the asynchronous case this will be our definition of a
persuasive processor for a given round. Our algorithms work by guaranteeing a
positive constant probability that a single volunteer will be persuasive. Without
making it explicit in the code, we implicitly assume that a round counter is locally
maintained and incremented by each processor. When we say that a processor
receives n — ¢ messages, we mean that it reads messages from its buffer until

I'GLCIVlIlg n — 1 messages Wl[ﬂ llb current rounu HUIHDCI' 1he COdC for’ thC
asynchronous, message-oblivious model is as follows:

P

Yo rs £
C0ae¢ 101 processor P

. if all messages received with [= 1 have the same ¢
then COIN TOSS, « c of these messages
else COIN TQOSS,; «- local coin toss

1. function ASYNCHRONOUS COIN TOSS;:

2. |, LEADER

3. ¢, «— RANDOM BIT

4. broadcast (c,, 1)

5. receive the first n — ¢ (¢, /) messages with current round number

6. broadcast the vecior ((ci, {}), ..., (c., 1)) where {(¢;, I;) = “?” if not received
7. receive n — t vectors {(c\,), . .., (c., [,)) with current round number

8. broadcast the vector ((c, /,), ..., (c,,, l,,)) where (¢, [)) = “?” if not received
9. reccive i — t vectors {{¢1, 1), . . ., (Cu, 1,)) with current round number

0

1.

2.

[N

We call step 4 the coin-distribution phase, step 6 the first echoing phase, and
step 8 the second echoing phase.

606 CHOR ET AL.

THEOREM 6. The function ASYNCHRONQUS COIN TOSS, produces a weakly
global coin in the asynchronous, message-oblivious fault model, provided t <

(3 = 3)/2)n.

PrOOF. In fact, we prove an even stronger statement, namely that for each
invocation of asynchronous coin toss, there is a positive constant probability that
each of the two outcomes of the coin will be seen (eventually) by all processors
(the definition required only n/2 + ¢ + 1 processors to see the same outcome). To
prove that, we “freeze” the execution at the point when the first processor p reaches
step 10. Up to this point, the actions of all processors did not depend on the
contents of the messages sent and received in the current invocation of the
asynchronous coin-toss procedure. We argue that at this point there is a set of S of
exactly n — ¢ processors whose coins (¢, /,) have already reached at least ¢ + 1
processors during the first echoing round. If there are more processors with this
property, choose .S as any subset of size n — ¢. This implies that the coins of
processors in this set .S will eventually be relayed to all # processors. It is crucial to
notice that the members of the set S are already determined at this freezing point,
and cannot be changed later, regardless of any future scheduling by the adversary.

To prove the existence of such .S, we slightly modify the counting argument used
in the synchronous dynamic-reception case. Consider the second round of the
simulation (steps 6 and 7). We show now that at this first echoing phase, at least
one processor g had its messages reach ¢ + 1 processors. If all processors reached
no more than ¢, the total number of messages that were already transmitted in the
first echoing phase, M, is at most sz. Since processor p reached step 10, that means
that it received the second-round echoing messages from # — ¢ processors. But each
of these n — ¢ processors moved to second-round echoing after receiving n — ¢ first
echoing phase messages, so that (n — 1)> < M. Thus we get (# — ()’ < nt. Substituting
t = yn, this inequality implies (1 — y)* < 4, contradicting the assumption that
vy <(3- NG)/2. To wrap up the argument, observe that every processor receives
at least n» — ¢ messages in the distribution phase. Denoting by S the processors
whose messages reached ¢ at the coin-distribution phase, that processor ¢ must
have attempted to relay all S messages to each processor in the first echoing phase.
Since there are ¢ + 1 processors at the end of the first echoing phase that have been
relayed these messages (from g), every processor will eventually be relayed these
messages from one of the 1 + 1 processors by the end of the second echoing phase.

Of course, the adversary’s actions before the freezing point determine the set S.
But from the discussion above, the pattern and length of all messages sent/received
by all processors up to the freezing point is independent of message contents.
Thus, for a message-oblivious adversary, the choice of the set .S is made indepen-
dently of the messages’ contents. Conditioning on the existence of a single leader,
the leader will be in the set .S with probability exactly | S|/n, which is at least
(m—/n>%i 0O

To defeat a message-dependent adversary in the asynchronous case, we make
the same alteration as in the synchronous case, encrypting the random bits.

