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A function andf (x1, x2, . . . , xn) is said to bet-privateif there exists a (randomized) communication
protocol for computingf , such that no coalition of at mostt participants can infer any additional
information from the execution of the protocol other than what follows from their inputs and the value
of f . It is known that everyn-argument functionf defined over finite domains can be computed
b n−1

2 c-privately. The classes of 1-private two-argument functions and oft-privateBooleanfunctions
admit relatively simple characterizations. In contrast, the general question of characterizing the class
of t-private functions ofn arguments is still open. The only technique that appears in the literature
for proving non-t-privacy of a function f (x1, x2, . . . , xn) over a finite domain, wheren ≥ 3 and
d n

2e ≤ t ≤ n − 1, uses a reduction to the two-party case via a partition argument. A necessary
condition for f beingt-private is that for every partition (S; S̄) of the parties{1, 2, . . . , n} such that
both |S| ≤ t and|S̄| ≤ t , the two-argument function obtained by viewingf as a function of{xi }i∈S

and{xi }i∈S̄ is 1-private. The question whether the use of such partition reductions together with the
two-party characterization is powerful enough to characterize privacy in the multiparty case was raised
as an open problem in previous works. These works also exhibit an affirmative answer for specific
classes of functions. We answer this question negatively. We show that even if more general partition
reductions are used, in which then parties are partitioned intok sets (2≤ k ≤ n − 1) rather than
just two, those reductions are still too weak to characterize privacy. On the other hand, we show that
increasing the number of setsk does give some extra characterization power.C© 2001 Academic Press
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1. INTRODUCTION

A set of n parties, each holding an input valuexi from some domainXi , wishes to distributively
compute a given functionf (x1, x2, . . . , xn). The participants communicate via a complete network
of reliable and secure channels (no eavesdropping). The participants are honest—they send messages
according to the prescribed randomized protocol forf . However, a subset of the participants (a coalition)
might get together after the execution of the protocol in an attempt to inferadditional informationon
the inputs of non-coalition parties. Additional information is any information that does not follow from
the value of the function,f (Ex), and the inputs of the coalition parties. A protocolF is calledt-private
if no coalition containing at mostt parties can get any additional information fromF ’s execution.

Private multiparty computation of general functions, under various models and assumptions, has been
the subject of a considerable amount of work, originating from [2, 4, 8, 11]. The model considered here is
a minimalistic one, referred to as the model of “honest but curious” parties, in theinformation-theoretic
setting. Stronger adversarial scenarios, including Byzantine [2, 4] and adaptive [3] adversaries, have
been studied in the literature. Negative results on private computation in our model hold in the more
adversarial (information-theoretic) models as well.

The seminal works of [2, 4] showed that alln-argument functions over finite domainsXi can be
computedb n−1

2 c-privately. In [5] it is shown that there exists a dense privacy hierarchy: for anyb n−1
2 c ≤

t ≤ n− 2 there exists ann-argument function which ist-private (i.e., can be computed by at-private
protocol) but is not (t + 1)-private. In the works of [1, 10] a complete characterization of 1-private
two-argument functions is given. The general question of characterizing the class oft-private functions
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of n-argument, for anyn ≥ 3 andd n
2e ≤ t ≤ n − 1, is still open. The only technique which appears

in the literature for proving non-t-privacy of functions withn ≥ 3 arguments uses a reduction to the
two-party case, via a partition argument [5–7]. Iff is t-private, whered n

2e ≤ t ≤ n− 1, then for every
partition (S; S̄)of the parties{1, 2, . . . ,n} such that|S|, |S̄| ≤ t , the two-argument function obtained
by viewing f as a function of{xi }i∈S and{xi }i∈S̄ is 1-private.

