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Abstract

We give an explicit construction of an ε-biased set over k bits of size O
(

k
ε2 log(1/ε)

)5/4

.
This improves upon previous explicit constructions when ε is roughly (ignoring logarith-
mic factors) in the range [k−1.5, k−0.5]. The construction builds on an algebraic-geometric
code. However, unlike previous constructions we use low-degree divisors whose degree
is significantly smaller than the genus.

Studying the limits of our technique, we arrive at a hypothesis that if true implies
the existence of ε-biased sets with parameters nearly matching the lower bound, and in
particular giving binary error correcting codes beating the Gilbert-Varshamov bound.

1 Introduction

Explicitly constructing combinatorial objects with certain properties (such as expander graphs,
extractors, error correcting codes and others) is an intriguing challenge in computer science.
Often, it is easy to verify that a random object satisfies the required property with high proba-
bility, while it is difficult to pin down such an explicit object.

In most cases it is believed (and sometimes proven) that a random object is nearly optimal.
Therefore, giving an optimal explicit construction becomes a derandomization problem. There
are, however, rare cases in which explicit constructions outperform naive random construc-
tions. Perhaps the most remarkable example of this type is that of Algebraic-Geometric codes
(AG codes). In the seminal work of Tsfasman et al. [8] it was shown that there are Algebraic-
Geometric codes over constant size alphabets that lie above the Gilbert-Varshamov bound, a
bound that was believed to be optimal at the time.
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The important case of binary error correcting codes is still open. The Gilbert-Varshamov
bound gives the best known (explicit or non-explicit) codes to date. Finding an explicit con-
struction that attains this bound is an open problem as well. The above statements also apply
if we restrict ourselves to codes with distance close to half, which is a case of special interest.

Another closely related question is that of finding an [n, k, 1
2 − ε]2 binary code, in which

the relative weight of every non-zero codeword is in the range [12 − ε, 1
2 + ε]. Such codes are

called ε-balanced and they are related to another kind of combinatorial objects called ε-biased
sets. An ε-biased set is a set S ⊆ {0, 1}k such that for every non-empty subset T ⊆ [k], the
binary random variable

⊕
i∈T si, where s is sampled uniformly from S, has bias at most ε.

It turns out that ε-biased sets are just ε-balanced codes in a different guise: the columns of a
matrix whose rows generate an ε-balanced code form an ε-biased set, and vise versa. In terms
of parameters, an [n, k]2 ε-balanced code is equivalent to an ε-biased set S ⊆ {0, 1}k of size
n.

The status of ε-balanced codes is similar to that of [n, k, , 1
2 − ε]2 codes. In both cases the

probabilistic method gives non-explicit [n, k]2 ε-balanced codes with n = O( k
ε2

), whereas the
best lower bound is n = Ω( k

ε2 log( 1
ε
)
). For a discussion of these bounds see [1, Section 7].

There are several explicit constructions of such codes. Naor and Naor [5] give a construc-
tion with n = k · poly(ε−1). Alon et al. [1] have the incomparable bound n = O( k2

ε2 log2(k/ε)
).

Concatenating Algebraic-Geometric codes with the Hadamard code gives n = O( k
ε3 log( 1

ε
)
). In

this paper we show an explicit construction of an [n, k]2 ε-balanced code with n = O( k
ε2 log( 1

ε
)
)5/4,

which improves upon previous explicit constructions when ε is roughly (ignoring logarithmic
factors) in the range of k−1.5 ≤ ε ≤ k−0.5 (see Figure 1).

The construction is simple and can be described by elementary means. We first take a finite
field Fq of the appropriate size. We then carefully choose a subset A of Fq ×Fq. The elements
in the ε-biased set are indexed by pairs ((a, b), c) ∈ A× Fq. For each ((a, b), c) ∈ A× Fq the
corresponding element is the bit vector

(〈(aibj), c〉2
)
i,j

, where (i, j) range over all integers i, j
whose sum is bounded by an appropriately chosen parameter and the inner product is of the
binary representation of the elements in Fq. The analysis of the construction relies on Bézout’s
Theorem.

