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A GEOMETRIC APPROACH TO BETWEENNESS*
BENNY CHOR' AND MADHU SUDANf¥

Abstract. An input to the betweenness problem contains m constraints over n real variables
(points). Each constraint consists of three points, where one of the points is specified to lie inside the
interval defined by the other two. The order of the other two points (i.e., which one is the largest and
which one is the smallest) is not specified. This problem comes up in questions related to physical
mapping in molecular biology. In 1979, Opatrny showed that the problem of deciding whether the n
points can be totally ordered while satisfying the m betweenness constraints is NP-complete [STAM
J. Comput., 8 (1979), pp. 111-114]. Furthermore, the problem is MAX SNP complete, and for every
a > 47/48 finding a total order that satisfies at least a of the m constraints is NP-hard (even if all
the constraints are satisfiable). It is easy to find an ordering of the points that satisfies 1/3 of the m
constraints (e.g., by choosing the ordering at random).

This paper presents a polynomial time algorithm that either determines that there is no feasible
solution or finds a total order that satisfies at least 1/2 of the m constraints. The algorithm translates
the problem into a set of quadratic inequalities and solves a semidefinite relaxation of them in
R™. The n solution points are then projected on a random line through the origin. The claimed
performance guarantee is shown using simple geometric properties of the semidefinite programming
(SDP) solution.
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tional biology
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1. Introduction. An input to the betweenness problem consists of a finite set
of n elements (or points) S = {z1,...,2,} and a finite set of m constraints. Each
constraint consists of a triplet (z;,x;,zx) € S xS x S. A candidate solution to the
betweenness problem is a total order < on its points. A total order z;, < z;, < --- <
x;, satisfies the constraint (x;,x;, ) if either z; < x; < xy, or z, < z; < ;. That is,
each constraint forces the second variable x; to be between the other two variables z;
and zj but does not specify the relative order of z; and zp. The decision version of
the betweenness problem is to decide if all constraints can be simultaneously satisfied
by a total order of the variables.

In 1979, Opatrny [14] showed that the decision version of the betweenness prob-
lem is NP-complete. This problem arises naturally when analyzing certain mapping
problems in molecular biology. For example, it arises when trying to order markers
on a chromosome, given the results of a radiation hybrid experiment [6, 3]. A com-
putational task of practical significance in this context is to find a total ordering of
the markers (the z; in our terminology) that maximizes the number of satisfied con-
straints. Indeed, betweenness is central in the recent software package RHMAPPER
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[15, 16]. At the heart of this package is a method for producing the order of frame-
work markers based on betweenness constraints (obtained from a statistical analysis
of the biological data). Slonim et al. [16]. successfully employ two greedy heuristics
for solving the betweenness problem.

Opatrny gave two reductions in his proof of NP-completeness. One of these reduc-
tions is from 3SAT. Following his construction, we show in section 2 an approximation
preserving reduction from MAX 3SAT. This implies that there exists an ¢ > 0, such
that finding a total order that satisfies at least m(1 — ) of the constraints (even if
they are all satisfiable) is NP-hard. In particular this holds for every € < 1/48 (see
Corollary 2.5). On the other hand, it is easy to find a total order that satisfies 1/3 of
the m constraints (even if they are not all satisfiable). Simply arrange the points in
a random order along the line. The probability that a specific constraint (x;,x;, zx)
is satisfied by such a randomly chosen order is 1/3, since exactly two of the six per-
mutations on 4, j, k have j in the middle. Thus the expected number of constraints
satisfied by a random order is at least 1/3 of the m constraints. On the other hand,
it is easy to construct examples where at most m/3 constraints are satisfiable. Thus
to achieve better approximation factors, one needs to be able to recognize instances
of the betweenness problems that are not satisfiable.