In [6], in the course of proving a characterization oft-private Boolean functions, it is shown that,
with respect toBooleanfunctions, such a partition argument always suffices for proving non-t-privacy.
That is, for anyn-argument Boolean function which is nott-private, there exists a suitable partition of
its variables into two sets such that the induced two-argument function is not 1-private. A similar result
holds for a certain class of symmetric functions [7]. The question whether such an argument always
suffices for proving non-t-privacy in the general case is raised as an open problem in [5, 7], where
extensive use of the partition technique has been made.

In this work we provide a negative answer to this question: partitionscannotalways be used to prove
non-privacy. The proof starts in Section 4, where we give a necessary condition for the (n−1)-privacy of
anyn-argument function that generalizes the necessary (and sufficient) condition of the two-party case.
This result opens up the possibility of proving non-privacy of ann-argument function by partitioning its
variables intok > 2 sets and using thek-party necessary condition to show that the inducedk-argument
function is not private.

Now how powerful are those generalized partition arguments? Is it possible that their use together with
a characterization of all privatek-argument functions, wherek is bounded by somefixed K, is universal
for non-privacy proofs? Section 5 addresses these questions. We show that the power of generalized
partition arguments is in fact rather limited. We construct ann-argument functiongn which isnot fully
private (i.e., not (n − 1)-private), but every nontrivial partition of its variables induces a fully private
function. Putting it in another way, the non-privacy ofgn is very “fragile.” It collapses whenever any
two (or more) of the parties unite. This means that the non-privacy ofgn cannot be reduced via partition
arguments to the non-privacy of some function ofk < n variables. On the other hand, we show that
increasing the number of sets in partitions does give some extra power. For anyk ≥ 3 we constructn-
argument functions (n > k) which, for somet < n−1, can be proven to be non-t-private using partition
into k sets, but cannot be proven to be non-t-private using partition into a smaller number of sets.

2. MODEL AND DEFINITIONS

In this section we define the model of distributed computation that is used, give a formal definition
of privacy in this model, and introduce some notation.

The system consists of a complete synchronous network ofn honestpartiesP1, P2, . . . , Pn with
secure and reliable point-to-point communication (no eavesdropping). (By saying that the parties are
honest it is meant that they send messages according to a predetermined protocolF .) At the beginning
of an execution, each partyPi has an inputxi ∈ Xi (no probability space is associated with the inputs).
In addition, each party has a random independent inputri taken from a source of randomnessRi . The
parties wish to compute some given functionf (Ex). To this end, they exchange messages as prescribed
by the protocolF . Messages are sent in rounds, where in each round every party can send amessageto
every other party. The protocol’s definition determines which message a party sends in thekth round as
a function of its input, its random input, the messages it received so far, and the identity of the receiver.
At the end of the computation, one of the parties (sayP1) outputs the valuef (Ex).

The communicationpassed in the network when the parties have inputsEx and random inputsEr is
denotedEC(Ex, Er ) and is represented by a vector of strings, whosekth entry includes the concatenation
of all messages sent duringkth round of the execution of the protocol, parsed according to sender and
receiver. For a given communicationEC and a subsetT of thenparties,ECT denotes the restriction ofEC to
the messages sent or received by the parties inT (i.e., ECT excludes fromEC all messages sent internally
between the parties ofT).

LetF be a randomized protocol which computesf (Ex) (with no error). We say that a coalition (i.e.,
a set of parties)T does not learn any additional information from the execution ofF (other than what
follows from its input andf (Ex)) if the following holds: For every two inputsEx, Ey that agree in theirT



4 CHOR AND ISHAI

entries (i.e.,∀i ∈ T : xi = yi ) and satisfyf (Ex) = f (Ey), and for every choice of random inputs{ri }i∈T ,
the messages seen byT are identically distributed. That is, for every communicationEC,

Pr ( ECT | Ex, {ri }i∈T ) = Pr ( ECT | Ey, {ri }i∈T ),

where the probability space is over all random inputs inT , namely{ri }i∈T̄ (eachri is distributed
according toRi and they are all independent). We say thatF is t-private if any coalition T , which
contains at mostt parties, does not learn any additional information from the execution of the protocol
F . We say that a functionf is t-private if there exists at-private protocol computingf . We say that
then-argument functionf is fully private if it is (n− 1)-private.

