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Abstract

We study the number of ways to factor a natural number n into an ordered product of integers,
each factor greater than one, denoted by H (n). This counting function from number theory was
shown by Newberg and Naor (Adv. Appl. Math. 14 (1993) 172–183) to be a lower bound
on the number of solutions to the so-called probed partial digest problem, which arises in the
analysis of data from experiments in molecular biology. Hille (Acta Arith. 2 (1) (1936) 134–144)
established a relation between H (n) and the Riemann zeta function �. This relation was used by
Hille to prove tight asymptotic upper and lower bounds on H (n). In particular, Hille showed
an existential lower bound on H (n): For any t ¡� = �−1(2) ≈ 1:73 there are in�nitely many
n which satisfy H (n)¿nt . Hille also proved an upper bound on H (n), namely H (n) = O(n�).
In this work, we show an improved upper bound on the function H (n), by proving that for
every n, H (n)¡n� (so 1 can be used as the constant in the ‘O’ notation). We also present
several explicit sequences {ni} with H (ni)=
(ndi ), where d¿ 1 is a constant. One sequence has
elements of the form 2‘3 j , and they satisfy H (ni)¿ntii , where limi→∞ ti= t ≈ 1:43. This t is the
maximum constant for sequences whose elements are products of two distinct primes. Another
sequence has elements that are products of four distinct primes, and they satisfy H (ni)¿ndi ,
where d ≈ 1:6. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Denote by H (n) the number of representations of the natural number n as an ordered
product of factors greater than one. Two representations are considered identical if they
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contain the same factors in the same order. For example, the di�erent representations
of 12 are 12 = 6 · 2 = 2 · 6 = 4 · 3 = 3 · 4 = 3 · 2 · 2 = 2 · 3 · 2 = 2 · 2 · 3, so H (12) = 8.
Our interest in the function H (n) stems from its relation to the analysis of the probed

partial digest problem (PPDP) in computational biology. Digestion (or restriction)
techniques play a central role in molecular biology. 3 A long DNA segment, viewed
as a long word over the four-letter alphabet {A; C; G; T}, is digested by a restriction
enzyme. The enzyme identi�es the locations where a speci�c short DNA subsequence
occurs, and performs a chemical reaction that cleaves the DNA in those locations. For
example, the enzyme EcoRI cuts at the occurrences of GAATTC. The lengths (number
of letters) of each fragment are then measured. Various digestion techniques give rise
to a number of computational problems. We brie
y describe three such problems.
They all have as input the lengths of fragments whose endpoints are cutting sites
on the original DNA segment. The common goal is to identify the locations of these
cutting sites (endpoints of the fragments) relative to the ends of the original long DNA
segment.
In the double digest problem (DDP) two di�erent restriction enzymes are involved.

Each enzyme cuts the DNA at the locations of its particular subsequence. The DNA is
completely digested in each of the three ways: By the �rst enzyme solely, by the second
enzyme solely, and by both the enzymes. The problem is to determine the locations
of all the cutting sites, given the fragments’ lengths from each of the three digestion
processes. Goldstein and Waterman [3] proved that the related decision problem (given
the fragments’ lengths, is there a feasible solution?) is NP-Complete. This intractability
result implies that there is probably no polynomial time algorithm which solves the
DDP decision problem (and thus the search problem). They also discussed the number
of solutions an input to the problem can have, and showed that when the restriction
sites are modeled by a Poisson process, the number of solutions increases exponentially
as the length of the original DNA segment increases. Schmitt and Waterman [9] have
further studied and characterized the solutions to DDP.
Partial digest of DNA is another mapping technique. Here, the digestion experiment

produces a multiset of the lengths of all the fragments whose endpoints are cutting
sites (a multiset is a set whose elements’ multiplicities might be more than one). For k

cutting sites, the multiset is of size
(
k
2

)
. Given this multiset, the partial digest problem

(PDP) is once again to determine the locations of the cutting sites. Skiena et al. [10]
showed polynomial upper and lower bounds on the number of solutions to an input of
the problem.
Di�erent information can be derived by hybridizing a probe to the DNA at some

speci�c location, and measuring only the lengths of fragments which contain the probe.
Viewing the original DNA as a sequence of length ‘, denote by k the unique location of
the probe (1¡k¡‘). We are given as input the lengths b−a of fragments [a; b] that
have cutting sites at both the ends (a and b), and contain the probe inside (a¡k ¡b).