To put the construction in context, we need to move to algebraic function fields terminol-
ogy. AG codes are evaluation codes where a certain set of evaluation functions is evaluated
at a chosen set of evaluation points. The space of evaluation functions used is a vector space
(this is the reason we get a linear error correcting code) and is determined by a divisor G. We
explain what a divisor is and other terminology in Section 3, and for the time being continue
with an intuitive discussion. We denote the code associated with a divisor G by C(G).

The code C(G) has the following parameters. The length of the code is the number of
evaluation points and is denoted by N = N(F ) (F is the algebraic function field). The distance
of the code is N −deg(G) (deg(G) is the degree of G, we explain what it is in Section 3). The
dimension of the code, dim(G), is the dimension of the vector space of evaluation functions.
When the ”degree” of G is larger than the genus (we explain what the genus is in Section 3),
the Riemann-Roch Theorem [6, Thm I.5.17] tells us exactly what the dimension dim(G) is,
and it turns out to be deg(G)− g + 1. This almost matches the Singleton bound, except for a
loss of 1g in the dimension. Thus, our goal is to get as many evaluation points while keeping
the genus small. Indeed, a lot of research was done on the best possible ratio between the
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Figure 1: Constructions of ε-biased sets for ε = k−c

length of the code N(F ) and the genus. The bottom line of this research, roughly speaking, is
that N(F ) can be larger than the genus by at most a multiplicative

√
q − 1 factor and this is

essentially optimal.
A simple check shows that when deg(G) is larger than the genus, an AG code concatenated

with Hadamard cannot give ε-balanced codes with n better than O( k
ε3 log( 1

ε
)
). In contrast, our

construction takes as an outer code an AG code C(G) where deg(G) is much smaller than the
genus, and we show that this leads to a better code. One explanation as to why our improvement
was not found before is that previous research often focused on AG codes C(G) where deg(G)
is higher than the genus.

A natural question is whether the ε-balanced codes we achieve are the best binary codes
one can achieve using this approach. We do not know the answer to this question. When
deg(G) is smaller than the genus, one cannot use the Riemann-Roch Theorem, and estimating
deg(G) is often a challenging task. Furthermore, dim(G) now depends on G itself, and not
just on its degree as before. However, we can formulate the question as follows. The important
thing to us is not the best possible ratio between the number of rational points N(F ) and the
genus. Instead, we are interested in the best possible ratio between N(F ) and deg(G), where
G is a low-degree divisor having a large dimension.

We show that such a good ratio implies good ε-balanced codes. Using the Hermitian
function field we give the construction with n = O( k

ε2 log( 1
ε
)
)5/4 mentioned above. Further-

more, assuming an Ω(q)-ratio we show we can construct binary ε-balanced codes with n =
O( k

ε2 log( 1
ε
)
), i.e., matching the known lower bound and outperforming the Gilbert-Varshamov

bound. If this is the case, then AG codes would outperform naive random codes even over the
binary alphabet. We mention that a simple argument due to Henning Stichtenoth [7] shows the
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ratio can never be bigger than q + 1 (we repeat his argument in Section 4).1

We hope our paper would lead researchers to study not only the possible gap between the
genus and the number of rational points, but also the possible gap between high dimension
divisors and the number of rational points – a problem that has been somewhat neglected so
far.

The rest of the paper is organized as follows. In Section 2 we describe the construction and
its analysis using Bézout’s Theorem. Section 3 contains a description the same construction
in algebraic function fields terminology. In Subsections 3.1 and 3.1.1 we give the necessary
background on algebraic function fields and geometric Goppa codes. Finally, in Section 4
we describe a possible hypothesis regarding function fields and its implications to ε-balanced
codes.

2 A self-contained elementary description of the construction

We first recall the definition of an ε-biased set:

Definition 1. A set S ⊆ {0, 1}k is ε-biased if for every nonempty T ⊆ [k],

1
|S|

∣∣∣
∑

s∈S

(−1)
P

i∈T si

∣∣∣ ≤ ε.

The construction: Given k and ε, let p = 2` be a power of 2 in the range
[(

k
ε2

)1/4
, 2

(
k
ε2

)1/4
]
.

Define q = p2 and r = εp3. Let Fq denote the finite field with q elements and Fp its
subfield with p elements. Consider the vector space of bivariate polynomials over Fq

with total degree at most r/(p + 1):

V =
{

φ ∈ Fq[x, y] : deg(φ) ≤ r

p + 1

}
= Span

{
xiyj : i + j ≤ r

p + 1

}
.

