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Afunction andf (x1, X2, ..., Xn) is said to be-privateif there exists a (randomized) communication
protocol for computingf, such that no coalition of at mostparticipants can infer any additional
information from the execution of the protocol other than what follows from their inputs and the value
of f. It is known that everyn-argument functionf defined over finite domains can be computed
L”%lj-privately. The classes of 1-private two-argument functions artdpoivate Booleanfunctions
admit relatively simple characterizations. In contrast, the general question of characterizing the class
of t-private functions oh arguments is still open. The only technique that appears in the literature
for proving nont-privacy of a functionf (xg, X2, ..., Xn) over a finite domain, whera > 3 and
[31 <t < n-—1, uses a reduction to the two-party case via a partition argument. A necessary
condition for f beingt-private is that for every partitionS S) of the partieq1, 2,..., n} such that
both|S| <t and|S| < t, the two-argument function obtained by viewirigas a function ofx; }ics
and{x; }j s is 1-private. The question whether the use of such partition reductions together with the
two-party characterization is powerful enough to characterize privacy in the multiparty case was raised
as an open problem in previous works. These works also exhibit an affirmative answer for specific
classes of functions. We answer this question negatively. We show that even if more general partition
reductions are used, in which timeparties are partitioned inth sets (2< k < n — 1) rather than
just two, those reductions are still too weak to characterize privacy. On the other hand, we show that
increasing the number of sdtgloes give some extra characterization powet. 2001 Academic Press
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1. INTRODUCTION

A set of n parties, each holding an input valsefrom some domairX;, wishes to distributively
compute a given functiorf (X1, Xo, ..., Xp). The participants communicate via a complete netwo
of reliable and secure channels (no eavesdropping). The participants are honest—they send m
according to the prescribed randomized protocofffddowever, a subset of the participants (a coalitior
might get together after the execution of the protocol in an attempt to dof@itional informationon
the inputs of non-coalition parties. Additional information is any information that does not follow fr
the value of the functionf (X), and the inputs of the coalition parties. A protodols calledt-private
if no coalition containing at modtparties can get any additional information frofs execution.

Private multiparty computation of general functions, under various models and assumptions, ha:
the subject of a considerable amount of work, originating from [2, 4, 8, 11]. The model considered h
a minimalistic one, referred to as the model of “honest but curious” parties, inftivenation-theoretic
setting. Stronger adversarial scenarios, including Byzantine [2, 4] and adaptive [3] adversaries.
been studied in the literature. Negative results on private computation in our model hold in the |
adversarial (information-theoretic) models as well.

The seminal works of [2, 4] showed that allargument functions over finite domai§ can be
Computeqn;zlj -privately. In [5] it is shown that there exists a dense privacy hierarchy: fot%\gﬂM <
t < n — 2 there exists an-argument function which is-private (i.e., can be computed byt-grivate
protocol) but is nott(+ 1)-private. In the works of [1, 10] a complete characterization of 1-priva
two-argument functions is given. The general question of characterizing the ctapewatte functions

1 A preliminary version of this work appeared in the Proceedings of the Fourth Israel Symposium on Theory of Comp
and Systems (ISTCS 1996).
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ON PRIVACY AND PARTITION ARGUMENTS 3

of n-argument, for any > 3 and[5] <t < n— 1, is still open. The only technique which appea
in the literature for proving not-privacy of functions withn > 3 arguments uses a reduction to th
two-party case, via a partition argument [5-7]flfs t-private, wherg 5] < t < n — 1, then for every
partition (S; S)of the partieq1, 2, ..., n} such thaiS|, |§ < t, the two-argument function obtainec
by viewing f as a function ofx; }jcs and{x; }ics is 1-private.

In [6], in the course of proving a characterizationtgbrivate Boolean functions, it is shown that
with respect tdBooleanfunctions, such a partition argument always suffices for provingtrpiivacy.
That is, for anyn-argument Boolean function which is noprivate, there exists a suitable partition c
its variables into two sets such that the induced two-argument function is not 1-private. A similar |
holds for a certain class of symmetric functions [7]. The question whether such an argument a
suffices for proving non-privacy in the general case is raised as an open problem in [5, 7], wi
extensive use of the partition technique has been made.