Code for processor P:

function ASYNCHRONOUS COIN TOSS::

l, — LEADER

¢, «— RANDOM BIT

broadcast (E(c,), E(/,))

receive and decrypt the first # — 1 (E(¢), E(/)) messages with current round number
broadcast the vector {E(c,, I}), ..., E(c,, L)) where (¢, [} = “?” if not received

SR

Simple Constant-Time Consensus Protocols in Realistic Failure Models 607

7. receive n — ¢ vectors (E(c,, 1)), ..., E(c,, 1)) with current round number
8. broadcast the vector (E(c,, 1)), ..., E(c,, 1)) where (c;, [) = “?” if not received
9. receive n — t vectors {E(c,,), . .., E(c,, [,)) with current round number
10. if all messages received with / = 1 have the same ¢
11. then COIN TOSS, « c of these messages
12. else COIN TOSS, « local coin toss

THEOREM 7. Under the assumption (), if all processors hold the same encryption
and decryption key, then polynomially many repeated calls of the function ASYN-
CHRONOQUS COIN TOSS; produce a weakly global coin in the asynchronous
message-dependent model, provided t < (3 — v/5)/2)n.

PROOF SKETCH. As in Theorem 4, we argue that an adversary who can prevent
a successful coin toss is capable of breaking the cryptosystem. By the argument in
the proof of Theorem 6, the two-round echoing guarantees the existence of a set S
with = n — ¢ processors, whose encrypted coins eventually reach everyone. Fur-
thermore, the identity of S is determined before any processor made a step that
depends on the contents encrypted under E. Conditioning on the existence of a
unique leader, the adversary can successfully block the coin toss only if he can
discard the leader from S. The adversary acts based on the » pairs of encrypted
coins (E(c), E(1\)), . .., (E(c.), E(l,)). By the same argument as in Theorem 4, if
the adversary succeeds substantially more often than he would by guessing the
leader’s identity at random, he could use this capability to invert the cryptosystem.
Since the probability of successfully placing the leader outside S by guessing his
identity at random is < t/n <3, we are done. [

Similar to the message-dependent synchronous case, we perform a four-round
key distribution phase as part of the protocol, where the number of faults tolerated
is £ < ((3 — v5)/2)n. In performing the key distribution, we follow a round of
broadcast by a three-round echoing scheme, which will be sufficient to ensure the
following: there exists sets S, and R, of n — ¢ processors each, where the key of
each processor in .S is received by each processor in R; before the fastest processor
starts the current epoch’s coin-flipping protocol. As in the proof of Theorem 7,
there exists a set S with n — ¢ processors, so that for every p in S, the message,
E(c,), EXL)), - .., (Ex(cy), E(L))) (where (Ei(c,), Ei(l,)) = “?” if E; was not
received by p), will eventually be received by all n processors. As before, the identity
of S is determined before any processor makes a step that depends on the contents
of encrypted messages. | R, N S| = n — 2t > n/5, so that a blocking argument
similar to the proof of Theorem 4, shows that the unique leader is in this intersection
with probability at least . This implies the following theorem.

THEOREM 8. Under the assumption (x), but without assuming common, predis-
tributed encryption and decryption keys, repeated calls of a modified function
ASYNCHRONOUS COIN TOSS, preceded by a four-round encryption-key-
distribution phase, produce a weakly global coin in the message-dependent asyn-
chronous fault model, provided that t < (3 — ¥/5)/2)n.

6. Using a Weakly Global Coin in Achieving Consensus

In this section we present an agreement algorithm that can be implemented using
a weakly global coin. For simplicity of presentation, the algorithm given here is
binary (reaching agreement on one bit), and is basically a modification of those in
[4] and [6].

608 : CHOR ET AL.

We begin with an informal description of the algorithm. The algorithm is
organized as a series of epochs of message exchange. Each epoch consists of several
rounds. The round structure is provided automatically in the synchronous models.
In the asynchronous models, the round structure is imposed locally by each
processor, as was discussed earlier. In this case, reaching consensus in “constant
expected time” means that each processor will complete the protocol within a
constant expected number of local rounds.