3. PROVING NON-PRIVACY VIA PARTITION ARGUMENTS

In this section we state the Partition Lemma, which allows the reduction of proving the non-privacy
of an n-argument functionf (x1, x2, . . . , xn) to proving the non-privacy of ak-argument function
f ′(y1, y2, . . . , yk)(k < n). Previous works [5–7], relying only on the two-party characterization of
privacy, restrict the statement of the lemma to the case wherek = 2. The following more general form
is an immediate generalization of the special case used in those works.

DEFINITION 3.1. Ak-partitionof a set ofn parties (or variables){1, 2, . . . ,n} is an ordered partition
of the set intok non-empty, mutually disjoint sets and is denoted (S1; S2; . . . ; Sk).

DEFINITION 3.2. Given ann-argument functionf : X1 × X2 × · · · × Xn → Z and ak-partition
(S1; S2; . . . ; Sk) of the parties, denote byYi the Cartesian product of theX j with j ∈ Si , and let
f ′ : Y1 × Y2 × · · · × Yk → Z be the function obtained by viewingf as ak-argument function;
that is, f ′ is defined byf ′({xi }i∈S1, {xi }i∈S2, . . . , {xi }i∈Sk ) = f (x1, x2, . . . , xn). Given ann-argument
function f , thek-argument functionf ′ will be referred to as the functioninduced by the partition(S1;
S2; . . . ; Sk).

LEMMA 3.1 (The Partition Lemma [6]). Suppose f: X1 × X2 × · · · × Xn → Z is t-private. Then
for every k-partition5 = (S1; S2; . . . ; Sk) and every t′ such that the size of the union of any t′ sets Si
does not exceed t, the induced k-argument function f′ is t′-private.

We remark that the cases of interest in the above lemma aret ≥ d n
2e and t ′ ≥ d k

2e. The simple
proof of the lemma is by direct simulation: an originalt-privaten-party protocol may be simulated
by the k parties, where each “new” partyP′i takes the role of all original parties belonging toSi ,
embedding internal communications into the definition of the new protocol. Thet ′-privacy of the new
protocol follows from thet-privacy of the original protocol and from the sizes of coalitions induced
by5.

Note that in using partition reductions to prove the non-t-privacy of somen-argument function, the
cardinalityk of the partitions can be restricted to range from 2 ton − 1. If k = 1, then the induced
function is always fully private (as a 1-argument function), so non-privacy cannot be proven at all. If
k = n, on the other hand, then the original problem is reduced to itself, which is not much of a help
either.

4. NECESSARY CONDITION FOR FULL PRIVACY

In this section we state and prove a necessary condition for the full privacy of anyn-argument function.
This condition generalizes the necessary condition for the two-party case [1, 10].

In order to simplify (and clarify) the statement and proof of the following lemma, we do not use
the most general form possible. We restrict our attention to functions mapping from [m]n (where [m]
denotes the set{1, 2, . . . ,m}) into some arbitrary rangeZ. The lemma can be applied to functions
of arbitrary (even infinite) domains and further strengthened using a generalization of the concept of
“forbidden rectangle” from [10] to the multiparty case.
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x1 x2 x3 g(Ex)

* 1 1 1
2 * 2 2
3 3 * 3
any otherEx Ex

FIG. 1. The functiong.

DEFINITION 4.1. Given a vectorEu ∈ [m]n andd ∈ [m], denote byEu|i←d the vector obtained by
replacing the value of theith coordinate ofEu with d. A function f : [m]n→ Z is callednon-separable
at its ith coordinate if there exists a vectorEu, such that f attains the same value on allm vectors
Eu|i←d, 1 ≤ d ≤ m. The function f is callednon-separableif it is non-separable at each of itsn
coordinates.