In this work we provide a negative answer to this question: partitansotalways be used to prove
non-privacy. The proof starts in Section 4, where we give a necessary condition forttg-privacy of
anyn-argument function that generalizes the necessary (and sufficient) condition of the two-party
This result opens up the possibility of proving non-privacy ohaargument function by partitioning its
variables intdk > 2 sets and using tHeparty necessary condition to show that the inducegigument
function is not private.

Now how powerful are those generalized partition arguments? Is it possible that their use togethe
a characterization of all privateargument functions, wheteis bounded by somixed K, is universal
for non-privacy proofs? Section 5 addresses these questions. We show that the power of gene
partition arguments is in fact rather limited. We construchargument functiomy, which isnot fully
private (i.e., notif — 1)-private), but every nontrivial partition of its variables induces a fully prive
function. Putting it in another way, the non-privacy@fis very “fragile.” It collapses whenever any
two (or more) of the parties unite. This means that the non-privagy cdnnot be reduced via partitior
arguments to the non-privacy of some functiorkok n variables. On the other hand, we show th
increasing the number of sets in partitions does give some extra power. For-aywe construch-
argument functiong( > k) which, for somé < n— 1, can be proven to be ndrprivate using partition
into k sets, but cannot be proven to be rneprivate using partition into a smaller number of sets.

2. MODEL AND DEFINITIONS

In this section we define the model of distributed computation that is used, give a formal defir
of privacy in this model, and introduce some notation.

The system consists of a complete synchronous network lodnestpartiesPy, Ps, ..., P, with
secure and reliable point-to-point communication (no eavesdropping). (By saying that the parti
honest it is meant that they send messages according to a predetermined pfotdadhe beginning
of an execution, each parfy has an inpuk; € X; (no probability space is associated with the input:
In addition, each party has a random independent inpiakken from a source of randomnédss The
parties wish to compute some given functib(x). To this end, they exchange messages as prescri
by the protocolF. Messages are sent in rounds, where in each round every party canraesdag¢o
every other party. The protocol’s definition determines which message a party sendstmrthend as
a function of its input, its random input, the messages it received so far, and the identity of the rec
At the end of the computation, one of the parties (Bayoutputs the valud (X).

The communicatiorpassed in the network when the parties have inguasd random inputs is
denotedC(X, ) and is represented by a vector of strings, whktkeentry includes the concatenatiol
of all messages sent duritkgh round of the execution of the protocol, parsed according to sender
receiver. For a given communicati@nand a subsel of then partiesC+ denotes the restriction & to
the messages sent or received by the partié’s(ire.,éT excludes fron€ all messages sent internally
between the parties df).

Let F be a randomized protocol which computB&) (with no error). We say that a coalition (i.e.
a set of partiesJ does not learn any additional information from the executiof ¢bther than what
follows from its input andf (X)) if the following holds: For every two input8, y that agree in theil



4 CHOR AND ISHAI

entries (i.e.¥i € T : X = y;) and satisfyf (X) = f(¥), and for every choice of random inpyts}ier,
the messages seen Byare identically distributed. That is, for every communicat®n

Pr(Cr | %, {ri}ier) = Pr(Cr | ¥, {ri}ict),

where the probability space is over all random inputsTinnamely{r;};.7 (eachr; is distributed
according toR, and they are all independent). We say thats t-private if any coalition T, which
contains at modtparties, does not learn any additional information from the execution of the prot
F. We say that a functiorf is t-private if there exists a-private protocol computing . We say that
then-argument functiorf is fully privateif it is (n — 1)-private.

3. PROVING NON-PRIVACY VIA PARTITION ARGUMENTS

In this section we state the Partition Lemma, which allows the reduction of proving the non-pr
of an n-argument functionf (xg, X, ..., X,) to proving the non-privacy of &-argument function
f'(y1, Y2, ..., Yk)(k < n). Previous works [5-7], relying only on the two-party characterization
privacy, restrict the statement of the lemma to the case wher. The following more general form
is an immediate generalization of the special case used in those works.

Derinimion 3.1, Ak-partition of a set ofn parties (or variabled]l, 2, ..., n} is an ordered partition
of the set intdk non-empty, mutually disjoint sets and is denot&d &; ... ; S).