We present a polynomial time algorithm that either determines that there is no
feasible solution or finds a total order that satisfies at least 1/2 of the m constraints.
Our algorithm translates the problem into a set of quadratic inequalities and solves
a semidefinite programming (SDP) relaxation of them in R™. Let vy,...,v, € R"
be a feasible solution to the SDP, where each v; corresponds to the real variable z;.
The n solution points are then projected on a random line through the origin. We
show that if “x; between x; and x;” is one of the betweenness constraints, then the
angle between the lines v;v; and viv; (in R™) is obtuse. Using this property, we prove
that the random projection satisfies each constraint with probability at least 1/2.
This gives a randomized algorithm with the claimed performance guarantee. Next,
we show how to derandomize the algorithm. In addition, we demonstrate that our
analysis of the semidefinite program is tight. There is an infinite family of inputs to
the betweenness problem, such that the resulting SDP is feasible, but any total order
of the variables satisfies at most 1/2 4+ o(1) of the m constraints.

Our use of semidefinite programming is inspired by the recent success in using
this methodology to find improved approximation algorithms for several optimization
problems. The applicability of SDP in combinatorial optimization was demonstrated
by Grotschel, Lovasz, and Schrijver [7] to show that the Theta function of Lovdsz
[12] was polynomial time computable. This application was then turned into exact
coloring and independent set finding algorithms for perfect graphs. The use of SDP
in approximation algorithms was innovated by the work of Goemans and Williamson
[6] who broke longstanding barriers in the approximability of MAX CUT and MAX
2SAT by their SDP based algorithm. Further evidence of the applicability of the SDP
approach is provided by the works of Karger, Motwani, and Sudan [10], who use it to
approximate graph coloring, Alon and Kahale [1] (independent set approximation),
and Feige and Goemans [4] (improvements to MAX 2SAT).

Thus the semidefinite programming method has now been used successfully to
solve many optimization problems—exactly and approximately. However, all the cases
where SDP has been used to find approximation algorithms seem to be essentially
partition problems (MAX CUT, Coloring, Multicut, etc.). Our solution seems to be
(to the best of our knowledge) the only case where SDP has been used to solve an
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ordering problem. This syntactic difference between ordered structures and unordered
ones, and the ability of SDP to help optimize over both, offers critical additional
evidence on the power of the SDP methodology.

The remainder of this paper is organized as follows. Section 2 presents the approx-
imation preserving reduction from MAX 3SAT, as well as other observations about
the betweenness problem. Semidefinite programming is briefly reviewed in section 3.
The algorithm is presented in section 4. Section 5 shows the tightness of our analysis.
Finally, section 6 contains some concluding remarks and open problems.

2. Preliminaries. We start this section with some preliminary observations
about the betweenness problem. We begin by defining the notion of an approxi-
mate solution to the betweenness problem and analyzing the complexity of finding
such a solution.

DEFINITION 2.1. Given an instance of the betweenness problem on m constraints
and a < 1, an a-approximate solution is one that satisfies at least ak constraints,
where k is the maximum number of constraints satisfied by any solution. For a <1,
the a-approzimation (version of the betweenness) problem is the task of finding an a-
approximate solution for every instance. An algorithm that solves such a problem is
said to be an a-approximation algorithm. For a < 1, the a-approximation problem for
satisfiable instances is the task of finding a total order that satisfies am constraints or
determining that the instance is not satisfiable. An algorithm that solves this problem
is an a-approximation algorithm for satisfiable instances.

The complexity of solving the betweenness problem exactly (i.e., for a = 1) is well
settled. Opatrny [14] has shown that it is NP-hard to decide if a given instance of the
betweenness problem is satisfiable. We now turn our attention to the complexity of
the problem for a@ < 1. We first present a hardness result based on a simple reduction
from MAX CUT, due to Goemans (personal communication, 1995). An instance of
the MAX CUT problem is an undirected graph. The goal of the problem is to find
a partition (S, S) of the vertex set so as to maximize the number of edges with one
endpoint in S and one in S. This problem was shown by Arora et al. [2] to be hard
to approximate to within some factor @« < 1. The best result known to date, due
to Hastad [9] (see also Trevisan et al. [17]), is that a-approximating MAX CUT is
NP-hard for every a > 16/17.

PROPOSITION 2.2. For every «, the a-approximation version of the MAX CUT
problem reduces to the a-approzimation version of the betweenness problem.