Any constantfunction is clearly non-separable. As a less trivial example, Fig. 1 describes a spe-
cific function g, whose domain is [3]3. This function is nonseparable, asg(1, 1, 1) = g(2, 1, 1) =
g(3, 1, 1), g(2, 1, 2)= g(2, 2, 2)= g(2, 3, 2), andg(3, 3, 1)= g(3, 3, 2)= g(3, 3, 3).

LEEMA 4.1. If f : [m]n→ Z is a non-constant non-separable function, then f is not fully private.

Proof. The following proof generalizes the proof for the two-party case appearing in [10]. Suppose
toward a contradiction thatF is an (n−1)-private protocol which computesf . We may assume, without
loss of generality, that the parties “take turns” in sending messages; i.e., partyPi gets to send messages
only in roundsi + nj, j = 0, 1, 2, . . . .

PROPOSITION4.1. For every two inputsEx, Ey ∈ [m]n and communicationEC, Pr ( EC | Ex) = Pr ( EC | Ey)
(where the probabilities here and in the following proof are taken over the choices of all random inputs).

Proof. The intuition behind the proof is simple: In each round, if the active partyPi has no informa-
tion on the inputs of the other parties, the distribution of the messages it sends should not depend on its
input. Because otherwise, the nonseparability off at thei th coordinate implies that for some possible
combination of the other parties’ inputs, the coalition of all other parties will violate the privacy of
Pi . Since initially no party has any information on the other parties’ inputs, this condition is preserved
throughout the execution of the protocol. This argument applies to the final round as well, forcing errors
in the final output. We now formalize this idea.

Let EC be any communication vector, and letECk denote the restriction ofEC to its firstk entries (i.e.,
ECk includes all messages ofEC sent during the firstk rounds). LetCk denote the restriction ofEC to its
kth entry alone. We prove, by induction onk, that for any two inputsEx, Ey, Pr ( ECk | Ex) = Pr ( ECk | Ey).

The case ofk = 0 is trivial (both probabilities are 1). We now assume that the claim holds fork− 1
and prove that it holds fork. Assume thatPi is the active party in thekth round. By the inductive
assumption,Pr ( ECk−1 | Ez) is independent of the inputEz. If this probability is 0, then alsoPr ( ECk | Ex) =
Pr ( ECk | Ey) = 0. We may thus assume from now on that (for all inputsEz) Pr ( ECk−1 | Ez) > 0.

Let Ex, Ey be any two input vectors, andEu, Ev be two vectors such thatui = xi , vi = yi , for all j
other thani, u j = v j , and f (Eu) = f (Ev) (the existence of suchEu, Ev is guaranteed by the assumption
that f is nonseparable). For any communicationEC, the combined view of a coalition, consisting of all
parties exceptPi , includes all messages ofEC. Thus, the requirement thatF is (n− 1)-private implies
that Pr ( EC | Eu) = Pr ( EC | Ev). Since this is true foranycommunicationEC, we have in particular that
Pr (Ck | Eu, ECk−1) = Pr (Ck | Ev, ECk−1) (note thatPr ( ECk−1) > 0 by an assumption made earlier).

Relying on the fact4 that for anyEz the probabilityPr (Ck | Ez, ECk−1) depends only onzi , the input of
the i th party, we have that

Pr (Ck | Ex, ECk−1) = Pr (Ck | Eu, ECk−1)

= Pr (Ck | Ev, ECk−1)

= Pr (Ck | Ey, ECk−1),

4 A formal proof of this basic property of general randomized protocols appears in [9].
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and finally that

Pr ( ECk | Ex) = Pr (Ck | Ex, ECk−1)Pr ( ECk−1 | Ex)

= Pr (Ck | Ey, ECk−1)Pr ( ECk−1 | Ey)

= Pr ( ECk | Ey),

as required.