Derinimion 3.2, Given am-argument functionf : X3 x X, x .-+ x X, — Z and ak-partition
(S1; S5 ..., &) of the parties, denote by; the Cartesian product of th¥; with j € §, and let
f’: Y1 x Yy x - x Yy - Z be the function obtained by viewin§ as ak-argument function;
that is, f' is defined byf’'({Xi}ies, {Xi }ies - - -, {Xities) = T(X1, X2, ..., Xn). Given ann-argument
function f, thek-argument functiorf’ will be referred to as the functianduced by the partitiofS;;

SHEESH

Lemma 3.1 (The Partition Lemma [6]). Suppose f. X3 x X5 x --- x X, — Z is t-private. Then
for every k-partitionl1 = (S; S; . . .; &) and every tsuch that the size of the union of ariyséts §
does not exceed the induced k-argument function i t’-private.

We remark that the cases of interest in the above lemma are[ 5] andt’ > [51. The simple
proof of the lemma is by direct simulation: an origirtgbrivate n-party protocol may be simulatec
by thek parties, where each “new” partly’ takes the role of all original parties belonging
embedding internal communications into the definition of the new protocolt frévacy of the new
protocol follows from thet-privacy of the original protocol and from the sizes of coalitions induc
by IT.

Note that in using partition reductions to prove the neprivacy of somen-argument function, the
cardinalityk of the partitions can be restricted to range from Zite 1. If k = 1, then the induced
function is always fully private (as a 1-argument function), so non-privacy cannot be proven at
k = n, on the other hand, then the original problem is reduced to itself, which is not much of a
either.

4. NECESSARY CONDITION FOR FULL PRIVACY

Inthis section we state and prove a hecessary condition for the full privacy ofamgyment function.
This condition generalizes the necessary condition for the two-party case [1, 10].

In order to simplify (and clarify) the statement and proof of the following lemma, we do not
the most general form possible. We restrict our attention to functions mapping finh{Where ]
denotes the sdftl, 2,..., m}) into some arbitrary rang&. The lemma can be applied to function
of arbitrary (even infinite) domains and further strengthened using a generalization of the conc
“forbidden rectangle” from [10] to the multiparty case.
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FIG. 1. The functiong.

Derinimion 4.1.  Given a vectoii € [m]" andd € [m], denote byii|i. 4 the vector obtained by
replacing the value of thigh coordinate ofi with d. A function f : [m]" — Z is callednon-separable
at its ith coordinate if there exists a vectoii, such thatf attains the same value on afl vectors
Gli—g,1 < d < m. The function f is callednon-separabléf it is non-separable at each of its
coordinates.

Any constantfunction is clearly non-separable. As a less trivial example, Fig. 1 describes a
cific function g, whose domain is [3] This function is nonseparable, gél, 1,1) = g(2,1,1) =
03,1,1),921,2)=9(2,2,2)=9(2,3,2),andg(3,3,1) = g(3,3,2) = g(3, 3, 3).

Leema 4.1. If f :[m], — Z is a non-constant non-separable functitimen f is not fully private.

Proof. The following proof generalizes the proof for the two-party case appearing in [10]. Sup
toward a contradiction theft is an fi — 1)-private protocol which computds We may assume, without
loss of generality, that the parties “take turns” in sending messages; i.e. paeys to send message
onlyinrounds +nj,j=0,1,2,....

ProposiTiond.1. For every two inputs, ¥ € [m]™ and communicatio€, Pr(C | X) = Pr(C | ¥)
(where the probabilities here and in the following proof are taken over the choices of all randomjing

Proof. The intuition behind the proof is simple: In each round, if the active partyas no informa-
tion on the inputs of the other parties, the distribution of the messages it sends should not depen
input. Because otherwise, the nonseparability @it theith coordinate implies that for some possibl
combination of the other parties’ inputs, the coalition of all other parties will violate the privacy
P. Since initially no party has any information on the other parties’ inputs, this condition is prese
throughout the execution of the protocol. This argument applies to the final round as well, forcing ¢
in the final output. We now formalize this idea.

