
A D V A N C E D S O F T W A R E T O O L S S E M I N A R

DETERMINISTIC DEFINITION OF
CONCURRENT BEHAVIOR

T E L A V I V U N I V E R S I T Y

J U L Y 2 0 1 2

AGENDA

• motivation

• problem

• different approaches

• solution

• idea

• demo

• related works

• conclusion

• additional ideas

• feedback

MOTIVATION

during the last years software become more and

more parallel

• multicore hardware

• new api’s, libraries and frameworks

• new patterns and architectures

MOTIVATION

• developing concurrent software is more

complicated and challenging

• synchronization

• data races

• fortunately there are tools supporting development

process

• but what about QA/UT?

PROBLEM

• all modern QA/UT methodologies are based on one

pillar:

executing the same code

with the same inputs will

result with the same output

is this true for concurrent code?

POSSIBLE SOLUTIONS

• stress testing

• static analysis

• runtime analysis

• context switches randomization/enumeration

• different combinations of above techniques

BUT …

• pure performance

• inability to cover all possible scenarios

• false alarms / misses

• non deterministic

• deals with simple synchronization methods /

scenarios only

• introduce new dedicated languages / notations

• requires dedicated runtime / source code

modifications / instrumentation

REAL LIFE

@Test

public void BlockingCollectionTests() throws Exception {

 final ArrayBlockingQueue<Integer> q = new ArrayBlockingQueue<Integer>(1);

 Thread addThread = new Thread(new Runnable() {

 public void run() {

 q.add(1);

 try {

 Thread.sleep(100);
 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 q.add(2);

 }

 });

 addThread.start();

 Thread.sleep(50);

 Integer taken = q.take();

 assertTrue(taken == 1 && q.isEmpty());

 taken = q.take();

 assertTrue(taken == 2 && q.isEmpty());

 addThread.join();

}

REAL LIFE

 Thread addThread = new Thread(new Runnable() {

 public void run() {

 q.add(1);

 try {

 Thread.sleep(100);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 q.add(2);

 }

 });

 addThread.start();

 Thread.sleep(50);

 Integer taken = q.take();

 assertTrue(taken == 1 && q.isEmpty());

 taken = q.take();

 assertTrue(taken == 2 && q.isEmpty());

t

i

m

e

l

i

n

e

q.add(1)

q.take() & assert

q.take()

q.add(2)

assert

consumer

thread

producer

thread

REAL LIFE

 Thread addThread = new Thread(new
 Runnable() {

 public void run() {

 q.add(1);

 add1.notify();

 take2.wait();

 q.add(2);

 }

 });

 addThread.start();

 add1.wait();

 Integer taken = q.take();

 assertTrue(taken == 1 && q.isEmpty());

 taken = q.take();

 take2.notify();

 assertTrue(taken == 2 && q.isEmpty());

t

i

m

e

l

i

n

e

q.add(1)

q.take() & assert

q.take()

q.add(2)

assert

consumer

thread

producer

thread

notify

notify

IDEA

lets define new concept of Gate

G = { L , C }

where:

• L – location in code

• C – boolean condition

when thread T reaches location L it is suspended until

C becomes true

events are very simple implementation of gate

IMPLEMENTATION

• C could be defined using standard Java syntax

• but what about L?

• how we can define some location in the executable?

• how we can intercept the execution to check the value of
C / suspend the thread?

• the answer is very simple and it already exists in

every modern platform / IDE

 BREAKPOINT

G = { L , C }

PUTTING THE THINGS TOGETHER

to define given thread scheduling we have to:

• define gates locations using breakpoints

• define gates conditions that will suspend/resume

the threads

at runtime:

• the breakpoint will be hit

• the condition will be evaluated

• the thread will be suspended / resumed according

to condition’s value

PUTTING THE THINGS TOGETHER

QUESTIONS

DEMOS

• shared memory access

• long running task

• first chance exception

• jobs collection

• blocking collection

PROS

deterministic

• reproducible

• user defined scenarios

• allows to apply testing methodologies / tools to concurrent

code

expressiveness

• fine control over gates locations (method, exception and

conditional bp, hit counters, …)

• power of Java to define condition (interaction with local
and private variables, method calls, …)

• allows to introduce more complex gates

PROS

• allows to control third parties behaviors

• no CUT modifications / adaptations required

• removes synchronization logic from the test code

• the same test code could be used to test multiple concurrent

scenarios

• no dedicated runtime / special version / binaries instrumentation

required, the same binaries could be used in production

• based on simple and well know concepts all developers are

familiar with, no dedicated syntax / language required

• good IDE integration

• not limited to some platform / language

MULTITHREADED TC [2007]

• splits timeline for multiple logical “ticks”

• defines rules for advancing the clock

• test can wait for some tick

or check which tick is it now

• good for simple ordering scenarios

• becomes tricky for more complex

scenarios

• can handle blocking events only

IMUNIT [2011]

• allows to define events in test code

• for each test defines desired

events ordering

• clear declarative notation

• good for simple ordering scenarios

• does not support complex events

• does not support complex orderings

• can not control CUT / third parties

execution

WHAT’S NEXT

Testing:

• control execution flow

• inject mock objects

Validation:

• assert state invariants

• validate method input / output

Instrumentation:

• inject log / trace outputs

• save object state for future inspection

Aspects

FEEDBACK