The dimension of this space (over Fq) is k′ = Ω( r2

p2 ) = Ω(k).

Let A ⊆ Fq × Fq be the set of roots of the polynomial yp + y − xp+1. The ε-biased set
over k′ bits that we construct is

S =

{( 〈
bin(aibj),bin(c)

〉
2

)
i+j≤ r

p+1

: (a, b) ∈ A and c ∈ Fq

}
,

where bin : Fq → Z2`
2 is any isomorphism between the additive group of Fq and the

vector space Z2`
2 and 〈·, ·〉2 denotes inner product over Z2`

2 .

The analysis: The following claim will be used to bound the size of S.

Claim 1. The cardinality of A is p3.

1We also mention that an Ω(
√

q)-ratio follows by using function fields where N(F ) is larger than the genus by
that factor.

4



Proof: The trace function Tr(y) = yp + y maps Fq to Fp. We claim that for every
α ∈ Fp, the number of solutions in Fq to Tr(y) = α is p. To see this, observe that Tr is
a linear function. Hence, the set of solutions to Tr(y) = 0 is a subgroup of Fq that has
at most p elements. For every α ∈ Fp, the set of solutions to Tr(y) = α is either empty
or a coset of this subgroup. As every element of Fq is in one of these cosets, it must be
the case that for every α ∈ Fp there are exactly p solutions.

The norm function N(x) = xp+1 also maps Fq to Fp. Thus, for every α ∈ Fq there are
exactly p values β ∈ Fq such that Tr(β) = N(α). Therefore, |A| = p3.

We want to apply Bézout’s Theorem on the bivariate polynomial yp+y−xp+1. However,
we first need to show it is irreducible. We need Eisenstein’s Criterion for irreducibility:

Theorem 2 (Eisenstein’s Criterion [4, Thm 3.1]). Let U be a unique factorization ring
and let K be its field of fractions. Let f(x) =

∑n
i=0 aix

i be a polynomial of degree
n ≥ 1 in U [x]. Let ρ be a prime of U , and assume:

• an 6= 0 (mod ρ)

• For every i < n, ai = 0 (mod ρ)

• a0 6= 0 (mod ρ2).

Then f(x) is irreducible in K[x].

With that we conclude:

Claim 3. The polynomial yp + y − xp+1 is irreducible over Fq.

Proof: This follows from Eisenstein’s Criterion. The unique factorization ring we con-
sider is U = Fq[y]. The prime element we use is ρ = y. The leading coefficient is −1
and−1 6= 0 (mod y). Every other coefficient except the last is 0, hence it is 0 (mod y).
The last coefficient is also 0 (mod y). Finally, since p ≥ 2, yp = 0 (mod y2) but y 6= 0
(mod y2), hence yp + y 6= 0 (mod y2). Therefore the univariate polynomial (in x) is
irreducible over the field of fractions and in particular over Fq[y]. This implies the bi-
variate polynomial is irreducible over the field Fq.

We are now ready to recall Bézout’s Theorem and apply it prove S is indeed ε-biased.

Theorem 4 (Bézout’s Theorem [2, Section 5.3]). Suppose φ and ψ are two bivariate
polynomials over some field. If φ and ψ have more then deg(φ) · deg(ψ) common roots
than they have a common factor.

Theorem 5. For every k and ε such that ε < 1√
k

, S is an ε-biased set over k′ = Ω(k)

bits of size O
(

k
ε2 log(1/ε)

)5/4
.

Proof: By Claim 1, |S| = |A| · q = p5 = O
(

k
ε2

)5/4
.
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Let T ⊆ [k′] be some non-empty set. We identify [k′] with the set
{

(i, j) : i + j ≤ r
p+1 ]

}

and T with the corresponding subset.

Let s ∈ S be an element specified by the pair ((a, b), c) ∈ A× Fq. Then,
∑

(i,j)∈T

s(i,j) =
∑

(i,j)∈T

〈
bin(aibj), bin(c)

〉
2

=
〈
bin

( ∑

(i,j)∈T

aibj
)
, bin(c)

〉
2
.