Proof. Given an instance G of the MAX CUT problem, we create an instance of
the betweenness problem as follows: For every vertex v; in the graph, create a point
pi. In addition we introduce one special point s. For every edge (v;,v;) in the graph,
we introduce the betweenness constraint (p;, s,p;) (i.e., s is between p; and p;). Now,
given a cut (S, S) in the graph that has k edges crossing the cut, any ordering that
places the points corresponding to the vertices in S to the left of s and the rest of the
points to the right of s is an ordering that satisfies k of the betweenness constraints.
In the reverse direction, any ordering of the points that satisfies & betweenness con-
straints can be converted into a cut with k edges crossing the cut by letting S be
the set of vertices corresponding to points to the left of s. Thus the optima of the
two problems are exactly equal; furthermore, given an a-approximate solution to the
betweenness instance, we can construct an a-approximate solution to the MAX CUT
instance. Thus an a-approximation algorithm for the betweenness problem yields an
a-approximation algorithm for the MAX CUT problem. ]

COROLLARY 2.3. The a-approximation version of the betweenness problem is
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NP-hard for o > 16/17.

While the above reduction provides some insight about the hardness of the be-
tweenness problem on general instances, it does not quite provide a hardness result
for the problem of interest to us. This is because the instances of the betweenness
problem that we typically consider are fully satisfiable. In the reduction above, the
only instances of the MAX CUT problem that reduce to fully satisfiable instances of
betweenness are when the input graph is bipartite. But in such cases it is easy to find
the MAX CUT, and thus the instances of betweenness produced are not necessarily
hard.

In what follows we present an approximation preserving reduction from MAX
3SAT to the betweenness problem. This reduction follows Opatrny’s original reduction
and addresses the a-approximation problem for satisfiable instances. It is well known
that there exists a constant € > 0 such that the (1 — ¢)-approximation version of the
MAX 3SAT problem is NP-hard. The best results known to date, due to Hastad [9],
show that this is true for every e < 1/8. Based on our reduction we conclude that there
exists a constant &’ > 0 such that finding an ordering that satisfies a (1 — ¢’) fraction
of the constraints in a satisfiable instance of the betweenness problem is NP-hard.

PROPOSITION 2.4. For every ¢ > 0, the (1 — €)-approzimation version of the
MAX 3SAT problem on satisfiable instances reduces to the (1 — €/6)-approzimation
version of the betweenness problem on satisfiable instances.

Proof. Given a 3-CNF formula ¢ on n variables and m clauses, we construct an
instance I of the betweenness problem on 2 4+ n + 5m points with 6m constraints
such that, for every ¢, there exists a total order satisfying 5m + ¢ of the betweenness
constraints in I if and only if there exists an assignment satisfying ¢ of the clauses
in ¢. The reduction proceeds as follows: For each Boolean variable z; of ¢, we add
a point p; to I. In addition we create two special points T" and F. Without loss of
generality, we consider orderings where 7T is to the right of F. An ordering of the
points p;, T', and F is supposed to imply a truth assignment as follows: If p; is to the
left of F' then it is false; if it is to the right of F' then it is true. This interpretation
will also apply to the additional “clause points” that are introduced in the rest of the
construction.

Given a clause C}, say C; = x1 VT2 V 23, we create five points q§1), qj(é)7 and qj(?’)
and r§12) and r§.123). The points g; are supposed to represent the assignment to the

literals in the clause. For each literal in the clause, we include a constraint that forces

the variable to be assigned consistently with the literal. We do so with the following

constraints: F between py and q§2), whereas qj(l) is between p; and F', and qj(»?’) is
between ps and F. Thus for example, an assignment satisfies qj(-Q) if and only if it

falsifies po. The points r§12) and r§123) are supposed to represent the OR of the first
two and three literals in the clause, respectively. This is enforced with the following
betweenness constraints: r§12) is between qjm and qj(»z) and r§123) is between r§12) and