We describe the algorithm for the processor P. (All processors run the same
code.) Epoch and round numbers are always the first two components of each
message. The variable CURRENT holds the value that processor P currently favors
as the answer of the agreement algorithm. At the start of the algorithm CURRENT
is set to processor P’s input value. In the first round of each epoch, processor P
broadcasts CURRENT. Based on the round-1 messages received, processor P
changes CURRENT. If it sees at least Ln/21 + 1 round-1 messages for some
particular value, then it assigns that value to CURRENT; otherwise, it assigns the
distinguished value “?” to CURRENT. In the second round of each epoch,
processor P broadcasts the new CURRENT. This is followed by a synchronization
round, in which all processors broadcast waiting messages, then wait until » — ¢
such messages are received. This guarantees that at least n — ¢ processors have
finished the previous round before the fastest processor leaves this round. Next,
the COIN TOSS subroutine is run. (Of course, in an asynchronous model this
statement is a bit imprecise, since the subroutine is first initiated at the point that
the fastest processor reaches the subroutine call.) Based on the round-2 messages
received, processor P either changes CURRENT again, or decides on an answer
and exits the algorithm at the end of the next epoch. Let ANS be the most frequent
value (other than “?”) in round-2 messages received by P. Let NUM be the number
of such messages. There are three cases depending on the value of NUM. If
NUM = Ln/21 + 1, then processor P decides on the value ANS and exits the
algorithm by the end of the next epoch. If Ln/2) =2 NUM = 1, then processor P
assigns the value ANS to the variable CURRENT and continues the algorithm.
If NUM = 0, then processor P assigns the result of the coin toss to the variable
CURRENT, and continues the algorithm.

Code for processor P:

1. procedure AGREEMENT(INPUT):

2. CURRENT « INPUT

3. TERM.NEXT « “OFF”

4. for e < 1 to o do

5 broadcast (¢, 1, CURRENT)

6 receive (e, 1, *) messages

7. if for some v there are = Ln/2] + 1 messages (e, 1, v)
8 then CURRENT « v

9. else CURRENT « “7”
10. broadcast (e, 2, CURRENT)

11. receive (e, 2, *) messages
12. if there exists v # “?” such that (e, 2, v) was received
13. then ANS <« the value v # “?” such that (e, 2, v) messages are most frequent

14. else ANS is undefined

15. NUM <« number of occurrences of (e, 2, ANS) messages

16. broadcast (e, 3, “waiting”)

17. receive (e, 3, “waiting”) messages

18. COIN « COIN TOSS

19. if TERM.NEXT = “ON” then terminate

20. if NUM = Ln/2! + 1 then decide ANS, set CURRENT « ANS and TERM.NEXT
«— t‘ON’,

Simple Constant-Time Consensﬁs Protocols in Realistic Failure Models 609

21. elseif NUM = 1|
22. then CURRENT « ANS
23. else CURRENT « COIN

We make several remarks about the algorithm. COIN TOSS, depending on the
fault model, is one of the protocols described earlier for producing a weakly global
coin. In message descriptions, “+” is a wild-card character that matches anything.
Notice that once a processor has decided, it participates in the protocol for another
epoch. Although not explicitly given in the code, during this extra epoch the
processor ignores all “receive” commands, since otherwise it may be left waiting
for messages from processors that have already terminated. The extra epoch is
needed because, once the first processor decides and terminates, the other processors
may not decide until the next epoch (as we argue below). The extra broadcasts by
decided processors are solely to ensure that these “tardy” processors receive a
sufficient number of messages during each round of that epoch. (Recall that in the
asynchronous fault models, processors must wait for # — ¢ messages during each
reception.)

If the input values are sufficiently biased towards a particular value, the protocol
will reach agreement in one epoch. If this is not the case, the protocol uses the
weakly global COIN TOSS function to prevent the system (abetted by the adversary)
from “hovering” at an indeterminate point indefinitely., With each call to COIN
TOSS, there is a constant probability that the outcome will bias the system
sufficiently to reach agreement quickly. Thus, agreement will be reached in constant
expected time.

Define value as a legal input to the algorithm, either 0 or 1. Specifically, “?” is
not a value.

The following lemma is used in proving the desired properties of the agreement
algorithm; and proved by a simple counting argument:

LEMMA 9. Du}ing each epoch, both of the values O and 1 are never sent in any
execution of round 2 (step 10).