Let C be any communication vector, and @t denote the restriction  to its firstk entries (i.e.,
Cy includes all messages 6f sent during the firsk rounds). LetCy denote the restriction cit to its
kth entry alone. We prove, by induction &nthat for any two inputs, V, Pr(C;< | X) = Pr(C;< | V).

The case ok = 0 is trivial (both probabilities are 1). We now assume that the claim holds fol.
and prove that it holds fok. Assume that? is the active party in thé&th round. By the inductive
assumptlonPr(Ck 1| Z) is independent of the inpat If this probability is 0, then aIs@r(Ck | X) =
Pr(Ck | ¥) = 0. We may thus assume from now on that (for all mpi)tﬁ’r(ck 112 >0.

Let X, ¥ be any two input vectors, and v be two vectors such that = x;,v; = vV, for all |
other thani, u; = vj, and f (i) = f (V) (the existence of such, v is guaranteed by the assumptio
that f is nonseparable). For any commumcat(ﬁnthe combined view of a coalition, consisting of al
parties excepB, includes all messages 6f Thus, the requirement that is (n — 1)-private implies
thatPr(C | u) = Pr(C | U). Since this is true foanycommunlcanorc we have in particular that
Pr(Cy | 4, Ck,l) = Pr(Cy | v, Ck,l) (note thatPr(Ck,l) > 0 by an assumption made earlier).

Relying on the fac¢tthat for anyZ the probabilityPr(Cy | Z, Cx_1) depends only og;, the input of
theith party, we have that

Pr(Ck | %, Cx_1) = Pr(C« | G, Cx_1)

= Pr(Cy | ¥, Ck_1)
= Pr(C« | ¥, Ck_1),

4 A formal proof of this basic property of general randomized protocols appears in [9].
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and finally that

Pr(Cy | X) = Pr(Cx | %, Cx_1)Pr(Ci_1 | X)
Pr(Ck | ¥, Ck_1)Pr(Ci_1 | %)
Pr(Cx | ),

asrequired. m

In particular we conclude that the distribution of messages sent in the final roufigvafich are
assumed to contain the value bfis the same for every input. Sindeis non-constant, this contradicts
the requirement that computesf (even if we allow the protocol to err with some positive probabili
smaller than%). This concludes the proof of Lemma 4.1m

Remark. The converse of Lemma 4.1 does not hold; this necessary condition ssfficientfor
full privacy.® For instance, consider the functidn: {0, 1}3 — {0, 1}° U {1} such thatf (X) equals 1
for X = 000, 110, 001 and equalg otherwise. The functiof can be shown to be not fully private vie
a partition argumerft but is clearly not non-separable.

5. MAIN RESULTS

In this section we prove two results, both dealing with the power of partition reductions. The
(and more significant) shows that this power is rather limited: partitions cannot always be used to
non-privacy. The second result shows that while this power is limited, it gradually increases ¢
number of sets in partitions is allowed to grow. Both results can be obtained as special cases
following lemma.

Lemva 5.1. Letk > 3,¢ > 1 be two integers. There exists & &rgument function \f, for which
there is some k-partition inducing a k-argument function which is not fully privatefor every k < K,
all k’-partitions induce fully private kargument functions.

Proof. Set n = kt. Definek setsD; as follows:D; = {1,2,...,£}, D, ={£+1,£+2,...,2¢},
..,Dk={n—¢+1,n—¢+ 2, ...,n}, and letd; denote the minimal element @;. Define an
n-argument functionfy , : [K]" — [k] U [K]" as follows: If there exist$ € [k] such that for allj
in [n]\D;, xj =i (sincek > 2 there can be at most one sughthen let f, ((X) = i; otherwise let
f.e(X) = X. Note that for anyi € [k], whether fy ((X) = i depends only on the values assigned
the variables infi]\D;. The instancefs , is described in Fig. 2. We show that such & meets the
requirements of Lemma 5.1.

ProposiTionS.1. There exists a k-partition of the n variables inducing a k-argument function wt
is not fully private.

Proof. The k-partition (D1; Do;...; Dx) induces ak-argument functionf’ which is both non-
constant and non-separable. (Non-separability dttteordinate follows from the “ail’ input vector.)
By Lemma 4.1,f" is not fully private. m

ProposiTion5.2. For every K < k, every K-partition of the n variables induces a fully private
k’-argument function.