The polynomial φT =
∑

(i,j)∈T xiyj is a non-zero polynomial. Clearly, for any (a, b)
which is not a root of φT , the inner-product will be unbiased when ranging over c (i.e.
exactly half of the values for c will make the inner product 0). From the assumption
ε < 1√

k
it follows that deg(φT ) < p + 1. Hence, by Claim 3 it follows that φT and

yp + y − xp+1 have no common factors. Therefore, by Bezout’s theorem we conclude
that the number of roots of φT that are in A is at most r

p+1 · (p + 1) = r, and,

1
|S|

∣∣∣
∑

s∈S

(−1)
P

i∈T si

∣∣∣ ≤ r

|A| = ε.

Remark 6. The above construction can be improved to an ε-biased set of size O
(

k
ε2 log(1/ε)

)5/4

for every k and ε such that ε√
log(1/ε)

< 1√
k

. To achieve this we choose p = Θ
(

k
ε2 log(1/eps)

)1/4
.

We then observe that instead of taking a basis for V over Fq, we can actually afford to take
a basis over F2. Finally we need to use the fact that by the constraints we have on ε, it fol-
lows that log(1/ε) = Θ(log(p)). When we restate the construction in algebraic function fields
terminology, we also include this improvement.

3 Restating the construction in algebraic function fields terminol-
ogy

Without putting the above construction in the proper context, it may appear coincidental. We
now describe the general framework of algebraic-geometric codes and explain why the above
construction fits into this framework.

3.1 Algebraic-Geometry

We recall a few notions from the theory of algebraic function fields. A detailed exposition of
the subject can be found, e.g., in [6].
Fq denotes the finite field with q elements. Fq(x), where x is transcendental over Fq, is the

rational function field, and it contains all rational functions in x with coefficients in Fq. F/Fq

is an algebraic function field, if F is a finite algebraic extension of Fq(x).
A place P of F/Fq is a maximal ideal of some valuation ring O of the function field. We

denote by OP the valuation ring that corresponds to the place P . We denote by vP the discrete
valuation that corresponds to the valuation ring OP . Therefore, we can write P and OP as

P = {x ∈ F : vP (x) > 0} and OP = {x ∈ F : vP(x) ≥ 0}.
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Since P is a maximal ideal, FP = OP /P is a field. For every x ∈ OP , x(P ) denotes
x( mod P ) and is an element of FP . The degree of a place P is defined to be deg(P ) =
[FP : Fq]. In particular, if a place is of degree 1 then FP is isomorphic to Fq. PF is the set of
places of F . N(F ) is the number places of degree 1 (also called rational points) in F/Fq and
is always finite.

DF is the free abelian group over the places of F . A divisor is an element in this group,
i.e., it is a sum G =

∑
P∈PF

nP P with nP ∈ Z and where nP 6= 0 for only a finite number
of places. We also denote vP (G) = nP . The degree of the divisor

∑
P nP P is defined to be∑

P nP ·deg(P ), and it is always finite. We say G1 ≥ G2 if G1 is component-wise larger than
G2, i.e., vP (G1) ≥ vP (G2) for any place P .

Each element 0 6= x ∈ F is associated with two divisors. The first is called the principal
divisor of x and it is defined by

(x) =
∑

P

vP (x)P.

The degree of a principal devisor is always 0. The second is the pole divisor of x and it is
defined by

(x)∞ =
∑

P :vP (x)<0

vP (x)P.

If x ∈ F \ Fq then deg((x)∞) = [F : Fq(x)].
For a divisor G, we define the Riemann-Roch space is

L(G) = {x ∈ F : (x) ≥ −G} ∪ {0}.

We define the dimension of G by dim(G) = dimL(G) and we use the two notations inter-
changeably. The fact that the degree of each principal divisor is 0 implies that if deg(G) < 0
then dim(L(G)) = 0.

3.1.1 Geometric Goppa Codes

A Goppa code is specified by a triplet (F, Y, G), where F/Fq is a function field, Y = {P1, . . . , Pn}
is a set of places of degree 1 and G is an arbitrary divisor with no support over any place in Y .
Notice that for any x ∈ L(G), vPi(x) ≥ 0 and therefore x ∈ OPi and x(Pi) ∈ Fq. The triplet
(F, Y,G) specifies the code:

C(Y ;G) = {(x(P1), . . . , x(Pn)) : x ∈ L(G)} ⊆ Fq
n.