Theorem 10 will establish that this algorithm never produces conflicting decisions
and that in each epoch there is at least one coin-toss value that will lead to
termination of the algorithm.

Before presenting this theorem, it is necessary to introduce several key notions
that are particularly important in the analysis of the asynchronous case. The value
ANS is critical in the analysis of the protocol. At any instant of an execution of
the protocol, an epoch e is bivalent if, for both v = 0 and v = 1, there exists an
execution of the protocol that continues from that instantaneous position, for
which there exists a processor that has an ANS value in epoch ¢ equal to v.
Furthermore, let k. be the number of processors that have not determined whether
ANS is 0, 1 or undefined for epoch e at the point that the fastest processor begins
the coin toss for epoch e. Note that in all the synchronous models discussed,
k. = 0 at the point that the COIN TOSS protocol is executed in round e. This
may not be the case in the asynchronous cases, where the epoch may still be
bivalent at the point when the fastest processor initiates the execution of
COIN TOSS for that epoch. However, the round of “waiting” messages ensures
that at the point when the COIN TOSS is first initiated, k. is at most ¢ (since the
fastest processor must have received n — ¢ “waiting” messages in order to continue,
and these processors have already executed through step 16). Note that if an epoch
is bivalent, then any processor that has already determined ANS at this point has
ANS = “undefined”.

610 CHOR ET AL.

Tyrranreas 10 Tha Aloanvithsne oo tho £allacisizne thowsn mpnmomts oo

1 HEUREN 1V, 17 LREOUILLILrre riddy LIL(fJUHUVVlI Lnree properiie,

Validity: If value v is distributed as input to all processors, then all processors
decide v dur'ng epoch 1.

Agreement: Let e be the first epoch in which a processor decides. If processor P
decides v in epoch e, then by the end of epoch e + 1 all processors decide v.

Termination: (a) In any epoch, e, if the epoch is not bivalent at the point when
the fastest processor begins executing step 18, then there is at least one value that,
ifit is adopted by \n/2) + t + 1 processors executing the assignment in step 18, will
cause each processor to decide by the end of epoch e + 1, and otherwise, (b) in any
epoch, e, if there is a value that is adopted by Ln/2]1 + t + 1 processors executing

tho anccionmont in cton 1R thon snorh o0 L 1 o nnt hivalont at tho noint that thoe
e 8 GSSIZNINONRT 11 SICP 18, o CPOCA € —— 1 15 ROL OIVAOR Al (¢ POINe ide i1e

majority value of COIN TOSS in epoch e is uniquely determined.

As we argue below, the termination property guarantees that a weakly global
coin will lead to a decision with constant probability. The agreement property
guarantees that once a single processor decides, all other processors will decide in
the next epoch, regardless of the adversary’s behavior. In particular, this holds for
the asynchronous, message-dependent model, the one in which the adversary has
the most power. The proofs follow by the techniques of [4], and we highlight only
the interesting distinctions between the asynchronous case and the synchronous
case, which were presented in detail in [7] and [9].

The only significant difficulty that an asynchronous model presents in proving
the termination of the protocol. As the criterion indicates there are two cases to
consider. The first case, (a), is actually similar to the synchronous case; if the epoch
1s not bivaient at the point that the fasiest processor initiates siep 18, then if the
majority value of COIN TOSS is equal to the only possible value for ANS (that is
not undefined), then the Ln/2] + ¢ + 1 processors that receive the majority value
of the toss all have the same CURRENT value at the start of the next epoch
e + 1, and so every processor will receive at least Ln/2] + 1 of them and set
CUR R_FNT for the second round of epoch ¢ + 1 to that value. This unanimity
will cause each processor to decide in epoch e + 1, and terminate in the next one.

The second case is a bit more delicate. Suppose that at least ¢ processors receive
the value b of the coin, where ¢ = Ln/21 + ¢ + 1. Thus all but at most n — ¢
processors that execute step 18 get b. If at the point that the fastest processor
executes step 18, the epoch is bivalent, then n — &, processors have an undefined
value of ANS for that epoch, and will execute step 23. Therefore, at least n — k. —
(n — ¢) = ¢ — k. processors set their value of CURRENT for the start of the next
epoch to b. In other words, at most n — ¢ + k_ processors get 1h as CURRENT for

the start of the next epoch. Since
(In] N, _|»

n—c+k¢,sn—\|§J+z+1}+zs[5J|,

we see that the next epoch is not bivalent as soon as the majority value of the coin
is determined, and the termination condition is proved.