3 Digestion is used, for example, in �ngerprinting DNA segments via gel electrophoresis, or in DNA
ampli�cation via cloning (see, e.g. [1, pp. 52–60]).
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(The probe location k is not part of the input.) The probed partial digest problem
(PPDP) is to locate the cutting sites given such data. In all these problems, reversal
and additive shift of a solution to an input M are also solutions to M, and they are
all considered congruent to each other. Naor and Newberg [8] proved that the input
set of n lengths {1; 2; : : : ; n} has at least H (n) non-congruent PPDP-solutions. Thus
H (n) is a lower bound on the number of PPDP-solutions for an input of size n in the
worst case. It should be realized that these bounds are not directly applicable to the
real experimental problem, due to noisy inputs.
Hille [5] proved a close relation between H (n) and the Riemann zeta function, �(t).

Let � be the value of �−1(2) ∼= 1:72864724. Hille showed that for any �¿ 0,

lim sup
n→∞

H (n)
n�−�

=∞;

implying that for some family of inputs, the number of solutions to PPDP grows faster
than n�−�. On the other hand, Hille showed that there exists a universal constant c¿ 0
such that for every n, H (n)¡cn� (no bounds on c were given).
Despite the above-mentioned lower bound, no explicit sequence {ni}∞i=1 with

H (ni) =
(ndi ) such that d¿ 1 was known. Newberg and Naor [8] presented an explicit
sequence for which H (n) =�(n polylog n). We demonstrate several explicit sequences
{ni} with H (ni) =
(ndi ), where for the best sequence d ' 1:605242. The elements of
another sequence are numbers of the form 2‘3 j, and they satisfy H (ni)¿(n

ti
i ), where

ti →
i→∞

t ≈ 1:43. This t is the maximum constant for sequences whose elements are

products of two distinct primes. In the other direction, we sharpen Hille’s upper bound
by showing that for all n, H (n)¡n�.
The remainder of this paper is organized as follows: In Section 2, we give some

background on Riemann zeta function. Section 3 describes the improved upper bound
on H (n), while Section 4 demonstrates several explicit sequences with fast growing
H (n). Finally, Section 5 suggests two open problems.

2. The Riemann zeta function

The Riemann zeta function is de�ned by �(t) =
∑

n∈N 1=nt (N denotes the set of
positive integers). The sum converges and the function is well de�ned for every real
number t ¿ 1.
Let B be a �nite or in�nite set of primes. Let P be the multiplicative system of all

natural numbers which are products (with multiplicity) of primes in B (1 ∈ P). The
set B is called the basis of the multiplicative system P. For example, the �rst elements
of the multiplicative system over the basis {2; 3} are {1; 2; 3; 4; 6; 8; 9; 12; 16; : : :}.
The function �P(t) is de�ned by summing over P only: �P(t) =

∑
n∈P 1=n

t . Note
that if B is the set of all primes then P =N and �P is the Riemann zeta function.
If the basis is in�nite then �P(t) converges for every t ¿ 1, and if the basis is �nite
then �P(t) converges and is well de�ned for every positive t (see [4, p. 246]). In its
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real convergence range, the function �P is monotonically decreasing from ∞ to 1, and
satis�es:

Proposition 1. �P(t) =
∏
p∈B 1=(1− p−t).

The proof for P =N appears in [4], and can be easily generalized for every system

P. Let �(P) def= �−1P (2), and in particular � def= �−1(2). It is clear that if P1⊂P2⊂N,
then for every t, it holds �P1 (t)¡�P2 (t)¡�(t), and therefore �(P1)¡�(P2)¡�.
Hille proved that for each system P there exists an absolute constant cP such that

every n ∈ P satis�es H (n)¡cPn�(P). However, this constant is not given explicitly.
In Theorem 5 we show that for every system P, the constant cP can be taken as 1.