Claim 7 ([6, Thm II.2.2]). If deg(G) < n then C(Y ; G) is an [n, dim(L(G)), n − deg(G)]
linear code over Fq.

We want the gap between dim(L(G)) and deg(G) to be small. It turns out that for any
function field F/Fq there exists a constant g ∈ N, such that for any divisor G ∈ DF , deg(G)−
dim(L(G)) ≤ g − 1. The minimal integer with this property is called the genus of F/Fq. The
Riemann-Roch Theorem says that:

Theorem 8 ([6, Thm I.5.17]). If deg(G) ≥ 2g − 1 then dim(L(G)) = deg(G)− g + 1.
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This, in particular, allows one to easily compute the dimension of the code when deg(G) >
2g. The only remaining question is how many places of degree 1 exist. Informally, the
Drinfeld-Vladut bound tells us that when g tends to infinity, n ≤ g(

√
q − 1), and several

explicit constructions meet this bound (see [3, Chapter 1]).
In this paper we look at divisors G whose degree is smaller than the genus. Much less is

known about such small-degree divisors. In this regime, dim(L(G)) depends on the divisor G
itself, and not only on its degree, as is the case when deg(G) > 2g. For some special algebraic
function fields the vector space L(G) (and therefore also its dimension) is known in full. We
talk more about this below.

3.2 Concatenating AG codes with Hadamard

We concatenate an outer code with the Hadamard code. If the outer code is an [n1, k1, d]q code
and q is a power of two, then concatenating it with the [2k2 , k2 = log(q), 1

2 ]2 Hadamard code
gives an [n = 2n1q, k = k1(1 + log q)]2 code that is ε = n1−d

n1
balanced, because non-zero

symbols in the outer code expand by the concatenation to perfectly balanced blocks.
Using Reed-Solomon code as the outer code, one gets an [n = 2q2, k = k1(log q + 1)]2

code that is ε = k1
q balanced. Rearranging parameters, this gives an [n, k]2 ε-balanced code

with n = O(( k
ε log( k

ε
)
)2). This is one of the constructions in [1].

Taking the outer code to be an AG code C(Y ; G) over Fq, with deg(G) > 2g and optimal
length g

√
q, one gets an [n = g

√
q, k = deg(G) + 1 − g]2 code that is ε = deg(G)

g
√

q -biased.

Doing the calculation one sees that n = O( k
ε3 log(1/ε)

). As these are the best AG codes possible
for the case deg(G) > 2g, no improvement is possible here unless we consider low-degree
divisors G.

So we now turn our attention to the case where deg(G) ≤ 2g − 1. In this case dimL(G)
depends on the divisor G and not just its degree. One special case is the case where G =
rQ, r ∈ N and Q is a place of degree 1. For any such r, dimL(rQ) is either equal to
dimL((r − 1)Q) or to dimL((r − 1)Q) + 1. In the former case r is said to be a gap number
of Q. Weierstrass Gap Theorem [6, Thm I.6.7] says that for any place Q there are exactly
g = genus(F/Fq) gap numbers, and they are all in the range [1, 2g − 1].

The non-gap numbers (also called pole numbers) form a semigroup of N (i.e. a set that is
closed under addition). This semigroup is sometimes referred to as the Weierstrass semigroup
of Q. We say a semi-group S is generated by a set of elements {gi}, if each gi ∈ S and,
furthermore, every element s ∈ S can be expressed as s =

∑
aigi with ai ∈ N.

The structure of the Weierstrass semigroup is crucial to our construction. We know that
there are exactly g elements of this semigroup in the range [1, 2g]. If these elements are too
concentrated on the upper side of the range then the behavior of dimL(rQ) will be very similar
to the case where r > 2g − 1. Thus, our goal is to find a function field F that has many places
of degree 1, say, N(F ) ≥ Ω(g

√
q), while at the same time F has a degree 1 place Q with a

”good” Weierstrass semigroup.