;1) and qj(?) are false, and r§12
q§1) and q§2), then 7"](-12) must be false, while if at least one of the literal points is true,

then 7"5-12) can be placed so that it is true (to the right side of F'). Lastly we add a

betweenness constraint that attempts to ensure that a clause is assigned true. This
is done with the following constraint: r](.123) is between F' and T
Thus corresponding to each clause we have six betweenness constraints. Consider

an assignment to the variables in ¢ satisfying ¢ clauses out of m. Without loss of

q§3). So, for example, if both literal points ¢ ) is between
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generality, assume that the assignment sets x1,...,z; = false and xg41,...,2, =
true. Order the points p; and T and F as follows:

pre Pk Fpryr-pn T
For j going from 1 to m, the literal points qj(»l), q§2), and q§3) are then placed between
pr and F or between F' and pg41, depending on their truth value. (A true literal
is placed between F' and pi4+1 while a false literal is between py and F.) Finally,

the points r1? and %) are placed as far to the right as possible subject to the

J J
betweenness constraints. This tends to make 7“§123) lie between F' and T if any one

of the literals in the jth clause is true. This arrangement always satisfies at least five
of the betweenness constraints associated with the kth clause. The only constraint
it may not satisfy is the constraint “T§123) is between F' and T”; this constraint is
satisfied if and only if at least one of the literals in the jth clause is true. Thus
this ordering satisfies 5m + ¢ of the betweenness constraints. Conversely it may
be verified that if an arrangement of the points (again, with F left of T') satisfies
5m + ¢ betweenness constraints, then the assignment that assigns true to all of those
variables whose corresponding points lie to the right of F' satisfies at least ¢ clauses
in the formula ¢. (There must be at least ¢ values of j for which the arrangement
satisfies all six betweenness constraints involving ¢;’s and r;’s. For these values of 7,
the corresponding assignment satisfies the jth clause.)

Thus given a 3-CNF formula ¢ with m clauses, we have constructed a betweenness

instance I with m/ = 6m constraints. Furthermore, given an ordering satisfying
(1—¢e)m/ constraints, we can reconstruct an assignment satisfying at least (1 —¢&)m’ —
5m = m(1 — 6¢) clauses of ¢. O

COROLLARY 2.5. The a-approzimation version of the betweenness problem on
satisfiable instances is NP-hard, for every a > 47/48.

Next we show what can achieved by the obvious randomized algorithm for the
betweenness problem.

The natural randomized algorithm for the betweenness problem arranges the
points in a random order along the line. The probability that a specific constraint
is satisfied by such a randomly chosen order is 1/3. Thus the expected number of
constraints satisfied by a random order is at least 1/3 of all the constraints. By the
method of conditional probabilities one can find such order in polynomial time. Since
this order satisfies 1/3 of all constraints, it is within 1/3 of the optimal ordering. The
result is summarized below.

PROPOSITION 2.6. The 1/3-approximation version of the betweenness problem
can be solved in polynomial time.

Before going on to more sophisticated techniques for solving this problem, let us
examine the main weakness of the above algorithm. We first argue that no algorithm
can do better than attempting to satisfy 1/3 of all given constraints. Consider an
instance of the betweenness problem on three points with three constraints insisting
that each point be between the other two. Clearly we can satisfy only one of the
above three constraints, which proves the claim. Thus the primary weakness of the
above algorithm is not in the (absolute) number of constraints it satisfies, but in
the fact that it attempts to do so for every instance of the betweenness problem—
even those that are obviously not satisfiable. Thus to achieve better approximation
factors, one needs to be able to recognize instances of the betweenness problems that
are not satisfiable. However, this is an NP-hard task. In fact, Corollary 2.5 indicates
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that one cannot even distinguish instances that are satisfiable from those for which
an ¢ fraction of the constraints remain unsatisfied under any assignment. In what
follows we use a semidefinite relaxation of our problem to distinguish cases that are
not satisfiable from cases where at least 50% of the given clauses are satisfiable. We
then go on to show that using this relaxation we can achieve a better approximation
than the naive randomized algorithm.

3. Semidefinite programming (SDP). In this section we briefly introduce the
paradigm of SDP. We describe why it is solvable in polynomial time. A complementary
technique to that of SDP is the incomplete Cholesky decomposition. We describe
how the combination allows one to find embeddings of points in finite-dimensional
Euclidean space, subject to certain constraints.