3. Upper bound on H (n)

In order to prove Theorem 5 we start with two lemmata:

Lemma 2. For every multiplicative system P and for every t in the convergence
range of �P;

∑
n∈P; n¿1

H (n)
nt

=
∑
‘¿1

(�P(t)− 1)‘:

Proof. Consider, for any n¿ 1 in P, the coe�cient of 1=nt in the expansion of
(�P(t) − 1)‘ (see [11, p. 53]). By the de�nition of �P(t), it holds �P(t) − 1 =∑

n∈P; n¿1 1=n
t . Since P is a multiplicative system, all the divisors of n ∈ P are

also in P. Therefore the coe�cient of 1=nt in (
∑

n∈P; n¿1 1=n
t)‘ is exactly the number

of ordered factorizations of n into ‘ ordered factors in P, each greater than one.
Summing over all ‘¿1 yields the number of ordered factorizations of n, namely
H (n).

Lemma 3. For every n; i¿ 1; H (ni)¿ (H (n))i.

Proof. By concatenating any i ordered factorizations of n, we get an ordered factor-
ization of ni, and therefore H (ni)¿(H (n))i. The factorization of ni to a single factor is
not an ordered product of i terms, and therefore does not contribute to the right hand
side but does contribute to H (ni). Thus H (ni)¿(H (n))i + 1.

De�ne t(n) def=(logH (n))=(log n) for n¿ 1. This function is convenient in ‘measuring
the exponent’ of n in H (n). The following is an immediate corollary of the last lemma:

Corollary 4. For every n; i¿ 1; t(ni)¿t(n).
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We state now the main theorem. We show that the constant cP can be taken as 1 for
every system P, namely,

Theorem 5. For every multiplicative system P; every n ∈ P satis�es

H (n)¡n�(P):

Proof. Let t ¿�(P). Since �P is monotonically decreasing, 1¡�P(t)¡ 2. Therefore∑
‘¿1 (�P(t)−1)‘ is a converging geometric series, and it equals (�P(t)−1)=(2−�P(t)).

By Lemma 2, we get
∑

n∈P H (n)=n
t=H (1)+

∑
‘¿1(�P(t)−1)‘=H (1)+1=(2−�P(t))−

1¡∞. So ∑
n∈P H (n)=n

t converges, and thus, for n ∈ P, H (n) = o(nt).
Assume now, towards a contradiction, that there exists some n0 ∈ P (n0¿ 1)

such that H (n0)¿n
�(P)
0 . By Corollary 4, t0

def= t(n20)¿t(n0)¿�(P). Let us look at the
sequence {n2i0 }∞i=2. Using Lemma 3, we have H (n2i0 )¿ (H (n20))

i = (n2t00 )
i = (n2i0 )

t0 .
Therefore, for t0¿�(P) there exists in�nitely many n’s in P for which H (n)¿nt0 ,
contradicting H (n) = o(nt0 ).

Note that the proof cannot be extended for constant cP¡ 1, since an assumption
H (n0)¿cPn

�(P)
0 does not imply t(n0)¿�(P). The last theorem implies:

Corollary 6. For every multiplicative system P; every n ∈ P satis�es

t(n)¡�(P):

4. Explicit lower bounds on H (n)

Hille argued that for any �¿ 0 there are in�nitely many values of n for which
H (n)¿n�−�, or equivalently, t(n)¿�−� (a detailed proof appears in [8]). This lower
bound can be generalized for a multiplicative system P over any basis, namely for any
�¿ 0 there are in�nitely many values of n ∈ P with t(n)¿�(P)− �. Yet, no explicit
sequences with limn→∞ t(n)¿ 1 were known. An explicit sequence which satis�es
H (n)=�(n polylog n) is presented in [8]. That sequence satis�es limn→∞ t(n)=1. We
present several explicit sequences with t-limits greater than 1.
First we notice that Corollary 4 implies that every n with t(n)¿ 1 gives rise to

a sequence {ni}∞i=2 in which t(ni)¿t(n)¿ 1. Such an example is n = 216: For this
number H (216)=252, so t(216) ' 1:03. To get a sequence of monotonically increasing
t values, one can take {n2i}∞i=1. Every term is the square of its predecessor in the
sequence, so by Corollary 4 has a greater t value.
We �rst look at systems over bases of size two. The members of such system are

all the products of powers of two speci�c primes. The function H (n) depends only on
the multiplicities of the primes which compose n, and not on the primes themselves.
For example, H (2i3 j)=H (5i13 j). So, it is clear that among all these systems, we will
�nd the sequence with the greatest t values in the system P over the basis B={2; 3}.
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Note that indeed �(P) is maximal in comparison with any other system over a basis
of size two. By Proposition 1, �(P) is the root of the equation:

1
1− 2−t

1
1− 3−t = 2;

so �(P) ' 1:435279084.
We de�ne H (1) = 1

2 , a de�nition which is justi�ed in the following expressions for
H (n). Hille used Dedekind’s inversion formula to �nd a recursive rule for H (n) [5]:

Proposition 7. Let p1; : : : ; pk be all the distinct primes which divide a natural
number n. Then

H (n) = 2


∑

pi

H
(
n
pi

)
−

∑
pi;pj

H
(

n
pipj

)
+ · · ·+ (−1)k−1H

(
n

p1 : : : pk

) :

Proposition 7 implies that for a prime p, H (pi) = 2i−1; i¿0 (see also [8]), and for
products of two primes,

H (piqj) =



2 j−1 if i = 0;
2i−1 if j = 0;
2(H (pi−1qj) + H (piqj−1)− H (pi−1qj−1)) otherwise:

We have looked for a sequence in P whose t values approach �(P). We apply
generating functions in order to derive a combinatorial expression for H (piqj). We
use this expression to maximize t(piqj), for i = � · j, where �¿1 is some constant.
Empirical tests show that for a constant ratio � = i=j, the values {t(p�·jq j)}∞j=1 tend
to some limit, and we would like to maximize its value. In the sequel, we describe a
way to achieve the limit �(P).

Proposition 8. For distinct primes p; q; and natural powers i¿j;

H (piqj) = 2i+j−1
j∑

k=0

(
i
k

)(
j
k

)
2−k :

Proof. De�ne the ordinary generating function (see [6, p. 81])

Fj(x)
def=

∞∑
i=0

H (piqj)xi:

First we �nd an expression for Fj(x), using the recursive rule of H (piqj). For
j = 0; H (pi) = 2i−1, so we have

F0(x) =
∞∑
i=0

2i−1xi =
1

2(1− 2x) :
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For j¿ 0, by the recursive rule

∞∑
i=1

H (piqj)xi = 2
∞∑
i=1

H (pi−1qj)xi + 2
∞∑
i=1

H (piqj−1)xi

−2
∞∑
i=1

H (pi−1qj−1)xi:

So,

Fj(x)− 2 j−1 = 2xFj(x) + 2(Fj−1(x)− 2 j−2)− 2xFj−1(x):

This implies that for j¿ 0,

Fj(x) =
2(1− x)
1− 2x Fj−1(x) =

(
2(1− x)
1− 2x

)j
F0(x)

=
2 j−1

(1− 2x)
(
1 +

x
1− 2x

)j
:

By expanding (1 + y) j and then expanding 1=(1− z)k+1 to a power series, we get

Fj(x) = 2 j−1
j∑

k=0

(
j
k

)
xk

1
(1− 2x)k+1 = 2

j−1
j∑

k=0

(
j
k

)
xk

∞∑
‘=0

(
‘ + k
k

)
2‘x‘:

By the de�nition of Fj(x); H (piqj) is the coe�cient of xi in the power series expansion
of Fj(x). The term xi appears in the right-hand side of the last equation whenever
‘ = i − k. Summation over these indices yields the equality:

H (piqj) = 2 j−1
j∑

k=0

(
j
k

)(
i
k

)
2i−k = 2i+j−1

j∑
k=0

(
i
k

)(
j
k

)
2−k :

We will look at values of n=piqj which ‘lie on the line’ i= �j for some constant
�¿1. The last proposition implies

H (p�jqj) =
j∑

k=0

(
�j
k

)(
j
k

)
2(�+1) j−k−1: (1)

Denote by Ent the binary entropy function

Ent(p) =−p log2(p)− (1− p) log2(1− p)

for 0¡p¡ 1. Using Stirling formula, it can be shown [2, p. 530]

(
j
k

)
¿

2 jEnt(k=j)√
8k(1− k=j) :
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So it follows that the kth term of expression (1) satis�es(
�j
k