3.3 The Construction

Let p be a prime power and q = p2. The Hermitian function field over Fq can be represented
as the extension field Fq(x, y) of the rational function field Fq(x) with yp + y = xp+1. This

8



function field has 1 + p3 places of degree one. First, there is the common pole Q∞ of x and y.
Moreover, for each pair (α, β) ∈ Fq with βp +β = αp+1 there is a unique place Pα,β of degree
one such that x(Pα,β) = α and y(Pα,β) = β and we already saw there are p3 such points. The
genus of the Hermitian function field is g = p(p− 1)/2.

For the outer code we take the Goppa code Cr = C(Y,G = rQ∞), where Y is the set of
all degree 1 places Pα,β mentioned above and r = εp3. The Weierstrass semigroup of G is
generated by p and p + 1, and a basis for L(G) = L(rQ∞) is

{
xiyj : j ≤ p− 1 and ip + j(p + 1) ≤ r

}
.

The dimension of the code is
∣∣{(i, j) : j ≤ p− 1 and ip + j(p + 1) ≤ r}∣∣.

We can now see the similarity between this construction and the one in Section 2. The
parameter r will be chosen such that the constraint j ≤ p− 1 will be nullified. Therefore, both
use evaluations of low degree bivariate polynomials over the same set of p3 points.2

Theorem 9. For every k and every ε such that ε√
log(1/ε)

≤ 1√
k

, there exists an explicit

[n,Ω(k)]2 code that is ε-balanced, with n = O
(

k
ε2 log(1/ε)

)5/4
.

Proof: For a given k and ε, let

p ∈
[(

k

ε2 log(1/ε)

)1/4

, 2
(

k

ε2 log(1/ε)

)1/4
]

be a power of two. It can verified that 1
p3 ≤ ε ≤ 1

p and so log(1/ε) = Θ(log(p)).
Let r = εp3 and let Fq be the field with q = p2 elements. Let F denote the Hermitian

function field over Fq and let Y denote its set of places of degree 1, excluding Q∞. This
implies that |Y | = p3. Define the divisor G to be G = rQ∞. Since r ≤ p2, dimL(rQ∞) ≥
( r
2(p+1))

2 = Ω(ε2p4) = Ω( k
log(p)). By Claim 7, the Goppa code that is obtained from the triplet

(F, Y,G) is a

[p3, Ω(
k

log(p)
), p3 − r]p2

code. Concatenating this code with Hadamard gives a [p5, Ω(k)]2 code that is ε-balanced (since
r
p3 = ε). Now, by our choice of p, it follows that

k

ε2 log(1
ε )

= Θ(p4)

and therefore n = p5 = O(( k
ε2 log( 1

ε
)
)5/4) as desired.

2The only slight difference is that in this construction we take all bivariate polynomials with bounded weighted
total degree. However, the weight is nearly identical for both variables and so this does not affect much the para-
meters of the construction.
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4 A hypothesis and its consequence

The power of AG codes comes from the fact that the number of rational points N(F ) may
be larger by a factor of

√
q than the genus g(F ). The genus measures the maximal loss in

dimension compared to the degree. By the Drinfeld-Vladut theorem, this gain is limited to a
factor of

√
q.

Motivated by the results of the previous section we start with a simple question. What is
the maximal gap between the number of rational points N(F ) and the degree of a divisor G
with some positive dimension. A few definitions are in place:

Definition 2. A sequence F over Fq is an infinite sequence F = (F1, F2, . . .) of function fields
Fi/Fq such that limi→∞N(Fi) = ∞.

Definition 3. We say a divisor G ∈ DF has positive dimension if dim(L(G)) > 1.

Definition 4. Let F be a sequence over Fq, and 0 ≤ b = b(q) ≤ 1. We say F has a b-gap, if
there exist divisors Gi ∈ DFi with positive dimension such that lim N(Fi)

deg(Gi)
= b.

For example, any divisor with degree above the genus has positive dimension. Thus, if F
is asymptotically optimal (meaning that lim N(Fi)/g(Fi) ≥ √

q − 1) then b =
√

q − 1.
In fact, we can do better. We already saw function fields with a larger gap. In the Hermitian

function field, G = pQ∞ has positive dimension, and N(F )/deg(G) ≥ p3/p = p2 = q. One
can also build a tower over the Hermitian function field and get a sequence that preserves this
gap.

Can the gap be larger? The following argument, shown to us by Henning Stichtenoth,
shows this is not possible:

Lemma 10. Let F/Fq be a function field and G ∈ DF a divisor with positive dimension. Then
N(F ) ≤ deg(G) · (q + 1).