Proof. LetIl =(S;S;...; S¢) be ak’-partition of then = k¢ variables. Sinc&’ < k there must
be some sef < I1whose size is greater thénso without loss of generality we assui®g| > ¢. Define
A= {h: S N Dy # @}. Since|S,| > ¢, the setA must contain at least two elemeriti other words,

5 A slightly generalized formulation of the non-separability condition, as is done for the two-party case in [1, 10] w
make it sufficient for two-party privacy; however, the three-argument function defined below is not non-separable even ur
generalized condition.

6 The two-argument function induced by the partitigh, (2}, {3}) contains an “embedded OR” (cf. [10]), and hence, by tt
two-party characterization, it is not private.

" The setA depends on the partitiol and does not depend on the actual input
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FIG. 2. The functionfs ;.

party P; holds inputs with indices in at least two different sBts Denote byf the function induced
by the partition1. We describe a (deterministic) fully private protodélcomputingf, in which each
partyP, 1 <i < K, holds the input variables with indices &. Intuitively, the protocol will specify a
“cautious” sequence of partial disclosures of information, guaranteeing that the information disc
in any execution can be inferred from the valifx).

ProtocolF:

Round 1:P; finds the selR C {1, 2,...,k} of all valuesj’ such thatP,’s inputs rule out the
possibility thatf (X) = j’. It then announces a val@ec R, which is determined as follows:

1. If|A] > 2 or A C R, thena is the minimal element ifR. (Proof of correctness will show
that R is nonempty.)

2. Otherwisea is the minimal element iR\ A. (Proof of correctness will show that in this
caseR\ A is honempty.)

Round 2: The party holding input variabtg, (the element with minimal index iD,) announces
its value,b.

Round 3: Parties announce the values of all variables with indices fity®j, (i.e., each partyp,
announces the values of the variablgsuch thatj € § N ([n]\Dy)).

Round 4: Ifall variables revealed in the previous round are equél # outputs “f = b,” and
the protocol terminates. Otherwise all parties announce the values of all variables not yet reveal

Round 5:P;, knowing all inputs, outputsf = X.”

We now prove thaf computesf correctly and with full privacy.

Correctness: We first show that the choiceadfi Round 1 is well defined. As illustrated by Fig. 2
each input value; is consistent with at most two values fértaken from k], namely eitherf = x; or
f = j, wherei € Dj. Sincek > 3 it follows thatP; can rule out at least one valaes [K] from being
equal tof (X), and soR is always nonempty. In order to prove that the choica isfwell defined in the
second case of Round 1 as well, it suffices to show thRt i\ is empty then the first case must holc
Suppose thgtA| = 2 (otherwise the first case obviously holds) &idA = (. Sincek > 3, there exists
somejp € [K]\ A, and suchjp cannot be inR (otherwiseR\ A would be nonempty). By the definition
of f, all variables held byP; must be equal tgo. Sincejp ¢ A, this implies that eacl’ € A can be
ruled out from being equal to the value 6f It follows that A C R, and the first case holds.

The protocol always terminates with an output. We will show that this output is indeed equal t
value of f. Since f (X) # a, andxy, = b, when the protocol reaches Round 4 it must be the case:
f (X) is eitherb or X. Now, if “ f = b” is output in Round 4, this must be because= b for alli ¢ Dy,
and so by definition offy , we havef (X) = b. If x; # b for somei ¢ Dy, then by definitionf (X) = X,
so the value off output in Round 5 is correct.

Privacy: By the definition of full privacy, it suffices to show that for evegrg [k] the protocol yields
identical messages when run on all inpiitsuch thatf (X) = j. (Inputs such thaf (X) = X impose no
privacy constraint.) Supposi(X) = j, wherej € [K]. By the protocol, the value af announced by
P: in Round 1 depends oR. So it may seem that this message could reveal some informati®ion
inputs. We will begin by showing that (given the fixkdpartition IT and the sef\ associated with it)
the value ofa chosen in Round 1 depends only pnThis implies that the Round 1 message does r
violate the privacy requirements.