Finally, we argue that this really implies termination in constant expected time.
For this we reauire that with constant nrobabhilitv. COIN TOSS generates a weakly

ATUL LS YR AV UL WG VAL VULLOWGIL PIUVUGUILLILY y ALRLY 2 OO0 BULIVI GV & YYwasay

global coin whose value is determined by the point that the fastest processor
completes the execution of the routine. As we remarked earlier, each of our coin-
fiipping routines satisfies this condition in the appropriate fauit modei. In order to
complete the proof, we need only observe that in epochs ¢ and ¢ + 1, the probability

Simple Constant-Time Consensus Protocols in Realistic Failure Models 611

- it AL

0 rmmdung Dy (,on(nuon \d) lI 44 lb not DlleCﬂ[atl ine LI'U(,ld.l p()ll'll lb at lCdSI a
constant (by the property of weakly global coins), and otherwise the probability of
invoking (b) to force e + 1 to be nonbivalent is at least a constant (by the property
discussed above).

All of the variants of the coin-toss procedure that we have considered take a
constant number Uf rounds. Culubxnlug Theorem 10 v'vnth the ‘vaﬂGdS '\rersiﬁns Gf
the coin-toss procedure, we get

THEOREM 11. Using the agreement algorithm with coin toss as a subroutine

SIeT 6 Lric Wél Ccuorriciiie Wléul eLrirsi v
agreement is reached in constant expected number of rounds, provided the number
of faults t satisfies

(a) t < n/2 for the all variants of the synchronous model,
(b) t < ((3 = v/5)/2)n for all variants of the asynchronous model.

Notice that implicit in the proof of Theorem 11 is the explicit probability that
the protocol finishes by round k. If we consider any of the synchronous models,
we see that the waiting round in each epoch can be omitted, so that a straightforward
calculation gives that the probability of the protocol terminating within k rounds
is 1 — (c + t/(2en))"’?, where ¢ = (2¢ — 1)/2e.

It is natural to ask whether the number of erratic processors tolerated can be
significantly improved A result of Bracha and Toueg [6] shows that no randomized

COIDCIISUS plULULUl can LUlC alc more tnan ’l/é ldll bl.Up ldullb lIl an dbyﬂbﬂl’UIlUub
model.

In this section we show that our upner bound is almost optimal in a stron

1 this section we show that our upper bound is alm ost optimal in a
We demonstrate a lower bound on the tail of the distribution of nontermmatlon
probabilities for any randomized agreement algorithm. This lower bound holds for
the case of a nonadaptive adversary in the fail-stop model, and therefore in the
stronger failure models as well.

Let . be a randomized agreement algorithm that is resilient to ¢ processor
failures. Such an algorithm, together with the # input values and » (possibly
infinite) 0 — 1 strings (outcome of individual coin tosses) totally determine the
behavior of each processor. Denote by g« the maximum probability, over all
(nonadaptive) adversarial strategies and over all combinations of input values, that
& does not terminate in k rounds (k < 1).

THEOREM 12

[T n N*
\Awal) -

I‘)ROOF. lIl [lUj, UOICV dl’l(l DerHg prove I,Ild.l Ll'le woOrsi-case umc io redcn
agreement in a synchronous system with up to ¢ fail-stop faults is z + 1 rounds.
From any deterministic algorithm, the proof explicitly constructs a chain .%|,
Fa, ..., P, of partially specified executions in the fail-stop model. Each .7,
consists of k£ rounds, k < ¢, and it specifies the identity of the faulty processors,

m P !‘Df‘ﬂ“lﬂ"(‘ I\F fhﬂ"‘ IQ(‘" I‘I\II"\A maocccaos T“\l‘c
their failure time, and the identity of receivers of their last-round message. Thus

every .%; can be viewed as a k-round strategy of a nonadaptive adversary. These
partially specified executions include the initial input values to each processor.
Together with the n coin-tossing strings ¢ = (¢, ¢a, ..., ¢,), each .%; gives a

qr =

D) —

612 CHOR ET AL.

LUlllplClC prblllLdllUll of an executior , Wnicn we denote y . For ever C, the

following properties hold:

(1) & ~ %, (i.e., both executions look the same for at least one processor that
is nonfaulty through the kth round).