DEFINITION 3.1. For positive integers m and n, a semidefinite program is defined
over a collection of n? real variables {2ij}i21 j=1- The input consists of a set of mn?

n,n,m

k
real numbers {az(‘j)}izl,jzl,k:p a vector of m real numbers {bF Y7 and a vector of
n,n

n? real numbers {c;;}i2y i_,. The objective is to find {z:;};2] ;_

n n
maximize E E CijTij
i=1 j=1

subject to

n n k
Vke{l,...,m} ZZan)xij < bk

i=1 j=1

1 S0 as to

and  the matriz X = {x;;} is symmetric

and positive semidefinite.

Recall that the following are equivalent ways of defining when a symmetric matrix X
is positive semidefinite.

1. All the eigenvalues of X are nonnegative.

2. For all vectors y € R", y' Xy > 0.

3. There exists a real matrix V such that VT -V = X.

It is well known that the ellipsoid algorithm of Khaciyan [11] can be used to solve
any semidefinite program approximately in the following sense: Given a parameter
¢ > 0, the algorithm runs in time polynomial in the input size and log(1/¢) and finds a
feasible solution achieving an objective of at least optimum —e (see, for instance, [8]).

In order to use the semidefinite programming approach for solving combinatorial
optimization problems, one more tool is useful. This is the ability to find a matrix V'
as guaranteed to exist in part 3 of the above definition of positive semidefiniteness.
The method that yields such a matrix is the incomplete Cholesky decomposition.

The matrix V' can be used to interpret the solution obtained by the SDP problem
geometrically. Interpret the columns of the n x n matrix V' as n vectors vy, ..., v, in
R"™. Now the variables x;; of the matrix X correspond simply to the inner product
of v; and v;. Thus a linear constraint on the z;;’s is simply a linear constraint on
the inner products of the v;’s vectors. Also, the objective function is simply a linear
function on the inner products.

Thus the following provides an equivalent geometric interpretation of SDP:

Find n vectors vy, . . . , v, S0 as to maximize the quantity Z” cij(vi, v5),

(k)<vi7vj> < b, for every k €

subject to the constraints }, ; a;;

{1,...,m}.

i@
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Alternately one can interpret SDP as solving an optimization problem that at-
tempts to find n points in n-dimensional Euclidean space, subject to linear constraints
on the squares of the distance between the points. This is done by observing that the
square of the distance between points v; and v; (denoted dfj) is simply

((vi = v5), (vi = v;)) = (vi, vi) + (vj,v5) — 2(vi, v5).
Thus a linear inequality on the d?j’s is also a linear inequality on the inner products
of the v;’s. (Actually the distance squared interpretation is equivalent to SDP since
we can express (v;,v;) as (df + d3y — d;)/2.)
From this interpretation of SDP we can solve any problem of the form:
Geometric SDP. Embed n points in R"™ such that the squares of
the distance between the points, denoted d;;, satisfy the constraints
Do agf)dfj < b*) while trying to maximize Do cijds;. In the e-
additive approzimation version the algorithm is allowed to return (for
every feasible input) a solution such that each constraint is violated
by at most ¢, i.e., Z” ag-c)d?j < b®) + ¢, and the objective achieved
is at least the optimum —e.
In what follows we will use the last interpretation of SDP to solve the betweenness
problem. In particular, we use the following proposition.
PROPOSITION 3.2. For every € > 0, the e-additive approzimation version of the
geometric SDP can be solved in time polynomial in the input size and log(1/¢).

4. The algorithm. The general idea of our algorithm is to express the be-
tweenness constraints as a set of real quadratic inequalities. By considering an n-
dimensional relaxation of the problem, we get an instance of SDP and can find a
feasible solution in R™ (if one exists). We study simple geometric properties of this
solution set. We use them to argue that a projection of the set on a random line
satisfies at least 1/2 of the betweenness constraints (with high probability). Then we
show how to derandomize the algorithm.

Consider a set of m betweenness constraints on n real variables x1,...,z,. Sup-
pose these constraints are satisfiable and that =7 < x93 < -+- < x, is a satisfy-
ing linear order. We can clearly embed the points in the unit interval and assign
z; =(—1)/(n—1) (¢ = 1,...,n). Let x;,x;,xx be a triplet such that z; is re-
quired to be between z; and x;. For the assignment above, it is readily seen that
(z; — ;)% + (w5 — 25)? < (z; — x)?. Furthermore, the z’s are at least 1/(n— 1) apart
and at most 1 apart. Thus for every pair of distinct indices 4, j, the x’s satisfy the
inequalities 1/(n —1)? < (z; —x;)? < 1. This motivates the following geometric SDP
relaxation for the betweenness problem.