Case 1. |A| > 2. SinceA contains at least three elements, then for eviérg [k]\{j}, P. holds
some input variable; whose index satisfies ¢ D; U Dj.. Sincef (X) = j, the value of suchk; must
equalj. This allowsP; to rule out the possibility that (X) = j’. It follows that in this cas® = [K]\{]}.
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Case 2. |A| = 2andj € A In this casej € A\R, so A € R and P; acts according to the
second case in Round 1. LAt= {j, j}. ThenP; holds some input variabbg whose index satisfies
i € Dj. By the definition off, since f(X) = j, the equalityx; = j must hold. Therefore, for every
i"e{1,2,...,kN\A, the inputs held by, rule out the possibility thaf (X) = j’. It follows that in this
caseR\ A = [K]\ A, implying thata = min([k]\ A).

Case 3. |A| =2andj ¢ A. Let A = {ji, j2}, thenP; holds two input variables;,, x;, whose
indicesiq, i, satisfyi; € Dj,, i, € Dj,. By the definition off, sincef (X) = j, the equalityq, = X, = |
must hold. Therefore, for both elements4gfthe inputs held by, rule out the possibility that the value
of f equals this element. This means tllaC R andP; acts according to the first case in Round 1. £
A contains two elements frork[[that are different thafj, the same reasoning as that in Case 1 impl
that in this casdrk = [K]\{j}.

Now whether Case 1, 2, or 3 holds is completely determined bpd j, the value off . Given each
case, the valua is again determined b and j. Therefore the valua sent byP; at Round 1 does not
violate the privacy requirements.

It can be easily verified that for angwith f (X) = j, the value of all messages sent in rounds 2—4
equal toj; these messages are sent by the same set of parties, and the protocol terminates at K
This establishes the full privacy 6f. =

Propositions 5.1 and 5.2 directly imply Lemma 5.1n
We can now prove the two main results.

THeEOREM5.1. The converse of the Partition Lemma does not hold. More specififallgvery n> 3
there exists an n-argument functiopghich is not fully private but every k-partition of its variables
to fewer than n part§2 < k < n — 1) induces a fully private function.

Proof. Defineg, = f,1(Fig. 1describestheinstangg. Lemma5.1implies tha, (as the function
induced by its owm-partition) is not fully private, but everyg-partition of its variables, 2 k < n—1,
induces a fully private function.m

THeEOREM 5.2. The power of partition reductions strictly increases as the number of sets in
partitions is allowed to grow. More formallyfor any k > 3 there exist n-argument functiois > k)
which, for some t can be proven to be non-t-private using partition into k sbetg cannot be proven
to be non-t-private using partition into a smaller number of sets.

Proof. Setf = fy,, where¢ > 2. The proof of Proposition 5.1 exhibits a partition of thé
variables off intok sets of siz& each, such that the induckeargument function is nok(— 1)-private.
Since each union & — 1 sets from this partition is of siz& - 1)¢, the Partition Lemma implies thdt
is not k — 1)¢-private. In addition, Lemma 5.1 states that for evéry k, all k’-partitions induce fully
private functions, and thus such partitions cannot be used to prove non-privdgy. d/e conclude
that suchf satisfies the requirements of Theorem 5.2 wits k¢ andt = (k — 1)¢ = (1 — %)n. ]

6. OPEN PROBLEMS

As indicated by Theorem 5.2, the combination of a generalized Partition Lemma with our nece
condition for full privacy is stronger than the combination of two-partitions and the two-party charac
zation, used in previous works [5—7]. This gives hope to characterize wider natural classes of fun
using the generalized techniques.

The general problem of characterizing therivate functions is still wide open. Our necessa
condition for full privacy is not a sufficient one, and this leaves even the problem of charactéuizin
privacy open. To gain better understanding of the information-theoretic notion of privacy, one f
develop new proof techniques for proving nbprivacy, especially wheh < n — 1.

Finally, while this work focuses on existential results, a potentially interesting question is th
finding the maximal range si2d, such that partition reductions are universal for proving non-prive
of functions mapping toN1]. The Boolean case characterization of [6] shows that such maxitrial
it least 2. Is this bound tight?
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