(7\ If all nrocessors aeree In @‘ then thev must agree on the value

1
2) If all processors agree in &5, then they must agree on the value 1.
(3) If all processors agree in 5’,,,, then they must agree on the value 0.
(4) m =202l W

‘Details of the construction may be found in [10] (or see [9] and [19] for a simpler
exposition); we note here that Properties 1 through 3 are proved explicitly in that
reference. Property 4 is a simple counting argument: the construction is recursive,
with & levels of recursion and (2[7;/51) recursive calls at each level. Each call is

o oot o toenes 1o

llldUC LWiLC al LllC wp lCVCl

We show that g, = 1/m. Substituting (4), this establishes the result.

Assume to the contrary that ¢, < 1/m. Then the probability (over all é’s) that &/
does not terminate in .%$ or in %#§ - - - or in %%, is at most m - g, < 1. Hence
the set of &’s for which & terminates in all ¢ (1 < i < m) has measure > 0. For

- . . . o
(4
each ¢ in this set, all correct processors will decide on the value 1 in % (by

Property 2). Hence, by Property 1, there is a correct processor that will decide on

the value 1 in .55, and therefore, by the agreement requirement, all correct

processors will decide on the value 1 in %5, Carrying this argument inductively, it

follows that for all 1 < i < m, all correct processors will decide on the value 1 in
" But for i = m, this contradicts Property 3, O

2O

8. Sironger Adversaries and Fuiure Direciions
One limitation of the adversary that was crucial for the performance of our

protocols is that the adversarv does not know the internal state of processors, even

PAOMOVOLS 35 WAL L0 QUVOISAL Y QU 11U K0V L0 2I0I0TEGL Sl U1 PRUOLRSsLIS, i

when they are made faulty. The reason for this requirement is that otherwise, by
delivering all messages to one specific processor, the adversary can find out the
1dentity of the unique leader by examining the state of the receiving processor. The
adversary can then block the messages of the unique leader from reaching all other
pProcessors.

We believe that there is a simple modification of the protocols that make them
immune to an adversary' who can “peek into the memory” of failed processors.
The basic idea is that instead of sending a pair of (possibly encrypted) bits (“ieader
bit, “coin” bit), to all processors, a secret sharing scheme with threshold ¢ is used
(e.g., [22]). The message to processor i will consist of the ith piece of the secret
(“leader” bit, “coin” bit). Suppose the adversary makes up to ¢ processors faulty
and gets to see the contents of their memory. This does not help in understanding

th tant £ 3 1 11 the ad
tne contents of any sender’s message. In part u\,ular, the adversary cannot use these

pieces to identify the unique leader. To reconstruct the secrets, all processors later
broadcast all the pieces of secrets that they have received. The adversary cannot
prevent such reconstruction of the secret of any nonfaulty sender, since any ¢ + 1
pieces can be used. It appears that this approach can be carried out in all variants
of the adversary model that were considered. This would yield consensus nrgtocols
with constant expected running time for ¢ < B8n (where the exact value of 8 < 3
depends on the model), which tolerate an adversary who knows the internal state

of up to ¢ failed processors.

Simple Constant-Time Consensus Protocols in Realistic Failure Models 613

Finally, we note that our protocols do not work in the presence of even a single
Byzantine failure. A faulty processor can simply claim, at every round, that it is a
leader, thus rendering the coin-tossing subroutine ineffective. It remains an inter-
esting question to obtain Byzantine agreement procedures that are both as simple
and as efficient.

ACKNOWLEDGMENTS. We would like to thank Brian Coan and Steve Mahaney
as well as the anonymous referees for their comments on earlier versions of this
manuscript.

REFERENCES

NOTE: Reference [18] is not cited in text.

1. ALEXI, W., CHOR, B., GOLDREICH, O., AND SCHNORR, C. P. RSA and Rabin: Certain parts are as
hard as the whole. SIAM J. Comput. 17 (1988), 194-209.

2. AWERBUCH, B. Complexity of network synchronization. J. ACM 32, 4 (Oct. 1985), 804-823.

3. AWERBUCH, B., BLuM, M., CHOR, B., GOLDWASSER, S., AND MicaLl, S. How to implement
Bracha’s O(log n) Byzantine agreement algorithm. Unpublished manuscript.