In particular we conclude that the distribution of messages sent in the final round ofF , which are
assumed to contain the value off , is the same for every input. Sincef is non-constant, this contradicts
the requirement thatF computesf (even if we allow the protocol to err with some positive probability
smaller than1

2). This concludes the proof of Lemma 4.1.

Remark. The converse of Lemma 4.1 does not hold; this necessary condition is notsufficientfor
full privacy.5 For instance, consider the functionf : {0, 1}3 → {0, 1}3 ∪ {1} such thatf (Ex) equals 1
for Ex = 000, 110, 001 and equalsEx otherwise. The functionf can be shown to be not fully private via
a partition argument,6 but is clearly not non-separable.

5. MAIN RESULTS

In this section we prove two results, both dealing with the power of partition reductions. The first
(and more significant) shows that this power is rather limited: partitions cannot always be used to prove
non-privacy. The second result shows that while this power is limited, it gradually increases as the
number of sets in partitions is allowed to grow. Both results can be obtained as special cases of the
following lemma.

LEMMA 5.1. Let k ≥ 3, ` ≥ 1 be two integers. There exists a k`-argument function fk,` for which
there is some k-partition inducing a k-argument function which is not fully private, but for every k′ < k,
all k ′-partitions induce fully private k′-argument functions.

Proof. Set n = k`. Definek setsDi as follows:D1 = {1, 2, . . . , `}, D2 = {`+ 1, `+ 2, . . . ,2`},
. . . , Dk = {n − ` + 1, n − ` + 2, . . . ,n}, and letdi denote the minimal element ofDi . Define an
n-argument functionfk,` : [k]n → [k] ∪ [k]n as follows: If there existsi ∈ [k] such that for all j
in [n]\Di , xj = i (sincek ≥ 2 there can be at most one suchi ), then let fk,`(Ex) = i ; otherwise let
fk,`(Ex) = Ex. Note that for anyi ∈ [k], whether fk,`(Ex) = i depends only on the values assigned to
the variables in [n]\Di . The instancef3,2 is described in Fig. 2. We show that such anfk,` meets the
requirements of Lemma 5.1.

PROPOSITION5.1. There exists a k-partition of the n variables inducing a k-argument function which
is not fully private.

Proof. The k-partition (D1; D2; . . . ; Dk) induces ak-argument functionf ′ which is both non-
constant and non-separable. (Non-separability at theith coordinate follows from the “alli ” input vector.)
By Lemma 4.1,f ′ is not fully private.

PROPOSITION 5.2. For every k′ < k, every k′-partition of the n variables induces a fully private
k′-argument function.

Proof. Let5 = (S1; S2; . . . ; Sk′ ) be ak′-partition of then = k` variables. Sincek′ < k there must
be some setSi ∈ 5whose size is greater than`, so without loss of generality we assume|S1| > `. Define
A = {h : S1 ∩ Dh 6= ∅}. Since|S1| > `, the setA must contain at least two elements.7 In other words,

5 A slightly generalized formulation of the non-separability condition, as is done for the two-party case in [1, 10] would
make it sufficient for two-party privacy; however, the three-argument function defined below is not non-separable even under the
generalized condition.

6 The two-argument function induced by the partition ({1, 2}, {3}) contains an “embedded OR” (cf. [10]), and hence, by the
two-party characterization, it is not private.

7 The setA depends on the partition5 and does not depend on the actual inputEx.
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x1 x2 x3 x4 x5 x6 f3,2(Ex)

* * 1 1 1 1 1
2 2 * * 2 2 2
3 3 3 3 * * 3
any otherEx Ex

FIG. 2. The function f3,2.

party P1 holds inputs with indices in at least two different setsDi . Denote byf the function induced
by the partition5. We describe a (deterministic) fully private protocolF computing f , in which each
party Pi , 1≤ i ≤ k′, holds the input variables with indices inSi . Intuitively, the protocol will specify a
“cautious” sequence of partial disclosures of information, guaranteeing that the information disclosed
in any execution can be inferred from the valuef (Ex).