Embed n points in R™ subject to the constraints
(SDP1(I)) e <df; <1 Vi# g,

(n—1)?
dfj + d?k < d? for every constraint (z;,z;, xy).

We strengthen this relaxation slightly before showing how to use it to find an
approximate solution to the instance of the betweenness problem. Recall that the z’s
are at least 1/(n — 1) apart and at most 1 apart. Therefore for any triple (z;, z;, zx),
the ratio between (z; —z;)? + (z; — x)? and (z; — zx)? is maximized when z; and zy,
are extreme points (0 and 1), and z; is as close as possible to one of them (1/(n —1)
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FiG. 4.1. Possible location for the midpoint v;.

or (n —2)/(n —1)). For these values, the ratio is

RN Y U T Y S
n—1 n—-1) n—1 " (n—1)%

Denote this value by «a,,. Notice that a, = 1 — 2/n 4 o(1/n) depends only on the
number of variables.
We are now ready to set up our final SDP relaxation:

Embed n points in R™ subject to the constraints
(SDP(I)) e <d <1 Vi j,

43 + d3), < andy, for every constraint (z;,z;, zx).

The argument leading to the construction of the instance SDP(I) says that the
SDP is feasible if the instance I is satisfiable and in fact there exists an embedding of
the points in one dimension satisfying all the constraints. We summarize this below.

PROPOSITION 4.1. For every instance I of the betweenness problem, if I is sat-
isfiable, then the semidefinite program SDP(I) is feasible.

As argued in section 3 (see Proposition 3.2), we can use the ellipsoid algorithm to
test the feasibility of SDP(I) and, if it is feasible, to find an approximation of a feasible
solution (if one exists). Let vq,...,v, € R™ be an approximately feasible solution,
and let v;,v;, v € R™ be a triplet that corresponds to a betweenness constraint. We
first prove some geometric facts about the points v;, v;, v and then use this to design
our approximation algorithm.

Consider any two-dimensional plane through the points v;, v;, vi. (If vs, v;, vy are
not collinear, then this plane is unique; otherwise we pick any such plane arbitrarily.)
Let 2r be the distance between v; and vy, (1/(n—1)—e < 2r < 1+¢). In what follows
we shall skip the term e since it can be made arbitrarily small (and, in particular,
exponentially small in n).

We now consider the angle 6; ; , = Zv;vjv;. We claim that this angle is obtuse
(i.e., at least 7/2). To see this, we project the points down to the two-dimensional
plane containing v;,v;, and v;. Furthermore, we rotate and translate the points so
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that v; = (—r,0), vy = (r,0), and v; = (x,y). Now we can use the explicit formulae
dfj = (z+7)% + 92, d?k = (r —2)? + y* and d% = 4r?. The constraint on these
distances yields

(=712 +y* + (2 +7)? +y? < danr?,
which implies
2 + 9% < (2a, — )72

This means that v;, the “midpoint” in the betweenness constraint, lies inside a ball
of radius 7v/2a, — 1, whose center is the middle point (v; + vx)/2, and outside the
two small balls of radius 1/(n — 1) around v; and vy, (see Figure 4.1).

This proves that the angle 0; ; , = Zv;v;v;, is indeed obtuse. The following claim
proves a tighter bound on 0; ; 1.

CraM 4.2. The angle 0, ; 1 satisfies 6; ;> (1 4+ Q(1/n))m/2.

Proof. We apply the cosine rule

cosl; jx = (d3; + d3y, — d3,) /(2dsd)
(@2 + 42 —1r2)/ (\/(xQ T2 +1r2)2 — 4r2332)
(® +y* =) /(2 + y° +1?)

(an —1)/ay
o, — 1

2 1

Denoting 0; ; » = h + /2 and using the Taylor series expansion

NN N

I
cos(h+7r/2):—}Lngfer...7

we get

so h = Q(3), namely, 60; ;5 > (1+Q(1/n))m/2. d

We are now ready to describe our algorithm. The algorithm proceeds by picking
uniformly at random a line through the origin and projecting the n points vy, ..., v,
on this random line. Let 2, ..., 2z} be the n resulting points.