Proof: As dim(L(G)) > 1, there exists some x ∈ F \ Fq such that (x) ≥ −G. Fix any such
x. In particular, deg(x)∞ ≤ deg(G). Also, by [6, Thm I.4.11], deg(x)∞ = [F : Fq(x)].
On the other hand, we may view F as a finite extension over the rational function field Fq(x).
Every place of degree 1 of F lies above some place of degree 1 of Fq(x). There are exactly
q + 1 places of degree 1 of Fq(x), and each one of them may split to at most [F : Fq(x)]
places of degree 1 of F (by the fundamental equality, [6, Thm III.1.11]). Altogether, N(F ) ≤
(q + 1)[F : Fq(x)] = (q + 1) deg(x)∞ ≤ (q + 1) deg(G).

We now move on to what we actually want. We want an Ω(q) gap between the number of
degree 1 places and a divisor with a large dimension. We define:

Definition 5. We say a divisor G ∈ DF is c-dense, for 0 ≤ c ≤ 1, if G ≥ 0 and dim(L(G)) ≥
c · deg(G).

Definition 6. Let F be a sequence over Fq, and 0 ≤ b = b(q), c = c(q) ≤ 1. We say F has a
c-dense b-gap, if there exist c-dense divisors Gi ∈ DFi such that lim N(Fi)

deg(Gi)
= b.

When we use concatenation of a linear code over a large alphabet and a binary linear code
and we want the resulting code to be linear, we require that the size of the large alphabet is a
power of 2. Without this restriction, we may still construct binary codes with concatenation,
but not necessarily linear ones.
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Definition 7. An (not necessarily linear) code is ε-balanced if the relative Hamming distance
between every two codewords is in the range [12 − ε, 1

2 + ε].

Lemma 11. If F has a c-dense b-gap, then for infinitely many k there exists an (n, k)2 code
that is ε = 1

b−1 balanced and n = ∆ · k
ε2 log( 1

ε
)

where ∆ = 1
c

q
b−1 · log(b−1)

log(q) .

Proof: Let Gi ∈ DFi be the promised divisors. Let Yi be the set of all places of degree 1 in Fi

that are disjoint with Gi. |Yi| ≥ N(Fi)− deg(Gi). The Goppa code that is obtained from the
triplet (Fi, Di, Gi) is an

[N = N(Fi)− deg(Gi) , c · deg(Gi) , N − deg(Gi)]q

code. Concatenating this with Hadamard gives a

(n = q · (N(Fi)− deg(Gi)), k = c · deg(Gi) log(q))2

code which is ε = deg(Gi)
N(Fi)−deg(Gi)

-balanced. Taking i large enough, we essentially get ε = 1
b−1 .

Thus,

n = q(N(Fi)−deg(Gi)) ≈ q · (b− 1) ·deg(Gi) ≈ q · deg(Gi)
(b− 1)ε2

=
q log(1

ε )
(b− 1)c log q

· k

ε2 log(1
ε )

.

For example, if F is asymptotically optimal and deg(Gi) ≥ 2g then b = Θ(
√

q) and
c ≥ 1

2 . Another example is given by the divisors we chose for the Hermitian function field.
There we chose deg(Gi) = r and we had dim(Gi) = Θ( r2

p2 ), thus c = Θ( r
p2 ) and b = Θ(p3

r )
and altogether bc = Θ(

√
q) (the constants in the big-O notation are independent of q).

If bc can be made Ω(q), with a constant independent of q, then one would match the lower
bound for ε-balanced codes. We formulate this hypothesis below. We have no idea whether it
is valid. On the one hand, we saw that one can find divisors Gi ∈ DFi with positive dimension
and q-gap. On the other hand, we were unable to find such divisors with large density and so,
we do not know of an example where bc À √

q.

Hypothesis 12. There exist positive constants β, c < 1 and an infinite set Q ⊆ N such that for
every q ∈ Q there exists a sequence F over Fq that has a c-dense (βq)-gap.

Theorem 13. Under Hypothesis 12 there are infinitely many parameters k, ε such that there
exists an (n, k)2 code that is ε-balanced with n = O

(
k

ε2 log(1/ε)

)
.
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