ProtocolF :

Round 1:P1 finds the setR ⊂ {1, 2, . . . , k} of all values j ′ such thatP1’s inputs rule out the
possibility that f (Ex) = j ′. It then announces a valuea ∈ R, which is determined as follows:

1. If |A| > 2 or A ⊆ R, thena is the minimal element inR. (Proof of correctness will show
that R is nonempty.)

2. Otherwise,a is the minimal element inR\A. (Proof of correctness will show that in this
caseR\A is nonempty.)

Round 2: The party holding input variablexda (the element with minimal index inDa) announces
its value,b.

Round 3: Parties announce the values of all variables with indices from [n]\Db (i.e., each partyPi

announces the values of the variablesxj such thatj ∈ Si ∩ ([n]\Db)).
Round 4: Ifall variables revealed in the previous round are equal tob, P1 outputs “f = b,” and

the protocol terminates. Otherwise all parties announce the values of all variables not yet revealed.
Round 5:P1, knowing all inputs, outputs “f = Ex.”

We now prove thatF computesf correctly and with full privacy.
Correctness: We first show that the choice ofa in Round 1 is well defined. As illustrated by Fig. 2,

each input valuexi is consistent with at most two values forf taken from [k], namely eitherf = xi or
f = j , wherei ∈ Dj . Sincek ≥ 3 it follows thatP1 can rule out at least one valuea ∈ [k] from being
equal to f (Ex), and soR is always nonempty. In order to prove that the choice ofa is well defined in the
second case of Round 1 as well, it suffices to show that ifR\A is empty then the first case must hold.
Suppose that|A| = 2 (otherwise the first case obviously holds) andR\A = ∅. Sincek ≥ 3, there exists
some j0 ∈ [k]\A, and suchj0 cannot be inR (otherwiseR\A would be nonempty). By the definition
of f , all variables held byP1 must be equal toj0. Since j0 /∈ A, this implies that eachj ′ ∈ A can be
ruled out from being equal to the value off . It follows that A ⊆ R, and the first case holds.

The protocol always terminates with an output. We will show that this output is indeed equal to the
value of f . Since f (Ex) 6= a, andxda = b, when the protocol reaches Round 4 it must be the case that
f (Ex) is eitherb or Ex. Now, if “ f = b” is output in Round 4, this must be becausexi = b for all i /∈ Db,
and so by definition offk,` we havef (Ex) = b. If xi 6= b for somei /∈ Db then by definitionf (Ex) = Ex,
so the value off output in Round 5 is correct.

Privacy: By the definition of full privacy, it suffices to show that for everyj ∈ [k] the protocol yields
identical messages when run on all inputsEx such thatf (Ex) = j . (Inputs such thatf (Ex) = Ex impose no
privacy constraint.) Supposef (Ex) = j , where j ∈ [k]. By the protocol, the value ofa announced by
P1 in Round 1 depends onR. So it may seem that this message could reveal some information onP1’s
inputs. We will begin by showing that (given the fixedk′-partition5 and the setA associated with it)
the value ofa chosen in Round 1 depends only onj . This implies that the Round 1 message does not
violate the privacy requirements.

Case 1. |A| > 2. SinceA contains at least three elements, then for everyj ′ ∈ [k]\{ j }, P1 holds
some input variablexi whose indexi satisfiesi /∈ Dj ∪ Dj ′ . Since f (Ex) = j , the value of suchxi must
equal j . This allowsP1 to rule out the possibility thatf (Ex) = j ′. It follows that in this caseR= [k]\{ j }.
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Case 2. |A| = 2 and j ∈ A. In this casej ∈ A\R, so A 6⊆ R and P1 acts according to the
second case in Round 1. LetA = { j, j̃ }. ThenP1 holds some input variablexi whose indexi satisfies
i ∈ D j̃ . By the definition of f , since f (Ex) = j , the equalityxi = j must hold. Therefore, for every
j ′ ∈ {1, 2, . . . , k}\A, the inputs held byP1 rule out the possibility thatf (Ex) = j ′. It follows that in this
caseR\A = [k]\A, implying thata = min([k]\A).