)(
j
k

)
2(�+1) j−k−1¿

2�jEnt(k=�j)√
8k(1− k=�j)

2 jEnt(k=j)√
8k(1− k=j)

2(�+1) j−k

2

=
2 j(�Ent(k=�j)+Ent(k=j)+�+1−k=j)

16k
√
(1− k=�j)(1− k=j) :

For every 06k6j, the last expression is a lower bound to H (p�jqj). Therefore, if we
look at the system P over {2; 3}, we have that whenever �j is integer

t(2�j3 j) =
logH (2�j3 j)
log(2�j3 j)

¿
j(�Ent(k=�j) + Ent(k=j) + �+ 1− (k=j))

j log(2�3)

− log(16k
√
(1− k=�j)(1− k=j))
j log(2�3)

(2)

(all logarithms are to base 2).
Since 06k6j, we have

log(16k
√
(1− k=�j)(1− k=j))
j log(2�3)

¡
log(16j)
j log(2�3)

:

Denote the ratio k=j by r. When j tends to in�nity, the right hand side of the last
inequality tends to 0. Therefore when j tends to in�nity with r held �xed, expression
(2) becomes

�Ent( r� ) + Ent(r) + �+ 1− r
log(2�3)

:

Denote the last expression by C(�; r). To maximize it, we �rst take the derivative with
respect to r (we switch from log2 to ln in order to simplify the derivatives)

@C(�; r)
@r

=
ln(1− r=�) + ln(�=r)− ln(r) + ln(1− r)− ln(2)

ln(3) + �ln(2)
:

Equating the derivative to 0, we get �=(r(r+1))=(1− r) at a local maximum. Denote
by D(r) the result of substituting this value of � back in C(�; r). After simpli�cation
we get

D(r) =
r(r + 1)ln(1 + 1=r) + (1− r)ln(2=(1− r))

r(r + 1)ln(2) + (1− r)ln(3) :

Denote the numerator of D(r) by f(r) and its denominator by g(r). To maximize
D(r), we look for values of r where the derivative equals 0. This occurs at values of
r satisfying f(r)g′(r) = g(r)f′(r).

f(r)g′(r) =
[
r(r + 1)ln

(
1 +

1
r

)
+ (1− r)ln

(
2

1− r
)]

×[(2r + 1)ln(2)− ln(3)];
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g(r)f′(r) = [r(r + 1)ln(2) + (1− r)ln(3)]
×
[
(2r + 1)ln

(
1 +

1
r

)
− ln

(
2

1− r
)]
:

After simpli�cation and organization this gives

(1 + 2r − r2)
[
ln(2)ln

(
2

1− r
)
− ln(3)ln

(
1 +

1
r

)]
= 0:

Since 1 + 2r − r2¿ 0 for 0¡r¡ 1, we get

ln(2)ln
(

2
1− r

)
= ln(3)ln

(
1 +

1
r

)
: (3)

It is clear that indeed this equation has a solution in the range 0¡r¡ 1. Let rmax
denote this solution. Using numerical methods, we found that its value is approximately

rmax ' 0:586735749. Let tmax def= D(rmax), then by using the equation f(rmax)g′(rmax) =
g(rmax)f′(rmax) we get

tmax =
f(rmax)
g(rmax)

=
f′(rmax)
g′(rmax)

=
(2rmax + 1)ln(1 + 1=rmax)− ln(2=(1− rmax))

(2rmax + 1)ln(2)− ln(3) : (4)

By substituting (3) in (4) we get

tmax =
ln(1 + 1=rmax)

ln(2)
=
ln(2=(1− rmax))

ln(3)
:

Therefore
1

1− 2−tmax
1

1− 3−tmax =
1

1− 2−ln(1+1=rmax)=ln(2)
1

1− 3−ln(2=1−rmax)=ln(3) = 2

so tmax=�(P). Denote �max
def=(rmax(rmax+1))=(1−rmax) ' 2:25278278; �j def=b�max jc=j,

and kj
def=brmax jc. Clearly �j →

j→∞
�max and kj=j →

j→∞
rmax.

We look now at the sequence de�ned by nj = 2�jj3 j. The �rst elements in the
sequence are: {12; 144; 1728; 41472; 497664; : : :}.