Cram 4.3. Let 0; ;1. denote the angle /vivjvi. Then the probability that x’; lies
between x, and x}, equals 8; j /7.

Proof. Instead of considering an arbitrary line through the origin, we consider a
parallel line that goes through the point v;. This does not change the betweenness
relation of the projections; neither is this relation changed when considering the pro-
jection of this line on the two-dimensional plane defined by v;,v;,v;. Consider the
section of the circle defined by the two lines that go through v; and are perpendicular
to the lines v;v; and viv;. It is not hard to see that only lines going through this
section violate the betweenness constraint of the projections. This section occupies
an angle of m — 0, ; 1, (see Figure 4.2). The claim follows. O
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™ —0ijk

Uj

F1G. 4.2. Lines going through the circular section violate the constraint.

Combining Claims 4.2 and 4.3, we get the following.

COROLLARY 4.4. Suppose SDP(I) has a feasible solution. Then for any of the m
constraints, the probability that x; lies between x; and xj, is at least 1/2 + Q(1/n).

As a consequence, the expected number of betweenness constraints satisfied by
xh, ...,z is at least m/2 + Q(m/n) = m(1/2 + Q(1/n)). This yields the following
lemma that forms a (weak) converse to Proposition 4.1.

LEMMA 4.5. For any instance I of the betweenness problem, if SDP(I) is feasible,
then there exists a total order satisfying at least m/2 + Q(m/n) of the betweenness
constraints in 1.

Thus we get a randomized polynomial time algorithm that either finds that the
constraints are infeasible or generates a linear order that satisfies at least 1/2 the
constraints.

We now outline a method for derandomizing our algorithm. Given an embedding
of the betweenness problem, we can define a graph and an embedding of the graph
in R™ such that the expected size of the MAX CUT found for this embedding of the
graph equals the expected number of betweenness constraints that are satisfied by a
random projection.

For every ordered pair of points (v;,v;) of the betweenness problem, introduce
the vertex w;; with embedding v; —v;. If 4, j, k is a betweenness constraint, then put
an edge between w;; and wy;. This defines the graph and its embedding.

Now consider any hyperplane through the origin that cuts across the edge between
w;; and wy;. Let the slope of the normal to the hyperplane be the vector r. Assume,
without loss of generality, that r.w;; < 0 and r.wj;, < 0, then r.v; < r.v; and r.v; <
r.vg. Thus j lies between ¢ and k. Conversely, if projection onto the vector r satisfies
the betweenness constraint for 7, j, k, then the edge between w;; and w;; must be cut.

Mahajan and Ramesh [13] give a method to deterministically find a vector  whose
cut value equals the expected cut value. They use this algorithm to derandomize the
MAX CUT and MAX 2SAT algorithm of Goemans and Williamson [5]. By using
their algorithm, we get a vector such that projection onto this vector satisfies as many

VU,
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constraints as the expected number satisfied by a random vector.

Remark. Observe that the above reduction is not a generic reduction from be-
tweenness to MAX CUT. It uses the fact that the graph produced for the MAX CUT
problem has a specified embedding in order to map a solution of the MAX CUT
problem to a solution of the betweenness problem.

We conclude this section by stating the main theorem of this paper.

THEOREM 4.6. The 1/2-approzimation version of the betweenness problem can
be solved in polynomial time. Specifically, there exists a polynomial time algorithm
which takes as input an instance of the betweenness algorithm on n points and m
constraints and either outputs “not feasible” or outputs a total order satisfying at
least m/2 + Q(m/n) constraints.

5. Tightness of our analysis. In this section we show that our analysis of the
semidefinite program is almost tight. We do so by exhibiting two families of instances
of the betweenness problem on m constraints, such that the optimum value is at most
m(1/2 + o(1)), but (a slight perturbation of) the SDP is nevertheless feasible.