Case 3. |A| = 2 and j /∈ A. Let A = { j1, j2}, then P1 holds two input variablesxi1, xi2 whose
indicesi1, i2 satisfyi1 ∈ Dj1, i2 ∈ Dj 2. By the definition off , sincef (Ex) = j , the equalityxi1 = xi2 = j
must hold. Therefore, for both elements ofA, the inputs held byP1 rule out the possibility that the value
of f equals this element. This means thatA ⊆ R andP1 acts according to the first case in Round 1. As
A contains two elements from [k] that are different thanj , the same reasoning as that in Case 1 implies
that in this caseR= [k]\{ j }.

Now whether Case 1, 2, or 3 holds is completely determined byA and j , the value off . Given each
case, the valuea is again determined byA and j . Therefore the valuea sent byP1 at Round 1 does not
violate the privacy requirements.

It can be easily verified that for anyEx with f (Ex) = j , the value of all messages sent in rounds 2–4 is
equal to j ; these messages are sent by the same set of parties, and the protocol terminates at Round 4.
This establishes the full privacy ofF .

Propositions 5.1 and 5.2 directly imply Lemma 5.1.

We can now prove the two main results.

THEOREM5.1. The converse of the Partition Lemma does not hold. More specifically, for every n≥ 3
there exists an n-argument function gn which is not fully private, but every k-partition of its variables
to fewer than n parts(2≤ k ≤ n− 1) induces a fully private function.

Proof. Definegn = fn,1 (Fig. 1 describes the instanceg3). Lemma 5.1 implies thatgn (as the function
induced by its ownn-partition) is not fully private, but everyk-partition of its variables, 2≤ k ≤ n−1,
induces a fully private function.

THEOREM 5.2. The power of partition reductions strictly increases as the number of sets in the
partitions is allowed to grow. More formally, for any k≥ 3 there exist n-argument functions(n > k)
which, for some t, can be proven to be non-t-private using partition into k sets, but cannot be proven
to be non-t-private using partition into a smaller number of sets.

Proof. Set f = fk,`, where` ≥ 2. The proof of Proposition 5.1 exhibits a partition of thek`
variables off into k sets of sizè each, such that the inducedk-argument function is not (k−1)-private.
Since each union ofk−1 sets from this partition is of size (k−1)̀ , the Partition Lemma implies thatf
is not (k−1)̀ -private. In addition, Lemma 5.1 states that for everyk′ < k, all k′-partitions induce fully
private functions, and thus such partitions cannot be used to prove non-privacy offk,`. We conclude
that suchf satisfies the requirements of Theorem 5.2 withn = k` andt = (k− 1)̀ = (1− 1

k )n.

6. OPEN PROBLEMS

As indicated by Theorem 5.2, the combination of a generalized Partition Lemma with our necessary
condition for full privacy is stronger than the combination of two-partitions and the two-party characteri-
zation, used in previous works [5–7]. This gives hope to characterize wider natural classes of functions
using the generalized techniques.

The general problem of characterizing thet-private functions is still wide open. Our necessary
condition for full privacy is not a sufficient one, and this leaves even the problem of characterizingfull
privacy open. To gain better understanding of the information-theoretic notion of privacy, one has to
develop new proof techniques for proving non-t-privacy, especially whent < n− 1.

Finally, while this work focuses on existential results, a potentially interesting question is that of
finding the maximal range sizeM , such that partition reductions are universal for proving non-privacy
of functions mapping to [M ]. The Boolean case characterization of [6] shows that such maximalM is
it least 2. Is this bound tight?
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