Theorem 9. The sequence {nj = 2�jj · 3 j}∞j=1 satis�es;
lim
j→∞

t(nj) = �(P) ' 1:435279084:

Proof. For every nj (j¿2 such that kj ¿ 0) in the sequence we have

t(nj)¿C
(
�j;
kj
j

)
− log(16j)
j log(2�j3)

:

Therefore,

lim
j→∞

t(nj)¿ lim
j→∞

C
(
�j;
kj
j

)
= C(�max; rmax) = D(rmax) = tmax = �(P):

The sequence {nj}∞j=1 is contained in the system P over the basis {2; 3}. By Corollary 6,
limj→∞ t(nj)6�(P). Since tmax = �(P), the limit of the sequence above is optimal in
P, and in all the systems over a basis of size two.
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We now turn to explicit sequences from systems over bases of size three. For
n = piqjrk (i; j; k ¿ 0) with three distinct prime divisors p; q; r, Hille’s recursive rule
is

H (piqjrk) = 2(H (pi−1qjrk) + H (piqj−1rk) + H (piqjrk−1)

−H (pi−1qj−1rk)− H (pi−1qjrk−1)− H (piqj−1rk−1)
+H (pi−1qj−1rk−1)):

We applied the generating functions technique to the case of bases with three distinct
primes. It yielded the following expression for H (piqjrk) (we omit the proof, which
is similar to the proof of Proposition 8):

Proposition 10. For distinct primes p; q; r; and natural powers i¿j¿k;

H (piqjrk) =
j∑

‘=0

(−1)‘
(
j
‘

)(
i + j − ‘

j

)
H (pi+j−‘r k):

The main drawback of the last expression is that the sum has alternating signs. So it
cannot be lower bounded by one of its terms (as we did in expression (2)), and we
were not able to use it in order to �nd an explicit sequence composed of three primes.
However, dynamic programming is helpful in calculating the value H (piqjrk). This

is done in stages, where in stage a (06a6i) we calculate the values of H (paqbrc)
with 06b6j and 06c6k in the increasing order of b and c, and store them. In
the next stage, all the values needed to calculate H (pa+1qbrk) are already known and
stored. We actually use the values of only the last two stages, so only these values
should be kept in memory. Thus the space required for computing H (piqjrk) is �(jk).
The values which were computed are H (paqbrc) with 06a6i; 06b6j; 06c6k,
and their number is �(ijk), even if we compute only those cases where a¿b¿c.
Each value is computed exactly once, so calculation of H (piqjrk) takes time �(ijk)
(further details on this computation can be found in [7, pp. 55–60]). As before, it is
worthwhile to look at the basis of the �rst three primes {2; 3; 5}. For P over this basis,
�(P) ' 1:56603. We searched for n ∈ P with large t value. Then we went on to look
for integers over the basis {2; 3; 5; 7} (using the appropriate version of Hille’s recursive
rule). We found the following sequences:

Theorem 11. The powers sequence of n3 = 21020 · 3441 · 5177; which belongs to the sys-
tem over {2; 3; 5}; satis�es

H (n)¿n1:56065:

The powers sequence of n4 = 2263 · 3106 · 543 · 724; which belongs to the system over
{2; 3; 5; 7}; satis�es

H (n)¿n1:60524:
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Proof. Use Corollary 4 with the speci�ed n3, for which t(n3) ' 1:56065, and with n4,
for which t(n4) ' 1:60524.

When further enlarging the base size, the time and space complexities of the compu-
tations increase substantially, while the �(P) value becomes only slightly larger. For
example, the system P over B={2; 3; 5; 7} satis�es �(P)' 1:62705, while the system
P over B = {2; 3; 5; 7; 11} satis�es �(P) ' 1:65257. Recall that for P over all the
primes �(P) = � ' 1:72864.

5. Open problems

(i) Find explicit sequences whose t-limits equal �(P) for systems P over larger
bases, for example {2; 3; 5} and {2; 3; 5; 7}.
(ii) Find an explicit sequence with t-limit which equals �=�(N). Such a sequence

would be optimal over all N. Note that such an optimal sequence cannot be included
in any system over a �nite basis.
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