The first example is related to the d-dimensional hypercube. For every integer
d > 1, we construct the instance I; as follows. Iy has 2¢ points corresponding to
the 27 vertices of the d-dimensional hypercube. I; has m = (g) 2¢ constraints—one
for every simple path of length 2 in the hypercube, with the betweenness constraint
expecting the middle vertex of the path to be between the endpoints.

Consider a small perturbation of our SDP, where we set d? . it clj2 < d2 for
each betweenness constraint. This SDP is clearly feasible—the natural embeddlng of
the hypercube in d-dimensions (as a hypercube) ensures that every path of length 2
subtends an angle of 90° at their midpoint.

Now consider a linear ordering of the points. Consider any point p and all the
paths that have p as their midpoint. The number of such paths s (). Now let d; of the
neighbors of p be on its left and ds of its neighbors be on its right (where dy +ds = d).
The number of betweenness constraints expecting p to be in the middle that get
satisfied is dyde < d?/4. Thus, for any point, the fraction of betweenness constraints
that are associated with the point and are satisfied is at most (d?/4)/(d(d —1)/2) =
d/(2(d—1))=1/24+1/(2(d-1)) =1/2+ o(1).

The second example, suggested to us by Goemans, is related to the cuts in the
complete graph K, on n variables. For every integer n > 1, we construct the instance
C,, as follows. C,, has n + 1 points, a “center point” vy and n “vertices” v1,...,vn.
C, has m = (Z) constraints—one for every edge in the complete graph. For every
1 <i < k <n, we have the betweenness constraint that vy is between v; and wvy.

We now consider the following perturbation of our SDP, where d2 + d2 <
(1-1/ n)d2 for each betweenness constraint. To see that this SDP is fea51ble conslder
the followmg embedding: The vertex v; is embedded as the point (0,...,0,1,0,...,0),
where the 1 occurs in the ¢th coordinate. The vertex v is embedded as the point
(1/n,...,1/n). Observe that the distance between v; and v; is v/2 and the distance
between v; and vy is /1 — 1/n. Thus for any two indices i,k # 0 the inequality
Ao +di, < (1 —1/n)d;,, which corresponds to the betweenness constraints, is
satisfied (in fact, equality holds). Now in order to satisfy the SDP (recall that we
required all pairwise distances to be at most 1) we simply scale down the simplex
so that the distance between the vertices is 1, embed the center vy in the origin and
each vertex v; in the corresponding simplex vertex. This embedding satisfies all of
the SDP constraints.

Again, any linear ordering of the n 4+ 1 points induces a cut in the graph K,
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(vertices to the left of wg; vertices to the right of vg). An edge corresponds to a
satisfied betweenness constraint if and only if the edge is across the cut. Therefore
the maximum number of satisfiable constraints equals the sized of a maximum cut in
K., namely, (n/2)? = m(1/2 + o(1)).

The advantage of this maximum cut example is that it shows tightness of the
analysis with respect to quadratic inequalities of the form

2 2 2
di ; +di ; < Bnd; .,

where 8, =1 —1/n —o(1/n). Our original SDP has the form
&7+ di < ond?y,

where a,, = 1 —2/n 4 o(1/n). By starting with the complete graph example, and
padding it with extra dummy variables that do not take part in any constraint, we
can construct an example where only 1/2+ o(1) of the constraints are satisfiable, yet
the original SDP (with «,) is feasible (in fact any ~, = o(1) can work here). It is not
clear how to come up with a nonartificial construction, i.e., without padding, having
these properties.

6. Concluding remarks. We remark that metric information can be easily
incorporated into our algorithm. As a simple example, suppose that for some of the
constraints we know not only that z; is between x; and x, but that it is exactly in
the middle, namely, x; = (2; + x1)/2. In this case, we add the inequality

d?,j + dﬁ,j < d?,k/4
instead of
A7 5+ di 5 < omd?y.

Any feasible solution will have v; exactly in the middle of v; and v, and the same
holds with respect to the final projections.

Finally, notice that our formulation of the problem as SDP tested only for fea-
sibility of the constraints. It is interesting to see if the inclusion of an appropriate
objective function, and possibly of additional inequalities, can be used to improve the
performance guarantee of the algorithm. Other approaches to the problem, possibly
purely combinatorial ones, are also of interest.
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