4. BEN-OR, M. Another advantage of free choice: Completely asynchronous agreement protocols. In
Proceedings of the 2nd Annual ACM Symposium on Principles of Distributed Computing. ACM,
New York 1983, pp. 27-30.

5. BRACHA, G. An O(log n) expected rounds randomized Byzantine generals algorithm. J. ACM 34,
4 (Oct. 1987), 910-920.

6. BracHa, G., AND TOUEG, S. Asynchronous consensus and broadcast protocols. J. ACM 32, 4
(1985), 824-840. .

7. CHOR, B., AND COAN, B. A simple and efficient randomized Byzantine agreement algorithm.
IEEE Trans. Sofiw. Eng. SE-11, 6 (1984), 531-539.

8. CHOR, B., MERRITT, M., AND SHMOYS, D. B. Simple constant-time consensus protocols in realistic
failure models. In Proceedings of the 4th Annual ACM Symposium on Principles of Distributed
Computing. ACM, New York, 1985, pp. 152-162.

9. CoaN, B. Achieving consensus in fault-tolerant distributed systems: Protocols, lower bounds and
simulations. Ph.D. dissertation. MIT, Cambridge, Mass., 1987.

10. DoLev, D., AND STRONG, H. R. Polynomial algorithms for multiple processor agreement. In
Proceedings of the 14th Annual ACM Symposium on Theory of Computing. ACM, New York,
1982, pp. 401-407.

11. Dwork, C., SHMOYS, D., AND STOCKMEYER, L. Flipping persuasively in constant expected time.
In Proceedings of the 27th Symposium on Foundations of Computer Science. IEEE, New York,
1986, pp. 222-232.

12. FELDMAN, P., AND MicaLl, S. Optimal algorithms for Byzantine agreement. In Proceedings of the
20th Annual ACM Symposium on Theory of Computing. ACM, New York, 1988, pp. 148-161.

13. FiSCHER, M. J., AND LYNCH, N. A. On describing the behaviour and implementation of distributed
systems. Theoret. Comput. Sci. 13 (1981), 17-43.

14. FiscHER, M. J., LYNcH, N. A., AND PATERSON, M. § Impossibility of distributed consensus with
one faulty process J. ACM 32, 2 (Apr. 1985), 374-382.

15. GOLDWASSER, S., AND MICALIL, S. Probabilistic encryption. J. Comput. Syst. Sci. 28, 2 (1984),
270-299. :

16. GOLDWASSER, S., MicALI, S., AND RAckoOFF, C. The knowledge complexity of interactive proof
systems. SIAM J. Comput. 18, 1 (1989), 186-208.

17. KARLIN, A. R., AND YA0, A. C. Probabilistic lower bounds for Byzantine agreement and clock
synchronization. Unpublished manuscript.

18. LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine generals problem. ACM Trans. Prog.
Lang. Syst. 4, 3 (July 1982), 382-401.

19. MERRITT, M. Unpublished manuscript.

20. PEASE, M., SHOSTAK, R., AND LAMPORT, L. Reaching agreement in the presence of faults. J. ACM
27,2 (Apr. 1980), 228-234.

21. PINTER, S. Distributed Computation Systems. Ph.D. dissertation, Boston Univ., Boston, Mass.,
1983.

614 CHOR ET AL.

22. RaBIN, M. O. Randomized Byzantine generals. In Proceedings of the 24th Annual Symposium on
Foundations of Computer Science. 1EEE, New York, 1983, pp. 403-409.

23. RoseN, E. C. Vulnerability of network control protocols: An example. ACM SIGSOFT Sofiw.
Eng. Notes, 6, 1 (1981), 6-8.

24. SHAMIR, A. How to share a secret. Commun. ACM 22, 11 (Nov. 1979), 612-613.

23. Ya0, A. C. Theory and applications of trapdoor functions. In Proceedings of the 23rd IEEE
Symposium on Foundation of Computer Science. IEEE, New York, 1982, pp. 80-91.

RECEIVED JULY 1986; REVISED JANUARY 1988 AND NOVEMBER 1988; ACCEPTED NOVEMBER 1988

Journal of the Association for Computing Machinery. Vol. 36. No. 3, July 1989.

